高三数学寒假作业冲刺培训班之历年真题汇编复习实战18240
高三数学寒假作业冲刺培训班之历年真题汇编复习实战30095
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战30095](https://img.taocdn.com/s3/m/db8f1ffa647d27284b7351dd.png)
数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项: 1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式: 如果事件A ,B 互斥,那么 棱柱的体积公式V Sh =()()()P A B P A P B ⋃=+ 其中S 表示棱柱的底面面积。
h 表示棱柱的高。
一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.1.i 是虚数单位,复数131ii--= A .2i - B .2i + C .12i --D .12i -+2.设变量x ,y 满足约束条件1,40,340,x x y x y ≥⎧⎪+-≤⎨⎪-+≤⎩则目标函数3z x y =-的最大值为A .4B .0C .43D .4 3.阅读右边的程序框图,运行相应的程序,若输入x 的值为4,则输出y 的值为 A .,0.5 B .1C .2D .44.设集合{}{}|20,|0A x R x B x R x =∈->=∈<,{}|(2)0C x R x x =∈->, 则“x A B ∈⋃”是“x C ∈”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件5.已知244log 3.6,log 3.2,log 3.6a b c ===则A .a b c >>B .a c b >>C .b a c >>D .c a b >>6.已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的准线的交点坐标为(2,1),则双曲线的焦距为( )A .23B .25C .43D .457.已知函数()2sin(),f x x x R ωϕ=+∈,其中0,,()f x ωπϕπ>-<≤若的最小正周期为6π,且当2x π=时,()f x 取得最大值,则( )A .()f x 在区间[2,0]π-上是增函数B .()f x 在区间[3,]ππ--上是增函数C .()f x 在区间[3,5]ππ上是减函数D .()f x 在区间[4,6]ππ上是减函数8.对实数a b 和,定义运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩设函数2()(2)(1),f x x x x R =-⊗-∈。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战57677
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战57677](https://img.taocdn.com/s3/m/fbd242cec281e53a5902ff52.png)
注意事项:1.本试卷分填空题和解答题两部分,共160分,考试用时120分钟.2.答题前,考生务必将自己的班级.姓名.学号写在答题纸的密封线内.答题时,填空题和解答题的答案写在答题纸对应的位置上,答案写在试卷上无效,本卷考试结束后,上交答题纸.一、填空题:本大题共14小题,每小题5分,共70分。
不需要写出解答过程,请把答案直接填空在答题卡相应位置上。
1. 已知全集{}1,2,3,4,5,6U =,集合{}2,3A =,集合{}3,5B =,则()UA B = ▲ .2.复数z 满足(12i)5z +=,则z = ▲ . 3.函数y = ▲ .4.若曲线4()f x x x =-在点P 处的切线平行于直线3x -y =0,则点P 的坐标为 ▲ . 5.已知直线1:(2)10l ax a y +++=,2:20l ax y -+=.则“3a =-”是“1l ∥2l ”的 ▲ 条件. 6.若将函数()sin f x x ω=的图像向右平移6π个单位得到的函数图像与函数4()sin()3g x x ωπ=-的图像重合,则|ω|的最小值为 ▲ .7. 实数x ,y 满足121y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,如果目标函数z x y =-的最小值为-2,则实数m 的值为▲ .8. 直线10ax+y+=被圆2022x +y ax+a =-截得的弦长为2,则实数a 的值是▲. 9.已知)2,0(,1010)4cos(πθπθ∈=+,则sin(2)3πθ-= ▲ . 10.设{}n a 是正项数列,其前n 项和n S 满足:4(1)(3)n n n S a a =-+,则n a = ▲ . 11.已知平面上三个向量OA ,OB ,OC ,满足1OA =,3OB =,2OC =,0OA OB ⋅=,则CA CB ⋅ 的最大值为 ▲ .12.已知22:1O x y +=,若直线2y kx =+上总存在点P ,使得过点P 的O 的两条切线互相垂直,则实数k 的取值范围是 ▲ .13.函数()f x 是定义域为R 的奇函数,且x≤0时,()122x f x x a =-+,则函数()f x 的零点个数是 ▲ .14.已知实数,,z x y 为正数,则222xy yzx y z +++的最大值为 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)如图,在xOy 平面上,点(1,0)A ,点B 在单位圆上,AOB θ∠=(0θπ<<)(1)若点34(,)55B -,求tan()4πθ+的值;(2)若OA OB OC +=,1813OB OC ⋅=,求cos()3πθ-.16、(本题满分14分)在 ABC ∆中,角,,A B C 所对边分别为,,a b c ,且sin sin cos ,,sin sin cos B C BA A A成等差数列.(1)求角A 的值;(2)若a =,5b c +=时,求ABC ∆的面积. 17.(本小题满分15分)设函数()(0xxf x ka a a -=->且1)a ≠是定义域R 上的奇函数. (1)若(1)0f >,试求不等式2(2)(4)0f x x f x ++->的解集; (2)若3(1)2f =,且22()2()x xg x a a mf x -=+-在[1,)+∞上的最小值为2-,求实数m 的取值集合.18.(本小题满分15分)甲方是一农场,乙方是一工厂,由于乙方生产须占用甲方的资源,因此甲方每年向乙方索赔以弥补经济损失并获得一定净收入.乙方在不赔付甲方的情况下,乙方的年利润x (元)与年产量t (吨)满足函数关系t x 2000=.若乙方每生产一吨产品必须赔付甲方s 元(以下称s 为赔付价格).(1)将乙方的年利润w (元)表示为年产量t (吨)的函数,并求出乙方获得最大利润的年产量;(2)甲方每年受乙方生产影响的经济损失金额2002.0t y =(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s 是多少?19.(本小题满分16分)设数列{}n a 的各项都是正数,且对任意*n ∈N 都有33332123,n n a a a a S ++++=其中nS 为数列{}n a 的前n 项和.(1)求证:22n n n a S a =-;(2)求数列{}n a 的通项公式;(3)设13(1)2n an n n b λ-=+-⋅(λ为非零整数,*n ∈N )试确定λ的值,使得对任意*n ∈N ,都有1n n b b +>成立.20.(本小题满分16分)已知函数f(x)=ex ,g(x)=x -b ,b ∈R .(1)若函数f(x)的图象与函数g(x)的图象相切,求b 的值; (2)设T(x)=f(x)+ag(x),a ∈R ,求函数T(x)的单调增区间;(3)设h(x)=|g(x)|·f(x),b <1.若存在x1,x2∈,使|h(x1)-h(x2)|>1成立,求b 的取值范围.苏州市第五中学第一学期阶段测试数 学试 题Ⅱ(全卷满分40分,考试时间30分钟).1221.(本小题满分10分)已知矩阵12a A b ⎡⎤=⎢⎥⎣⎦,属于特征值4的一个特征向量为23⎡⎤⎢⎥⎣⎦,求2A . 22.(本小题满分10分)已知直线l的参数方程为12(x ty ⎧=-+⎪⎪⎨⎪=⎪⎩为参数),以坐标原点为极点,x 轴的非半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos ρ=θθ-,若直线l 与曲线C 交于A 、B 两点,求线段AB 的长.23.(本小题满分10分)已知某校有甲、乙两个兴趣小组,其中甲组有2名男生、3名女生,乙组有3名男生、1名女生,学校计划从两兴趣小组中随机各选2名成员参加某项活动. (1)求选出的4名选手中恰好有1名女生的选派方法数;(2)记X 为选出的4名选手的人数,求X 的概率分布和数学期望. 24. (本小题满分10分)已知30123(1)(1)(1)(1)...(1),n n n x a a x a x a x a x +=+-+-+-++-(其中*n ∈N ) (1)求0a 及1nni i S a ==∑;(2)试比较n S 与2(2)22n n n -+的大小,并说明理由. 苏州市第五中学第一学期阶段测试高三数学(参考答案)一、填空题:1.{}2 2.12i - 3.1[,)2+∞4.(1,0) 5.充分不必要6.4 7.8 8.2-9 10.21n +11.2+.(,1][1,)-∞-+∞ 13.3 14.二、解答题:15.(1)由于34(,)55B -,AOB θ∠=,所以3cos 5θ=-,4sin 5θ=,4tan 3θ=-,3分所以1tan 1tan()41tan 7πθθθ++==--; 6分(2)由于(1,0)OA =,(cos ,sin )OB θθ=, 所以(1cos ,sin )OC OA OB θθ=+=+, 8分22218cos (1cos )sin cos cos sin 13OC OB θθθθθθ⋅=⨯++=++=. 所以5cos 13θ=,所以12sin 13θ=,12分所以cos()cos cos sin sin 333πππθθθ-=+=分 16、(本题满分14分) (I )、由sin sin cos ,,sin sin cos B C B A A A 成等差数列知sin cos sin 2sin cos sin B B CA A A+= 2分法1sin cos cos sin 2sin cos sin()sin 2sin cos B A B A C A B A C C A ⇒+=⇒+== 所以1cos 23A A π=⇒= 6分 法222222222222222222122a c b b c a c b ac b c b c a bc b c a a a b c a bc+-⎛⎫+-⇒+=⇒+=⇒+-= ⎪+-+-⎝⎭ 所以1cos 23A A π=⇒= 6分 (II)、由余弦定理知()22223a b c bc b c bc =+-=+-8分代入5a b c =+=得5bc =11分所以1sin 2S bc A ==14分 17.解:⑴∵()f x 是定义域为R 上的奇函数, ∴(0)0101f k k =⇒-=⇒=.2分 ∵(1)0f >,∴10a a->,又0a >且1a ≠,∴1a >. 4分 易知()f x 在R 上单调递增,∴原不等式化为:2(2)(4)f x x f x +>-, ∴224x x x +>-,即2340x x +->,解得1x >或4x <-. ∴不等式的解集为(,4)(1,)-∞-⋃+∞.7分 ⑵∵3(1)2f =,∴132a a -=,即22320a a --=, 解得2a =或12a =-(舍去).9分从而222()222(22)(22)2(22)2xx x x x x x x g x m m ----=+--=---+.令22x xt -=-,则2()()22h t g x t mt ==-+.∵1x ≥,∴32t ≥.11分∴2223()22()2()2h t t mt t m m t =-+=--+≥.当32m ≥时,则当t m =时,2min ()22h t m =-+=-,解得2m =;13分 当32m <时,则当32t =时,min 17()324h t m =-=-,解得253122m =>,(舍去).综上所述,2m =.15分18.解:(解:(1)乙方的实际年利润为:st t w -=20000≥t . 3分ss t s st t w 221000)1000(2000+--=-=,当21000⎪⎭⎫ ⎝⎛=s t 时,w 取得最大值. 所以乙方取得最大年利润的年产量21000⎪⎭⎫⎝⎛=s t (吨). 6分(2)设甲方净收入为v 元,则2002.0t st v -=.将21000⎪⎭⎫ ⎝⎛=s t 代入上式,432100021000ss v ⨯-=. 9得:分 又令0='v ,得20=s .当20<s 时,0>'v ;当20>s 时,0<'v ,所以20=s 时,v 取得最大值.14分 因此甲方向乙方要求赔付价格20=s (元/吨)时,获最大净收入.15分19.解:(解:(1)证明:由已知得,当32111,n a a ==时1133332123333321231131112121210,12()()()0,=21,12n n n n n n n n n n n n n n n n n n n n n nn n na a n a a a a S a a a a S a S S S S a S S a a S S S S a a S a n a a S a ------->∴=≥++++=++++==-+=+>∴=+-∴=-==∴=-又当时① ②由①-②得又当时适合上式. 5分(2)解由(1)知:22n n n a S a =-③2111221111112,22()01{}1,1{}n n n n n n n n n n n n n n n n n n n a S a a a S S a a a a a a a a a a a n---------≥=---=--+=++>∴-=∴∴=当时④由③④得数列是以首项为公差为的等差数列数列的通项公式为23232551000810001000(8000)s v s s s ⨯-'=-+=10分(3)1,3(1)2n n n n n a n b λ-=∴=+-⋅11111111,33(1)2(1)2233(1)20(1))n n n n n nn n n n n n n n n b b b b λλλλ++-++--->-=-+-⋅--⋅=⋅--⋅>-<要使恒成立即恒成立3即(恒成立212分11))1,1n n n λλ--<∴<3①当为奇数时,即(恒成立23又(的最小值为2111,)),101,,n n n nn n N b b λλλλλλ--*+>-∴>-<<≠∴=-∈>3②当为偶数时即(恒成立2333又-(的最大值为-2223即-,又且为整数2使得对任意都有 16分20.解:(1)设切点为(t ,et),因为函数f(x)的图象与函数g(x)的图象相切, 所以et =1,且et =t -b ,解得b =-1. ……………………………………4分 (2)T(x)=ex +a(x -b),T′(x)=ex +a . 当a≥0时,T′(x)>0恒成立.当a <0时,由T′(x)>0,得x >ln(-a). …………………………………6分 所以,当a≥0时,函数T(x)的单调增区间为(-∞,+∞);当a <0时,函数T(x)的单调增区间为(ln(-a),+∞). ………………8分(3)h(x)=|g(x)|·f(x)=⎩⎨⎧(x -b)ex , x≥b ,-(x -b)ex , x <b.当x>b 时,h′(x)=(x -b +1)ex >0,所以h(x)在(b ,+∞)上为增函数; 当x<b 时,h′(x)=-(x -b +1)ex ,因为b -1<x <b 时,h′(x)=-(x -b +1)ex <0,所以h(x)在(b -1,b)上是减函数; 因为x <b -1时, h′(x)=-(x -b +1)ex >0,所以h(x)在(-∞,b -1)上是增函数.…………………10分① 当b≤0时,h(x)在(0,1)上为增函数.所以h(x)max =h(1)=(1-b)e ,h(x)min =h(0)=-b .由h(x)max -h(x)min >1,得b <1,所以b≤0. …………………12分 ②当0<b <ee +1时,因为b <x <1时, h′(x)=(x -b +1)ex >0,所以h(x)在(b ,1)上是增函数, 因为0<x <b 时, h′(x)=-(x -b +1)ex <0,所以h(x)在(0,b)上是减函数. 所以h(x)max =h(1)=(1-b)e ,h(x)min =h(b)=0. 由h(x) max -h(x) min >1,得b <e -1e .因为0<b <ee +1,所以0<b <e -1e . ………………14分③当ee +1≤b <1时, 同理可得,h(x)在(0,b)上是减函数,在(b ,1)上是增函数. 所以h(x)max =h(0)=b ,h(x)min =h(b)=0.因为b <1,所以h(x)max -h(x)min >1不成立.综上,b 的取值范围为(-∞,e -1e ). …………………………16分数 学试 题Ⅱ21.由条件,1224233a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∴2382612a b +=⎧⎨+=⎩,解得23a b =⎧⎨=⎩……5分 ∵1232A ⎡⎤=⎢⎥⎣⎦, ∴276910A ⎡⎤=⎢⎥⎣⎦……10分 22.由2sin 2cos ρθθ=-,可得ρ2=2ρsin θ-2ρcos θ,所以曲线C 的直角坐标方程为x2+y2=2y -2x , 标准方程为(x +1)2+(y -1)2=2. 直线l 的方程为化成普通方程为x -y +1=0.……………………4分圆心到直线l 的距离为d ==,所求弦长L == ……………………10分 23.(1)选出的4名选手中恰好有一名女生的选派方法数为1121233321C C C C ⋅⋅+=种.…3分 (2)X 的可能取值为0,1,2,3. ………………5分23225431(0)10620C P X C C ====⨯, 11212333225423337(1)10620C C C C P X C C +⨯⨯+====⨯, 21332254333(3)10620C C P X C C ⨯====⨯,(2)1(0)(1)(3)P X P X P X P X ==-=-=-=920=. ………………8分 X 的概率分布为:179317()01232020202010E X =⨯+⨯+⨯+⨯=. ………………10分 24.(1)令1x =,则02n a =,令2x =, 则3nn ii a==∑,∴32n n n S =-; 3分(2)要比较n S 与2(2)22nn n -+的大小,即比较:3n 与2(1)22nn n -+的大小, 当1n =时,23(1)22nnn n >-+;当2,3n =时,23(1)22nnn n <-+; 当4,5n =时,23(1)22nnn n >-+; 5分猜想:当4n ≥时4n ≥时,23(1)22nnn n >-+,下面用数学归纳法证明: 由上述过程可知,4n =4n =时结论成立,假设当(4)n k k =≥,(4)n k k =≥时结论成立,即23(1)22nnn n >-+, 两边同乘以3 得1212233[(1)22]22(1)[(3)2442]k k k k k k k k k k k ++>-+=+++-+--22(3)2442(3)24(2)6(2)24(2)(1)60k k k k k k k k k k k k -+--=-+--+=-+-++>∴1123[(1)1]22(1)k k k k ++>+-++,即1n k =+时结论也成立,∴当4n ≥时,23(1)22nnn n >-+成立. 综上得,当1n =时,23(1)22nnn n >-+; 当2,3n =时,23(1)22nnn n<-+;当4,n n N*≥∈时,23(1)22n n n n>-+一、选择题:本大题共10小题,每小题5分,共50分.在每个题给出的四个选项中,只有一项是符合要求的.1.(5分)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱2.(5分)复数z=(3﹣2i)i的共轭复数等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i3.(5分)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()A.8B.10C.12D.144.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()A. B. C.D.5.(5分)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()A.18B.20C.21D.406.(5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)8.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)9.(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.610.(5分)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置11.(4分)若变量 x,y满足约束条件,则z=3x+y的最小值为.12.(4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于.13.(4分)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是(单位:元)14.(4分)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为.15.(4分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是.三、解答题:本大题共4小题,共80分.解答应写出文字说明,证明过程或演算步骤16.(13分)已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.17.(13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.18.(13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.19.(13分)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.在2123题中考生任选2题作答,满分21分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.选修42:矩阵与变换20.(14分)已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<cex. 21.(7分)已知矩阵A的逆矩阵A﹣1=().(1)求矩阵A;(2)求矩阵A﹣1的特征值以及属于每个特征值的一个特征向量.五、选修44:极坐标与参数方程22.(7分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为常数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.六、选修45:不等式选讲23.已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.(1)求a的值;(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (2)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每个题给出的四个选项中,只有一项是符合要求的.1.5分)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱【分析】直接从几何体的三视图:正视图和侧视图或俯视图判断几何体的形状,即可. 【解答】解:圆柱的正视图为矩形,故选:A.【点评】本题考查简单几何体的三视图,考查逻辑推理能力和空间想象力,是基础题.2.((5分)复数z=(3﹣2i)i的共轭复数等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i【分析】直接由复数代数形式的乘法运算化简z,则其共轭可求.【解答】解:∵z=(3﹣2i)i=2+3i,∴.故选:C.【点评】本题考查了复数代数形式的乘法运算,考查了复数的基本概念,是基础题.3.(5分)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()A.8B.10C.12D.14【分析】由等差数列的性质和已知可得a2,进而可得公差,可得a6【解答】解:由题意可得S3=a1+a2+a3=3a2=12,解得a2=4,∴公差d=a2﹣a1=4﹣2=2,∴a6=a1+5d=2+5×2=12,故选:C.【点评】本题考查等差数列的通项公式和求和公式,属基础题.4.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()A. B. C.D.【分析】由题意可得a=3,由基本初等函数的图象和性质逐个选项验证即可.【解答】解:由题意可知图象过(3,1),故有1=loga3,解得a=3,选项A,y=a﹣x=3﹣x=()x单调递减,故错误;选项B,y=x3,由幂函数的知识可知正确;选项C,y=(﹣x)3=﹣x3,其图象应与B关于x轴对称,故错误;选项D,y=loga(﹣x)=log3(﹣x),当x=﹣3时,y=1,但图象明显当x=﹣3时,y=﹣1,故错误.故选:B.【点评】本题考查对数函数的图象和性质,涉及幂函数的图象,属基础题.5.(5分)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()A.18B.20C.21D.40【分析】算法的功能是求S=21+22+…+2n+1+2+…+n的值,计算满足条件的S值,可得答案. 【解答】解:由程序框图知:算法的功能是求S=21+22+…+2n+1+2+…+n的值,∵S=21+22+1+2=2+4+1+2=9<15,S=21+22+23+1+2+3=2+4+8+1+2+3=20≥15.∴输出S=20.故选:B.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.6.(5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件【分析】根据直线和圆相交的性质,结合充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则圆心到直线距离d=,|AB|=2,若k=1,则|AB|=,d=,则△OAB的面积为×=成立,即充分性成立.若△OAB的面积为,则S==×2×==,即k2+1=2|k|,即k2﹣2|k|+1=0,则(|k|﹣1)2=0,即|k|=1,解得k=±1,则k=1不成立,即必要性不成立.故“k=1”是“△OAB的面积为”的充分不必要条件.故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用三角形的面积公式,以及半径半弦之间的关系是解决本题的关键.7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)【分析】由三角函数和二次函数的性质,分别对各个选项判断即可.【解答】解:由解析式可知当x≤0时,f(x)=cosx为周期函数,当x>0时,f(x)=x2+1,为二次函数的一部分,故f(x)不是单调函数,不是周期函数,也不具备奇偶性,故可排除A、B、C,对于D,当x≤0时,函数的值域为[﹣1,1],当x>0时,函数的值域为(1,+∞),故函数f(x)的值域为[﹣1,+∞),故正确.故选:D.【点评】本题考查分段函数的性质,涉及三角函数的性质,属基础题.8.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)【分析】根据向量的坐标运算,,计算判别即可.【解答】解:根据,选项A:(3,2)=λ(0,0)+μ(1,2),则3=μ,2=2μ,无解,故选项A不能;选项B:(3,2)=λ(﹣1,2)+μ(5,﹣2),则3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2,μ=1,故选项B能.选项C:(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C不能. 选项D:(3,2)=λ(2,﹣3)+μ(﹣2,3),则3=2λ﹣2μ,2=﹣3λ+3μ,无解,故选项D不能.故选:B.【点评】本题主要考查了向量的坐标运算,根据列出方程解方程是关键,属于基础题.9.(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.6【分析】求出椭圆上的点与圆心的最大距离,加上半径,即可得出P,Q两点间的最大距离.【解答】解:设椭圆上的点为(x,y),则∵圆x2+(y﹣6)2=2的圆心为(0,6),半径为,∴椭圆上的点(x,y)到圆心(0,6)的距离为==≤5,∴P,Q两点间的最大距离是5+=6.故选:D.【点评】本题考查椭圆、圆的方程,考查学生分析解决问题的能力,属于基础题.10.(5分)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)【分析】根据“1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来”,分别取红球蓝球黑球,根据分步计数原理,分三步,每一步取一种球,问题得以解决.【解答】解:从5个无区别的红球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+a+a2+a3+a4+a5;从5个无区别的蓝球中取出若干个球,由所有的蓝球都取出或都不取出,得其所有取法为1+b5;从5个有区别的黑球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+c+c2+c3+c4+c5=(1+c)5,根据分步乘法计数原理得,适合要求的所有取法是(1+a+a2+a3+a4+a5)(1+b5)(1+c)5.故选:A.【点评】本题主要考查了分步计数原理和归纳推理,合理的利用题目中所给的实例,要遵循其规律,属于中档题.二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置11.(4分)若变量 x,y满足约束条件,则z=3x+y的最小值为 1 .【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最小值. 【解答】解:作出不等式对应的平面区域如图,由z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A(0,1)时,直线y=﹣3x+z的截距最小,此时z最小.此时z的最小值为z=0×3+1=1,故答案为:1【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法. 12.(4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于 2.【分析】利用三角形中的正弦定理求出角B,再利用三角形的面积公式求出△ABC的面积. 【解答】解:∵△ABC中,A=60°,AC=4,BC=2,由正弦定理得:,∴,解得sinB=1,∴B=90°,C=30°,∴△ABC的面积=.故答案为:.【点评】本题着重考查了给出三角形的两边和其中一边的对角,求它的面积.正余弦定理、解直角三角形、三角形的面积公式等知识,属于基础题.13.(4分)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 160 (单位:元)【分析】此题首先需要由实际问题向数学问题转化,设池底长和宽分别为a,b,成本为y,建立函数关系式,然后利用基本不等式求出最值即可求出所求.【解答】解:设池底长和宽分别为a,b,成本为y,则∵长方形容器的容器为4m3,高为1m,故底面面积S=ab=4,y=20S+10[2(a+b)]=20(a+b)+80,∵a+b≥2=4,故当a=b=2时,y取最小值160,即该容器的最低总造价是160元,故答案为:160【点评】本题以棱柱的体积为载体,考查了基本不等式,难度不大,属于基础题.14.(4分)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为.【分析】利用定积分计算阴影部分的面积,利用几何概型的概率公式求出概率.【解答】解:由题意,y=lnx与y=ex关于y=x对称,∴阴影部分的面积为2(e﹣ex)dx=2(ex﹣ex)=2,∵边长为e(e为自然对数的底数)的正方形的面积为e2,∴落到阴影部分的概率为.故答案为:.【点评】本题考查几何概型,几何概型的概率的值是通过长度、面积、和体积的比值得到.15.(4分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是 6 .【分析】利用集合的相等关系,结合①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,即可得出结论.【解答】解:由题意,a=2时,b=1,c=4,d=3;b=3,c=1,d=4;a=3时,b=1,c=4,d=2;b=1,c=2,d=4;b=2,c=1,d=4;a=4时,b=1,c=3,d=2;∴符合条件的有序数组(a,b,c,d)的个数是6个.【点评】本题考查集合的相等关系,考查分类讨论的数学思想,正确分类是关键.三、解答题:本大题共4小题,共80分.解答应写出文字说明,证明过程或演算步骤16.(13分)已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.【分析】(1)根据题意,利用sinα求出cosα的值,再计算f(α)的值;(2)化简函数f(x),求出f(x)的最小正周期与单调增区间即可.【解答】解:(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.【点评】本题考查了三角函数的化简以及图象与性质的应用问题,是基础题目.17.(13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.【分析】(1)利用面面垂直的性质定理即可得出;(2)建立如图所示的空间直角坐标系.设直线AD与平面MBC所成角为θ,利用线面角的计算公式sinθ=|cos|=即可得出.【解答】(1)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD,又CD⊂平面BCD,∴AB⊥CD.(2)解:建立如图所示的空间直角坐标系.∵AB=BD=CD=1,AB⊥BD,CD⊥BD,∴B(0,0,0),C(1,1,0),A(0,0,1),D(0,1,0),M.∴=(0,1,﹣1),=(1,1,0),=.设平面BCM的法向量=(x,y,z),则,令y=﹣1,则x=1,z=1.∴=(1,﹣1,1).设直线AD与平面MBC所成角为θ.则sinθ=|cos|===.【点评】本题综合考查了面面垂直的性质定理、线面角的计算公式sinθ=|cos|=,考查了推理能力和空间想象能力,属于中档题.18.(13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.【分析】(1)根据古典概型的概率计算公式计算顾客所获的奖励额为60元的概率,依题意得X得所有可能取值为20,60,分别求出P(X=60),P(X=20),画出顾客所获的奖励额的分布列求出数学期望;(2)先讨论,寻找期望为60元的方案,找到(10,10,50,50),(20,20,40,40)两种方案,分别求出数学期望和方差,然后做比较,问题得以解决.【解答】解:(1)设顾客所获取的奖励额为X,①依题意,得P(X=60)=,即顾客所获得奖励额为60元的概率为,②依题意得X得所有可能取值为20,60,P(X=60)=,P(X=20)=,即X的分布列为X 60 20P所以这位顾客所获的奖励额的数学期望为E(X)=20×+60×=40(2)根据商场的预算,每个顾客的平均奖励额为60元,所以先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以数学期望不可能为60元,如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以数学期望也不可能为60元,因此可能的方案是(10,10,50,50)记为方案1,对于面值由20元和40元的组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2,以下是对这两个方案的分析:对于方案1,即方案(10,10,50,50)设顾客所获取的奖励额为X1,则X1的分布列为 X1 60 20 100PX1 的数学期望为E(X1)=.X1 的方差D(X1)==,对于方案2,即方案(20,20,40,40)设顾客所获取的奖励额为X2,则X2的分布列为 X2 40 60 80PX2 的数学期望为E(X2)==60,X2 的方差D(X2)=差D(X1)=. 由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1小,所以应该选择方案2.【点评】本题主要考查了古典概型、离散型随机变量的分布列、数学期望、方差等基础知识,考查了数据处理能力,运算求解能力,应用意识,考查了必然与或然思想与整合思想.19.(13分)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.【分析】(1)依题意,可知=2,易知c=a,从而可求双曲线E的离心率;(2)由(1)知,双曲线E的方程为﹣=1,设直线l与x轴相交于点C,分l⊥x轴与直线l不与x轴垂直讨论,当l⊥x轴时,易求双曲线E的方程为﹣=1.当直线l不与x轴垂直时,设直线l的方程为y=kx+m,与双曲线E的方程联立,利用由S△OAB=|OC|•|y1﹣y2|=8可证得:双曲线E的方程为﹣=1,从而可得答案.【解答】解:(1)因为双曲线E的渐近线分别为l1:y=2x,l2:y=﹣2x,所以=2.所以=2.。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战77295
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战77295](https://img.taocdn.com/s3/m/ba7574cda76e58fafbb00365.png)
本试卷共4页,21小题,满分150分.考试用时120分钟 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号.用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:球的表面积公式24S R =π,其中R 是球的半径.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.命题“若2x =,则2320x x -+=”的逆否命题是A .若2x ≠,则2320x x -+≠B .若2320x x -+=,则2x = C .若2320x x -+≠,则2x ≠D .若2x ≠,则2320x x -+=2.已知0a b >>,则下列不等关系式中正确的是A .sin sin a b >B .22log log a b <C .1122a b < D .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭3.已知函数()40,1,0,x f x x x x ⎧≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩则()2f f =⎡⎤⎣⎦A .14B .12C .2D .44.函数()sin y A x ωϕ=+()0,0,0A ωϕ>><<π的图象的一部分如图1所示, 则此函数的解析式为A .3sin y x ππ⎛⎫=+ ⎪44⎝⎭B .3sin y x π3π⎛⎫=+ ⎪44⎝⎭C .3sin y x ππ⎛⎫=+ ⎪24⎝⎭D .3sin y x π3π⎛⎫=+ ⎪24⎝⎭5.已知函数()223f x x x =-++,若在区间[]4,4-上任取一个实数0x ,则使()00f x ≥成立的概率为图1A .425B .12C .23D .1 6.如图2,圆锥的底面直径2AB =,母线长3VA =,点C 在母线VB 上,且1VC =,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是A C .3D .27.已知两定点()1,0A -,()1,0B ,若直线l 上存在点M ,使得3MA MB +=,则称直线l 为“M 型直线”.给出下列直线:①2x =;②3y x =+;③21y x =--;④1y =;⑤23y x =+.其中是“M 型直线”的条数为 A .1B .2C .3D .48.设(),P x y 是函数()y f x =的图象上一点,向量()()51,2x =-a ,()1,2y x =-b ,且//a b .数列{}n a是公差不为0的等差数列,且()()()12936f a f a f a ++⋅⋅⋅+=,则129a a a ++⋅⋅⋅+= A.0 B.9 C.18 D.36二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.已知i 为虚数单位,复数1i1iz -=+,则z =. 10.执行如图3所示的程序框图,则输出的z 的值是.11.已知()sin 6f x x =+⎪⎝⎭,若cos 5α=02α<< ⎪⎝⎭,则12f α+= ⎪⎝⎭.12.5名志愿者中安排4人在周六、周日两天参加社区公益活动.若每天安排2人,则不同的安排方案共有_________种(用数字作答). 13.在边长为1的正方形ABCD 中,以A 为起点,其余顶点为终点的向量分别为1a ,2a ,3a ;以C 为起点,其余顶点为终点的向量分别为1c ,2c ,3c .若m 为()()i j s t +•+a a c c 的最小值,其中{}{},1,2,3i j ⊆,{}{},1,2,3s t ⊆,则m =.(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)B ACDEFGAV CB图2如图4,在平行四边形ABCD 中,4AB =,点E 为边DC 的中点,AE 与BC 的延长线交于点F ,且AE 平分BAD ∠,作DG AE ⊥,垂足为G ,若1DG =,则AF 的长为. 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知曲线1C 和2C 的方程分别为32,12x t y t =-⎧⎨=-⎩(t 为参数)和24,2x t y t=⎧⎨=⎩(t 为参数),则曲线1C 和2C 的交点有个.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,且::7:5:3a b c =. (1)求cos A 的值;(2)若△ABC 的面积为453,求△ABC 外接圆半径的大小. 17.(本小题满分12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了n 份,统计结果如下面的图表所示. 组号 年龄 分组 答对全卷 的人数 答对全卷的人数 占本组的概率 1 [20,30) 28 b 2 [30,40) 27 0.9 3 [40,50) 5 0.54[50,60] a 0.4(1)分别求出a ,b ,c ,n 的值;(2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环保之星”,记X 为第3组被授予“环保之星”的人数,求X 的分布列与数学期望.18.(本小题满分14分) 如图5,已知六棱柱111111ABCDEF A B C D E F -的侧棱 垂直于底面,侧棱长与底面边长都为3,M ,N 分别 是棱AB ,1AA 上的点,且1AM AN ==. (1)证明:M ,N ,1E ,D 四点共面;(2)求直线BC 与平面1MNE D 所成角的正弦值.19.(本小题满分14分)已知点(),n n n P a b ()n ∈*N 在直线l :31y x =+上,1P 是直线l 与y 轴的交点,数列{}na 是公差为1的等差数列.年龄频率/组距 20 30 40 50 60 0.010c 0.0350.025 0C 1ABA 1B 1D 1 CDMNEFE 1F 1 图5(1)求数列{}n a ,{}n b 的通项公式; (2)求证:22212131111116n PP PP PP ++++<.20.(本小题满分14分)已知圆心在x 轴上的圆C 过点()0,0和()1,1-,圆D 的方程为()2244x y -+=.(1)求圆C 的方程;(2)由圆D 上的动点P 向圆C 作两条切线分别交y 轴于A ,B 两点,求AB 的取值范围.21.(本小题满分14分)已知函数()ln f x a x =-11x x -+,()e xg x =(其中e 为自然对数的底数). (1)若函数()f x 在区间()0,1内是增函数,求实数a 的取值范围;(2)当0b >时,函数()g x 的图象C 上有两点(),e b P b ,(),e b Q b --,过点P ,Q 作图象C 的切线分别记为1l ,2l ,设1l 与2l 的交点为()00,M x y ,证明00x >.广州市普通高中毕业班综合测试(二) 数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.16.(本小题满分12分)解:(1)因为::7:5:3a b c =,所以可设7a k =,5b k =,3c k =()0k >,…………………………………………………………2分由余弦定理得,222cos2b c a A bc+-=()()()222537253k k k k k+-=⨯⨯ (3)分12=-.………………………………………………………………………………………………4分(2)由(1)知,1cos 2A =-,因为A 是△ABC 的内角,所以sin A2=.………………………………………………………………………6分 由(1)知5b k =,3c k =, 因为△ABC 的面积为1sin 2bc A =……………………………………………8分 即1532k k ⨯⨯= 解得k =…………………………………………………………………………………………10分由正弦定理2sin a R A =,即72sin k R A ==,…………………………………………………11分 解得14R =.所以△ABC 外接圆半径的大小为14.…………………………………………………………………12分17.(本小题满分12分)解:(1)根据频率直方分布图,得()0.0100.0250.035101c +++⨯=,解得0.03c =.……………………………………………………………………………………………1分 第3组人数为105.05=÷,所以1001.010=÷=n .…………………………………………………2分第1组人数为1000.3535⨯=,所以28350.8b =÷=.……………………………………………3分 第4组人数为2525.0100=⨯,所以250.410a =⨯=.……………………………………………4分 (2)因为第3,4组答对全卷的人的比为5:101:2=,所以第3,4组应依次抽取2人,4人.…………………………………………………………………5分 依题意X 的取值为0,1,2.……………………………………………………………………………6分()022426C C 20C 5P X ===, (7)分()112426C C 81C 15P X ===,………………………………………………………………………………8分()202426C C 12C 15P X ===,………………………………………………………………………………9分所以X 的分布列为:所以2812012515153EX =⨯+⨯+⨯=. ………………………………………………………………12分 18.(本小题满分14分)第(1)问用几何法,第(2)问用向量法: (1)证明:连接1A B ,11B D ,BD ,11A E ,在四边形1111A B D E 中,1111A E B D 且1111=A E B D , 在四边形11BB D D 中,11BD B D 且11=BD B D ,所以11A E BD 且11=A E BD ,所以四边形11A BDE 是平行四边形. 所以11A BE D .………………………………2分在△1ABA 中,1AM AN ==,13AB AA ==, 所以1AM ANAB AA =, 所以1MNBA .…………………………………………………………………………………………4分………………………………………10分 C 1A BA 1B 1D 1CDMNEFE 1F 1所以1MNDE .所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分(2)解:以点E 为坐标原点,EA ,ED ,1EE 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则()B,9,022C ⎛⎫⎪ ⎪⎝⎭,()0,3,0D , ()10,0,3E,()M ,…………………………8分则3,022BC ⎛⎫=- ⎪ ⎪⎝⎭,()10,3,3DE =-,()32,0DM =-.……………………………………………………………………………………10分设(),,x y z =n 是平面1MNE D 的法向量,则10,0.DE DM ⎧=⎪⎨=⎪⎩nn 即330,20.y z y -+=⎧⎪⎨-=⎪⎩ 取y =2x =,z =所以(=n 是平面1MNE D 的一个法向量.………………………………………………12分设直线BC 与平面1MNE D 所成的角为θ, 则sin BC BCθ=n n==故直线BC 与平面1MNE D ………………………………………………14分 第(1)(2)问均用向量法:(1)证明:以点E 为坐标原点,EA ,ED ,1EE 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则()B,9,022C ⎛⎫⎪ ⎪⎝⎭,()0,3,0D , ()10,0,3E,()M,()N ,……………2分所以()10,3,3DE =-,()0,1,1MN =-. ………………3分 因为13DE MN =,且MN 与1DE 不重合, 所以1DE MN .…………………………………………5分所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分(2)解:由(1)知3,02BC ⎛⎫= ⎪⎪⎝⎭,()10,3,3DE =-,()32,0DM =-.………………10分(特别说明:由于给分板(1)6分(2)8分,相当于把(1)中建系与写点坐标只给2分在此加2分)设(),,x y z =n 是平面1MNE D 的法向量,则10,0.DE DM ⎧=⎪⎨=⎪⎩n n即330,20.y z y -+=⎧⎪⎨-=⎪⎩ 取y =2x=,z =所以(=n 是平面1MNE D 的一个法向量.………………………………………………12分设直线1BC 与平面1MNE D 所成的角为θ, 则sin BC BCθ=n n==故直线BC 与平面1MNE D所成角的正弦值为116.………………………………………………14分 第(1)(2)问均用几何法:(1)证明:连接1A B ,11B D ,BD ,11A E ,在四边形1111A B D E 中,1111A E B D 且1111=A E B D , 在四边形11BB D D 中,11BD B D 且11=BD B D ,所以11A E BD 且11=A E BD ,所以四边形11A BDE 是平行四边形. 所以11A BE D .………………………………2分在△1ABA 中,1AM AN ==,13AB AA ==, 所以1AM ANAB AA =, 所以1MN BA .…………………………………………………………………………………………4分所以1MNDE .所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分(2)连接AD ,因为BCAD ,所以直线AD 与平面1MNE D 所成的角即为直线BC 与平面1MNE D 所成的角.…………………7分 连接DN ,设点A 到平面DMN 的距离为h ,直线AD 与平面1MNE D 所成的角为θ, 则sin hADθ=.……………………………………………………………………………………………8分因为A DMN D AMN V V --=,即1133DMN AMN S h S DB ∆∆⨯⨯=⨯⨯.…………………………………………9分在边长为3的正六边形ABCDEF中,DB =6DA =, 在△ADM 中,6DA =,1AM =,60DAM ∠=,由余弦定理可得,DM =C 1A BA 1B 1 D 1CDMNEFE 1F 1在Rt △DAN 中,6DA =,1AN =,所以DN =. 在Rt △AMN 中,1AM =,1AN =,所以MN =. 在△DMN中,DM =DN =MN =由余弦定理可得,cos DMN ∠=,所以sin DMN ∠=所以1sin 2DMN S MN DM DMN ∆=⨯⨯⨯∠=.…………………………………………………11分 又12AMN S ∆=,……………………………………………………………………………………………12分所以AMN DMN S DB h S ∆∆⨯==.…………………………………………………………………………13分所以sin h AD θ==. 故直线BC 与平面1MNE D所成角的正弦值为116.………………………………………………14分19.(本小题满分14分)(1)解:因为()111,P a b 是直线l :31y x =+与y 轴的交点()0,1,所以10a =,11b =.……………………………………………………………………………………2分 因为数列{}n a 是公差为1的等差数列,所以1n a n =-.……………………………………………………………………………………………4分因为点(),n n n P a b 在直线l :31y x =+上, 所以31n n b a =+32n =-.所以数列{}n a ,{}n b 的通项公式分别为1n a n =-,32n b n =-()*n ∈N .………………………6分(2)证明:因为()10,1P ,()1,32n P n n --,所以()1,31n P n n ++. 所以()222211310n PP n n n +=+=. (7)分所以222121311111n PP PP PP ++++22211111012n ⎛⎫=+++ ⎪⎝⎭.……………………………………8分 因为()()2221144112141212121214n n n n n n n ⎛⎫<===- ⎪--+-+⎝⎭-,……………………………10分 所以,当2n ≥时,222121311111n PP PP PP ++++111111210352121n n ⎡⎤⎛⎫<+-++- ⎪⎢⎥-+⎝⎭⎣⎦……………………………………………………………11分 15110321n ⎛⎫=- ⎪+⎝⎭………………………………………………………………………………………12分 16<. 又当1n =时,212111106PP =<.………………………………………………………………………13分 所以22212131+111116n PP PP PP +++<.……………………………………………………………14分 20.(本小题满分14分)解:(1)方法一:设圆C 的方程为:()222x a y r -+=()0r >,………………………………………1分因为圆C 过点()0,0和()1,1-,所以()22222,11.a r a r ⎧=⎪⎨--+=⎪⎩………………………………………………………………………………3分 解得1a =-,1r =.所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分 方法二:设()0,0O ,()1,1A -,依题意得,圆C 的圆心为线段OA 的垂直平分线l 与x 轴的交点C .………………………………1分 因为直线l 的方程为1122y x -=+,即1y x =+,……………………………………………………2分 所以圆心C 的坐标为()1,0-.…………………………………………………………………………3分 所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分 (2)方法一:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=,即()2200440y x =--≥, 解得026x ≤≤.…………………………………………………………………………………………5分 由圆C 与圆D 的方程可知,过点P 向圆C 所作两条切线的斜率必存在,设PA 的方程为:()010y y k x x -=-,则点A 的坐标为()0100,y k x -,同理可得点B 的坐标为()0200,y k x -, 所以120AB k k x =-,因为PA ,PB 是圆C 的切线,所以1k ,2k1=,即1k ,2k 是方程()()2220000022110x x k y x k y +-++-=的两根,………………………………7分 即()0012200201220021,21.2y x k k x x y k k x x ⎧++=⎪+⎪⎨-⎪=⎪+⎩所以120AB k k x =-x =分 因为()220044y x =--,所以AB =…………………………………………………………………………10分 设()()0020562x f x x -=+,则()()00305222x f x x -+'=+.………………………………………………………………………………11分由026x ≤≤,可知()0f x 在222,5⎡⎫⎪⎢⎣⎭上是增函数,在22,65⎛⎤ ⎥⎝⎦上是减函数,……………………12分 所以()0max 2225564f x f ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭,()()(){}min 0131min 2,6min ,484f x f f ⎧⎫===⎡⎤⎨⎬⎣⎦⎩⎭, 所以AB的取值范围为4⎦.…………………………………………………………………14分 方法二:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=, 即()2200440y x =--≥, 解得026x ≤≤.…………………………………………………………………………………………5分 设点()0,A a ,()0,B b ,则直线PA :00y a y a x x --=,即()0000y a x x y ax --+=, 因为直线PA 与圆C1=,化简得()2000220x a y a x +--=. ① 同理得()2000220x b y b x +--=, ② 由①②知a ,b 为方程()2000220x x y x x +--=的两根,…………………………………………7分 即00002,2.2y a b x x ab x ⎧+=⎪+⎪⎨-⎪=⎪+⎩所以AB a b =-===.……………………………………………………………………9分 因为()220044y x =--,所以AB =分=.………………………………………………………………11分令012t x =+,因为026x ≤≤,所以1184t ≤≤.所以AB ==,………………………………………12分 当532t=时,max AB =, 当14t =时,min AB =所以AB的取值范围为4⎦.…………………………………………………………………14分 21.(本小题满分14分)(1)解法一:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数, 所以()()2201a f x x x '=-≥+()01x <<.……………………………………………………………1分 即()2120a x x +-≥()01x <<,即()221x a x ≥+……………………………………………………………………………………………2分 212x x=++()01x <<, 因为21122x x<++在()0,1x ∈内恒成立, 所以12a ≥. 故实数a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.……………………………………………………………………4分 解法二:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数, 所以()()2201a f x x x '-+≥=()01x <<.……………………………………………………………1分 即()2120a x x +-≥()01x <<,即()2210ax a x a +-+≥()01x <<,…………………………………………………………………2分设()()221g x ax a x a =+-+,当0a =时,得20x -≥,此时不合题意.当0a <时,需满足()()00,10,g g ≥⎧⎪⎨≥⎪⎩即()0,210,a a a a ≥⎧⎪⎨+-+≥⎪⎩解得12a ≥,此时不合题意. 当0a >时,需满足()222140a a --≤⎡⎤⎣⎦或()()00,10,10,g g a a ⎧⎪≥⎪≥⎨⎪-⎪-<⎩或()()00,10,11,g g a a⎧⎪≥⎪≥⎨⎪-⎪->⎩ 解得12a ≥或1a >, 所以12a ≥. 综上所述,实数a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.……………………………………………………………4分(2)证明:因为函数()e x g x =,所以()e x g x '=. 过点(),e b P b ,(),e b Q b --作曲线C 的切线方程为: 1l :()e e b b y x b =-+,2l :()e e b b y x b --=++,因为1l 与2l 的交点为()00,M x y ,由()()e e ,e e ,b b b b y x b y x b --⎧=-+⎪⎨=++⎪⎩………………………………………………………………………………6分 消去y ,解得()()()0e +e e e e e b b b b b b b x -----=-. ①…………………………………………7分 下面给出判定00x >的两种方法:方法一:设e b t =,………………………………………………………………………………………8分 因为0b >,所以1t >,且ln b t =.所以()()2202+1ln 11t t t x t --=-. (9)分设()()()22+1ln 1h t t t t =--()1t >, 则()12ln h t t t t t'=-+()1t >.………………………………………………………………………10分 令()12ln u t t t t t=-+()1t >, 则()212ln 1u t t t'=+-. 当1t >时,ln 0t >,2110t ->,所以()212ln 10u t t t'=+->,………………………………11分 所以函数()u t 在()1,+∞上是增函数,所以()()10u t u >=,即()0h t '>,…………………………………………………………………12分 所以函数()h t 在()1,+∞上是增函数,所以()()10h t h >=.…………………………………………………………………………………13分 因为当1t >时,210t ->, 所以()()2202+1ln 101t t t x t --=>-.…………………………………………………………………14分方法二:由①得0x ()221+e 11e b b b --=--. 设2eb t -=, (8)分 因为0b >,所以01t <<,且ln 2t b =-. 于是21ln b t -=,……………………………………………………………………………………………9分 所以()01+221ln 1ln 1b t b t x b t t t t +⎛⎫=+=+ ⎪--⎝⎭.…………………………………………………………10分 由(1)知当12a =时,()1ln 2f x x =-11x x -+在区间()0,1上是增函数,…………………………11分 所以()ln 2t f t =-()1101t f t -<=+, 即ln 2t <11t t -+. …………………………………………………………………………………………12分 即210ln 1t t t++>-,………………………………………………………………………………………13分 已知0b >,所以0210ln 1t x b t t +⎛⎫=+>⎪-⎝⎭.…………………………………………………………………………14分一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的模长为()A.B. C.D.22.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2] C.(1,2)D.(1,2]3.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A. B. C. D.4.(5分)下列关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列是递增数列;p4:数列{an+3nd}是递增数列;其中真命题是()A.p1,p2 B.p3,p4 C.p2,p3 D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C.D.7.(5分)使得(3x+)n(n∈N+)的展开式中含有常数项的最小的n为()A.4 B.5 C.6 D.78.(5分)执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3 B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的较大值,min{p,q}表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.16 B.﹣16 C.﹣16a2﹣2a﹣16 D.16a2+2a﹣1612.(5分)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值二、填空题:本大题共4小题,每小题5分.13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.(5分)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(Ⅰ)求证:平面PAC⊥平面PBC;(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C﹣PB﹣A的余弦值.19.(12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(Ⅰ)求张同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.请考生在21、22、23题中任选一题作答,如果多做,则按所做的第一题计分。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战31793
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战31793](https://img.taocdn.com/s3/m/ccce1acd650e52ea54189867.png)
本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页,非选择题部分2至4页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上. 参考公式:柱体的体积公式:V Sh = 其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式:13V Sh =其中S 表示锥体的底面积,h 表示锥体的高台体的体积公式:)(312211S S S S h V ++=其中S1、S2分别表示台体的上、下底面积,h 表示台体的高球的表面积公式:24S R π=球的体积公式:334R V π=其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合{}{}2lg ,230A x y x B x x x ===--<,则A B = ( ▲ )A .(0,3)B .(1,0)-C .(,0)(3,)-∞+∞D .(1,3)-2.已知l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ▲ )A .若//l α,//m α,则//l mB .若l m ⊥,//m α,则l α⊥C .若l α⊥,m α⊥,则//l mD .若l m ⊥,l α⊥,则//m α3.已知实数y x ,满足20323x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则y x z -=的最大值为( ▲ )A .1-B .0C .1D .34.已知直线l :b kx y +=,曲线C :122=+y x ,则“1=b ”是“直线l 与曲线C 有公共点”的( ▲ )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知正方形ABCD 的面积为2,点P 在边AB 上,则PD PC ⋅的最大值为( ▲ )A.32C .2 D6.如图,在矩形ABCD 中,2AB =,3AD =,点E 为AD 的中点,现分别沿,BE CE 将,ABE DCE ∆∆翻折,使得点,A D 重合于F ,此时二面角E BC F --的余弦值为 ( ▲ )A .34 BC .23D722221(0,0)x y a b a b -=>>的左、右焦点,点P 在第一象限,且满足2||F P a =,1(F P 2PF 与双曲线C 点Q ,若22C ( ▲ )A .y =C .2y x =±D .3y x =± 8.已知集合22{(,)|1}M x y x y =+≤,若实数,λμ满足:对任意的(,)x y M ∈,都有(,)x y M λμ∈,则称(,)λμ是集合M 的“和谐实数对”。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战43290
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战43290](https://img.taocdn.com/s3/m/ab8068c455270722182ef75c.png)
一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)2.((5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.8405.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S18.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2=.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=时,{an}的前n项和最大.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)参考答案与试题解析(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)【分析】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【解答】解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A.【点评】本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)2.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【分析】解出集合A,再由交的定义求出两集合的交集.【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.【点评】本题考查交的运算,理解好交的定义是解答的关键.3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上【分析】曲线(θ为参数)表示圆,对称中心为圆心,可得结论.【解答】解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x 上,故选:B.【点评】本题考查圆的参数方程,考查圆的对称性,属于基础题.4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.840【分析】算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的【解答】解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.5.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【解答】解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但{an}不是递增数列,充分性不成立.若an=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{an}为递增数列”的既不充分也不必要条件,故选:D.【点评】本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣【分析】对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 【解答】解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,当y=0,由kx﹣y+2=0,得x=,∴B(﹣).由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.故选:D.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【分析】分别求出三棱锥在各个面上的投影坐标即可得到结论.【解答】解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=.在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1,),S3=,则S3=S2且S3≠S1,故选:D.【点评】本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键.8.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【分析】分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数.【解答】解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.【点评】本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2= ﹣1 .【分析】由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案. 【解答】解:()2=.故答案为:﹣1.【点评】本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=. 【分析】设=(x,y).由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可.【解答】解:设=(x,y).∵向量,满足||=1,=(2,1),且+=(λ∈R),∴=λ(x,y)+(2,1)=(λx+2,λy+1),∴,化为λ2=5.解得.故答案为:.【点评】本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为 y=±2x .【分析】利用双曲线渐近线之间的关系,利用待定系数法即可得到结论.【解答】解:与﹣x2=1具有相同渐近线的双曲线方程可设为﹣x2=m,(m≠0),∵双曲线C经过点(2,2),∴m=,即双曲线方程为﹣x2=﹣3,即,对应的渐近线方程为y=±2x,故答案为:,y=±2x.【点评】本题主要考查双曲线的性质,利用渐近线之间的关系,利用待定系数法是解决本题的关键,比较基础.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n= 8 时,{an}的前n项和最大.【分析】可得等差数列{an}的前8项为正数,从第9项开始为负数,进而可得结论.【解答】解:由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0,∴等差数列{an}的前8项为正数,从第9项开始为负数,∴等差数列{an}的前8项和最大,故答案为:8.【点评】本题考查等差数列的性质和单调性,属中档题.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有 36 种.【分析】分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足B、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案.【解答】解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.【点评】本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为π .【分析】由f()=f()求出函数的一条对称轴,结合f(x)在区间[,]上具有单调性,且f()=﹣f()可得函数的半周期,则周期可求.【解答】解:由f()=f(),可知函数f(x)的一条对称轴为x=,则x=离最近对称轴距离为.又f()=﹣f(),则f(x)有对称中心(,0),由于f(x)在区间[,]上具有单调性,则≤T⇒T≥,从而=⇒T=π.故答案为:π.【点评】本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问题的能力,是中档题.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.【分析】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【解答】解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠A DC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.【点评】本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).【分析】(1)根据概率公式,找到李明在该场比赛中超过0.6的场次,计算即可,(2)根据互斥事件的概率公式,计算即可.(3)求出平均数和EX,比较即可.【解答】解:(1)设李明在该场比赛中投篮命中率超过0.6为事件A,由题意知,李明在该场比赛中超过0.6的场次有:主场2,主场3,主场5,客场2,客场4,共计5场所以李明在该场比赛中投篮命中率超过0.6的概率P(A)=,(2)设李明的投篮命中率一场超过0.6,一场不超过0.6的概率为事件B,同理可知,李明主场命中率超过0.6的概率,客场命中率超过0.6的概率,故P(B)=P1×(1﹣P2)+P2×(1﹣P1)=;(3)=(12+8+12+12+8+7+8+15+20+12)=11.4EX=【点评】本题主要考查了概率的计算、数学期望,平均数,互斥事件的概率,属于中档题.17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.【分析】(1)运用线面平行的判定定理和性质定理即可证得;(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos|,求出角α;设H(u,v,w),再设,用λ表示H的坐标,再由n=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长.【解答】(1)证明:在正方形AMDE中,∵B是AM的中点,∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,∴AB∥FG;(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),E(0,2,0),F(0,1,1),,设平面ABF的法向量为=(x,y,z),则即,令z=1,则y=﹣1,∴=(0,﹣1,1),设直线BC与平面ABF所成的角为α,则sinα=|cos<,>|=||=,∴直线BC与平面ABF所成的角为,设H(u,v,w),∵H在棱PC上,∴可设,即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵是平面ABF的法向量,∴=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2.【点评】本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.【分析】(1)求出f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,判定出在区间∈(0,)上f′(x)=﹣xsinx<0,得f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”构造函数g(x)=sinx﹣cx,通过求函数的导数讨论参数c求出函数的最值,进一步求出a,b的最值.【解答】解:(1)由f(x)=xcosx﹣sinx得f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,此在区间∈(0,)上f′(x)=﹣xsinx<0,所以f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”令g(x)=sinx﹣cx,则g′(x)=cosx﹣c,当c≤0时,g(x)>0对x∈(0,)上恒成立,当c≥1时,因为对任意x∈(0,),g′(x)=cosx﹣c<0,所以g(x)在区间[0,]上单调递减,从而,g(x)<g(0)=0对任意x∈(0,)恒成立,当0<c<1时,存在唯一的x0∈(0,)使得g′(x0)=cosx0﹣c=0,g(x)与g′(x)在区间(0,)上的情况如下:x (0,x0) x0 (x0,)g′(x)+ ﹣g(x)↑↓因为g(x)在区间(0,x0)上是增函数,所以g(x0)>g(0)=0进一步g(x)>0对任意x∈(0,)恒成立,当且仅当综上所述当且仅当时,g(x)>0对任意x∈(0,)恒成立,当且仅当c≥1时,g(x)<0对任意x∈(0,)恒成立,所以若a<<b对x∈(0,)上恒成立,则a的最大值为,b的最小值为1 【点评】本题考查利用导数求函数的单调区间;利用导数求函数的最值;考查解决不等式问题常通过构造函数解决函数的最值问题,属于一道综合题.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).【分析】(Ⅰ)利用T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),可求T1(P),T2(P)的值;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;(Ⅲ)根据新定义,可得结论.【解答】解:(Ⅰ)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);∴无论m=a和m=d,T2(P)≤T2(P′);(Ⅲ)数对(4,6),(11,11),(16,11),(11,8),(5,2),T5(P)最小;T1(P)=10,T2(P)=26;T3(P)42,T4(P)=50,T5(P)=52.【点评】本题考查新定义,考查学生分析解决问题的能力,正确理解与运用新定义是解题的关键.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.【分析】(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB 与圆x2+y2=2相切.【解答】解:(1)由x2+2y2=4,得椭圆C的标准方程为.∴a2=4,b2=2,从而c2=a2﹣b2=2.因此a=2,c=.故椭圆C的离心率e=;(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.∵OA⊥OB,∴,即tx0+2y0=0,解得.当x0=t时,,代入椭圆C的方程,得.故直线AB的方程为x=,圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为,即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.圆心O到直线AB的距离d=.又,t=.故=.此时直线AB与圆x2+y2=2相切.【点评】本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题.(30分钟50分)一、选择题(每小题3分,共18分)1.下列曲线中离心率为的是()A.=1B.=1C.=1D.=1【解析】选B.选项B中,a2=4,b2=2,所以c2=a2+b2=6,所以a=2,c=,故e==.【变式训练】已知双曲线=1的右焦点为(3,0),则该双曲线的离心率等于()A. B. C. D.【解析】选C.由a2+5=32,得a=2,所以e==.2.(·兰州高二检测)已知对称轴为坐标轴的双曲线有一条渐近线平行于直线x+2y3=0,则该双曲线的离心率为()A. 5或B.或C.或D. 5或【解析】选B.因为双曲线的一条渐近线平行于直线x+2y3=0,所以=或=,所以e==或.【变式训练】(·白山高二检测)设双曲线=1(a>0)的渐近线方程为3x±2y=0,则该双曲线的离心率为.【解析】因为双曲线的焦点在x轴上,且渐近线方程为3x±2y=0,所以=,所以该双曲线的离心率e==.答案:3.(·温州高二检测)双曲线x2y2=1的渐近线方程是()A.x=±1B.y=±xC.y=±xD.y=±x【解析】选C.由双曲线x2y2=1,得a2=1,b2=1,即a=1,b=1,所以渐近线方程为y=±x=±x.4.(·太原高二检测)已知双曲线的离心率为2,焦点是(4,0),(4,0),则双曲线方程为()A.=1B.=1C.=1D.=1【解析】选A.设双曲线的标准方程为=1(a>0,b>0),由所以a=2,又b2=c2a2=12,所以双曲线的标准方程为=1.5.(·湖北高考)已知0<θ<,则双曲线C1:=1与C2:=1的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等【解题指南】分别求两双曲线的半焦距c的值.【解析】选D.c1=c2=1.【举一反三】若双曲线C1与C2的方程分别改为:C1:=1,C2:=1则结论如何?【解析】选C.对于双曲线C1,有a=cosθ,b=sinθ,所以c2=cos2θ+sin2θ=1,e==.对于双曲线C2,有a=sinθ,b=sinθtanθ,所以c2=sin2θ(1+tan2θ)=sin2θ=,e===.即e1=e2=,故两双曲线离心率相等.6.(·孝感高二检测)设F1,F2是双曲线x2=1的左、右两个焦点,若双曲线右支上存在一点P,使PF1⊥PF2,且|PF1|=λ|PF2|,则λ的值为()A.2B.C.3D.【解析】选A.因为PF1⊥PF2,所以|PF1|2+|PF2|2=20,又|PF1||PF2|=2,所以|PF1|=4,|PF2|=2,所以|PF1|=2|PF2|,故选A.二、填空题(每小题4分,共12分)7.(·广州高二检测)若双曲线=1(b>0)的焦点为F1(5,0),F2(5,0),则双曲线的渐近线方程为________________________.【解析】由双曲线=1(b>0)的焦点为F1(5,0),F2(5,0),所以9+b2=52,得b=4,又a=3,所以双曲线方程为=1,故渐近线方程为4x±3y=0.答案:4x±3y=08.(·南昌高二检测)设圆过双曲线=1的一个顶点和一个焦点,圆心在双曲线上,则圆心到双曲线中心的距离是.【解析】不妨设圆心在右支上且在第一象限,若圆过右焦点和左顶点,则这样的圆不存在,故圆只能过右顶点A2(2,0),右焦点F2(4,0),则圆心P为A2F2的垂直平分线与双曲线的交点,将x=3代入双曲线方程,得P(3,).故|OP|==2.答案:29.(·重庆高二检测)设F1,F2分别为双曲线=1(a>0,b>0)的左、右焦点,若在双曲线的右支上存在一点P满足:①△PF1F2是以PF1为底边的等腰三角形;②直线PF1与圆x2+y2=a2相切,则此双曲线的离心率为.【解析】因为|PF1||PF2|=2a,|PF2|=|F1F2|=2c,所以|PF1|=2a+2c,作F2M⊥PF1于M,则|MP|=|PF1|=a+c,所以|MF2|===,又设圆x2+y2=a2与直线PF1切于T,则|OT|=a,由|OT|=|F2M|得:a=,即3c22a22ac=0,同除以a2得3e22e2=0(e>1),解得e=.答案:三、解答题(每小题10分,共20分)10.(·大庆高二检测)已知双曲线=1(a>0,b>0)和椭圆+=1有相同的焦点,且双曲线的离心率是椭圆离心率的2倍,求双曲线的方程.【解析】由椭圆+=1,得a′2=16,b′2=9,c′2=a′2b′2=7,所以a′=4,c′=,故椭圆离心率为e1==.因为双曲线与椭圆+=1有相同焦点,且双曲线的离心率是椭圆离心率的2倍,所以双曲线的两焦点为F1(,0),F2(,0),离心率e2==,所以,a=2,b2=c2a2=74=3.所以双曲线的方程为=1.11.焦点在x轴上的双曲线,它的两条渐近线的夹角为,焦距为12,求此双曲线的方程及离心率.【解析】由已知可设双曲线的方程为=1(a>0,b>0),所以两条渐近线为y=±x.因为两条渐近线的夹角为,故分两种情况,即y=x的倾斜角为或.当y=x的倾斜角为时,所以=tan=,所以=,即a2=3b2.又2c=12,所以c=6.由c2=a2+b2,得b2=9,a2=27.所以双曲线方程为=1,e===.当y=x的倾斜角为时,所以=tan=,所以b2=3a2.又2c=12,所以c=6.由c2=a2+b2,得a2=9,b2=27.所以双曲线方程为=1,e===2.(30分钟50分)一、选择题(每小题4分,共16分)1.(·福建高考)双曲线y2=1的顶点到渐近线的距离等于()A. B. C. D.【解析】选C.双曲线的右顶点为(2,0),渐近线方程为x2y=0,则顶点到渐近线的距离为=.【变式训练】(·福建高考)双曲线x2y2=1的顶点到其渐近线的距离等于()A. B. C.1 D.【解题指南】先求顶点,后求渐近线方程,再用距离公式.【解析】选B.顶点到渐近线y=x的距离为.2.(·北京高考)双曲线x2=1的离心率大于的充分必要条件是()A.m>B.m≥1C.m>1D.m>2【解题指南】找出a2,b2,c2,表示出离心率,再解出m.【解析】选C.a2=1,b2=m,c2=1+m,e==>,所以m>1.3.(·唐山高二检测)设F1,F2分别是双曲线=1(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P满足|PF2|=|F1F2|,且cos∠PF1F2=,则双曲线的渐近线方程为()A.3x±4y=0B.4x±3y=0C.3x±5y=0D.5x±4y=0【解题指南】根据|PF2|=|F1F2|,结合双曲线的定义,可得出|PF1|=2a+2c,再由cos∠PF1F2=,找出的值.【解析】选B.作F2Q⊥PF1于Q,因为|F1F2|=|PF2|,所以Q为PF1的中点,由双曲线的定义知|PF1||PF2|=2a,所以|PF1|=2a+2c,故|F1Q|=a+c,因为cos∠PF1F2=,所以=cos∠PF1F2,即=,得3c=5a,所以3=5a,得=,故双曲线的渐近线方程为y=±x,即4x±3y=0.4.(·青岛高二检测)已知F1,F2分别是双曲线C:=1(a>0,b>0)的左、右焦点,P为双曲线右支上的一点,⊥,且||=||,则双曲线的离心率为()A. B.1+ C.2 D.1+【解题指南】由于|PF1|=|PF2|又点P是靠近F2的那一支上的一点,则可根据双曲线的定义可得|PF1||PF2|=2a,再结合|PF1|=|PF2|求出|PF1|,|PF2|的值,然后再根据F1F2⊥PF2推出|PF1|2|PF2|2=|F1F2|2即可得出关于a,c的关系式从而可求出离心率e.【解析】选B.因为|PF1|=|PF2|,|PF1||PF2|=2a,所以|PF1|=2a(2+),|PF2|=2a(1+),因为F1F2⊥PF2,|F1F2|=2c,所以|PF1|2|PF2|2=|F1F2|2,所以c2=(3+2)a2,所以e==1+.【变式训练】(·陕西高考)双曲线=1的离心率为.【解题指南】利用双曲线的标准方程中c2=a2+b2及离心率的求解公式e=得解.【解析】由=得e2==,所以e=.答案:二、填空题(每小题5分,共10分)5.(·哈尔滨高二检测)双曲线的离心率为2,则双曲线的两条渐近线所成的锐角是.【解析】由e==2,所以=2,即=,所以tanθ=(其中θ为一条渐近线的倾斜角).所以θ=60°,因此两条渐近线所成的锐角为60°.答案:60°6.(·重庆高考改编)设F1,F2分别为双曲线=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得=b23ab,则该双曲线的离心率为.【解析】由双曲线的定义知,=4a2,又=b23ab,所以4a2=b23ab,等号两边同除a2,化简得3·4=0,解得=4或=1(舍去),故离心率e=====.答案:三、解答题(每小题12分,共24分)7.已知双曲线关于两坐标轴对称,且与圆x2+y2=10相交于点P(3,1),若此圆过点P的切线与双曲线的渐近线平行,求此双曲线的方程.【解析】切点为P(3,1)的圆的切线方程为3xy=10,因为双曲线的一条渐近线平行于此切线,且双曲线关于两坐标轴对称.所以双曲线的渐近线方程为3x±y=0.当焦点在x轴上时,设双曲线方程为=1(a>0,b>0),则其渐近线方程为y=±x,即=3,则双曲线方程可化为=1,因为双曲线过点P(3,1),所以=1,所以a2=,b2=80,所以所求双曲线方程为=1.当焦点在y轴上时,设双曲线方程为=1(a>0,b>0),则渐近线方程为y=±x,即=3,则双曲线方程可化为=1,因为双曲线过点P(3,1),所以=1,得=1,无解.综上可知所求双曲线方程为=1.【一题多解】切点为P(3,1)的圆的切线方程为3xy=10.因为双曲线的一条渐近线与此切线平行,且双曲线关于两坐标轴对称.所以双曲线的两条渐近线方程为3x±y=0,设所求的双曲线方程为9x2y2=λ(λ≠0),因为点P(3,1)在所求双曲线上,所以λ=80.所以所求双曲线方程为=1.8.设F1,F2分别为双曲线=1的左、右焦点,A1,A2分别为这个双曲线的左、右顶点,P为双曲线右支上的任意一点,求证:以A1A2为直径的圆既与以PF2为直径的圆外切,又与以PF1为直径的圆内切.【解题指南】设N,M分别是PF1,PF2的中点,只要证明|OM|=a+|PF2|,并且|ON|=|PF1|a即可.注意点P在双曲线的右支上,F1,F2是双曲线的两个焦点,满足了运用定义的条件特征,故应从双曲线的定义入手去探索证明的途径.【证明】如图,以A1A2为直径的圆的圆心为O,半径为a,令M,N分别是PF2,PF1的中点,由三角形中位线的性质,得|OM|=|PF1|.又根据双曲线的定义,得|PF1|=2a+|PF2|,从而有|OM|=(2a+|PF2|)=a+|PF2|.这表明,两圆的圆心距等于两圆半径之和,故以A1A2为直径的圆与以PF2为直径的圆外切.同理,得|ON|=|PF2|=(|PF1|2a)=|PF1|a.这表明两圆的圆心距等于两圆半径之差,故以A1A2为直径的圆与以PF1为直径的圆内切.。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战27033
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战27033](https://img.taocdn.com/s3/m/543516386294dd88d1d26bbc.png)
高三理科数学 试题卷本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,时间120分钟.第Ⅰ卷 (选择题 共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i 为虚数单位,若复数()()()211a a i a R -+-∈是纯虚数,则实数a 的值为( ) A .1±B .1-C .0D .12.“23sin =θ”是“3πθ=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 3.已知数列{}n a 为等比数列,191,3a a ==,则5a =( )A . 2 BC.4.如图,正方体1111ABCD A B C D -中,E 为棱1BB 的中点,用过点1,,A E C 的平面截去该正方体的上半部分,则剩余几何体的左视图为( )ABCD5.设双曲线()22221,0,0x y a b a b -=>>的渐近线方程为y =,则该双曲线的离心率为() A .223B .2C .332 D .26.已知平面向量22(2sin ,cos )a x x =,22(sin ,2cos )b x x =-,()f x a b =⋅,要得到2cos 2y x x =-的图像,只需将()y f x =的图像( )A .向左平移6π个单位长度 B .向右平移6π个单位长度 C .向左平移3π个单位长度 D.向右平移3π个单位长度7.设,x y 满足约束条件2208400 , 0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z abx y a b =+>>的最大值为8,则a b +的最小值为( )ABCA B C D 1111E第4题图第9题图A .3B .4C .8D .98.定义平面向量的正弦积为sin 2a b a b θ•=,(其中θ为a 、b 的夹角),已知ABC ∆中,AB BC BC CA •=•,则此三角形一定是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形 9.运行如图所示的流程图,则输出的结果S 是( )A .42011 B .42013 C .22011 D .2201310.如图,矩形OABC 内的阴影部分是由曲线()()()sin 0,f x x x π=∈及直线()()0,x a a π=∈与x 轴围成,向矩形OABC 内随机投掷一点,若落在阴影部分的概率为14,则a 的值是( )A .712πB .23πC .34πD .56π11.已知向量OA OB与的夹角为()2,1,,1,OA OB OP tOA OQ t OB θ====-,PQ 在0t 时取得最小值,当0105t <<时,夹角θ的取值范围是( )A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫⎪⎝⎭C .2,23ππ⎛⎫⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭12.设定义在()1,e 上函数()f x =()a R ∈.若曲线1cos y x =+上存在点()00,x y 使得()()0ff y y =,则实数a 的取值范围是( )A .[]1,2ln 2-+B .(]02ln 2+,C .)21,1e e ⎡--+⎣D .()20,1e e -+第Ⅱ卷 (非选择题 共90分) 二、填空题:(本大题共4小题,每小题5分,共20分)13.已知函数4log ,0()3,0x x x f x x >⎧=⎨≤⎩,则14f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战36583
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战36583](https://img.taocdn.com/s3/m/4cbf6d8f3b3567ec112d8acc.png)
一.基础题组1.(北京市昌平区高三二模理3)已知等差数列{}n a 的公差是2,若134,,a a a 成等比数列,则1a 等于( ) A. 4- B. 6- C. 8- D. 10- 【答案】C考点:等差数列与等比数列.2.(北京市东城区高三5月综合练习(二)理3)已知{}n a 为各项都是正数的等比数列,若484a a ⋅=,则567a a a ⋅⋅=( )(A )4(B )8(C )16(D )64 【答案】B 【解析】试题分析:由于数列{}n a 是正各项都是正数的等比数列,所以根据等比数列的性质可知:248664,2a a a a ==∴=,356768a a a a ==,所以答案为B.考点:1.等比数列的性质;2.等比数列的求值.3.(北京市丰台区度第二学期统一练习(一)理2)在等比数列}{n a 中,344a a +=,22a =,则公比q 等于( )A .2B .1或2C .1D .1或2 【答案】B 【解析】试题分析:∵344a a +=,∴2224a q a q +=∴解得1q =或2q =-,故选B.考点:等比数列的通项公式.4.(北京市顺义区高三第一次统一练习(一模)理11)已知无穷数列{}n a 满足:1110,2()n n a a a n N *+=-=+∈.则数列{}n a 的前n 项和的最小值为.【答案】30考点:等差数列. 二.能力题组1.(北京市石景山区高三3月统一测试(一模)理6)等差数列{}n a 中,11,m k a a k m==()m k ≠,则该数列前mk 项之和为( ) A .12mk - B .2mk C .12mk + D .12mk+ 【答案】C 【解析】试题分析:设公差为,d 由已知1111111,(1)(1),kk m d a a k d k m k mk m mk mk -===--=--⋅=-所以,1(1)1(1)11,222mk mk mk mk mk mk S mka d mk mk mk --+=+=⋅+⋅=选C .考点:等差数列及其求和公式.2.(北京市西城区高三一模考试理12)若数列{}n a 满足12a =-,且对于任意的*,m n ∈N ,都有m n m n a a a +=⋅,则3a =___;数列{}n a 前10项的和10S =____.【答案】8-,682 【解析】试题分析:由m n m n a a a +=⋅得2113214,8,a a a a a a =⋅==⋅=-由m n m n a a a +=⋅得112n n n a a a a +=⋅=-,所以数列{}n a 为等比数列,因此10102[1(2)]682.1(2)S ---==---考点:等比数列通项与和项3.(北京市朝阳区高三第二次综合练习理13)已知点()11,1a A ,()22,2a A ,⋅⋅⋅,(),n n a n A (n *∈N )在函数13log y x =的图像上,则数列的通项公式为__________;设O 为坐标原点,点,则,中,面积的最大值是__________.【答案】13n⎛⎫ ⎪⎝⎭,16考点:1.对数函数性质;2.求数列通项;3.数列单调性.4.(北京市海淀区101中学高三上学期期中模拟考试理10)在公差为正数的等差数列}{n a 中,n S a a a a ,0,011101110<<+且是其前n 项和,则使n S 取最小值的n 是.【答案】10 【解析】试题分析:因为数列的公差为正数,所以数列为递增数列,又因为0,011101110<<+a a a a 且, 所以0,01110><a a ,所以前10项的和最小,即使n S 取最小值的。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战21851
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战21851](https://img.taocdn.com/s3/m/7e71f7cffad6195f302ba65e.png)
一、填空题:本大题共14小题,每小题5分,共70分.1.已知集合{}1,2,4A =,{}|(1)(3)0B x x x =--≤,则AB =. 2.命题“[0,)x ∃∈+∞,23x >”的否定是.3.在3和243中间插入3个实数1a ,2a ,3a ,使这5个数成等比数列,则2a =.4.已知7sin cos 13αα+=-,π(,0)2α∈-,则tan α=. 5.函数()ln 23x f x x =+-在区间(1,2)上的零点个数为.6.已知定义在R 上的函数2()23f x ax x =++的值域为[2,)+∞,则()f x 的单调增区间为.7.函数3()812f x x x =+-在区间[33]-,上的最大值与最小值之和是.8.等差数列{}n a 的前m 项的和为30,前2m 项的和为100,求它的前3m 项的和为.9.若α、β均为锐角,且1cos 17α=,47cos()51αβ+=-,则cos β=. 10.函数()x f y =是R 上的奇函数,满足()()x f x f -=+33,当(0,3)x ∈时,()x x f 2=,则(5)f -=.11.如果若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成”函数,给出下列函数:⑴1()sin cos f x x x =+;⑵2()2sin 2f x x =+;⑶3()2(sin cos )f x x x =+;⑷4()sin f x x =;⑸5()2cos (sin cos )222x x x f x =+,其中“互为生成”函数的有.(请填写序号) 12.已知ABC ∆是单位圆O 的内接三角形,AD 是圆的直径,若满足2AB AD AC AD BC ⋅+⋅=, 则||BC =.13.已知直线l 与曲线1y x=-和曲线ln y x =均相切,则这样的直线l 的条数为. 14.已知数列{}n a 满足11a =,且111n n a a n +=++,*n ∈N ,则201420151()k k k a a =-=∑. 二、解答题:本大题共6小题,共90分. 解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知集合{}||21|3A x x =-<,{}2|(2)20B x x a x a =-++≤.⑴若1a =,求A B ;⑵若A B A =,求实数a 的取值范围.16.(本小题满分14分)已知ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,满足sin sin sin sin b a B C c B A--=+. ⑴求角A 的值; ⑵若a ,c ,b 成等差数列,试判断ABC ∆的形状.17.(本小题满分14分)已知向量a ,b ,c 满足0a b c ++=,且a 与b 的夹角等于150︒,b 与c 的夹角等于120︒,||2c =,求||a ,||b .18.(本小题满分16分) 设n S 是等比数列{}n a 的前n 项和,3S ,9S ,6S 成等差数列.⑴设此等比数列的公比为q ,求3q 的值;⑵问:数列中是否存在不同的三项m a ,n a ,p a 成等差数列?若存在,求出m ,n ,p 满足的条件;若不存在,请说明理由.19.(本小题满分16分)已知各项均为正数的数列{}n a 的前n 项和为n S ,满足:2*11,2,n n n S ka ta n n -+=-∈N ≥(其中,k t 为常数).(1)若12k =,14t =,数列{}n a 是等差数列,求1a 的值; (2)若数列{}n a 是等比数列,求证:k t <.20.(本小题满分16分)已知函数()=e x f x (其中e 是自然对数的底数),2()1g x x ax =++,a ∈R .⑴记函数()()()F x f x g x =⋅,当0a >时,求()F x 的单调区间;⑵若对于任意的1x ,2[0,2]x ∈,12x x ≠,均有1212|()()||()()|f x f x g x g x ->-成立,求实数a 的取值范围.高考一轮复习微课视频手机观看地址:http://xkw.so/wksp一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)函数f(x)=cos(2x﹣)的最小正周期是()A. B.π C.2π D.4π2.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)3.(5分)定积分(2x+ex)dx的值为()A.e+2B.e+1C.eD.e﹣14.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2nB.an=2(n﹣1)C.an=2nD.an=2n﹣15.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A. B.4π C.2π D.6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A. B. C. D.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=xB.f(x)=x3C.f(x)=()xD.f(x)=3x8.(5分)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假9.(5分)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣xB.y=x3﹣xC.y=x3﹣xD.y=﹣x3+x二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)已知4a=2,lgx=a,则x=.12.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ=.14.(5分)观察分析下表中的数据:多面体面数(F)顶点数棱数(E)(V)三棱柱 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是.(不等式选做题)15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.(几何证明选做题)16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF=.(坐标系与参数方程选做题)17.在极坐标系中,点(2,)到直线的距离是.三、解答题:解答题应写出文字说明、证明过程或盐酸步骤(共6小题,满分75分)18.(12分)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.19.(12分)如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(Ⅰ)证明:四边形EFGH是矩形;(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.20.(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P (x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m+n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.21.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:300 500作物产量(kg)概率0.5 0.56 10作物市场价格(元/kg)概率0.4 0.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.22.(13分)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为. (Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直.线l的方程23.(14分)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (8)参考答案与试题解析一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)函数f(x)=cos(2x﹣)的最小正周期是()A. B.π C.2π D.4π【分析】由题意得ω=2,再代入复合三角函数的周期公式求解.【解答】解:根据复合三角函数的周期公式得,函数f(x)=cos(2x﹣)的最小正周期是π,故选:B.【点评】本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.2.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)【分析】先解出集合N,再求两集合的交即可得出正确选项.【解答】解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选:B.【点评】本题考查交集的运算,理解好交集的定义是解答的关键.3.(5分)定积分(2x+ex)dx的值为()A.e+2B.e+1C.eD.e﹣1【分析】根据微积分基本定理计算即可.【解答】解:(2x+ex)dx=(x2+ex)|=(1+e)﹣(0+e0)=e.故选:C.【点评】本题主要考查了微积分基本定理,关键是求出原函数.4.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2nB.an=2(n﹣1)C.an=2nD.an=2n﹣1【分析】根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式. 【解答】解:由程序框图知:ai+1=2ai,a1=2,∴数列为公比为2的等比数列,∴an=2n.故选:C.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A. B.4π C.2π D.【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A. B. C. D.【分析】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.【解答】解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:C.【点评】本题考查概率的计算,列举基本事件是关键.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=xB.f(x)=x3C.f(x)=()xD.f(x)=3x【分析】对选项一一加以判断,先判断是否满足f(x+y)=f(x)f(y),然后考虑函数的单调性,即可得到答案.【解答】解:A.f(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f (y),故A错;B.f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f(y),故B错;C.f(x)=,f(y)=,f(x+y)=,满足f(x+y)=f(x)f(y),但f (x)在R上是单调减函数,故C错.D.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故D正确;故选:D.【点评】本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.【解答】解:根据共轭复数的定义,原命题“若z1,z2互为共轭复数,则|z1|=|z2|”是真命题;其逆命题是:“若|z1|=|z2|,则z1,z2互为共轭复数”,例|1|=|﹣1|,而1与﹣1不是互为共轭复数,∴原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,∴命题的否命题是假命题,逆否命题是真命题.故选:B.【点评】本题考查了四种命题的定义及真假关系,考查了共轭复数的定义,熟练掌握四种命题的真假关系是解题的关键.9.(5分)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a【分析】方法1:根据变量之间均值和方差的关系直接代入即可得到结论.方法2:根据均值和方差的公式计算即可得到结论.【解答】解:方法1:∵yi=xi+a,∴E(yi)=E(xi)+E(a)=1+a,方差D(yi)=D(xi)+E(a)=4.方法2:由题意知yi=xi+a,则=(x1+x2+…+x10+10×a)=(x1+x2+…+x10)=+a=1+a,方差s2=[(x1+a﹣(+a)2+(x2+a﹣(+a)2+…+(x10+a﹣(+a)2]=[(x1﹣)2+(x2﹣)2+…+(x10﹣)2]=s2=4.故选:A.【点评】本题主要考查样本数据的均值和方差之间的关系,若变量y=ax+b,则Ey=aEx+b,Dy=a2Dx,利用公式比较简单或者使用均值和方差的公式进行计算.10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣xB.y=x3﹣xC.y=x3﹣xD.y=﹣x3+x【分析】分别求出四个选项中的导数,验证在x=±5处的导数为0成立与否,即可得出函数的解析式.【解答】解:由题意可得出,此三次函数在x=±5处的导数为0,依次特征寻找正确选项:A选项,导数为,令其为0,解得x=±5,故A正确;B选项,导数为,令其为0,x=±5不成立,故B错误;C选项,导数为,令其为0,x=±5不成立,故C错误;D选项,导数为,令其为0,x=±5不成立,故D错误.故选:A.【点评】本题考查导数的几何意义,导数几何意义是导数的重要应用.二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)已知4a=2,lgx=a,则x=.【分析】化指数式为对数式求得a,代入lgx=a后由对数的运算性质求得x的值.【解答】解:由4a=2,得,再由lgx=a=,得x=.故答案为:.【点评】本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.12.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为 x2+(y﹣1)2=1 .【分析】利用点(a,b)关于直线y=x±k的对称点为(b,a),求出圆心,再根据半径求得圆的方程.【解答】解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等于1,可得所求的圆的方程为x2+(y﹣1)2=1,故答案为:x2+(y﹣1)2=1.【点评】本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=x±k的对称点为(b,a),属于基础题.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ=.【分析】利用向量共线定理、倍角公式、同角三角函数基本关系式即可得出.【解答】解:∵∥,向量=(sin2θ,cosθ),=(cosθ,1),∴sin2θ﹣cos2θ=0,∴2sinθcosθ=cos2θ,∵0<θ<,∴cosθ≠0.∴2tanθ=1,∴tanθ=.故答案为:.【点评】本题考查了向量共线定理、倍角公式、同角三角函数基本关系式,属于基础题. 14.(5分)观察分析下表中的数据:棱数(E)多面体面数(F)顶点数(V)三棱柱 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是 F+V﹣E=2 .【分析】通过正方体、三棱柱、三棱锥的面数F、顶点数V和棱数E,得到规律:F+V﹣E=2,进而发现此公式对任意凸多面体都成立,由此得到本题的答案.【解答】解:凸多面体的面数为F、顶点数为V和棱数为E,①正方体:F=6,V=8,E=12,得F+V﹣E=8+6﹣12=2;②三棱柱:F=5,V=6,E=9,得F+V﹣E=5+6﹣9=2;③三棱锥:F=4,V=4,E=6,得F+V﹣E=4+4﹣6=2.根据以上几个例子,猜想:凸多面体的面数F、顶点数V和棱数E满足如下关系:F+V﹣E=2再通过举四棱锥、六棱柱、…等等,发现上述公式都成立.因此归纳出一般结论:F+V﹣E=2故答案为:F+V﹣E=2【点评】本题由几个特殊多面体,观察它们的顶点数、面数和棱数,归纳出一般结论,得到欧拉公式,着重考查了归纳推理和凸多面体的性质等知识,属于基础题.(不等式选做题)15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.【分析】根据柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2当且仅当ad=bc取等号,问题即可解决.【解答】解:由柯西不等式得,(ma+nb)2≤(m2+n2)(a2+b2)∵a2+b2=5,ma+nb=5,∴(m2+n2)≥5∴的最小值为故答案为:【点评】本题主要考查了柯西不等式,解题关键在于清楚等号成立的条件,属于中档题. (几何证明选做题)16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF= 3 .【分析】证明△AEF∽△ACB,可得,即可得出结论.【解答】解:由题意,∵以BC为直径的半圆分别交AB、AC于点E、F,∴∠AEF=∠C,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∵BC=6,AC=2AE,∴EF=3.故答案为:3.【点评】本题考查三角形相似的判定与运用,考查学生的计算能力,属于基础题.(坐标系与参数方程选做题)17.在极坐标系中,点(2,)到直线的距离是 1 .【分析】把极坐标化为直角坐标,再利用点到直线的距离公式即可得出.【解答】解:点P(2,)化为=,y=2=1,∴P.直线展开化为:=1,化为直角坐标方程为:,即=0.∴点P到直线的距离d==1.故答案为:1.【点评】本题考查了极坐标化为直角坐标的公式、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.三、解答题:解答题应写出文字说明、证明过程或盐酸步骤(共6小题,满分75分)18.(12分)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.【分析】(Ⅰ)由a,b,c成等差数列,利用等差数列的性质列出关系式,利用正弦定理化简,再利用诱导公式变形即可得证;(Ⅱ)由a,bc成等比数列,利用等比数列的性质列出关系式,再利用余弦定理表示出cosB,将得出的关系式代入,并利用基本不等式变形即可确定出cosB的最小值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴2b=a+c,利用正弦定理化简得:2sinB=sinA+sinC,∵sinB=sin[π﹣(A+C)]=sin(A+C),∴sinA+sinC=2sinB=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,∴cosB==≥=,当且仅当a=c时等号成立,∴cosB的最小值为.【点评】此题考查了正弦、余弦定理,等差、等比数列的性质,以及基本不等式的运用,熟练掌握定理是解本题的关键.19.(12分)如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(Ⅰ)证明:四边形EFGH是矩形;(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.【分析】(Ⅰ)由三视图得到四面体ABCD的具体形状,然后利用线面平行的性质得到四边形EFGH的两组对边平行,即可得四边形为平行四边形,再由线面垂直的判断和性质得到AD⊥BC,结合异面直线所成角的概念得到EF⊥EH,从而证得结论;(Ⅱ)分别以DB,DC,DA所在直线为x,y,z轴建立空间直角坐标系,求出所用点的坐标,求出及平面EFGH的一个法向量,用与所成角的余弦值的绝对值得直线AB与平面EFGH夹角θ的正弦值.【解答】(Ⅰ)证明:由三视图可知,四面体ABCD的底面BDC是以∠BDC为直角的等腰直角三角形,且侧棱AD⊥底面BDC.如图,∵AD∥平面EFGH,平面ADB∩平面EFGH=EF,AD⊂平面ABD,∴AD∥EF.∵AD∥平面EFGH,平面ADC∩平面EFGH=GH,AD⊂平面ADC,∴AD∥GH.由平行公理可得EF∥GH.∵BC∥平面EFGH,平面DBC∩平面EFGH=FG,BC⊂平面BDC,∴BC∥FG.∵BC∥平面EFGH,平面ABC∩平面EFGH=EH,BC⊂平面ABC,∴BC∥EH.由平行公理可得FG∥EH.∴四边形EFGH为平行四边形.又AD⊥平面BDC,BC⊂平面BDC,∴AD⊥BC,则EF⊥EH.∴四边形EFGH是矩形;(Ⅱ)解:解法一:取AD的中点M,连结,显然ME∥BD,MH∥CD,MF∥AB,且ME=MH=1,平面MEH⊥平面EFGH,取EH的中点N,连结MN,则MN⊥EH,∴MN⊥平面EFGH,则∠MFN就是MF(即AB)与平面EFGH所成的角θ,∵△MEH是等腰直角三角形,∴MN=,又MF=AB=,∴sin∠AFN==,即直线AB与平面EFGH夹角θ的正弦值是.解法二:分别以DB,DC,DA所在直线为x,y,z轴建立空间直角坐标系,由三视图可知DB=DC=2,DA=1.又E为AB中点,∴F,G分别为DB,DC中点.∴A(0,0,1),B(2,0,0),F(1,0,0),E(1,0,),G(0,1,0).则.设平面EFGH的一个法向量为.由,得,取y=1,得x=1.∴.则sinθ=|cos<>|===.【点评】本题考查了空间中的直线与直线的位置关系,考查了直线和平面所成的角,训练了利用空间直角坐标系求线面角,解答此题的关键在于建立正确的空间右手系,是中档题.20.(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P (x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m+n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.【分析】(Ⅰ)先根据++=,以及各点的坐标,求出点p的坐标,再根据向量模的公式,问题得以解决;(Ⅱ)利用向量的坐标运算,先求出,,再根据=m +n,表示出m﹣n=y﹣x,最后结合图形,求出m﹣n的最小值.【解答】解:(Ⅰ)∵A(1,1),B(2,3),C(3,2),++=,∴(1﹣x,1﹣y)+(2﹣x,3﹣y)+(3﹣x,2﹣y)=0∴3x﹣6=0,3y﹣6=0∴x=2,y=2,即=(2,2)∴(Ⅱ)∵A(1,1),B(2,3),C(3,2),∴,∵=m +n,∴(x,y)=(m+2n,2m+n)∴x=m+2n,y=2m+n∴m﹣n=y﹣x,令y﹣x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,1.故m﹣n的最大值为21.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:300 500作物产量(kg)概率0.5 0.56 10作物市场价格(元/kg)概率0.4 0.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.【分析】(Ⅰ)分别求出对应的概率,即可求X的分布列;(Ⅱ)分别求出3季中有2季的利润不少于2000元的概率和3季中利润不少于2000元的概率,利用概率相加即可得到结论.【解答】解:(Ⅰ)设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,则P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格﹣成本,∴X的所有值为:500×10﹣1000=4000,500×6﹣1000=2000,300×10﹣1000=2000,300×6﹣1000=800,则P(X=4000)=P ()P ()=(1﹣0.5)×(1﹣0.4)=0.3,P(X=2000)=P ()P(B)+P(A)P ()=(1﹣0.5)×0.4+0.5(1﹣0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,则X的分布列为:X 4000 2000 800P 0.3 0.5 0.2(Ⅱ)设Ci表示事件“第i季利润不少于2000元”(i=1,2,3),则C1,C2,C3相互独立,由(Ⅰ)知,P(Ci)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2000的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512,3季的利润有2季不少于2000的概率为P (C2C3)+P(C1C3)+P(C1C2)=3×0.82×0.2=0.384,综上:这3季中至少有2季的利润不少于2000元的概率为:0.512+0.384=0.896.【点评】本题主要考查随机变量的分布列及其概率的计算,考查学生的计算能力.23.(14分)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.【分析】(Ⅰ)由已知,,…可得用数学归纳法加以证明;(Ⅱ)由已知得到ln(1+x)≥恒成立构造函数φ(x)=ln(1+x)﹣(x≥0),利用导数求出函数的最小值即可;(Ⅲ)在(Ⅱ)中取a=1,可得,令则,n依次取1,2,3…,然后各式相加即得到不等式.【解答】解:由题设得,(Ⅰ)由已知,,…可得下面用数学归纳法证明.①当n=1时,,结论成立.②假设n=k时结论成立,即,那么n=k+1时,=即结论成立.由①②可知,结论对n∈N+成立.(Ⅱ)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)﹣(x≥0),则φ′(x)=,当a≤1时,φ′(x)≥0(仅当x=0,a=1时取等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立.∴当a≤1时,ln(1+x)≥恒成立,(仅当x=0时等号成立)当a>1时,对x∈(0,a﹣1]有φ′(x)<0,∴φ(x)在∈(0,a﹣1]上单调递减,∴φ(a﹣1)<φ(0)=0即当a>1时存在x>0使φ(x)<0,故知ln(1+x)≥不恒成立,综上可知,实数a的取值范围是(﹣∞,1].(Ⅲ)由题设知,g(1)+g(2)+…+g(n)=,n﹣f(n)=n﹣ln(n+1),比较结果为g(1)+g(2)+…+g(n)>n﹣ln(n+1)证明如下:上述不等式等价于,在(Ⅱ)中取a=1,可得,令则故有,ln3﹣ln2,…,上述各式相加可得结论得证.【点评】本题考查数学归纳法;考查构造函数解决不等式问题;考查利用导数求函数的最值,证明不等式,属于一道综合题.22.(13分)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为. (Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.【分析】(Ⅰ)在C1、C2的方程中,令y=0,即得b=1,设C1:的半焦距为c,由=及a2﹣c2=b2=1得a=2;(Ⅱ)由(Ⅰ)知上半椭圆C1的方程为+x2=1(y≥0),设其方程为y=k(x﹣1)(k≠0),代入C1的方程,整理得(k2+4)x2﹣2k2x+k2﹣4=0.(*)设点P(xp,yp),依题意,可求得点P的坐标为(,);同理可得点Q的坐标为(﹣k﹣1,﹣k2﹣2k),利用•=0,可求得k的值,从而可得答案.【解答】解:(Ⅰ)在C1、C2的方程中,令y=0,可得b=1,且A(﹣1,0),B(1,0)是上半椭圆C1的左右顶点.设C1:的半焦距为c,由=及a2﹣c2=b2=1得a=2.∴a=2,b=1.(Ⅱ)由(Ⅰ)知上半椭圆C1的方程为+x2=1(y≥0).易知,直线l与x轴不重合也不垂直,设其方程为y=k(x﹣1)(k≠0),代入C1的方程,整理得:(k2+4)x2﹣2k2x+k2﹣4=0.(*)设点P(xp,yp),∵直线l过点B,∴x=1是方程(*)的一个根,由求根公式,得xp=,从而yp=,∴点P的坐标为(,).同理,由得点Q的坐标为(﹣k﹣1,﹣k2﹣2k),∴=(k,﹣4),=﹣k(1,k+2),∵AP⊥AQ,∴•=0,即[k﹣4(k+2)]=0,∵k≠0,∴k﹣4(k+2)=0,解得k=﹣.经检验,k=﹣符合题意,故直线l的方程为y=﹣(x﹣1),即8x+3y﹣8=0.【点评】本题考查椭圆与抛物线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查设点法、数形结合思想、函数与方程思想,属于难题.。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战18133
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战18133](https://img.taocdn.com/s3/m/c3000b96b307e87101f696f0.png)
12月调研考试数学理【试卷综析】本试卷是高三理科试卷,以基础知识和基本能力为载体,,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,试题重点考查:集合、不等式、复数、向量、三视图、导数、简单的线性规划、数列、三角函数的性质,统计概率等;考查学生解决实际问题的能力。
【题文】一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
【题文】1.设集合1122M x x ⎧⎫=-<<⎨⎬⎩⎭,{}2N x x x =≤,则M N =( )A .1[0,)2B .1(,1]2-C .1[1,)2-D .1(,0]2-【知识点】集合及其运算A1【思路点拨】解一元二次不等式求得N ,再根据两个集合的交集的定义求得M∩N .【题文】2.复数5)z i i i -+(i 为虚数单位),则复数z 的共轭复数为( ) A .2i -B .2i +C .4i - D .4i +【知识点】复数的基本概念与运算L4 【答案】A【思路点拨】直接利用复数模的公式求复数的模,再利用虚数单位i 的运算性质化简后得z ,则复数z 的共轭复数可求.【题文】3.设向量11(1,0),(,)22a b ==,则下列结论中正确的是( ) A .||||a b =B .22a b =C .//a bD .()a b b -⊥ 【知识点】平面向量基本定理及向量坐标运算F2 【答案】D11(1,0),(,)22a b ==,||||a b =不正12a b ⋅=,故a =(1,0),b =(12,12,易得//a b 不成立,故()0a b b -⋅=则a b-与b垂【思路点拨】本题考查的知识点是向量的模,及用数量积判断两个平面向量的垂直关系,由11(1,0),(,)22a b ==,我们易求出向量的模,结合平面向量的数量坐标运算,对四个答案逐一进行判A .命题“若0232=+-x x ,则1=x ”的逆否命题为“若1≠x ,则0232≠+-x x ”;B .“2a =”是“函数()log a f x x =在区间(0,)+∞上为增函数”的充分不必要条件;C .若命题p :,21000nn N ∃∈>,则p ⌝:,21000nn N ∀∈≤;D .命题“(,0),23x xx ∃∈-∞<”是真命题.【知识点】命题及其关系A2 【答案】D【解析】因为命题“若x23x+2=0,则x=1”的逆否命题为“若x≠1,则x23x+2≠0”,所以A 正确;由a=2能得到函数f (x )=logax 在区间(0,+∞)上为增函数,反之,函数f (x )=logax 在区间(0,+∞)上为增函数,a 不一定大于2,所以“a=2”是“函数f (x )=logax 在区间(0,+∞)上为增函数”的充分不必要条件,所以选项B 正确;命题P :∃n ∈N ,2n >1000,的否定为¬P :∀n ∈N ,2n≤1000,所以C 正确;因为当x <0时恒有2x >3x ,所以命题“∃x ∈(∞,0),2x <3x”为假命题,所以D 不正确【思路点拨】选项A 是写一个命题的逆否命题,只要把原命题的结论否定当条件,条件否定当结论即可;选项B 看由a=2能否得到函数f (x )=logax 在区间(0,+∞)上为增函数,反之又是否成立;选项C 、D 是写出特称命题的否定,注意其否定全称命题的格式.【题文】5.右图是一容量为100的样本的重量的频率分布直方图, 则由图可估计样本的重量的中位数为( ) A .11 B .11.5 C .12 D .12.5【知识点】用样本估计总体I2 【答案】C【解析】由题意,[5,10]的样本有5×0.06×100=30,[10,15]的样本有5×0.1×100=50由于[10,15]的组中值为12.5,由图可估计样本重量的中位数12.【思路点拨】由题意,[5,10]的样本有5×0.06×100=30,[10,15]的样本有5×0.1×100=50,结合[10,15]的组中值,即可得出结论.【题文】6.现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③|cos |y x x =⋅;④2xy x =⋅的图象(部分)如下:①y=x•sinx 为偶函数;②y=x•cosx x <0时,③y=x•|cosx|≤0恒成立则从左到右图象对应的函数序号应为:①④②③【思路点拨】从左到右依次分析四个图象可知,第一个图象关于Y 轴对称,是一个偶函数,第二个图象不关于原点对称,也不关于Y 轴对称,是一个非奇非偶函数;第三、四个图象关于原点对称,是奇函数,但第四个图象在Y 轴左侧,函数值不大于0,分析四个函数的解析后,即可得到函数的性质,进而得到答案.【题文】7.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A .若,,,,a m a n m n αα⊥⊥⊂⊂则a α⊥ B .若//,a b b α⊂,则//a αC .若//,,,a b αβαγβγ==则//a bD .若,,//,//a b a b ββαα⊂⊂,则//βα【知识点】空间中的平行关系垂直关系G4 G5【答案】C【解析】A .根据线面垂直的垂直的判定定理可知,m ,n 必须是相交直线,所以A 错误. B .根据直线和平面平行的判定定理可知,a 必须在平面α外,所以B 错误.xC .根据面面平行的性质定理可知,两个平行平面同时和第三个平面相交,则交线平行,所以C 正确.D .根据面面平行的判定定理可知,直线a ,b 必须是相交直线,才能得到面面平行.所以D 错误. 【思路点拨】A .利用线面垂直的定义和判定定理判断.B .利用线面平行的判定定理判断.C .利用面面平行的性质判断.D .利用线面平行的性质和面面平行的判定定理判断. 【题文】8.点)2,4(-P 与圆422=+y x 上任一点连线的中点的轨迹方程是( ) A .22(2)(1)1x y -++=B .22(2)(1)4x y -++= C .22(4)(2)4x y ++-=D .22(2)(1)1x y ++-= 【知识点】圆的方程H3 【答案】A代入x2+y2=4得(2x4)2+(2y+2)2=4,化简得(x2)2+(y+1)2=1.【题文】9.已知函数0x a e ,x f (x )ln x,x ⎧⋅≤=⎨->⎩,其中e 为自然对数的底数,若关于x 的方程0f (f (x ))=,有且只有一个实数解,则实数a 的取值范围为( )A .()0,-∞B .()()001,,-∞ C .()01, D .()()011,,+∞【知识点】函数与方程B9 【答案】B若a≠0,若f (f (x ))=0,可得当x≤0时,a•ex=1无解,进而得到实数a 的取值范围.【题文】10.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为( )A .3πB .π4C .π2D .π25【知识点】空间几何体的三视图和直观图G2 【答案】A【解析】由于正视图、侧视图、俯视图都是边长为1的正方形,所以此四面体一定可以放在正方体中,所以我们可以在正方体中寻找此四面体.如图所示,四面体ABCD 满足题意,所以此四面体的外接球即为此正方体的外接球, 由题意可知,正方体的棱长为1,所以外接球的半径为R=32, 所以此四面体的外接球表面积S=4×π×(32)2=3π. 【思路点拨】由于正视图、侧视图、俯视图都是边长为1的正方形,所以此四面体一定可以放在棱长为1的正方体中,所以此四面体的外接球即为此正方体的外接球,由此能求出此四面体的外接球表面积. 【题文】11.已知b 为如图所示的程序框图输出的结果,则二项式6()bx x-的展开式中的常数项是( )A .20B .20C .540D .540【知识点】算法与程序框图L1 【答案】C【解析】第一次循环:b=3,a=2;第二次循环得:b=5,a=3;第三次循环得:b=7,a=4;第四次循环得:b=9,a=5;不满足判断框中的条件输出b=9.【思路点拨】根据题意,分析该程序的作用,可得b的值,再利用二项式定理求出展开式的通项,分析可得常数项.【题文】12.设等差数列{}n a满足:22222233363645sin cos cos cos sin sin1sin()a a a a a aa a-+-=+,公差(1,0)d∈-.若当且仅当9n=时,数列{}n a的前n项和n S取得最大值,则首项1a的取值范围是( )A.74,63ππ⎛⎫⎪⎝⎭B.43,32ππ⎛⎫⎪⎝⎭C.74,63ππ⎡⎤⎢⎥⎣⎦D.43,32ππ⎡⎤⎢⎥⎣⎦【知识点】等差数列及等差数列前n项和D2【答案】B【思路点拨】利用三角函数的倍角公式、积化和差与和差化积公式化简已知的等式,根据公差d的范围求出公差的值,代入前n项和公式后利用二次函数的对称轴的范围求解首项a1取值范围.第II卷(非选择题,共90分)【题文】二、填空题:本题共4小题,每小题5分,共20分。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战18303
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战18303](https://img.taocdn.com/s3/m/a432eee6eefdc8d376ee32ef.png)
高考数学高三模拟考试试卷压轴题高三年级第四次月考文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}02|{2<--=x x x A ,集合}41|{<<=x x B ,则=B AA .}21|{<<x xB .}41|{<<-x xC .}11|{<<-x xD .}42|{<<x x 2.已知复数z 满足ii z z+=,则z = A .11i 22+ B .11i 22- C .11i 22-+ D .11i 22-- 3.抛物线24y x =的焦点到准线的距离为 A .2 B .1 C .14D .184.已知直线210x ay -+=与直线820ax y -+=平行,则实数a 的值为 A .4B .-4C .-4或4D .0或45.已知双曲线C:22x a 22y b =1(a>0,b>0)的一条渐近线方程为y=52x ,且与椭圆212x +23y =1有公共焦点,则C 的方程为A .212x 210y =1B .24x 25y =1C .25x 24y =1D .24x 23y =16.函数142)(2-⋅=x x x x f 的图像大致为A .B .C .D .7.某多面体的三视图如图所示,则该多面体的各棱中, 最长棱的长度为 A .6 B .5 C .2D .11 1 1正视图侧视图俯视图 18.公元前5世纪,古希腊哲学家芝诺发表了著名 的阿基里斯悖论:他提出让乌龟在阿基里斯前面1000米处开始,和阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,乌龟仍然前于他10米.当阿基里斯跑完下一个10米时,乌龟仍然前于他1米……,所以,阿基里斯永远追不上乌龟.根据这样的规律,若阿基里斯和乌龟的距离恰好为210-米时,乌龟爬行的总距离为A .410190-B .5101900-C .510990-D .4109900- 9.已知向量44sin,cos 22x x a ⎛⎫= ⎪⎝⎭,向量()1,1b =,函数b a x f ⋅=)(,则下列说法正确的是 A .()f x 是奇函数 B .()f x 的一条对称轴为直线4x π=C .()f x 的最小正周期为2πD .()f x 在,42ππ⎛⎫⎪⎝⎭上为减函数 10.已知抛物线y2=2px(p >0)的焦点F 恰好是双曲线x2a2-y2b2=1(a >0,b >0)的右焦点,且两曲线的交点连线过点F ,则该双曲线的离心率为A . 2B . 3C .1+ 2D .1+311.已知F 为抛物线C:y2=4x 的焦点,过F 作两条互相垂直的直线l1、l2,直线l1与C 交于A 、B 两点,直线l2与C 交于D 、E 两点,则|AB|+|DE|的最小值为 A .16B .14C .12D .1012.设函数⎩⎨⎧>≤+=0|,log |0|,2|)(2x x x x x f ,若关于x 的方程a x f =)(有四个不同的解x1、x2、x3、x4,且x1<x2<x3<x4,则x3(x1+x2)+4231x x 的取值范围 A .),3(+∞-B .)3,(-∞C .)3,3[-D .]3,3(-二、填空题:本大题共4小题,每小题5分.共20分,13.在数列{}n a 中,11n n a a +-=,n S 为{}n a 的前n 项和. 若735S =,则3a =_______. 14.设实数y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00821223y x y x y x ,则y x z 43+=的最大值为.15.若圆C :22(1)x y n ++=的圆心为椭圆M :221x my +=的一个焦点,且圆C 经过M 的另一个焦点,且nm=. 16.在椭圆193622=+y x 上有两个动点M 、N ,K (2,0)为定点,若0=⋅KN KM ,则NM KM ⋅的最小值为_____.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战17720
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战17720](https://img.taocdn.com/s3/m/6c8881fd453610661fd9f47b.png)
一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.2.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.3.(5分)如图是一个算法流程图,则输出的n的值是.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.高考模拟题复习试卷习题资料高考数学试卷(附详细答案)参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.【分析】根据集合的基本运算即可得到结论.【解答】解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为 21 .【分析】根据复数的有关概念,即可得到结论.【解答】解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21【点评】本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.3.(5分)如图是一个算法流程图,则输出的n的值是 5 .【分析】算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.【解答】解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5.故答案为:5.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.【分析】首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.【解答】解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.【点评】本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.【分析】由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.【解答】解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=.∵0≤φ<π,∴,∴+φ=,解得φ=.故答案为:.【点评】本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 24 株树木的底部周长小于100cm.【分析】根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数.【解答】解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株).故答案为:24.【点评】本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是 4 . 【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{an}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.【点评】本题考查了等比数列的通项公式,属于基础题.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.【分析】设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.【解答】解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.【点评】本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.【分析】求出已知圆的圆心为C(2,﹣1),半径r=2.利用点到直线的距离公式,算出点C 到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.【解答】解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.【点评】本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0) .【分析】由条件利用二次函数的性质可得,由此求得m的范围.【解答】解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3 .【分析】由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.【解答】解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是 22 .【分析】由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.【解答】解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.【点评】本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,) .【分析】在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.【解答】解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.故答案为:(0,).【点评】本题考查函数的图象以函数的零点的求法,数形结合的应用.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.【分析】根据正弦定理和余弦定理,利用基本不等式即可得到结论.【解答】解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.【点评】本题主要考查正弦定理和余弦定理的应用,结合基本不等式的性质是解决本题的关键.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.【分析】(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.【解答】解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.【点评】本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.【分析】(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可. 【解答】证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.【点评】本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.【分析】(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.【解答】解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,﹣),且A,C关于x轴对称,∴C(,),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.【点评】本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?【分析】(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大. 【解答】解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x≤35.∴当且仅当x=10时R取到最大值.∴OM=10m时,保护区面积最大.【点评】本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.【分析】(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.【解答】解:(1)∵f(x)=ex+e﹣x,∴f(﹣x)=e﹣x+ex=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(ex+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴ex+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=ex,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=ex+e﹣x﹣a(﹣x3+3x),则g′(x)=ex﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立.①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而ea﹣1<ae﹣1,②当a=e时,ae﹣1=ea﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e ﹣1)lna,从而ea﹣1>ae﹣1.【点评】本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.【分析】(1)利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”即可得到an,再利用“H”数列的意义即可得出.(2)利用等差数列的前n项和即可得出Sn,对∀n∈N*,∃m∈N*使Sn=am,取n=2和根据d<0即可得出;(3)设{an}的公差为d,构造数列:bn=a1﹣(n﹣1)a1=(2﹣n)a1,cn=(n﹣1)(a1+d),可证明{bn}和{cn}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.【解答】解:(1)当n≥2时,an=Sn﹣Sn﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,Sn=an+1.∴数列{an}是“H”数列.(2)Sn==,对∀n∈N*,∃m∈N*使Sn=am,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{an}的公差为d,令bn=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,bn+1﹣bn=﹣a1,cn=(n﹣1)(a1+d),对∀n∈N*,cn+1﹣cn=a1+d,则bn+cn=a1+(n﹣1)d=an,且数列{bn}和{cn}是等差数列.数列{bn}的前n项和Tn=,令Tn=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使Tn=bm成立,即{bn}为H数列.数列{cn}的前n项和Rn=,令cm=(m﹣1)(a1+d)=Rn,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使Rn=cm成立,即{cn}为H数列.因此命题得证.【点评】本题考查了利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”求an、等差数列的前n项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【分析】利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论.【解答】证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D.【点评】本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题. 【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【分析】利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y 的值.【解答】解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=【点评】本题考查矩阵的乘法,考查学生的计算能力,属于基础题.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【分析】直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.【解答】解:直线l的参数方程为(t为参数),化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8.故答案为:8.【点评】本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.【分析】由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.【解答】证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.【点评】本题考查不等式的证明,正确运用均值不等式是关键.(二)必做题(本部分包括25、26两题,每题10分,共计20分)26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【分析】(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.【解答】解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵fn(x)为fn﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kfk﹣1(x)+xfk(x)]′=kfk﹣1′(x)+fk(x)+xfk′(x)=(k+1)fk(x)+xfk+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,由①②得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nfn﹣1()+fn()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【点评】本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力. 25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).【分析】(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.【解答】解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X 2 3 4P故X数学期望E(X)=.【点评】本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题.1.(本题满分15分)如图,在三棱锥DABC 中,DA=DB=DC, D 在底面ABC 上的射影为E ,AB ⊥BC ,DF ⊥AB 于F .(Ⅰ)求证:平面ABD ⊥平面DEF ;(Ⅱ)若AD ⊥DC ,AC=4,∠BAC=60°,求直线BE 与平面DAB 所成的角的正弦值. 答案及解析: 1.(Ⅰ)如图,由题意知⊥DE 平面ABC 所以 DE AB ⊥,又DF AB ⊥ 所以 ⊥AB 平面DEF ,………………3分又⊂AB 平面ABD 所以平面⊥ABD 平面DEF…………………6分(Ⅱ)解法一:由DC DB DA ==知EC EB EA == 所以 E 是ABC ∆的外心又BC AB ⊥ 所以E 为AC 的中点 …………………………………9分 过E 作DF EH ⊥于H ,则由(Ⅰ)知⊥EH 平面DAB所以EBH ∠即为BE 与平面DAB 所成的角…………………………………12分由4=AC ,60=∠BAC 得2=DE ,3=EF所以 7=DF,732=EH 所以721sin ==∠BE EH EBH …………………………………15分 解法二:如图建系,则)0,2,0(-A ,)2,0,0(D ,)0,1,3(-B所以)2,2,0(--=,)2,1,3(--=……………………………………9分 设平面DAB 的法向量为),,(z y x =由⎪⎩⎪⎨⎧=⋅=⋅00得⎩⎨⎧=--=--023022z y x z y ,取)1,1,33(-=………………12分 设与n 的夹角为θ 所以7213722||||cos ==⋅=n EB θ 所以BE 与平面DAB 所成的角的正弦值为721………………………………15分 2.如图,在直三棱柱ABC ﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C . (1)求证:平面ABC1⊥平面A1ACC1;(2)设D 是线段BB1的中点,求三棱锥D ﹣ABC1的体积.答案及解析:2.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【专题】综合题;转化思想;综合法;立体几何.【分析】(1)证明A1C⊥面ABC1,即可证明:平面ABC1⊥平面A1ACC1;(2)证明AC⊥面ABB1A1,利用等体积转换,即可求三棱锥D﹣ABC1的体积.【解答】(1)证明:在直三棱锥ABC﹣A1B1C1中,有A1A⊥面ABC,而AB⊂面ABC,∴A1A⊥AB,∵A1A=AC,∴A1C⊥AC1,又BC1⊥A1C,BC1⊂面ABC1,AC1⊂面ABC1,BC1∩AC1=C1∴A1C⊥面ABC1,而A1C⊂面A1ACC1,则面ABC1⊥面A1ACC1…(2)解:由(1)知A1A⊥AB,A1C⊥面ABC1,A1C⊥AB,故AB⊥面A1ACC1,∴AB⊥AC,则有AC⊥面ABB1A1,∵D是线段BB1的中点,∴.…【点评】本题考查线面垂直、平面与平面垂直的判定,考查三棱锥D﹣ABC1的体积,考查学生分析解决问题的能力,正确运用定理是关键.3.如图所示,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点.(1)求证:CD⊥PD;(2)求证:EF∥平面PAD.答案及解析:3.【考点】空间中直线与直线之间的位置关系;直线与平面平行的判定.【分析】本题是高考的重要内容,几乎年年考,次次有:(1)的关键是找出直角三角形,也就是找出图中的线线垂直.(2)的关键是找出平面PAD中可能与EF平行的直线.【解答】解:(1)证明:∵PA⊥平面ABCD,而CD⊂平面ABCD,∴PA⊥CD,又CD⊥AD,AD∩PA=A,∴CD⊥平面PAD,∴CD⊥PD、(2)取CD的中点G,连接EG、FG.∵E、F分别是AB、PC的中点,∴EG∥AD,FG∥PD,∴平面EFG∥平面PAD,又∵EF⊂平面EFG,∴EF∥平面PAD.【点评】线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a∥α,b⊂α,a∥b⇒a∥α);③利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).4.如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.答案及解析:4.【考点】直线与平面垂直的性质;直线与平面平行的判定.【专题】综合题;空间位置关系与距离.【分析】(1)利用勾股定理的逆定理可得AC⊥BC.利用线面垂直的性质定理可得CC1⊥AC,再利用线面垂直的判定定理即可证明结论;(2)利用直三棱柱的性质、正方形的性质、三角形的中位线定理即可得出ED∥AC1,再利用线面平行的判定定理即可证明结论【解答】证明:(1)因为三棱柱ABC﹣A1B1C1为直三棱柱,所以C1C⊥平面ABC,所以C1C⊥AC.又因为AC=3,BC=4,AB=5,所以AC2+BC2=AB2,所以AC⊥BC.又C1C∩BC=C,所以AC⊥平面CC1B1B,所以AC⊥BC1.(2)连结C1B交CB1于E,再连结DE,由已知可得E为C1B的中点,又∵D为AB的中点,∴DE为△BAC1的中位线.∴AC1∥DE又∵DE⊂平面CDB1,AC1⊄平面CDB1∴AC1∥平面CDB1.【点评】熟练掌握勾股定理的逆定理、线面垂直的判定和性质定理、直三棱柱的性质、正方形的性质、三角形的中位线定理、线面平行的判定定理是解题的关键.5.已知在三棱锥S﹣ABC中,∠ACB=90°,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.答案及解析:5.【考点】直线与平面垂直的判定.【专题】证明题.【分析】要证明AD⊥平面SBC,只要证明AD⊥SC(已知),AD⊥BC,而结合已知∠ACB=90°,又SA⊥平面ABC,及线面垂直的判定定理及性质即可证明【解答】证明:∵SA⊥面ABC,∴BC⊥SA;∵∠ACB=90°,即AC⊥BC,且AC、SA是面SAC内的两相交线,∴BC⊥面SAC;又AD⊂面SAC,∴BC⊥AD,又∵SC⊥AD,且BC、SC是面SBC内两相交线,∴AD⊥面SBC.【点评】本题主要考查了直线与平面垂直,平面与平面垂直的相互转化,线面垂直的判定定理的应用,属于基础试题6.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥底面ABCD,AP=AB=,点E 是棱PB的中点.(Ⅰ)证明:AE⊥平面PBC;(Ⅱ)若AD=1,求二面角B﹣EC﹣D的平面角的余弦值.答案及解析:6.【考点】二面角的平面角及求法;直线与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)由PA⊥底面ABCD,得PA⊥AB.又PA=AB,从而AE⊥PB.由三垂线定理得BC⊥PB,从而BC⊥平面PAB,由此能证明AE⊥平面PBC.(Ⅱ)由BC⊥平面PAB,AD⊥AE.取CE的中点F,连结DF,连结BF,则∠BFD为所求的二面角的平面角,由此能求出二面角B﹣EC﹣D的平面角的余弦值.【解答】(Ⅰ)证明:如图1,由PA⊥底面ABCD,得PA⊥AB.又PA=AB,故△PAB为等腰直角三角形,。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战22027
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战22027](https://img.taocdn.com/s3/m/ae1a805b84868762cbaed532.png)
本试卷共4 页,21 小题,满分150 分.考试时间120 分钟.注意事项:1.答卷前,考生务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动, 先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.一、选择题:本大题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题 目要求的.1.复数z = (2 +3i)i 的实部是()A .2B .-2C .3D .-32.已知点P(cosα, tanα,)在第二象限,则角α,的终边在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.设曲线y =ax2在点(1,a )处的切线与直线2x -y -6 = 0平行,则a =()A .1B .12C .-12D .-14.某几何体的三视图如右图所示,则其体积为()A .23π B.3π C .πD .5π 5.设等比数列的前n 项和为,则()A .0B .1C .-D .6.已知向量() C .5 D .257.下列说法不正确的是()A .若“ p 且q ”为假,则p 、q 至少有一个是假命题B .命题C .“φ= 2π”是“y=sin (2x+φ)为偶函数”的充要条件 D .a <0 时,幂函数y=xa 在(0,+∞)上单调递减8. 已知函数f (x) =asin x+bx3+ ,记f (x) 的导函数为f ' (x) ,则f () +f (-) +f '() -f '(-) =()A. 4030B. 4028C. 4032D. 09.若以连续两次骰子分别得到的点数m,n 作为点P 的横、纵坐标,则点P 在直线x+y=5 左下方的概率为()10.已知椭圆,双曲线和抛物线y 2 =2 px (p>0)的离心率分别为e1,e2,e3,则()11.图1 是某小区100 户居民月用电等级的条形图,记月用电量为一级的用户数为A1,月用电量为二级的用户数为A2,……,以此类推,用电量为六级的用户数为A6,图2 是统计图1 中居民月用电量在一定级别范围内的用户数的一个算法流程图.根据图1 提供的信息,则图2 中输出的S 值为()A.82B.70 C.48 D.3012. 若直线y =k(x +1)(k > 0) 与函数y =|sin x|的图象恰有六个公共点,其中,则有()二、填空题:本大题共4 小题,每小题5 分,共20 分.13.已知函数f(x)=x+6,则f(f(9))=________.14.已知等差数列满足.则数列的通项公式________.15.某商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4 个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程中的=-2,气象部门预测下个月的平均气温约为7℃,据此估计该商场下个月毛衣销售量约为________件.16.若函数f (x)=2x2lnx 在其定义域内的一个子区间(k1,k+1)内不是单调函数,则实数k 的取值范围是________.三、解答题(本大题共 8 小题,考生作答6 小题,共70 分.解答须写出文字说明、证明过程或演算步骤).17.(本小题满分12 分)已知函数f (x) =2sin x(3cos x-sin x) +1, x R.(1)求f (x)的最小正周期及单调递增区间;(8分)(2)若,,求f (x)的最大值和最小值.(4分)18.(本小题满分12 分)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(5 分)(2)已知在被调查的北方学生中有5 名数学系的学生,其中2 名喜欢甜品,现在从这5 名学生中随机抽取2人,求至少有1 人喜欢甜品的概率.(7 分)19.(本小题满分12 分)已知平行四边形ABCD中,AB = 4,E为AB的中点,且△ADE是等边三角形,沿DE 把△ADE 折起至A1 DE 的位置,使得A1 C =4.(1)F 是线段A1 C的中点,求证:BF //平面A1 DE ;(4 分)(2)求证:A 1 D ⊥CE ;(4 分)(3)求点A1到平面BCDE 的距离.(4 分)F20.(本小题满分12 分)已知椭圆E的两个焦点分别为F1 (-1,0)和F2(1,0),离心率2 2(1)求椭圆E 的方程;(4 分)(2)设直线l : y =x +m(m≠0)与椭圆E 交于A、B 两点,线段AB 的垂直平分线交x 轴于点T,当m 变化时,求△TAB 面积的最大值. (8 分)21.(本小题满分12 分)已知函数f (x) =x +a ln x.(1)当a =1时,求曲线y =f (x)在点(1, f (1))处的切线方程;(4分)(2)求f (x)的单调区间;(4分)(3)若函数f (x)没有零点,求实数a 的取值范围.(4分)请考生在第22,23,24 题中任选一题作答,如果多做,则按所做的第一题记分.作答时把小题后相应的矩形涂黑.22.(本小题满分10 分)选修41:几何证明选讲如图,⊙O和⊙O/相交于A,B两点,过A 作两圆的切线分别交两圆于C,D 两点,连接DB 并延长交⊙O 于点E.(1) 证明:;(5分)(2) 若AD=4, AC = 2AB ,求DE. (5分)23.(本小题满分10 分)选修44:坐标系与参数方程已知圆C1的参数方程为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为(1)把圆C1, C2 的方程化为普通方程;(5 分)(2) 求圆C1,上的点到直线C2的距离的最大值.(5 分)2 4.(本小题满分10 分)选修45:不等式选讲设a R,f (x)=|x-a|+(1-a)x,(1)解关于a的不等式f (2)<0;(4分)(2)如果f (x)≥0恒成立,求实数a的取值范围.(6分)一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)函数f(x)=cos(2x﹣)的最小正周期是()A. B.π C.2π D.4π2.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)3.(5分)定积分(2x+ex)dx的值为()A.e+2B.e+1C.eD.e﹣14.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2nB.an=2(n﹣1)C.an=2nD.an=2n﹣15.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A. B.4π C.2π D.6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A. B. C. D.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=xB.f(x)=x3C.f(x)=()xD.f(x)=3x8.(5分)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假9.(5分)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣xB.y=x3﹣xC.y=x3﹣xD.y=﹣x3+x二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)已知4a=2,lgx=a,则x=.12.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ=.14.(5分)观察分析下表中的数据:多面体面数(F)顶点数棱数(E)(V)三棱柱 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是.(不等式选做题)15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.(几何证明选做题)16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF=.(坐标系与参数方程选做题)17.在极坐标系中,点(2,)到直线的距离是.三、解答题:解答题应写出文字说明、证明过程或盐酸步骤(共6小题,满分75分)18.(12分)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.19.(12分)如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(Ⅰ)证明:四边形EFGH是矩形;(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.20.(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P (x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m+n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.21.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:300 500作物产量(kg)概率0.5 0.56 10作物市场价格(元/kg)概率0.4 0.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.22.(13分)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为. (Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直.线l的方程23.(14分)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (8)参考答案与试题解析一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)函数f(x)=cos(2x﹣)的最小正周期是()A. B.π C.2π D.4π【分析】由题意得ω=2,再代入复合三角函数的周期公式求解.【解答】解:根据复合三角函数的周期公式得,函数f(x)=cos(2x﹣)的最小正周期是π,故选:B.【点评】本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.2.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)【分析】先解出集合N,再求两集合的交即可得出正确选项.【解答】解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选:B.【点评】本题考查交集的运算,理解好交集的定义是解答的关键.3.(5分)定积分(2x+ex)dx的值为()A.e+2B.e+1C.eD.e﹣1【分析】根据微积分基本定理计算即可.【解答】解:(2x+ex)dx=(x2+ex)|=(1+e)﹣(0+e0)=e.故选:C.【点评】本题主要考查了微积分基本定理,关键是求出原函数.4.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2nB.an=2(n﹣1)C.an=2nD.an=2n﹣1【分析】根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式. 【解答】解:由程序框图知:ai+1=2ai,a1=2,∴数列为公比为2的等比数列,∴an=2n.故选:C.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A. B.4π C.2π D.【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A. B. C. D.【分析】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.【解答】解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:C.【点评】本题考查概率的计算,列举基本事件是关键.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=xB.f(x)=x3C.f(x)=()xD.f(x)=3x【分析】对选项一一加以判断,先判断是否满足f(x+y)=f(x)f(y),然后考虑函数的单调性,即可得到答案.【解答】解:A.f(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f (y),故A错;B.f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f(y),故B错;C.f(x)=,f(y)=,f(x+y)=,满足f(x+y)=f(x)f(y),但f (x)在R上是单调减函数,故C错.D.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故D正确;故选:D.【点评】本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.【解答】解:根据共轭复数的定义,原命题“若z1,z2互为共轭复数,则|z1|=|z2|”是真命题;其逆命题是:“若|z1|=|z2|,则z1,z2互为共轭复数”,例|1|=|﹣1|,而1与﹣1不是互为共轭复数,∴原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,∴命题的否命题是假命题,逆否命题是真命题.故选:B.【点评】本题考查了四种命题的定义及真假关系,考查了共轭复数的定义,熟练掌握四种命题的真假关系是解题的关键.9.(5分)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a【分析】方法1:根据变量之间均值和方差的关系直接代入即可得到结论.方法2:根据均值和方差的公式计算即可得到结论.【解答】解:方法1:∵yi=xi+a,∴E(yi)=E(xi)+E(a)=1+a,方差D(yi)=D(xi)+E(a)=4.方法2:由题意知yi=xi+a,则=(x1+x2+…+x10+10×a)=(x1+x2+…+x10)=+a=1+a,方差s2=[(x1+a﹣(+a)2+(x2+a﹣(+a)2+…+(x10+a﹣(+a)2]=[(x1﹣)2+(x2﹣)2+…+(x10﹣)2]=s2=4.故选:A.【点评】本题主要考查样本数据的均值和方差之间的关系,若变量y=ax+b,则Ey=aEx+b,Dy=a2Dx,利用公式比较简单或者使用均值和方差的公式进行计算.10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣xB.y=x3﹣xC.y=x3﹣xD.y=﹣x3+x【分析】分别求出四个选项中的导数,验证在x=±5处的导数为0成立与否,即可得出函数的解析式.【解答】解:由题意可得出,此三次函数在x=±5处的导数为0,依次特征寻找正确选项:A选项,导数为,令其为0,解得x=±5,故A正确;B选项,导数为,令其为0,x=±5不成立,故B错误;C选项,导数为,令其为0,x=±5不成立,故C错误;D选项,导数为,令其为0,x=±5不成立,故D错误.故选:A.【点评】本题考查导数的几何意义,导数几何意义是导数的重要应用.二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)已知4a=2,lgx=a,则x=.【分析】化指数式为对数式求得a,代入lgx=a后由对数的运算性质求得x的值.【解答】解:由4a=2,得,再由lgx=a=,得x=.故答案为:.【点评】本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.12.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为 x2+(y﹣1)2=1 .【分析】利用点(a,b)关于直线y=x±k的对称点为(b,a),求出圆心,再根据半径求得圆的方程.【解答】解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等于1,可得所求的圆的方程为x2+(y﹣1)2=1,故答案为:x2+(y﹣1)2=1.【点评】本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=x±k的对称点为(b,a),属于基础题.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ=.【分析】利用向量共线定理、倍角公式、同角三角函数基本关系式即可得出.【解答】解:∵∥,向量=(sin2θ,cosθ),=(cosθ,1),∴sin2θ﹣cos2θ=0,∴2sinθcosθ=cos2θ,∵0<θ<,∴cosθ≠0.∴2tanθ=1,∴tanθ=.故答案为:.【点评】本题考查了向量共线定理、倍角公式、同角三角函数基本关系式,属于基础题. 14.(5分)观察分析下表中的数据:棱数(E)多面体面数(F)顶点数(V)三棱柱 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是 F+V﹣E=2 .【分析】通过正方体、三棱柱、三棱锥的面数F、顶点数V和棱数E,得到规律:F+V﹣E=2,进而发现此公式对任意凸多面体都成立,由此得到本题的答案.【解答】解:凸多面体的面数为F、顶点数为V和棱数为E,①正方体:F=6,V=8,E=12,得F+V﹣E=8+6﹣12=2;②三棱柱:F=5,V=6,E=9,得F+V﹣E=5+6﹣9=2;③三棱锥:F=4,V=4,E=6,得F+V﹣E=4+4﹣6=2.根据以上几个例子,猜想:凸多面体的面数F、顶点数V和棱数E满足如下关系:F+V﹣E=2再通过举四棱锥、六棱柱、…等等,发现上述公式都成立.因此归纳出一般结论:F+V﹣E=2故答案为:F+V﹣E=2【点评】本题由几个特殊多面体,观察它们的顶点数、面数和棱数,归纳出一般结论,得到欧拉公式,着重考查了归纳推理和凸多面体的性质等知识,属于基础题.(不等式选做题)15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.【分析】根据柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2当且仅当ad=bc取等号,问题即可解决.【解答】解:由柯西不等式得,(ma+nb)2≤(m2+n2)(a2+b2)∵a2+b2=5,ma+nb=5,∴(m2+n2)≥5∴的最小值为故答案为:【点评】本题主要考查了柯西不等式,解题关键在于清楚等号成立的条件,属于中档题. (几何证明选做题)16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF= 3 .【分析】证明△AEF∽△ACB,可得,即可得出结论.【解答】解:由题意,∵以BC为直径的半圆分别交AB、AC于点E、F,∴∠AEF=∠C,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∵BC=6,AC=2AE,∴EF=3.故答案为:3.【点评】本题考查三角形相似的判定与运用,考查学生的计算能力,属于基础题.(坐标系与参数方程选做题)17.在极坐标系中,点(2,)到直线的距离是 1 .【分析】把极坐标化为直角坐标,再利用点到直线的距离公式即可得出.【解答】解:点P(2,)化为=,y=2=1,∴P.直线展开化为:=1,化为直角坐标方程为:,即=0.∴点P到直线的距离d==1.故答案为:1.【点评】本题考查了极坐标化为直角坐标的公式、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.三、解答题:解答题应写出文字说明、证明过程或盐酸步骤(共6小题,满分75分)18.(12分)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.【分析】(Ⅰ)由a,b,c成等差数列,利用等差数列的性质列出关系式,利用正弦定理化简,再利用诱导公式变形即可得证;(Ⅱ)由a,bc成等比数列,利用等比数列的性质列出关系式,再利用余弦定理表示出cosB,将得出的关系式代入,并利用基本不等式变形即可确定出cosB的最小值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴2b=a+c,利用正弦定理化简得:2sinB=sinA+sinC,∵sinB=sin[π﹣(A+C)]=sin(A+C),∴sinA+sinC=2sinB=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,∴cosB==≥=,当且仅当a=c时等号成立,∴cosB的最小值为.【点评】此题考查了正弦、余弦定理,等差、等比数列的性质,以及基本不等式的运用,熟练掌握定理是解本题的关键.19.(12分)如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(Ⅰ)证明:四边形EFGH是矩形;(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.【分析】(Ⅰ)由三视图得到四面体ABCD的具体形状,然后利用线面平行的性质得到四边形EFGH的两组对边平行,即可得四边形为平行四边形,再由线面垂直的判断和性质得到AD⊥BC,结合异面直线所成角的概念得到EF⊥EH,从而证得结论;(Ⅱ)分别以DB,DC,DA所在直线为x,y,z轴建立空间直角坐标系,求出所用点的坐标,求出及平面EFGH的一个法向量,用与所成角的余弦值的绝对值得直线AB与平面EFGH夹角θ的正弦值.【解答】(Ⅰ)证明:由三视图可知,四面体ABCD的底面BDC是以∠BDC为直角的等腰直角三角形,且侧棱AD⊥底面BDC.如图,∵AD∥平面EFGH,平面ADB∩平面EFGH=EF,AD⊂平面ABD,∴AD∥EF.∵AD∥平面EFGH,平面ADC∩平面EFGH=GH,AD⊂平面ADC,∴AD∥GH.由平行公理可得EF∥GH.∵BC∥平面EFGH,平面DBC∩平面EFGH=FG,BC⊂平面BDC,∴BC∥FG.∵BC∥平面EFGH,平面ABC∩平面EFGH=EH,BC⊂平面ABC,∴BC∥EH.由平行公理可得FG∥EH.∴四边形EFGH为平行四边形.又AD⊥平面BDC,BC⊂平面BDC,∴AD⊥BC,则EF⊥EH.∴四边形EFGH是矩形;(Ⅱ)解:解法一:取AD的中点M,连结,显然ME∥BD,MH∥CD,MF∥AB,且ME=MH=1,平面MEH⊥平面EFGH,取EH的中点N,连结MN,则MN⊥EH,∴MN⊥平面EFGH,则∠MFN就是MF(即AB)与平面EFGH所成的角θ,∵△MEH是等腰直角三角形,∴MN=,又MF=AB=,∴sin∠AFN==,即直线AB与平面EFGH夹角θ的正弦值是.解法二:分别以DB,DC,DA所在直线为x,y,z轴建立空间直角坐标系,由三视图可知DB=DC=2,DA=1.又E为AB中点,∴F,G分别为DB,DC中点.∴A(0,0,1),B(2,0,0),F(1,0,0),E(1,0,),G(0,1,0).则.设平面EFGH的一个法向量为.由,得,取y=1,得x=1.∴.则sinθ=|cos<>|===.【点评】本题考查了空间中的直线与直线的位置关系,考查了直线和平面所成的角,训练了利用空间直角坐标系求线面角,解答此题的关键在于建立正确的空间右手系,是中档题.20.(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P (x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m+n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.【分析】(Ⅰ)先根据++=,以及各点的坐标,求出点p的坐标,再根据向量模的公式,问题得以解决;(Ⅱ)利用向量的坐标运算,先求出,,再根据=m +n,表示出m﹣n=y﹣x,最后结合图形,求出m﹣n的最小值.【解答】解:(Ⅰ)∵A(1,1),B(2,3),C(3,2),++=,∴(1﹣x,1﹣y)+(2﹣x,3﹣y)+(3﹣x,2﹣y)=0∴3x﹣6=0,3y﹣6=0∴x=2,y=2,即=(2,2)∴(Ⅱ)∵A(1,1),B(2,3),C(3,2),∴,∵=m +n,∴(x,y)=(m+2n,2m+n)∴x=m+2n,y=2m+n∴m﹣n=y﹣x,令y﹣x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,1.故m﹣n的最大值为21.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:300 500作物产量(kg)概率0.5 0.56 10作物市场价格(元/kg)概率0.4 0.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.【分析】(Ⅰ)分别求出对应的概率,即可求X的分布列;(Ⅱ)分别求出3季中有2季的利润不少于2000元的概率和3季中利润不少于2000元的概率,利用概率相加即可得到结论.【解答】解:(Ⅰ)设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,则P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格﹣成本,∴X的所有值为:500×10﹣1000=4000,500×6﹣1000=2000,300×10﹣1000=2000,300×6﹣1000=800,则P(X=4000)=P ()P ()=(1﹣0.5)×(1﹣0.4)=0.3,P(X=2000)=P ()P(B)+P(A)P ()=(1﹣0.5)×0.4+0.5(1﹣0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,则X的分布列为:X 4000 2000 800P 0.3 0.5 0.2(Ⅱ)设Ci表示事件“第i季利润不少于2000元”(i=1,2,3),则C1,C2,C3相互独立,由(Ⅰ)知,P(Ci)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2000的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512,3季的利润有2季不少于2000的概率为P (C2C3)+P(C1C3)+P(C1C2)=3×0.82×0.2=0.384,综上:这3季中至少有2季的利润不少于2000元的概率为:0.512+0.384=0.896.【点评】本题主要考查随机变量的分布列及其概率的计算,考查学生的计算能力.23.(14分)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.【分析】(Ⅰ)由已知,,…可得用数学归纳法加以证明;(Ⅱ)由已知得到ln(1+x)≥恒成立构造函数φ(x)=ln(1+x)﹣(x≥0),利用导数求出函数的最小值即可;(Ⅲ)在(Ⅱ)中取a=1,可得,令则,n依次取1,2,3…,然后各式相加即得到不等式.【解答】解:由题设得,(Ⅰ)由已知,,…可得下面用数学归纳法证明.①当n=1时,,结论成立.②假设n=k时结论成立,即,那么n=k+1时,=即结论成立.由①②可知,结论对n∈N+成立.(Ⅱ)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)﹣(x≥0),则φ′(x)=,当a≤1时,φ′(x)≥0(仅当x=0,a=1时取等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立.∴当a≤1时,ln(1+x)≥恒成立,(仅当x=0时等号成立)当a>1时,对x∈(0,a﹣1]有φ′(x)<0,∴φ(x)在∈(0,a﹣1]上单调递减,∴φ(a﹣1)<φ(0)=0即当a>1时存在x>0使φ(x)<0,故知ln(1+x)≥不恒成立,综上可知,实数a的取值范围是(﹣∞,1].(Ⅲ)由题设知,g(1)+g(2)+…+g(n)=,n﹣f(n)=n﹣ln(n+1),比较结果为g(1)+g(2)+…+g(n)>n﹣ln(n+1)证明如下:上述不等式等价于,在(Ⅱ)中取a=1,可得,令则故有,ln3﹣ln2,…,上述各式相加可得结论得证.【点评】本题考查数学归纳法;考查构造函数解决不等式问题;考查利用导数求函数的最值,证明不等式,属于一道综合题.22.(13分)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为. (Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.【分析】(Ⅰ)在C1、C2的方程中,令y=0,即得b=1,设C1:的半焦距为c,由=及a2﹣c2=b2=1得a=2;(Ⅱ)由(Ⅰ)知上半椭圆C1的方程为+x2=1(y≥0),设其方程为y=k(x﹣1)(k≠0),代入C1的方程,整理得(k2+4)x2﹣2k2x+k2﹣4=0.(*)设点P(xp,yp),依题意,可求得点P的坐标为(,);同理可得点Q的坐标为(﹣k﹣1,﹣k2﹣2k),利用•=0,可求得k的值,从而可得答案.【解答】解:(Ⅰ)在C1、C2的方程中,令y=0,可得b=1,且A(﹣1,0),B(1,0)是上半椭圆C1的左右顶点.设C1:的半焦距为c,由=及a2﹣c2=b2=1得a=2.∴a=2,b=1.(Ⅱ)由(Ⅰ)知上半椭圆C1的方程为+x2=1(y≥0).易知,直线l与x轴不重合也不垂直,设其方程为y=k(x﹣1)(k≠0),代入C1的方程,整理得:(k2+4)x2﹣2k2x+k2﹣4=0.(*)设点P(xp,yp),∵直线l过点B,∴x=1是方程(*)的一个根,由求根公式,得xp=,从而yp=,∴点P的坐标为(,).同理,由得点Q的坐标为(﹣k﹣1,﹣k2﹣2k),∴=(k,﹣4),=﹣k(1,k+2),∵AP⊥AQ,∴•=0,即[k﹣4(k+2)]=0,∵k≠0,∴k﹣4(k+2)=0,解得k=﹣.经检验,k=﹣符合题意,故直线l的方程为y=﹣(x﹣1),即8x+3y﹣8=0.【点评】本题考查椭圆与抛物线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查设点法、数形结合思想、函数与方程思想,属于难题.。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战51794
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战51794](https://img.taocdn.com/s3/m/860d242b941ea76e59fa04c2.png)
一、选择题:本小题共8小题,每小题5分,共40分.1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4iB.3+4iC.﹣3﹣4iD.﹣3+4i2.(5分)已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2}C.{﹣1,0,2}D.{﹣1,0,1}3.(5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5B.6C.7D.84.(5分)若实数k满足0<k<9,则曲线﹣=1与曲线﹣=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等5.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)6.(5分)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,107.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定8.(5分)设集合A={(x1,x2,x3,x4,x5)|xi∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60B.90C.120D.130二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)不等式|x﹣1|+|x+2|≥5的解集为.10.(5分)曲线y=e﹣5x+2在点(0,3)处的切线方程为.11.(5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.12.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则=.13.(5分)若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=.(二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】14.(5分)(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cosθ和ρsinθ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).17.(13分)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n1 f1(45,50] n2 f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.18.(13分)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.19.(14分)设数列{an}的前n项和为Sn,满足Sn=2nan+1﹣3n2﹣4n,n∈N*,且S3=15. (1)求a1,a2,a3的值;(2)求数列{an}的通项公式.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为. (1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P 的轨迹方程.21.(14分)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (3)参考答案与试题解析一、选择题:本小题共8小题,每小题5分,共40分.1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4iB.3+4iC.﹣3﹣4iD.﹣3+4i【分析】根据题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得z 的值.【解答】解:∵复数z满足(3+4i)z=25,则z====3﹣4i,故选:A.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(5分)已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2}C.{﹣1,0,2}D.{﹣1,0,1}【分析】根据集合的基本运算即可得到结论.【解答】解:∵集合M{﹣1,0,1},N={0,1,2},∴M∪N={﹣1,0,1,2},故选:B.【点评】本题主要考查集合的基本运算,比较基础.3.(5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5B.6C.7D.8【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A,直线y=﹣2x+z的截距最小,此时z最小,由,解得,即A(﹣1,﹣1),此时z=﹣2﹣1=﹣3,此时n=﹣3,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B,直线y=﹣2x+z的截距最大,此时z最大,由,解得,即B(2,﹣1),此时z=2×2﹣1=3,即m=3,则m﹣n=3﹣(﹣3)=6,故选:B.【点评】本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.4.(5分)若实数k满足0<k<9,则曲线﹣=1与曲线﹣=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等【分析】根据k的取值范围,判断曲线为对应的双曲线,以及a,b,c的大小关系即可得到结论.【解答】解:当0<k<9,则0<9﹣k<9,16<25﹣k<25,即曲线﹣=1表示焦点在x轴上的双曲线,其中a2=25,b2=9﹣k,c2=34﹣k,曲线﹣=1表示焦点在x轴上的双曲线,其中a2=25﹣k,b2=9,c2=34﹣k,即两个双曲线的焦距相等,故选:A.【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a,b,c是解决本题的关键.5.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)【分析】根据空间向量数量积的坐标公式,即可得到结论.【解答】解:不妨设向量为=(x,y,z),A.若=(﹣1,1,0),则cosθ==,不满足条件.B.若=(1,﹣1,0),则cosθ===,满足条件.C.若=(0,﹣1,1),则cosθ==,不满足条件.D.若=(﹣1,0,1),则cosθ==,不满足条件.故选:B.【点评】本题主要考查空间向量的数量积的计算,根据向量的坐标公式是解决本题的关键.6.(5分)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,10【分析】根据图1可得总体个数,根据抽取比例可得样本容量,计算分层抽样的抽取比例,求得样本中的高中学生数,再利用图2求得样本中抽取的高中学生近视人数.【解答】解:由图1知:总体个数为3500+2000+4500=10000,∴样本容量=10000×2%=200,分层抽样抽取的比例为,∴高中生抽取的学生数为40,∴抽取的高中生近视人数为40×50%=20.故选:A.【点评】本题借助图表考查了分层抽样方法,熟练掌握分层抽样的特征是关键.7.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定【分析】根据在空间中垂直于同一直线的二直线的位置关系是平行、相交或异面可得,∴l1与l4的位置关系不确定.【解答】解:∵l1⊥l2,l2⊥l3,∴l1与l3的位置关系不确定,又l4⊥l3,∴l1与l4的位置关系不确定.故A、B、C错误.故选:D.【点评】本题考查了空间直线的垂直关系的判定,考查了学生的空间想象能力,在空间中垂直于同一直线的二直线的位置关系是平行、相交或异面.8.(5分)设集合A={(x1,x2,x3,x4,x5)|xi∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60B.90C.120D.130【分析】从条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”入手,讨论xi所有取值的可能性,分为5个数值中有2个是0,3个是0和4个是0三种情况进行讨论.【解答】解:由于|xi|只能取0或1,且“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”,因此5个数值中有2个是0,3个是0和4个是0三种情况:①xi中有2个取值为0,另外3个从﹣1,1中取,共有方法数:;②xi中有3个取值为0,另外2个从﹣1,1中取,共有方法数:;③xi中有4个取值为0,另外1个从﹣1,1中取,共有方法数:.∴总共方法数是++=130.即元素个数为130.故选:D.【点评】本题看似集合题,其实考察的是用排列组合思想去解决问题.其中,分类讨论的方法是在概率统计中经常用到的方法,也是高考中一定会考查到的思想方法.二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)不等式|x﹣1|+|x+2|≥5的解集为(﹣∞,﹣3]∪[2,+∞) .【分析】把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.【解答】解:由不等式|x﹣1|+|x+2|≥5,可得①,或②,或③.解①求得x≤﹣3,解②求得 x∈∅,解③求得x≥2.综上,不等式的解集为(﹣∞,﹣3]∪[2,+∞),故答案为:(﹣∞,﹣3]∪[2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.10.(5分)曲线y=e﹣5x+2在点(0,3)处的切线方程为 y=﹣5x+3. .【分析】利用导数的几何意义求得切线的斜率,点斜式写出切线方程.【解答】解;y′=﹣5e﹣5x,∴k=﹣5,∴曲线y=e﹣5x+2在点(0,3)处的切线方程为y﹣3=﹣5x,即y=﹣5x+3.故答案为:y=﹣5x+3【点评】本题主要考查利用导数的几何意义求曲线的切线方程,属基础题.11.(5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.【分析】根据条件确定当中位数为6时,对应的条件即可得到结论【解答】解:从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,有C107种方法,若七个数的中位数是6,则只需从0,1,2,3,4,5,选3个,从7,8,9中选3个不同的数即可,有C63种方法,则这七个数的中位数是6的概率P==,故答案为:.【点评】本题主要考查古典概率的计算,注意中位数必须是按照从小到大的顺序进行排列的.比较基础.12.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则= 2 .【分析】已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式化简,再利用正弦定理变形即可得到结果.【解答】解:将bcosC+ccosB=2b,利用正弦定理化简得:sinBcosC+sinCcosB=2sinB,即sin(B+C)=2sinB,∵sin(B+C)=sinA,∴sinA=2sinB,利用正弦定理化简得:a=2b,则=2.故答案为:2【点评】此题考查了正弦定理,以及两角和与差的正弦函数公式,熟练掌握正弦定理是解本题的关键.13.(5分)若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=50 .【分析】直接由等比数列的性质结合已知得到a10a11=e5,然后利用对数的运算性质化简后得答案.【解答】解:∵数列{an}为等比数列,且a10a11+a9a12=2e5,∴a10a11+a9a12=2a10a11=2e5,∴a10a11=e5,∴lna1+lna2+…lna20=ln(a1a2…a20)=ln(a10a11)10=ln(e5)10=lne50=50.故答案为:50.【点评】本题考查了等比数列的运算性质,考查对数的运算性质,考查了计算能力,是基础题.(二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】14.(5分)(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cosθ和ρsinθ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为(1,1) .【分析】首先运用x=ρcosθ,y=ρsinθ,将极坐标方程化为普通方程,然后组成方程组,解之求交点坐标.【解答】解:曲线C1:ρsin2θ=cosθ,即为ρ2sin2θ=ρcosθ,化为普通方程为:y2=x,曲线ρsinθ=1,化为普通方程为:y=1,联立,即交点的直角坐标为(1,1).故答案为:(1,1).【点评】本题考查极坐标方程和普通方程的互化,考查解方程的运算能力,属于基础题【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则= 9 .【分析】利用ABCD是平行四边形,点E在AB上且EB=2AE,可得=,利用△CDF∽△AEF,可求.【解答】解:∵ABCD是平行四边形,点E在AB上且EB=2AE,∴=,∵ABCD是平行四边形,∴AB∥CD,∴△CDF∽△AEF,∴=()2=9.故答案为:9.【点评】本题考查相似三角形的判定,考查三角形的面积比,属于基础题.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).【分析】(1)由函数f(x)的解析式以及f()=,求得A的值.(2)由(1)可得f(x)=sin(x+),根据f(θ)+f(﹣θ)=,求得cosθ 的值,再由θ∈(0,),求得sinθ 的值,从而求得f(﹣θ)的值.【解答】解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=.∴Asin(+)=Asin=A•=,∴A=.(2)由(1)可得 f(x)=sin(x+),∴f(θ)+f(﹣θ)=sin(θ+)+sin(﹣θ+)=2sin cosθ=cosθ=,∴cosθ=,再由θ∈(0,),可得sinθ=.∴f(﹣θ)=sin(﹣θ+)=sin(π﹣θ)=sinθ=.【点评】本题主要考查三角函数的恒等变换,同角三角函数的基本关系,属于中档题. 17.(13分)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n1 f1(45,50] n2 f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.【分析】(1)利用所给数据,可得样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,可得样本频率分布直方图;(3)利用对立事件可求概率.【解答】解:(1)(40,45]的频数n1=7,频率f1=0.28;(45,50]的频数n2=2,频率f2=0.08;(2)频率分布直方图:(3)设在该厂任取4人,没有一人的日加工零件数落在区间(30,35]为事件A,则至少有一人的日加工零件数落在区间(30,35]为事件,已知该厂每人日加工零件数落在区间(30,35]的概率为,∴P(A)==,∴P()=1﹣P(A)=,∴在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率为.【点评】本题考查了频数分布表,频数分布直方图和概率的计算,属于中档题.18.(13分)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.【分析】(1)结合已知又直线和平面垂直的判定定理可判PC⊥平面ADF,即得所求;(2)由已知数据求出必要的线段的长度,建立空间直角坐标系,由向量法计算即可.【解答】解:(1)∵PD⊥平面ABCD,∴PD⊥AD,又CD⊥AD,PD∩CD=D,∴AD⊥平面PCD,∴AD⊥PC,又AF⊥PC,∴PC⊥平面ADF,即CF⊥平面ADF;(2)设AB=1,在RT△PDC中,CD=1,∠DPC=30°,∴PC=2,PD=,由(1)知CF⊥DF,∴DF=,AF==,∴CF==,又FE∥CD,∴,∴DE=,同理可得EF=CD=,如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),E(,0,0),F(,,0),P(,0,0),C(0,1,0)设向量=(x,y,z)为平面AEF的法向量,则有,,∴,令x=4可得z=,∴=(4,0,),由(1)知平面ADF的一个法向量为=(,1,0),设二面角D﹣AF﹣E的平面角为θ,可知θ为锐角,cosθ=|cos<,>|===∴二面角D﹣AF﹣E的余弦值为:【点评】本题考查用空间向量法求二面角的余弦值,建立空间直角坐标系并准确求出相关点的坐标是解决问题的关键,属中档题.19.(14分)设数列{an}的前n项和为Sn,满足Sn=2nan+1﹣3n2﹣4n,n∈N*,且S3=15. (1)求a1,a2,a3的值;(2)求数列{an}的通项公式.【分析】(1)在数列递推式中取n=2得一关系式,再把S3变为S2+a3得另一关系式,联立可求a3,然后把递推式中n取1,再结合S3=15联立方程组求得a1,a2;(2)由(1)中求得的a1,a2,a3的值猜测出数列的一个通项公式,然后利用数学归纳法证明.【解答】解:(1)由Sn=2nan+1﹣3n2﹣4n,n∈N*,得:S2=4a3﹣20 ①又S3=S2+a3=15 ②联立①②解得:a3=7.再在Sn=2nan+1﹣3n2﹣4n中取n=1,得:a1=2a2﹣7 ③又S3=a1+a2+7=15 ④联立③④得:a2=5,a1=3.∴a1,a2,a3的值分别为3,5,7;(2)∵a1=3=2×1+1,a2=5=2×2+1,a3=7=2×3+1.由此猜测an=2n+1.下面由数学归纳法证明:1、当n=1时,a1=3=2×1+1成立.2、假设n=k时结论成立,即ak=2k+1.那么,当n=k+1时,由Sn=2nan+1﹣3n2﹣4n,得,,两式作差得:.∴==2(k+1)+1.综上,当n=k+1时结论成立.∴an=2n+1.【点评】本题考查数列递推式,训练了利用数学归纳法证明与自然数有关的命题,考查了学生的灵活应变能力和计算能力,是中档题.21.(14分)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).【分析】(1)利用换元法,结合函数成立的条件,即可求出函数的定义域.(2)根据复合函数的定义域之间的关系即可得到结论.(3)根据函数的单调性,即可得到不等式的解集.【解答】解:(1)设t=x2+2x+k,则f(x)等价为y=g(t)=,要使函数有意义,则t2+2t﹣3>0,解得t>1或t<﹣3,即x2+2x+k>1或x2+2x+k<﹣3,则(x+1)2>2﹣k,①或(x+1)2<﹣2﹣k,②,∵k<﹣2,∴2﹣k>﹣2﹣k,由①解得x+1>或x+1,即x>﹣1或x,由②解得﹣<x+1<,即﹣1﹣<x<﹣1+,综上函数的定义域为(﹣1,+∞)∪(﹣∞,﹣1﹣)∪(﹣1﹣,﹣1+).(2)f′(x)===﹣,由f'(x)>0,即2(x2+2x+k+1)(x+1)<0,则(x+1+)(x+1﹣)(x+1)<0 解得x<﹣1﹣或﹣1<x<﹣1+,结合定义域知,x<﹣1﹣或﹣1<x<﹣1+,即函数的单调递增区间为:(﹣∞,﹣1﹣),(﹣1,﹣1+),同理解得单调递减区间为:(﹣1﹣,﹣1),(﹣1+,+∞).(3)由f(x)=f(1)得(x2+2x+k)2+2(x2+2x+k)﹣3=(3+k)2+2(3+k)﹣3,则[(x2+2x+k)2﹣(3+k)2]+2[(x2+2x+k)﹣(3+k)]=0,∴(x2+2x+2k+5)(x2+2x﹣3)=0即(x+1+)(x+1﹣)(x+3)(x﹣1)=0,∴x=﹣1﹣或x=﹣1+或x=﹣3或x=1,∵k<﹣6,∴1∈(﹣1,﹣1+),﹣3∈(﹣1﹣,﹣1),∵f(﹣3)=f(1)=f(﹣1﹣)=f(﹣1+),且满足﹣1﹣∈(﹣∞,﹣1﹣),﹣1+∈(﹣1+,+∞),由(2)可知函数f(x)在上述四个区间内均单调递增或递减,结合图象,要使f(x)>f (1)的集合为:()∪(﹣1﹣,﹣3)∪(1,﹣1+)∪(﹣1+,﹣1+).【点评】本题主要考查函数定义域的求法,以及复合函数单调性之间的关系,利用换元法是解决本题的关键,综合性较强,难度较大.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为. (1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P 的轨迹方程.【分析】(1)根据焦点坐标和离心率求得a和b,则椭圆的方可得.(2)设出切线的方程,带入椭圆方程,整理后利用△=0,整理出关于k的一元二次方程,利用韦达定理表示出k1•k2,进而取得x0和y0的关系式,即P点的轨迹方程.【解答】解:(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)①当两条切线中有一条斜率不存在时,即A、B两点分别位于椭圆长轴与短轴的端点,P的坐标为(±3,±2),符合题意,②当两条切线斜率均存在时,设过点P(x0,y0)的切线为y=k(x﹣x0)+y0,+=+=1,整理得(9k2+4)x2+18k(y0﹣kx0)x+9[(y0﹣kx0)2﹣4]=0,∴△=[18k(y0﹣kx0)]2﹣4(9k2+4)×9[(y0﹣kx0)2﹣4]=0,整理得(x02﹣9)k2﹣2x0×y0×k+(y02﹣4)=0,∴﹣1=k1•k2==﹣1,∴x02+y02=13.把点(±3,±2)代入亦成立,∴点P的轨迹方程为:x2+y2=13.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x和y关系.一.基础题组1.(北京市昌平区高三二模理3)已知等差数列{}n a 的公差是2,若134,,a a a 成等比数列,则1a 等于( ) A. 4- B. 6- C. 8- D. 10- 【答案】C考点:等差数列与等比数列.2.(北京市东城区高三5月综合练习(二)理3)已知{}n a 为各项都是正数的等比数列,若484a a ⋅=,则567a a a ⋅⋅=( )(A )4(B )8(C )16(D )64 【答案】B 【解析】试题分析:由于数列{}n a 是正各项都是正数的等比数列,所以根据等比数列的性质可知:248664,2a a a a ==∴=,356768a a a a ==,所以答案为B.考点:1.等比数列的性质;2.等比数列的求值.3.(北京市丰台区度第二学期统一练习(一)理2)在等比数列}{n a 中,344a a +=,22a =,则公比q 等于( )A .2B .1或2C .1D .1或2 【答案】B 【解析】试题分析:∵344a a +=,∴2224a q a q +=∴解得1q =或2q =-,故选B.考点:等比数列的通项公式.4.(北京市顺义区高三第一次统一练习(一模)理11)已知无穷数列{}n a 满足:1110,2()n n a a a n N *+=-=+∈.则数列{}n a 的前n 项和的最小值为.【答案】30考点:等差数列. 二.能力题组1.(北京市石景山区高三3月统一测试(一模)理6)等差数列{}n a 中,11,m k a a k m==()m k ≠,则该数列前mk 项之和为( ) A .12mk - B .2mk C .12mk + D .12mk+ 【答案】C 【解析】试题分析:设公差为,d 由已知1111111,(1)(1),kk m d a a k d k m k mk m mk mk -===--=--⋅=-所以,1(1)1(1)11,222mk mk mk mk mk mk S mka d mk mk mk --+=+=⋅+⋅=选C .考点:等差数列及其求和公式.2.(北京市西城区高三一模考试理12)若数列{}n a 满足12a =-,且对于任意的*,m n ∈N ,都有m n m n a a a +=⋅,则3a =___;数列{}n a 前10项的和10S =____.【答案】8-,682 【解析】试题分析:由m n m n a a a +=⋅得2113214,8,a a a a a a =⋅==⋅=-由m n m n a a a +=⋅得112n n n a a a a +=⋅=-,所以数列{}n a 为等比数列,因此10102[1(2)]682.1(2)S ---==---考点:等比数列通项与和项3.(北京市朝阳区高三第二次综合练习理13)已知点()11,1a A ,()22,2a A ,⋅⋅⋅,(),n n a n A (n *∈N )在函数13log y x =的图像上,则数列的通项公式为__________;设O 为坐标原点,点,则,中,面积的最大值是__________.【答案】13n⎛⎫ ⎪⎝⎭,16考点:1.对数函数性质;2.求数列通项;3.数列单调性.4.(北京市海淀区101中学高三上学期期中模拟考试理10)在公差为正数的等差数列}{n a 中,n S a a a a ,0,011101110<<+且是其前n 项和,则使n S 取最小值的n 是.【答案】10 【解析】试题分析:因为数列的公差为正数,所以数列为递增数列,又因为0,011101110<<+a a a a 且, 所以0,01110><a a ,所以前10项的和最小,即使n S 取最小值的。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战48025
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战48025](https://img.taocdn.com/s3/m/dfecf30a7f1922791788e8ce.png)
学生签字:教学主任审批:华实教育一对一个性化学案教师:肖老师学生:日期: 年月日时间:§教学内容:函数的基本性质理解函数单调性及单调性的证明;理解函数的奇偶性,学会判断函数的奇偶性;函数性质◆教学目标:的应用.◆重难点:函数的单调性与奇偶性.◆教学步骤及内容:一、知识点梳理1.单调性定义:设函数)(x f y =的定义域为I ,D 为定义域I 内的某个区间.增函数:如果对于区间D 上的任意两个自变量21,x x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f 在区间D 上是增函数,区间D 称为)(x f y =的单调增区间;减函数:如果对于区间D 上的任意两个自变量21,x x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f 在区间D 上是减函数,区间D 称为)(x f y =的单调减区间.注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②必须是对于区间D 内的任意两个自变量21,x x ;当21x x <时,总有)()(21x f x f <或)()(21x f x f >.2.图象的特点:如果函数)(x f y =在某个区间是增函数或减函数,那么说函数)(x f y =在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. 3.函数最值:最大值,图象的最高点的纵坐标值;最小值,图象的最低点的纵坐标值.4.奇偶性定义:偶函数:一般地,对于函数)(x f 的定义域内的任意一个x ,都有)()(x f x f =-,那么)(x f 就叫做偶函数.奇函数:一般地,对于函数)(x f 的定义域内的任意一个x ,都有)()(x f x f -=-,那么)(x f 就叫做奇函数.5.判断函数奇偶性首先确定函数的定义域,并判断其定义域是否关于原点对称;0)()(=--x f x f ,则)(x f 是偶函数;0)()(=+-x f x f ,则)(x f 是奇函数.6.奇偶函数的图像:偶函数的图象关于y 轴对称,在关于原点对称的区间上单调性相反;奇函数的图象关于原点对称,在关于原点对称的区间上单调性一致.7.若奇函数)(x f 在0=x 处有定义,则一定满足0)0(=f .8.复合函数)]([)(x g f x F =在区间D 上的单调性:同增异减.9.周期函数)(x f 满足:)()(a x f x f +=,a 为常数,周期a T=.二、典型例题分析 例 1 函数)(x f 在),(b a 和),(d c 都是增函数,若),(),,(21d c x b a x ∈∈,且21x x <那么【 】A .)()(21x f x f <B .)()(21x f x f >C .)()(21x f x f =D .无法确定例2(1)函数3)(2+--=ax x x f 在区间]1,(--∞上是增函数,求a 的取值范围.(2)已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩是(,)-∞+∞上的减函数,那么a 的取值范围是. 例3设)(x f 是定义在+R 上的增函数,并且对任意的0,0>>y x ,)()()(y f x f xy f +=总成立. (1)求证:1>x 时,0)(>x f ;(2)如果1)3(=f ,解不等式2)1()(+->x f x f .例4 判断下列函数是否具有奇偶性:(1)41()2x x f x +=; (2)()||f x x =(3)⎩⎨⎧<+≥-=)0(),1()0(),1()(x x x x x x x f 例5(1)已知函数f (x)=ax 2+bx+3a+b 为偶函数,其定义域为 [ a1, 2a ],则函数的值域为.(2)已知函数()f x 是定义在R 上的奇函数,当0>x时,2)(x x f =,则(2)f -=【 】 A .14 B .4- C .41- D .4 (3)已知8)(35-++=bx ax x x f 且10)2(=-f ,则()2f =.(4)已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则【 】A.2B.2C.98D.98例6 根据奇偶性求解析式(1)已知函数)(x f 是定义在),(∞+∞-上的偶函数.当)0,(∞-∈x 时,4)(x x x f -=,则当),0(∞+∈x 时,=)(x f .(2)已知()f x 是R 上的奇函数,且()0,x ∈+∞时,()21f x x =+,则求函数()f x 的解析式.(3)设)11(,-∈x ,f (x)是奇函数,g(x)是偶函数,)1lg(2)()(x x x g x f +-=+,求f (x)=. 例7 已知函数f (x)在区间(-1,1)上有定义,f (21)=-1,当且仅当0<x<1时,f (x)<0,且对任意x 、y ∈(-1,1)都有f (x)+f (y)=f (xyy x ++1),试证明: (1)f (x)为奇函数;(2)f (x)在(-1,1)上单调递减;(3)解不等式:2)1(>-x f .三、巩固练习:1.下列函数()f x 中,满足:“对任意的12,(0,)x x ∈+∞, 有0)()(1212<--x x x f x f ”的是【 】A .()x f x e =B .2()(1)f x x =-C .1()f x x= D .()ln(1)f x x =+ 2.设()f x 为R 上的奇函数,当0x ≥时,()22x f x x b =++(b 为常数),则(1)f -=【 】 (A )3 (B )1 (C )1 (D)33.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =,设63(),(),52a f b f ==5(),2c f =则 【 】 (A )a b c << (B )b a c <<(C )c b a << (D )c a b <<4.设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是【 】A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数5.偶函数()()f x x R ∈满足:(4)(1)0f f -==,且在区间[0,3]与),3[+∞上分别递减和递增,则不等式()0xf x <的解集为【 】A .),4()4,(+∞--∞B .)4,1()1,4( --C .)0,1()4,(---∞D .)4,1()0,1()4,( ---∞6.已知3()4f x ax bx =+-,其中,a b 为常数,若(2)2f -=,则(2)f 的值等于【 】A .2-B .4-C .6-D .10-7.若函数()|2|f x x a =+的单调递增区间是[3,)+∞,则_____a =.8.已知定义在R 上的偶函数()f x 满足(2)()1f x f x +⋅=对于x R ∈恒成立,且()0f x >,则(119)f =.9.已知定义在R 上的函数()f x 对任意实数x 、y ,恒有()()()f x f y f x y +=+,且当0x >时,()0f x <,又2(1)3f =-.(1)求证:()f x 为奇函数;(2)求证:()f x 在R 上是减函数;(3)求()f x 在[3-,6]上的最大值与最小值.四、巩固练习1.设偶函数)(x f 的定义域为R ,当x ),0[+∞∈时)(x f 是增函数,则)3(),(),2(--f f f π的大小关系是【 】A .)(πf >)3(-f >)2(-fB .)(πf >)2(-f >)3(-fC .)(πf <)3(-f <)2(-fD .)(πf <)2(-f <)3(-f2.若函数x x x f -+=33)(与x x x g --=33)(的定义域均为R ,则 【 】A .)(x f 与)(x g 与均为偶函数B .)(x f 为奇函数,)(x g 为偶函数C .)(x f 与)(x g 与均为奇函数D .)(x f 为偶函数,)(x g 为奇函数3.给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,在区间(0,1)上单调递减的函数序号是【】A .①②B .②③C .③④D .①④4.函数)(x f =4x2-mx +5在区间),2[+∞-上是增函数,则)1(f 的取值范围是. 5.若函数()(0,1)x f x a a a =>≠在[1,2]上的最大值为4,最小值为m,且函数()(14)g x m x =-在[0,)+∞上是增函数,则a=.6.设函数))(()(R x ae e x x f x x ∈+=-是偶函数,则实数a=.7.已知函数1()2ax f x x +=+在区间()2,-+∞上为增函数,则实数a 的取值范围. 8.设函数)(x f y =是R 上的奇函数,对定义域内任意一个x ,都有)()2(x f x f -=+,且当10≤≤x 时,,)(x x f =则=)5.7(f . 9.已知函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x 都有1212()()()f x x f x f x ⋅=+,且当1x >时()0,(2)1f x f >=,(1)求证:()f x 是偶函数;(2)()f x 在(0,)+∞上是增函数;(3)解不等式2(21)2f x -<.10.设a 为实数,函数2()||1f x x x a =+-+,x R ∈.(1)讨论()f x 的奇偶性;(2)求()f x 的最小值.一、填空题(共14题,满分56分)1.(4分)若复数z=1+2i,其中i是虚数单位,则(z+)•=.2.(4分)函数y=1﹣2cos2(2x)的最小正周期是.3.(4分)若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程.4.(4分)设f(x)=,若f(2)=4,则a的取值范围为.5.(4分)若实数x,y满足xy=1,则x2+2y2的最小值为.6.(4分)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为(结果用反三角函数值表示).7.(4分)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是.8.(4分)设无穷等比数列{an}的公比为q,若a1=(a3+a4+…an),则q=.9.(4分)若f(x)=﹣,则满足f(x)<0的x的取值范围是.10.(4分)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).11.(4分)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=.12.(4分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.13.(4分)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E (ξ)=4.2,则小白得5分的概率至少为.14.(4分)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为.二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15.(5分)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,Pi(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A.1B.2C.3D.417.(5分)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解18.(5分)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]三、解答题(共5题,满分72分)19.(12分)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.20.(14分)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.21.(14分)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).22.(16分)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.23.(16分)已知数列{an}满足an≤an+1≤3an,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{an}是公比为q的等比数列,Sn=a1+a2+…an,若Sn≤Sn+1≤3Sn,n∈N*,求q的取值范围.(3)若a1,a2,…ak成等差数列,且a1+a2+…ak=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…ak的公差.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(9)参考答案与试题解析一、填空题(共14题,满分56分)1.(4分)若复数z=1+2i,其中i是虚数单位,则(z+)•= 6 .【分析】把复数代入表达式,利用复数代数形式的混合运算化简求解即可.【解答】解:复数z=1+2i,其中i是虚数单位,则(z+)•==(1+2i)(1﹣2i)+1=1﹣4i2+1=2+4=6.故答案为:6【点评】本题考查复数代数形式的混合运算,基本知识的考查.2.(4分)函数y=1﹣2cos2(2x)的最小正周期是.【分析】由二倍角的余弦公式化简,可得其周期.【解答】解:y=1﹣2cos2(2x)=﹣[2cos2(2x)﹣1]=﹣cos4x,∴函数的最小正周期为T==故答案为:【点评】本题考查二倍角的余弦公式,涉及三角函数的周期,属基础题.3.(4分)若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程 x=﹣2 .【分析】由题设中的条件y2=2px(p>0)的焦点与椭圆的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p,再由抛物线的性质求出它的准线方程【解答】解:由题意椭圆,故它的右焦点坐标是(2,0),又y2=2px(p>0)的焦点与椭圆右焦点重合,故=2得p=4,∴抛物线的准线方程为x=﹣=﹣2.故答案为:x=﹣2【点评】本题考查圆锥曲线的共同特征,解答此类题,关键是熟练掌握圆锥曲线的性质及几何特征,熟练运用这些性质与几何特征解答问题.4.(4分)设f(x)=,若f(2)=4,则a的取值范围为(﹣∞,2]. 【分析】可对a进行讨论,当a>2时,当a=2时,当a<2时,将a代入相对应的函数解析式,从而求出a的范围.【解答】解:当a>2时,f(2)=2≠4,不合题意;当a=2时,f(2)=22=4,符合题意;当a<2时,f(2)=22=4,符合题意;∴a≤2,故答案为:(﹣∞,2].【点评】本题考察了分段函数的应用,渗透了分类讨论思想,本题是一道基础题.5.(4分)若实数x,y满足xy=1,则x2+2y2的最小值为 2.【分析】由已知可得y=,代入要求的式子,由基本不等式可得.【解答】解:∵xy=1,∴y=∴x2+2y2=x2+≥2=2,当且仅当x2=,即x=±时取等号,故答案为:2【点评】本题考查基本不等式,属基础题.6.(4分)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为arccos(结果用反三角函数值表示).【分析】由已知中圆锥的侧面积是底面积的3倍,可得圆锥的母线是圆锥底面半径的3倍,在轴截面中,求出母线与底面所成角的余弦值,进而可得母线与轴所成角.【解答】解:设圆锥母线与轴所成角为θ,∵圆锥的侧面积是底面积的3倍,∴==3,即圆锥的母线是圆锥底面半径的3倍,故圆锥的轴截面如下图所示:则cosθ==,∴θ=arccos,故答案为:arccos【点评】本题考查的知识点是旋转体,其中根据已知得到圆锥的母线是圆锥底面半径的3倍,是解答的关键.7.(4分)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是.【分析】由题意,θ=0,可得C与极轴的交点到极点的距离.【解答】解:由题意,θ=0,可得ρ(3cos0﹣4sin0)=1,∴C与极轴的交点到极点的距离是ρ=.故答案为:.【点评】正确理解C与极轴的交点到极点的距离是解题的关键.8.(4分)设无穷等比数列{an}的公比为q,若a1=(a3+a4+…an),则q=. 【分析】由已知条件推导出a1=,由此能求出q的值.【解答】解:∵无穷等比数列{an}的公比为q,a1=(a3+a4+…an)=(﹣a1﹣a1q)=,∴q2+q﹣1=0,解得q=或q=(舍).故答案为:.【点评】本题考查等比数列的公比的求法,是中档题,解题时要认真审题,注意极限知识的合理运用.9.(4分)若f(x)=﹣,则满足f(x)<0的x的取值范围是(0,1) .【分析】直接利用已知条件转化不等式求解即可.【解答】解:f(x)=﹣,若满足f(x)<0,即<,∴,∵y=是增函数,∴的解集为:(0,1).故答案为:(0,1).【点评】本题考查指数不等式的解法,指数函数的单调性的应用,考查计算能力.10.(4分)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).【分析】要求在未来的连续10天中随机选择3天进行紧急疏散演练,选择的3天恰好为连续3天的概率,须先求在10天中随机选择3天的情况,再求选择的3天恰好为连续3天的情况,即可得到答案.【解答】解:在未来的连续10天中随机选择3天共有种情况,其中选择的3天恰好为连续3天的情况有8种,分别是(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),∴选择的3天恰好为连续3天的概率是,故答案为:.【点评】本题考查古典概型以及概率计算公式,属基础题.11.(4分)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b= ﹣1 .【分析】根据集合相等的条件,得到元素关系,即可得到结论.【解答】解:根据集合相等的条件可知,若{a,b}={a2,b2},则①或②,由①得,∵ab≠0,∴a≠0且b≠0,即a=1,b=1,此时集合{1,1}不满足条件.若b=a2,a=b2,则两式相减得a2﹣b2=b﹣a,∵互异的复数a,b,∴b﹣a≠0,即a+b=﹣1,故答案为:﹣1.【点评】本题主要考查集合相等的应用,根据集合相等得到元素相同是解决本题的关键,注意要进行分类讨论.12.(4分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.【分析】先利用两角和公式对函数解析式化简,画出函数y=2sin(x+)的图象,方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,进而求得此时x1,x2,x3最后相加即可.【解答】解:sinx+cosx=2(sinx+cosx)=2sin(x+)=a,如图方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,令sin(x+)=,x+=2kπ+,即x=2kπ,或x+=2kπ+,即x=2kπ+,∴此时x1=0,x2=,x3=2π,∴x1+x2+x3=0++2π=.故答案为:【点评】本题主要考查了三角函数图象与性质.运用了数形结合的思想,较为直观的解决问题.13.(4分)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E (ξ)=4.2,则小白得5分的概率至少为 0.2 .【分析】设小白得5分的概率至少为x,则由题意知小白得4分的概率为1﹣x,由此能求出结果.【解答】解:设小白得5分的概率至少为x,则由题意知小白得1,2,3,4分的概率为1﹣x,∵某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,E(ξ)=4.2,∴4(1﹣x)+5x=4.2,解得x=0.2.故答案为:0.2.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意离散型随机变量的数学期望的合理运用.14.(4分)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为[2,3].【分析】通过曲线方程判断曲线特征,通过+=,说明A是PQ的中点,结合x的范围,求出m的范围即可.【解答】解:曲线C:x=﹣,是以原点为圆心,2 为半径的圆,并且xP∈[﹣2,0],对于点A(m,0),存在C上的点P和l上的Q使得+=,说明A是PQ的中点,Q的横坐标x=6,∴m=∈[2,3].故答案为:[2,3].【点评】本题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想. 二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15.(5分)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判定.【解答】解:当a=5,b=0时,满足a+b>4,但a>2且b>2不成立,即充分性不成立,若a>2且b>2,则必有a+b>4,即必要性成立,故“a+b>4”是“a>2且b>2”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.16.(5分)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,Pi(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A.1B.2C.3D.4【分析】建立空适当的间直角坐标系,利用坐标计算可得答案.【解答】解:=,则•=()=||2+,∵,∴•=||2=1,∴•(i=1,2,…,8)的不同值的个数为1,故选:A.【点评】本题考查向量的数量积运算,建立恰当的坐标系,运用坐标进行向量数量积运算是解题的常用手段.17.(5分)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解【分析】判断直线的斜率存在,通过点在直线上,推出a1,b1,P2,a2,b2的关系,然后求解方程组的解即可.【解答】解:P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,直线y=kx+1的斜率存在,∴k=,即a1≠a2,并且b1=ka1+1,b2=ka2+1,∴a2b1﹣a1b2=ka1a2﹣ka1a2+a2﹣a1=a2﹣a1,①×b2﹣②×b1得:(a1b2﹣a2b1)x=b2﹣b1,即(a1﹣a2)x=b2﹣b1.∴方程组有唯一解.故选:B.【点评】本题考查一次函数根与系数的关系,直线的斜率的求法,方程组的解和指数的应用.18.(5分)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]【分析】当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,问题解决.【解答】解;当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,f(0)=a2,由题意得:a2≤x++a,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,∴0≤a≤2,故选:D.【点评】本题考察了分段函数的问题,基本不等式的应用,渗透了分类讨论思想,是一道基础题.三、解答题(共5题,满分72分)19.(12分)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.【分析】利用侧面展开图三点共线,判断△P1P2P3是等边三角形,然后求出边长,利用正四面体的体积求出几何体的体积.【解答】解:根据题意可得:P1,B,P2共线,∵∠ABP1=∠BAP1=∠CBP2,∠ABC=60°,∴∠ABP1=∠BAP1=∠CBP2=60°,∴∠P1=60°,同理∠P2=∠P3=60°,∴△P1P2P3是等边三角形,P﹣ABC是正四面体,∴△P1P2P3的边长为4,VP﹣ABC==【点评】本题考查空间想象能力以及逻辑推理能力,几何体的侧面展开图和体积的求法. 20.(14分)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.【分析】(1)根据反函数的定义,即可求出,(2)利用分类讨论的思想,若为偶函数求出a的值,若为奇函数,求出a的值,问题得以解决.【解答】解:(1)∵a=4,∴∴,∴,∴调换x,y的位置可得,x∈(﹣∞,﹣1)∪(1,+∞).(2)若f(x)为偶函数,则f(x)=f(﹣x)对任意x均成立,∴=,整理可得a(2x﹣2﹣x)=0.∵2x﹣2﹣x不恒为0,∴a=0,此时f(x)=1,x∈R,满足条件;若f(x)为奇函数,则f(x)=﹣f(﹣x)对任意x均成立,∴=﹣,整理可得a2﹣1=0,∴a=±1,∵a≥0,∴a=1,此时f(x)=,满足条件;当a>0且a≠1时,f(x)为非奇非偶函数综上所述,a=0时,f(x)是偶函数,a=1时,f(x)是奇函数.当a>0且a≠1时,f(x)为非奇非偶函数【点评】本题主要考查了反函数的定义和函数的奇偶性,利用了分类讨论的思想,属于中档题.21.(14分)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).【分析】(1)设CD的长为x,利用三角函数的关系式建立不等式关系即可得到结论. (2)利用正弦定理,建立方程关系,即可得到结论.【解答】解:(1)设CD的长为x米,则tanα=,tanβ=,∵0,∴tanα≥tan2β>0,∴tan,即=,解得0≈28.28,即CD的长至多为28.28米.(2)设DB=a,DA=b,CD=m,则∠ADB=180°﹣α﹣β=123.43°,由正弦定理得,即a=,∴m=≈26.93,答:CD的长为26.93米.【点评】本题主要考查解三角形的应用问题,利用三角函数关系式以及正弦定理是解决本题的关键.23.(16分)已知数列{an}满足an≤an+1≤3an,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{an}是公比为q的等比数列,Sn=a1+a2+…an,若Sn≤Sn+1≤3Sn,n∈N*,求q的取值范围.(3)若a1,a2,…ak成等差数列,且a1+a2+…ak=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…ak的公差.【分析】(1)依题意:,又将已知代入求出x的范围;(2)先求出通项:,由求出,对q分类讨论求出Sn分别代入不等式Sn≤Sn+1≤3Sn,得到关于q的不等式组,解不等式组求出q的范围. (3)依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…ak的公差.【解答】解:(1)依题意:,∴;又∴3≤x≤27,综上可得:3≤x≤6(2)由已知得,,,∴,当q=1时,Sn=n,Sn≤Sn+1≤3Sn,即,成立.当1<q≤3时,,Sn≤Sn+1≤3Sn,即,∴不等式∵q>1,故3qn+1﹣qn﹣2=qn(3q﹣1)﹣2>2qn﹣2>0对于不等式qn+1﹣3qn+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又当1≤q≤2,q﹣3<0,∴qn+1﹣3qn+2=qn(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,当时,,Sn≤Sn+1≤3Sn,即,∴此不等式即,3q﹣1>0,q﹣3<0,3qn+1﹣qn﹣2=qn(3q﹣1)﹣2<2qn﹣2<0,qn+1﹣3qn+2=qn(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴时,不等式恒成立,上,q的取值范围为:.(3)设a1,a2,…ak的公差为d.由,且a1=1,得即当n=1时,﹣≤d≤2;当n=2,3,…,k﹣1时,由,得d≥,所以d≥,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999所以k的最大值为1999,k=1999时,a1,a2,…ak的公差为﹣.【点评】本题考查等比数列的通项公式及前n项和的求法;考查不等式组的解法;找好分类讨论的起点是解决本题的关键,属于一道难题.22.(16分)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.【分析】(1)把A、B两点的坐标代入η=(ax1+by1+c)(ax2+by2+c),再根据η<0,得出结论.(2)联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据此方程无解,可得1﹣4k2≤0,从而求得k的范围.(3)设点M(x,y),与条件求得曲线E的方程为[x2+(y﹣2)2]x2=1 ①.由于y轴为x=0,显然与方程①联立无解.把P1、P2的坐标代入x=0,由η=1×(﹣1)=﹣1<0,可得x=0是一条分隔线.【解答】(1)证明:把点(1,2)、(﹣1,0)分别代入x+y﹣1 可得(1+2﹣1)(﹣1﹣1)=﹣4<0,∴点(1,2)、(﹣1,0)被直线 x+y﹣1=0分隔.(2)解:联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据题意,此方程无解,故有 1﹣4k2≤0,∴k≤﹣,或k≥.曲线上有两个点(﹣1,0)和(1,0)被直线y=kx分隔.(3)证明:设点M(x,y),则•|x|=1,故曲线E的方程为[x2+(y﹣2)2]x2=1 ①.y轴为x=0,显然与方程①联立无解.又P1(1,2)、P2(﹣1,2)为E上的两个点,且代入x=0,有η=1×(﹣1)=﹣1<0,故x=0是一条分隔线.若过原点的直线不是y轴,设为y=kx,代入[x2+(y﹣2)2]x2=1,可得[x2+(kx﹣2)2]x2=1,令f(x)=[x2+(kx﹣2)2]x2﹣1,∵k≠2,f(0)f(1)=﹣(k﹣2)2<0,∴f(x)=0没有实数解,k=2,f(x)=[x2+(2x﹣2)2]x2﹣1=0没有实数解,即y=kx与E有公共点,∴y=kx不是E的分隔线.∴通过原点的直线中,有且仅有一条直线是E的分隔线.【点评】本题主要考查新定义,直线的一般式方程,求点的轨迹方程,属于中档题.。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战24749
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战24749](https://img.taocdn.com/s3/m/b9cf85f83169a4517623a361.png)
一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4] B.[0,4)C.[﹣1,0)D.(﹣1,0]2.(5分)设z=,则z的共轭复数为()A.﹣1+3i B.﹣1﹣3i C.1+3i D.1﹣3i3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2 B.C.1 D.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=17.(5分)曲线y=xex﹣1在点(1,1)处切线的斜率等于()A.2e B.e C.2 D.18.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16π C.9πD.9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C. D.10.(5分)等比数列{an}中,a4=2,a5=5,则数列{lgan}的前8项和等于()A.6 B.5 C.4 D.311.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B. C. D.12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f (x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为.(用数字作答)14.(5分)设x、y满足约束条件,则z=x+4y的最大值为.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.16.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.18.(12分)等差数列{an}的前n项和为Sn,已知a1=13,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.22.(12分)函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,an+1=ln(an+1),证明:<an≤(n∈N*).全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4] B.[0,4)C.[﹣1,0)D.(﹣1,0]【分析】求解一元二次不等式化简集合M,然后直接利用交集运算求解.【解答】解:由x2﹣3x﹣4<0,得﹣1<x<4.∴M={x|x2﹣3x﹣4<0}={x|﹣1<x<4},又N={x|0≤x≤5},∴M∩N={x|﹣1<x<4}∩{x|0≤x≤5}=[0,4).故选:B.【点评】本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.2.(5分)设z=,则z的共轭复数为()A.﹣1+3i B.﹣1﹣3i C.1+3i D.1﹣3i【分析】直接由复数代数形式的除法运算化简,则z的共轭可求.【解答】解:∵z==,∴.故选:D.【点评】本题考查复数代数形式的除法运算,考查了复数的基本概念,是基础题.3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b【分析】可得b=sin35°,易得b>a,c=tan35°=>sin35°,综合可得.【解答】解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,由正弦函数的单调性可知b>a,而c=tan35°=>sin35°=b,∴c>b>a故选:C.【点评】本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题.4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2 B.C.1 D.【分析】由条件利用两个向量垂直的性质,可得(+)•=0,(2+)•=0,由此求得||.【解答】解:由题意可得,(+)•=+=1+=0,∴=﹣1;(2+)•=2+=﹣2+=0,∴b2=2,则||=,故选:B.【点评】本题主要考查两个向量垂直的性质,两个向量垂直,则它们的数量积等于零,属于基础题.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=1【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.7.(5分)曲线y=xex﹣1在点(1,1)处切线的斜率等于()A.2e B.e C.2 D.1【分析】求函数的导数,利用导数的几何意义即可求出对应的切线斜率.【解答】解:函数的导数为f′(x)=ex﹣1+xex﹣1=(1+x)ex﹣1,当x=1时,f′(1)=2,即曲线y=xex﹣1在点(1,1)处切线的斜率k=f′(1)=2,故选:C.【点评】本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础.8.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16π C.9πD.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C. D.【分析】根据双曲线的定义,以及余弦定理建立方程关系即可得到结论.【解答】解:∵双曲线C的离心率为2,∴e=,即c=2a,点A在双曲线上,则|F1A|﹣|F2A|=2a,又|F1A|=2|F2A|,∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,则由余弦定理得cos∠AF2F1===.故选:A.【点评】本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力.10.(5分)等比数列{an}中,a4=2,a5=5,则数列{lgan}的前8项和等于()A.6 B.5 C.4 D.3【分析】利用等比数列的性质可得a1a8=a2a7=a3a6=a4a5=10.再利用对数的运算性质即可得出.【解答】解:∵数列{an}是等比数列,a4=2,a5=5,∴a1a8=a2a7=a3a6=a4a5=10.∴lga1+lga2+…+lga8=lg(a1a2•…•a8)=4lg10=4.故选:C.【点评】本题考查了等比数列的性质、对数的运算性质,属于基础题.11.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B. C. D.【分析】首先作出二面角的平面角,然后再构造出异面直线AB与CD所成角,利用解直角三角形和余弦定理,求出问题的答案.【解答】解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF,∵AE⊥l∴∠EAC=90°∵CD∥AF又∠ACD=135°∴∠FAC=45°∴∠EAF=45°在Rt△BEA中,设AE=a,则AB=2a,BE=a,在Rt△AEF中,则EF=a,AF=a,在Rt△BEF中,则BF=2a,∴异面直线AB与CD所成的角即是∠BAF,∴cos∠BAF===.故选:B.【点评】本题主要考查了二面角和异面直线所成的角,关键是构造二面角的平面角和异面直线所成的角,考查了学生的空间想象能力和作图能力,属于难题.12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f (x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)【分析】设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,代入解析式变形可得.【解答】解:设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,又∵函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,∴P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,∴必有﹣y=g(﹣x),即y=﹣g(﹣x)∴y=f(x)的反函数为:y=﹣g(﹣x)故选:D.【点评】本题考查反函数的性质和对称性,属中档题.二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为 70 .(用数字作答)【分析】先求出二项式展开式的通项公式,再令x、y的幂指数都等于2,求得r的值,即可求得展开式中x2y2的系数.【解答】解:的展开式的通项公式为Tr+1=•(﹣1)r••=•(﹣1)r••,令 8﹣=﹣4=2,求得 r=4,故展开式中x2y2的系数为=70,故答案为:70.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.14.(5分)设x、y满足约束条件,则z=x+4y的最大值为 5 .【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.此时zmax=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ 的值,再根据tan2θ=,计算求得结果.【解答】解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.16.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是(﹣∞,2].【分析】利用二倍角的余弦公式化为正弦,然后令t=sinx换元,根据给出的x的范围求出t 的范围,结合二次函数的图象的开口方向及对称轴的位置列式求解a的范围.【解答】解:由f(x)=cos2x+asinx=﹣2sin2x+asinx+1,令t=sinx,则原函数化为y=﹣2t2+at+1.∵x∈(,)时f(x)为减函数,则y=﹣2t2+at+1在t∈(,1)上为减函数,∵y=﹣2t2+at+1的图象开口向下,且对称轴方程为t=.∴,解得:a≤2.∴a的取值范围是(﹣∞,2].故答案为:(﹣∞,2].【点评】本题考查复合函数的单调性,考查了换元法,关键是由换元后函数为减函数求得二次函数的对称轴的位置,是中档题.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.18.(12分)等差数列{an}的前n项和为Sn,已知a1=13,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn.【分析】(1)通过Sn≤S4得a4≥0,a5≤0,利用a1=13、a2为整数可得d=﹣4,进而可得结论;(2)通过an=13﹣3n,分离分母可得bn=(﹣),并项相加即可.【解答】解:(1)在等差数列{an}中,由Sn≤S4得:a4≥0,a5≤0,又∵a1=13,∴,解得﹣≤d≤﹣,∵a2为整数,∴d=﹣4,∴{an}的通项为:an=17﹣4n;(2)∵an=17﹣4n,∴bn===﹣(﹣),于是Tn=b1+b2+……+bn=﹣[(﹣)+(﹣)+……+(﹣)]=﹣(﹣)=.【点评】本题考查求数列的通项及求和,考查并项相加法,注意解题方法的积累,属于中档题.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1﹣AB﹣C的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得 p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px(p >0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得 p=2,或 p=﹣2(舍去).故C的方程为 y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为 x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为 x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为 x﹣y﹣1=0,或 x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.22.(12分)函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,an+1=ln(an+1),证明:<an≤(n∈N*).【分析】(Ⅰ)求函数的导数,通过讨论a的取值范围,即可得到f(x)的单调性;(Ⅱ)利用数学归纳法即可证明不等式.【解答】解:(Ⅰ)函数f(x)的定义域为(﹣1,+∞),f′(x)=,①当1<a<2时,若x∈(﹣1,a2﹣2a),则f′(x)>0,此时函数f(x)在(﹣1,a2﹣2a)上是增函数,若x∈(a2﹣2a,0),则f′(x)<0,此时函数f(x)在(a2﹣2a,0)上是减函数,若x∈(0,+∞),则f′(x)>0,此时函数f(x)在(0,+∞)上是增函数.②当a=2时,f′(x)≥0,此时函数f(x)在(﹣1,+∞)上是增函数,③当a>2时,若x∈(﹣1,0),则f′(x)>0,此时函数f(x)在(﹣1,0)上是增函数,若x∈(0,a2﹣2a),则f′(x)<0,此时函数f(x)在(0,a2﹣2a)上是减函数,若x∈(a2﹣2a,+∞),则f′(x)>0,此时函数f(x)在(a2﹣2a,+∞)上是增函数.(Ⅱ)由(Ⅰ)知,当a=2时,此时函数f(x)在(﹣1,+∞)上是增函数,当x∈(0,+∞)时,f(x)>f(0)=0,即ln(x+1)>,(x>0),又由(Ⅰ)知,当a=3时,f(x)在(0,3)上是减函数,当x∈(0,3)时,f(x)<f(0)=0,ln(x+1)<,下面用数学归纳法进行证明<an≤成立,①当n=1时,由已知,故结论成立.②假设当n=k时结论成立,即,则当n=k+1时,an+1=ln(an+1)>ln(),ak+1=ln(ak+1)<ln(),即当n=k+1时,成立,综上由①②可知,对任何n∈N•结论都成立.【点评】本题主要考查函数单调性和导数之间的关系,以及利用数学归纳法证明不等式,综合性较强,难度较大.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.【分析】记Ai表示事件:同一工作日乙丙需要使用设备,i=0,1,2,B表示事件:甲需要设备,C表示事件,丁需要设备,D表示事件:同一工作日至少3人需使用设备(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.(Ⅱ)X的可能取值为0,1,2,3,4,分别求出PXi,再利用数学期望公式计算即可.【解答】解:由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)X的可能取值为0,1,2,3,4P(X=0)=(1﹣0.6)×0.52×(1﹣0.4)=0.06P(X=1)=0.6×0.52×(1﹣0.4)+(1﹣0.6)×0.52×0.4+(1﹣0.6)×2×0.52×(1﹣0.4)=0.25 P(X=4)=P(A2•B•C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)﹣P(X=4)=0.25,P(X=2)=1﹣P(X=0)﹣P(X=1)﹣P(X=3)﹣P(X=4)=1﹣0.06﹣0.25﹣0.25﹣0.06=0.38.故数学期望EX=0×0.06+1×0.25+2×0.38+3×0.25+4×0.06=2【点评】本题主要考查了独立事件的概率和数学期望,关键是找到独立的事件,计算要有耐心,属于难题.一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)函数f(x)=cos(2x﹣)的最小正周期是()A. B.π C.2π D.4π2.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)3.(5分)定积分(2x+ex)dx的值为()A.e+2B.e+1C.eD.e﹣14.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2nB.an=2(n﹣1)C.an=2nD.an=2n﹣15.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A. B.4π C.2π D.6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A. B. C. D.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=xB.f(x)=x3C.f(x)=()xD.f(x)=3x8.(5分)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假9.(5分)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣xB.y=x3﹣xC.y=x3﹣xD.y=﹣x3+x二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)已知4a=2,lgx=a,则x=.12.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ=.14.(5分)观察分析下表中的数据:多面体面数(F)顶点数棱数(E)(V)三棱柱 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是.(不等式选做题)15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.(几何证明选做题)16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF=.(坐标系与参数方程选做题)17.在极坐标系中,点(2,)到直线的距离是.三、解答题:解答题应写出文字说明、证明过程或盐酸步骤(共6小题,满分75分)18.(12分)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.19.(12分)如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(Ⅰ)证明:四边形EFGH是矩形;(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.20.(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P (x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m+n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.21.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:300 500作物产量(kg)概率0.5 0.56 10作物市场价格(元/kg)概率0.4 0.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.22.(13分)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为. (Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直.线l的方程23.(14分)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (8)参考答案与试题解析一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)函数f(x)=cos(2x﹣)的最小正周期是()A. B.π C.2π D.4π【分析】由题意得ω=2,再代入复合三角函数的周期公式求解.【解答】解:根据复合三角函数的周期公式得,函数f(x)=cos(2x﹣)的最小正周期是π,故选:B.【点评】本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.2.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)【分析】先解出集合N,再求两集合的交即可得出正确选项.【解答】解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选:B.【点评】本题考查交集的运算,理解好交集的定义是解答的关键.3.(5分)定积分(2x+ex)dx的值为()A.e+2B.e+1C.eD.e﹣1【分析】根据微积分基本定理计算即可.【解答】解:(2x+ex)dx=(x2+ex)|=(1+e)﹣(0+e0)=e.故选:C.【点评】本题主要考查了微积分基本定理,关键是求出原函数.4.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2nB.an=2(n﹣1)C.an=2nD.an=2n﹣1【分析】根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式. 【解答】解:由程序框图知:ai+1=2ai,a1=2,∴数列为公比为2的等比数列,∴an=2n.故选:C.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A. B.4π C.2π D.【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A. B. C. D.【分析】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.【解答】解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:C.【点评】本题考查概率的计算,列举基本事件是关键.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=xB.f(x)=x3C.f(x)=()xD.f(x)=3x【分析】对选项一一加以判断,先判断是否满足f(x+y)=f(x)f(y),然后考虑函数的单调性,即可得到答案.【解答】解:A.f(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f (y),故A错;B.f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f(y),故B错;C.f(x)=,f(y)=,f(x+y)=,满足f(x+y)=f(x)f(y),但f (x)在R上是单调减函数,故C错.D.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故D正确;故选:D.【点评】本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.【解答】解:根据共轭复数的定义,原命题“若z1,z2互为共轭复数,则|z1|=|z2|”是真命题;其逆命题是:“若|z1|=|z2|,则z1,z2互为共轭复数”,例|1|=|﹣1|,而1与﹣1不是互为共轭复数,∴原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,∴命题的否命题是假命题,逆否命题是真命题.故选:B.【点评】本题考查了四种命题的定义及真假关系,考查了共轭复数的定义,熟练掌握四种命题的真假关系是解题的关键.9.(5分)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a【分析】方法1:根据变量之间均值和方差的关系直接代入即可得到结论.方法2:根据均值和方差的公式计算即可得到结论.【解答】解:方法1:∵yi=xi+a,∴E(yi)=E(xi)+E(a)=1+a,方差D(yi)=D(xi)+E(a)=4.方法2:由题意知yi=xi+a,则=(x1+x2+…+x10+10×a)=(x1+x2+…+x10)=+a=1+a,方差s2=[(x1+a﹣(+a)2+(x2+a﹣(+a)2+…+(x10+a﹣(+a)2]=[(x1﹣)2+(x2﹣)2+…+(x10﹣)2]=s2=4.故选:A.【点评】本题主要考查样本数据的均值和方差之间的关系,若变量y=ax+b,则Ey=aEx+b,Dy=a2Dx,利用公式比较简单或者使用均值和方差的公式进行计算.10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣xB.y=x3﹣xC.y=x3﹣xD.y=﹣x3+x【分析】分别求出四个选项中的导数,验证在x=±5处的导数为0成立与否,即可得出函数的解析式.【解答】解:由题意可得出,此三次函数在x=±5处的导数为0,依次特征寻找正确选项:A选项,导数为,令其为0,解得x=±5,故A正确;B选项,导数为,令其为0,x=±5不成立,故B错误;C选项,导数为,令其为0,x=±5不成立,故C错误;D选项,导数为,令其为0,x=±5不成立,故D错误.故选:A.【点评】本题考查导数的几何意义,导数几何意义是导数的重要应用.二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)已知4a=2,lgx=a,则x=.【分析】化指数式为对数式求得a,代入lgx=a后由对数的运算性质求得x的值.【解答】解:由4a=2,得,再由lgx=a=,得x=.故答案为:.【点评】本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.12.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为 x2+(y﹣1)2=1 .【分析】利用点(a,b)关于直线y=x±k的对称点为(b,a),求出圆心,再根据半径求得圆的方程.【解答】解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等于1,可得所求的圆的方程为x2+(y﹣1)2=1,故答案为:x2+(y﹣1)2=1.【点评】本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=x±k的对称点为(b,a),属于基础题.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ=.【分析】利用向量共线定理、倍角公式、同角三角函数基本关系式即可得出.【解答】解:∵∥,向量=(sin2θ,cosθ),=(cosθ,1),∴sin2θ﹣cos2θ=0,∴2sinθcosθ=cos2θ,∵0<θ<,∴cosθ≠0.∴2tanθ=1,∴tanθ=.故答案为:.【点评】本题考查了向量共线定理、倍角公式、同角三角函数基本关系式,属于基础题. 14.(5分)观察分析下表中的数据:棱数(E)多面体面数(F)顶点数(V)三棱柱 5 6 9五棱锥 6 6 10。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战57560
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战57560](https://img.taocdn.com/s3/m/427e3cb548d7c1c708a145e8.png)
一、选择题:本大题共10小题,每小题5分,共50分.在每个题给出的四个选项中,只有一项是符合要求的.1.(5分)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱2.(5分)复数z=(3﹣2i)i的共轭复数等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i3.(5分)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()A.8B.10C.12D.144.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()A. B. C.D.5.(5分)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()A.18B.20C.21D.406.(5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)8.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)9.(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.610.(5分)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置11.(4分)若变量 x,y满足约束条件,则z=3x+y的最小值为.12.(4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于.13.(4分)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是(单位:元)14.(4分)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为.15.(4分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是.三、解答题:本大题共4小题,共80分.解答应写出文字说明,证明过程或演算步骤16.(13分)已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.17.(13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.18.(13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.19.(13分)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.在2123题中考生任选2题作答,满分21分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.选修42:矩阵与变换20.(14分)已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<cex. 21.(7分)已知矩阵A的逆矩阵A﹣1=().(1)求矩阵A;(2)求矩阵A﹣1的特征值以及属于每个特征值的一个特征向量.五、选修44:极坐标与参数方程22.(7分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为常数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.六、选修45:不等式选讲23.已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.(1)求a的值;(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (2)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每个题给出的四个选项中,只有一项是符合要求的.1.5分)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱【分析】直接从几何体的三视图:正视图和侧视图或俯视图判断几何体的形状,即可. 【解答】解:圆柱的正视图为矩形,故选:A.【点评】本题考查简单几何体的三视图,考查逻辑推理能力和空间想象力,是基础题.2.((5分)复数z=(3﹣2i)i的共轭复数等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i【分析】直接由复数代数形式的乘法运算化简z,则其共轭可求.【解答】解:∵z=(3﹣2i)i=2+3i,∴.故选:C.【点评】本题考查了复数代数形式的乘法运算,考查了复数的基本概念,是基础题.3.(5分)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()A.8B.10C.12D.14【分析】由等差数列的性质和已知可得a2,进而可得公差,可得a6【解答】解:由题意可得S3=a1+a2+a3=3a2=12,解得a2=4,∴公差d=a2﹣a1=4﹣2=2,∴a6=a1+5d=2+5×2=12,故选:C.【点评】本题考查等差数列的通项公式和求和公式,属基础题.4.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()A. B. C.D.【分析】由题意可得a=3,由基本初等函数的图象和性质逐个选项验证即可.【解答】解:由题意可知图象过(3,1),故有1=loga3,解得a=3,选项A,y=a﹣x=3﹣x=()x单调递减,故错误;选项B,y=x3,由幂函数的知识可知正确;选项C,y=(﹣x)3=﹣x3,其图象应与B关于x轴对称,故错误;选项D,y=loga(﹣x)=log3(﹣x),当x=﹣3时,y=1,但图象明显当x=﹣3时,y=﹣1,故错误.故选:B.【点评】本题考查对数函数的图象和性质,涉及幂函数的图象,属基础题.5.(5分)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()A.18B.20C.21D.40【分析】算法的功能是求S=21+22+…+2n+1+2+…+n的值,计算满足条件的S值,可得答案. 【解答】解:由程序框图知:算法的功能是求S=21+22+…+2n+1+2+…+n的值,∵S=21+22+1+2=2+4+1+2=9<15,S=21+22+23+1+2+3=2+4+8+1+2+3=20≥15.∴输出S=20.故选:B.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.6.(5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件【分析】根据直线和圆相交的性质,结合充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则圆心到直线距离d=,|AB|=2,若k=1,则|AB|=,d=,则△OAB的面积为×=成立,即充分性成立.若△OAB的面积为,则S==×2×==,即k2+1=2|k|,即k2﹣2|k|+1=0,则(|k|﹣1)2=0,即|k|=1,解得k=±1,则k=1不成立,即必要性不成立.故“k=1”是“△OAB的面积为”的充分不必要条件.故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用三角形的面积公式,以及半径半弦之间的关系是解决本题的关键.7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)【分析】由三角函数和二次函数的性质,分别对各个选项判断即可.【解答】解:由解析式可知当x≤0时,f(x)=cosx为周期函数,当x>0时,f(x)=x2+1,为二次函数的一部分,故f(x)不是单调函数,不是周期函数,也不具备奇偶性,故可排除A、B、C,对于D,当x≤0时,函数的值域为[﹣1,1],当x>0时,函数的值域为(1,+∞),故函数f(x)的值域为[﹣1,+∞),故正确.故选:D.【点评】本题考查分段函数的性质,涉及三角函数的性质,属基础题.8.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)【分析】根据向量的坐标运算,,计算判别即可.【解答】解:根据,选项A:(3,2)=λ(0,0)+μ(1,2),则3=μ,2=2μ,无解,故选项A不能;选项B:(3,2)=λ(﹣1,2)+μ(5,﹣2),则3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2,μ=1,故选项B能.选项C:(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C不能. 选项D:(3,2)=λ(2,﹣3)+μ(﹣2,3),则3=2λ﹣2μ,2=﹣3λ+3μ,无解,故选项D不能.故选:B.【点评】本题主要考查了向量的坐标运算,根据列出方程解方程是关键,属于基础题.9.(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.6【分析】求出椭圆上的点与圆心的最大距离,加上半径,即可得出P,Q两点间的最大距离.【解答】解:设椭圆上的点为(x,y),则∵圆x2+(y﹣6)2=2的圆心为(0,6),半径为,∴椭圆上的点(x,y)到圆心(0,6)的距离为==≤5,∴P,Q两点间的最大距离是5+=6.故选:D.【点评】本题考查椭圆、圆的方程,考查学生分析解决问题的能力,属于基础题.10.(5分)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)【分析】根据“1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来”,分别取红球蓝球黑球,根据分步计数原理,分三步,每一步取一种球,问题得以解决.【解答】解:从5个无区别的红球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+a+a2+a3+a4+a5;从5个无区别的蓝球中取出若干个球,由所有的蓝球都取出或都不取出,得其所有取法为1+b5;从5个有区别的黑球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+c+c2+c3+c4+c5=(1+c)5,根据分步乘法计数原理得,适合要求的所有取法是(1+a+a2+a3+a4+a5)(1+b5)(1+c)5.故选:A.【点评】本题主要考查了分步计数原理和归纳推理,合理的利用题目中所给的实例,要遵循其规律,属于中档题.二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置11.(4分)若变量 x,y满足约束条件,则z=3x+y的最小值为 1 .【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最小值. 【解答】解:作出不等式对应的平面区域如图,由z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A(0,1)时,直线y=﹣3x+z的截距最小,此时z最小.此时z的最小值为z=0×3+1=1,故答案为:1【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法. 12.(4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于 2.【分析】利用三角形中的正弦定理求出角B,再利用三角形的面积公式求出△ABC的面积. 【解答】解:∵△ABC中,A=60°,AC=4,BC=2,由正弦定理得:,∴,解得sinB=1,∴B=90°,C=30°,∴△ABC的面积=.故答案为:.【点评】本题着重考查了给出三角形的两边和其中一边的对角,求它的面积.正余弦定理、解直角三角形、三角形的面积公式等知识,属于基础题.13.(4分)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 160 (单位:元)【分析】此题首先需要由实际问题向数学问题转化,设池底长和宽分别为a,b,成本为y,建立函数关系式,然后利用基本不等式求出最值即可求出所求.【解答】解:设池底长和宽分别为a,b,成本为y,则∵长方形容器的容器为4m3,高为1m,故底面面积S=ab=4,y=20S+10[2(a+b)]=20(a+b)+80,∵a+b≥2=4,故当a=b=2时,y取最小值160,即该容器的最低总造价是160元,故答案为:160【点评】本题以棱柱的体积为载体,考查了基本不等式,难度不大,属于基础题.14.(4分)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为.【分析】利用定积分计算阴影部分的面积,利用几何概型的概率公式求出概率.【解答】解:由题意,y=lnx与y=ex关于y=x对称,∴阴影部分的面积为2(e﹣ex)dx=2(ex﹣ex)=2,∵边长为e(e为自然对数的底数)的正方形的面积为e2,∴落到阴影部分的概率为.故答案为:.【点评】本题考查几何概型,几何概型的概率的值是通过长度、面积、和体积的比值得到.15.(4分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是 6 .【分析】利用集合的相等关系,结合①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,即可得出结论.【解答】解:由题意,a=2时,b=1,c=4,d=3;b=3,c=1,d=4;a=3时,b=1,c=4,d=2;b=1,c=2,d=4;b=2,c=1,d=4;a=4时,b=1,c=3,d=2;∴符合条件的有序数组(a,b,c,d)的个数是6个.【点评】本题考查集合的相等关系,考查分类讨论的数学思想,正确分类是关键.三、解答题:本大题共4小题,共80分.解答应写出文字说明,证明过程或演算步骤16.(13分)已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.【分析】(1)根据题意,利用sinα求出cosα的值,再计算f(α)的值;(2)化简函数f(x),求出f(x)的最小正周期与单调增区间即可.【解答】解:(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.【点评】本题考查了三角函数的化简以及图象与性质的应用问题,是基础题目.17.(13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.【分析】(1)利用面面垂直的性质定理即可得出;(2)建立如图所示的空间直角坐标系.设直线AD与平面MBC所成角为θ,利用线面角的计算公式sinθ=|cos|=即可得出.【解答】(1)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD,又CD⊂平面BCD,∴AB⊥CD.(2)解:建立如图所示的空间直角坐标系.∵AB=BD=CD=1,AB⊥BD,CD⊥BD,∴B(0,0,0),C(1,1,0),A(0,0,1),D(0,1,0),M.∴=(0,1,﹣1),=(1,1,0),=.设平面BCM的法向量=(x,y,z),则,令y=﹣1,则x=1,z=1.∴=(1,﹣1,1).设直线AD与平面MBC所成角为θ.则sinθ=|cos|===.【点评】本题综合考查了面面垂直的性质定理、线面角的计算公式sinθ=|cos|=,考查了推理能力和空间想象能力,属于中档题.18.(13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.【分析】(1)根据古典概型的概率计算公式计算顾客所获的奖励额为60元的概率,依题意得X得所有可能取值为20,60,分别求出P(X=60),P(X=20),画出顾客所获的奖励额的分布列求出数学期望;(2)先讨论,寻找期望为60元的方案,找到(10,10,50,50),(20,20,40,40)两种方案,分别求出数学期望和方差,然后做比较,问题得以解决.【解答】解:(1)设顾客所获取的奖励额为X,①依题意,得P(X=60)=,即顾客所获得奖励额为60元的概率为,②依题意得X得所有可能取值为20,60,P(X=60)=,P(X=20)=,即X的分布列为X 60 20P所以这位顾客所获的奖励额的数学期望为E(X)=20×+60×=40(2)根据商场的预算,每个顾客的平均奖励额为60元,所以先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以数学期望不可能为60元,如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以数学期望也不可能为60元,因此可能的方案是(10,10,50,50)记为方案1,对于面值由20元和40元的组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2,以下是对这两个方案的分析:对于方案1,即方案(10,10,50,50)设顾客所获取的奖励额为X1,则X1的分布列为 X1 60 20 100PX1 的数学期望为E(X1)=.X1 的方差D(X1)==,对于方案2,即方案(20,20,40,40)设顾客所获取的奖励额为X2,则X2的分布列为 X2 40 60 80PX2 的数学期望为E(X2)==60,X2 的方差D(X2)=差D(X1)=. 由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1小,所以应该选择方案2.【点评】本题主要考查了古典概型、离散型随机变量的分布列、数学期望、方差等基础知识,考查了数据处理能力,运算求解能力,应用意识,考查了必然与或然思想与整合思想.19.(13分)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.【分析】(1)依题意,可知=2,易知c=a,从而可求双曲线E的离心率;(2)由(1)知,双曲线E的方程为﹣=1,设直线l与x轴相交于点C,分l⊥x轴与直线l不与x轴垂直讨论,当l⊥x轴时,易求双曲线E的方程为﹣=1.当直线l不与x轴垂直时,设直线l的方程为y=kx+m,与双曲线E的方程联立,利用由S△OAB=|OC|•|y1﹣y2|=8可证得:双曲线E的方程为﹣=1,从而可得答案.【解答】解:(1)因为双曲线E的渐近线分别为l1:y=2x,l2:y=﹣2x,所以=2.所以=2.故c=a,从而双曲线E的离心率e==.(2)由(1)知,双曲线E的方程为﹣=1.设直线l与x轴相交于点C,当l⊥x轴时,若直线l与双曲线E有且只有一个公共点,则|OC|=a,|AB|=4a,所以|OC|•|AB|=8,因此a•4a=8,解得a=2,此时双曲线E的方程为﹣=1.以下证明:当直线l不与x轴垂直时,双曲线E的方程为﹣=1也满足条件.设直线l的方程为y=kx+m,依题意,得k>2或k<﹣2;则C(﹣,0),记A(x1,y1),B(x2,y2),由得y1=,同理得y2=,由S△OAB=|OC|•|y1﹣y2|得:|﹣|•|﹣|=8,即m2=4|4﹣k2|=4(k2﹣4).由得:(4﹣k2)x2﹣2kmx﹣m2﹣16=0,因为4﹣k2<0,所以△=4k2m2+4(4﹣k2)(m2+16)=﹣16(4k2﹣m2﹣16),又因为m2=4(k2﹣4),所以△=0,即直线l与双曲线E有且只有一个公共点.因此,存在总与直线l有且只有一个公共点的双曲线E,且E的方程为﹣=1.【点评】本题考查双曲线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查特殊与一般思想、数形结合思想、分类讨论思想、函数与方程思想.在2123题中考生任选2题作答,满分21分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.选修42:矩阵与变换20.(14分)已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<cex. 【分析】(1)利用导数的几何意义求得a,再利用导数的符号变化可求得函数的极值;(2)构造函数g(x)=ex﹣x2,求出导数,利用(1)问结论可得到函数的符号,从而判断g(x)的单调性,即可得出结论;(3)首先可将要证明的不等式变形为x2<ex,进而发现当x>时,x2<x3,因此问题转化为证明当x∈(0,+∞)时,恒有x3<ex.【解答】解:(1)由f(x)=ex﹣ax,得f′(x)=ex﹣a.又f′(0)=1﹣a=﹣1,解得a=2,∴f(x)=ex﹣2x,f′(x)=ex﹣2.由f′(x)=0,得x=ln2,当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增;∴当x=ln2时,f(x)有极小值为f(ln2)=eln2﹣2ln2=2﹣ln4.f(x)无极大值.(2)令g(x)=ex﹣x2,则g′(x)=ex﹣2x,由(1)得,g′(x)=f(x)≥f(ln2)=eln2﹣2ln2=2﹣ln4>0,即g′(x)>0,∴当x>0时,g(x)>g(0)>0,即x2<ex;(3)首先证明当x∈(0,+∞)时,恒有x3<ex.证明如下:令h(x)=x3﹣ex,则h′(x)=x2﹣ex.由(2)知,当x>0时,x2<ex,从而h′(x)<0,h(x)在(0,+∞)单调递减,所以h(x)<h(0)=﹣1<0,即x3<ex,取x0=,当x>x0时,有x2<x3<ex.因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<cex.【点评】该题主要考查导数的几何意义、导数的运算及导数的应用等基础知识,考查学生的运算求解能力、推理论证能力、抽象概括能力,考查函数与方程思想、有限与无限思想、化归与转化思想.属难题.21.(7分)已知矩阵A的逆矩阵A﹣1=().(1)求矩阵A;(2)求矩阵A﹣1的特征值以及属于每个特征值的一个特征向量.【分析】(1)利用AA﹣1=E,建立方程组,即可求矩阵A;(2)先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量.【解答】解:(1)设A=,则由AA﹣1=E得=,解得a=,b=﹣,c=﹣,d=,所以A=;(2)矩阵A﹣1的特征多项式为f(λ)==(λ﹣2)2﹣1,令f(λ)=(λ﹣2)2﹣1=0,可求得特征值为λ1=1,λ2=3,设λ1=1对应的一个特征向量为α=,则由λ1α=Mα,得x+y=0得x=﹣y,可令x=1,则y=﹣1,所以矩阵M的一个特征值λ1=1对应的一个特征向量为,同理可得矩阵M的一个特征值λ2=3对应的一个特征向量为.【点评】本题考查逆变换与逆矩阵,考查矩阵特征值与特征向量的计算等基础知识,属于基础题.六、选修45:不等式选讲23.已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.(1)求a的值;(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.【分析】(1)由绝对值不等式|a|+|b|≥|a﹣b|,当且仅当ab≤0,取等号;(2)由柯西不等式:(a2+b2+c2)(d2+e2+f2)≥(ad+be+cf)2,即可证得.【解答】(1)解:∵|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,当且仅当﹣1≤x≤2时,等号成立,∴f(x)的最小值为3,即a=3;(2)证明:由(1)知,p+q+r=3,又p,q,r为正实数,∴由柯西不等式得,(p2+q2+r2)(12+12+12)≥(p×1+q×1+r×1)2=(p+q+r)2=32=9,即p2+q2+r2≥3.【点评】本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算求解能力,考查化归与转化思想.五、选修44:极坐标与参数方程22.(7分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为常数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.【分析】(1)消去参数,把直线与圆的参数方程化为普通方程;(2)求出圆心到直线的距离d,再根据直线l与圆C有公共点⇔d≤r即可求出.【解答】解:(1)直线l的参数方程为,消去t可得2x﹣y﹣2a=0;圆C的参数方程为,两式平方相加可得x2+y2=16;(2)圆心C(0,0),半径r=4.由点到直线的距离公式可得圆心C(0,0)到直线L的距离d=.∵直线L与圆C有公共点,∴d≤4,即≤4,解得﹣2≤a≤2.【点评】熟练掌握点到直线的距离公式和直线与圆有公共点的充要条件是解题的关键.数 学(文 科)满分:150分 时量:120分钟一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中有且只有一项是符合题目要求的. 1.设全集U R =,{0},{1},3xA xB x x x =<=<-+则图中阴影部分表示的集合为( )A .{0}x x >B .{31}x x -<<-C .{30}x x -<<D .{1}x x <-2.下列命题正确的是( )A .2000,230x R x x ∃∈++=B .32,x N x x ∀∈>C .1x >是21x >的充分不必要条件D .若a b >,则22a b >3.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( ) A .原命题真,逆命题假B .原命题假,逆命题真 C .原命题真,逆命题真D .原命题假,逆命题假4.()f x 是R 上的奇函数,当0x ≥时,3()ln(1)f x x x =++,则当0x <时,()f x =( ) A .3ln(1)x x ---B .3ln(1)x x +- C .3ln(1)x x --D .3ln(1)x x -+-5.下列函数中,既是偶函数又在(0,)+∞上单调递增的是( ) A y x =B ln y x =C x y e =D cos y x =6.已知21()sin()42f x x x π=++,'()f x 为()f x 的导函数,则'()f x 的图象是( )7.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A . )2()1()23(f f f <-<-B . )2()23()1(f f f <-<-C . )23()1()2(-<-<f f fD . )1()23()2(-<-<f f f8.设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>9.若21025x=,则10x -等于 ( )A 、15-B 、15C 、150D 、162510. 已知()()2212f x x a x =+-+在(],4-∞上单调递减,则a 的取值范围是 ( )A 、3a ≤-B 、3a ≥-C 、3a =-D 、以上答案都不对11.已知定义域为R 的函数()f x 满足:(4)3f =-,且对任意x R ∈总有'()3f x <,则不等式()315f x x <-的解集为( )A .(,4)-∞B .(,4)-∞-C .(,4)(4,)-∞-⋃+∞D .(4,)+∞12.把能够将圆22:9O x y +=的周长和面积同时分为相等的两部分的函数称为圆O 的“圆梦函数”,则下列函数不是圆O 的“圆梦函数”的是( ) A .3()f x x =B.()tan2x f x = C.()ln[(4)(4)]f x x x =-+ D.()()xxf x e e x -=+二、填空题:本大题共4个小题,共20分,将答案填写在题中的横线上.13.若命题“2,20x R ax ax ∀∈--≤”是真命题,则实数a 的取值范围是________.14.若函数()f x 是定义在R 上的偶函数,且在区间[)0,+∞上是单调递增函数.如果实数t 满足1(ln )(ln )2(1)f t f f t+≤,那么t 的取值范围是________.15.若函数3()3f x x x =+对任意的[2,2],(2)()0m f mx f x ∈--+<恒成立,则x ∈________. 16.设定义域为R 的函数2lg ,0(),2,0x x f x x x x ⎧>=⎨--≤⎩则函数2()2()3()1g x f x f x =-+的零点的个数为. 三、解答题:本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知全集U R =,集合2{(2)(3)0},{()(2)0}A x x x B x x a x a =--<=---<.(1)当12a =时,求()u C B A ⋂. (2)若A B ⊆,求实数a 的取值范围.18.(本小题满分12分)已知命题p :在[]1,2x ∈时,不等式220x ax +->恒成立;命题q :函数213()log (23)f x x ax a =-+是区间[)1,+∞上的减函数.若命题“p q ∨”是真命题,求实数a 的取值范围.19.(本小题满分10分) 已知1()f x x x=+(1)求函数在12x =处的切线方程. (2)求函数在0x x =处的切线与直线y x =和y 轴围成的三角形的面积. 20.(本小题满分12分)对,a b R ∈,记,,max{,},,a ab a b b a b ≥⎧=⎨<⎩函数()max{1,25}()f x x x x R =++∈.(1)求(0),(3)f f -;(2)作出()f x 的图象,并写出()f x 的单调区间;(3)若关于x 的方程()f x m =有且仅有两个不等的实数解,求实数m 的取值范围. 21.(本小题满分12分)已知函数21()()2xf x e x ax a R =--∈. (1)若函数()f x 的图象在处的切线方程为2y x b =+,求,a b 的值; (2)若函数在R 上是增函数,求实数a 的取值范围. 22.(本小题满分12分)已知二次函数2()2(,)f x x bx c b c R =++∈满足(1)0f =,且关于x 的方程()0f x x b ++=的两个实数根分别在区间(3,2),(0,1)--内. (1)求实数b 的取值范围;(2)若函数()log ()b F x f x =在区间(1,1)c c ---上具有单调性,求实数c 的取值范围.湘阴一中第二次月考答题卷数 学(文 科)满分:150分 时量:120分钟 命题:李振奎 审题:盛 任。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战52529
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战52529](https://img.taocdn.com/s3/m/23853fc24431b90d6d85c776.png)
(考试时间:120分钟总分:160分)注意事项:所有试题的答案均填写在答题纸上,答案写在试卷上的无效.一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.设U=R,A={x|x<1} 则CUA=.2.计算i+i3=(i为虚数单位).3.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人,为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工人。
4.如图是一个算法的流程图,最后输出的S=________.5.若以连续掷两次骰子得到的点数m,n分别作为点P的横、纵坐标,则点P在直线x+y=4上的概率为.6.函数f(x)=2sinx+3cosx的极大值为 .7.抛物线y2=4x上任一点到定直线l:x=1的距离与它到定点F的距离相等,则该定点F的坐标为.8.等差数列{an}的前n项和记为Sn,满足2n=,则数列{an}的公差d=.9.函数 f(x)=ex可以表示成一个奇函数 g(x) 与一个偶函数h(x) 之和,则g(x)。
10.圆C过点A(2,0),B(4,0),直线l过原点O,与圆C交于P,Q两点,则OP·OQ= 。
11.已知非零向量a b c、、满足x2a+x b+c=0,x∈R.记△=b24a c c,下列说法正确的是.(只填序号)①若△=0,则x有唯一解;②若△>0,则x有两解;③若△<0,则x无解。
12.定义在R上的奇函数f(x)满足f(x+4)=f(x),且在[0,2]上f(x)=(1),(01, sin,(12 x x xx xπ-≤≤⎧⎨<≤⎩则2941()()46f f+=_______.13.把正整数按一定的规则排成了如图所示的三角形数表,设aij(i,j∈N*)是位于这个三角形数表中从上往下数第i行,从左往右数第j个数,如a42=8,若aij=,则i+j=14.在平行四边形ABCD中,∠BAD=60°,AB=1,AD=3,P为平行四边形内一点,且AP=32,若(,)AP AB AD Rλμλμ=+∈,则3λμ+的最大值为___________.二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)15.(本题满分14 分)如图,在四棱锥PABCD 中,底面ABCD 是正方形,侧棱PD底面ABCD,PD=DC=1,点E是PC的中点,作EF PB交PB于点F.(Ⅰ)求证:PA∥平面EBD(Ⅱ)求证:PB平面EFD16.(本题满分14分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a=btanA ,且B 为钝角. (Ⅰ)证明:BA=2π; (Ⅱ)求sinA+sinC 的取值范围.17.(本题满分14分)已知数列{an}为等差数列,首项a1=5,公差d= 1,数列{bn}为等 比数列,b2=1,公比为q (q>0),cn=anbn ,Sn 为{cn}的前n 项和,记Sn=c1+c2+..+cn. (Ⅰ)求b1+b2+b3的最小值; (Ⅱ)求S10;(Ⅲ)求出使Sn 取得最大的n 的值。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战28149
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战28149](https://img.taocdn.com/s3/m/db2708d1de80d4d8d05a4f4f.png)
数 学(理科) .3本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共40分)注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目等涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.设集合}21{≤<-=x x P ,}01{>-=x x Q ,则=Q PA .}11|{<<-x xB .}21|{≤<x xC .}21|{≤<-x xD .}1|{->x x2.若向量a=(1,—1),b=(—1,1),c=(5,1),则c+a+b=A .aB .bC .cD .a+b 3.抛物线24y x =-的准线方程是 A .116x =B .1x =C .1y =D .116y =4.已知1=a ,复数),()2()1(2R b a i a a z ∈-+-=,则“1=a ”是“z 为纯虚数”的 A .充分非必要条件B .必要非充分条件 C .充要条件D .既非充分又非必要条件5.如图,是CCTV 青年歌手大奖赛上某位选手得分的茎叶图,去掉一个最高分和一个最低分后,所剩数据的方 差为A .647B .9C .738D .780 6.如图,水平放置的三棱柱的侧棱长和底面边长均为2,且侧棱AA1⊥底面A1B1C1,主视图是边长为2的正方形,该 三棱柱的左视图面积为A .4B .32C .22D .37.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的 距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为 A .827B .271C .2627D .15278.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),然后接着按图所示在x 轴,y 轴平行方向来回运动(即(0,0)→(0,1)→(1,1)→(1,0) →(2,0) ……),若每秒运动一个单位长度,那 么第秒时,这个粒子所在的位置为A .(16,44)B .(15,44).C .(14,44)D .(13,44)第Ⅱ卷(非选择题 共110分)注意事项:用黑色签字笔将答案写在答题卡上规定的区域内.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.函数sin cos y x x =的最小正周期为.10.经过极点,圆心在极轴上,且半径为1的圆的极坐标方程为_. 11.如图,是计算111124620++++的值的一个程序框 图,其中判断框内应填入的条件是. 12.若函数2)(3++-=cx x x f )(R c ∈,则/3()2f -、/(1)f -、/(0)f 的大小关系是_.13.如图,圆O 和圆O '相交于A ,B 两点,AC 是圆O '的切线,AD 是圆O 的切线,若BC =2,AB =4,则=BD _.14.已知函数⎩⎨⎧>-≤++-=0,20,)(2x x c bx x x f ,若1)1(=-f ,2)0(-=f ,则函数x x f x g +=)()(的零点个数为____.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共12分)已知函数)2sin()42cos(21)(x x x f --+=ππ. (Ⅰ)求函数)(x f 的定义域; (Ⅱ)求)(x f 在区间[,)42ππ-上的最大值与最小值. 16.(本小题满分14分) 如图,已知四棱锥S —ABCD 的底面ABCD 是矩形,M 、N 分别是CD 、SC 的中点,SA ⊥底面ABCD , SA=AD=1,AB=2.(I )求证:MN ⊥平面ABN ;(II )求二面角A —BN —C 的余弦值. 17.(本小题满分13分)y. .'OCO BDA已知函数()32331f x ax x a=-+-(R a ∈,且0)a ≠,求)(x f '及函数)(x f 的极大值与极小值. 18.(本小题满分13分)甲、乙两人同时参加奥运志愿者选拔赛的考试,已知在备选的10道题中,甲能答对其中的6道题,乙能答对其中的8道题.规定每次考试都从备选题中随机抽出3道题进行测试,至少答对2道题才能入选.(I )求甲答对试题数ξ的分布列及数学期望; (II )求甲、乙两人至少有一人入选的概率. 19.(本小题满分14分)已知椭圆C 的中心在坐标原点,离心率32e =,一个焦点的坐标为()3,0.(I )求椭圆C 方程;(II )设直线1:2l y x m =+与椭圆C 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点T .当m 变化时,求TAB ∆面积的最大值.20.(本小题满分14分)当n p p p ,,,21 均为正数时,称np p p n+++ 21为n p p p ,,,21 的“均倒数”.已知数列{}n a 的各项均为正数,且其前n 项的“均倒数”为121+n . (Ⅰ)试求数列{}n a 的通项公式; (Ⅱ)设12+=n a c nn ,试判断并说明()*1n n c c n N +-∈的符号; (Ⅲ)已知(0)n an b t t =>,记数列{}n b 的前n 项和为n S ,试求1n nS S +的值; (Ⅳ)设函数124)(2+-+-=n a x x x f n,是否存在最大的实数λ,使当λ≤x 时,对于一切正整数n , 都有0)(≤x f 恒成立?怀柔区~度第二学期高三数学期中练习参考答案及评分标准(理科).3题号 1 2 3 4 5 6 7 8一、选择题:本大题共 8 小题,每小题 5 分,共 40 分. 二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.9. π10. 2cos ρθ= 11.20n ≤12./(0)f >/(1)f ->/3()2f -13. 814.3三、解答题:本大题共 6 小题,共 80 分. 15. (本小题共12分)解:(Ⅰ)由题意 0)2sin(≠-x π⇒Z k k x ∈≠-,2ππ⇒Z k k x ∈+≠,2ππ故所求定义域为 {Z k k x x ∈+≠,2|ππ} …………4分(Ⅱ)x x x x x x f cos 2sin 2cos 1)2sin()42cos(21)(++=--+=ππxx x x cos cos sin 2cos 22+=x x sin 2cos 2+=)4sin(22π+=x …………9分3,04244x x ππππ-≤<∴≤+<,…………10分 ∴当04x π+=即4x π=-时,min ()0f x =;当42x ππ+=即4x π=时,max ()f x =……12分16.(本小题满分14分)解:(I )以A 点为原点,AB 为x 轴,AD 为y 轴,AD 为z 轴的空间直角坐标系,如图所示. 则依题意可知相关各点的坐标分别是:A (0,0,0),B (2,0,0),C (2,1,0),D (0,1,0),S (0,0,1)(图略)).21,21,22(),0,1,22(N M ∴……………………2分 ).21,21,22(),0,0,2(),21,21,0(==-=∴AN AB MN …………………………4分.,.0,0⊥⊥∴==⋅==⋅∴∴MN ⊥平面ABN.……………………………………………………………………7分 (II )设平面NBC 的法向量.,),,,(SC n BC n c b a n ⊥⊥=则且又易知)1,1,2(),0,1,0(-==⎩⎨⎧==∴⎩⎨⎧=-+=⎪⎩⎪⎨⎧=⋅=⋅∴.2,0.02,0,0,0a c b c b a b SC n BC n 即 令a=1,则).2,0,1(=……………………………………………………11分显然,)21,21,0(-=MN 就是平面ABN 的法向量. .33,cos ==>=<∴ 由图形知,二面角A —BN —C 是钝角二面角…………………………………12分.33---∴的余弦值是二面角C BN A ……………………………………14分 17.(本小题满分13分)解:由题设知)2(363)(,02ax ax x ax x f a -=-='∴≠………………2分 令2()00f x x x a'===得 或……………………………4分 当0a >时,随x 的变化,()/f x 与()f x 的变化如下:∴()()301f x f a ==-极大,()22431f x f a a a ⎛⎫==--+ ⎪⎝⎭极小……………8分当0a <时,随x 的变化,()'fx 与()f x 的变化如下:∴()()01f x f a ==-极大,()21f x f a a a ⎛⎫==--+ ⎪⎝⎭极小…………………12分综上,当0a >时,()31f x a =-极大,()2431f x a a=--+极小; 当0a <时,()31f x a =-极大,()2431f x a a=--+极小.……………13分18.(本小题满分13分)解:(I )依题意,甲答对试题数ξ的可能取值为0,1,2,3,…………………1分则,301)0(31034===C C P ξ12643103(1),10C C P C ξ⋅=== ,21)2(3101426=⋅==C C C P ξ .61)3(31036===C C P ξ…………………………………………………5分ξ∴的分布列为…………………… 6分 甲答对试题数ξ的数学期望为.5961321210313010=⨯+⨯+⨯+⨯=ξE ………………………………7分 (II )设甲、乙两人考试合格的事件分别为A 、B ,则2()(2)(3),3P A P P ξξ==+==.15141205656)(310381228=+=+=C C C C B P ………………………………9分因为事件A 、B 相互独立,∴ 甲、乙两人考试均不合格的概率为.451]15141][321[)()()(=--=⋅=⋅B P A P B A P ………………………11分∴甲、乙两人至少有一人考试合格的概率为.45444511)(1=-=⋅-=B A P P (9) (10)答:甲、乙两人于少有一人考试合格的概率为.4544…………………13分另解:甲、乙两人至少有一个考试合格的概率为.454415143215143115123)()()(=⨯+⨯+⨯=⋅+⋅+⋅=B A P B A P B A P P答:甲、乙两人于少有一人考试合格的概率为.454419.(本小题满分14分)解法一:(I )依题意,设椭圆C 的方程为22221x y a b +=)0(>>b a3,2c c e a ===,2=∴a ………………3分 ,1222=-=c a b ………………4分∴椭圆C 的方程是2214x y +=………………5分(II )221412x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩由2222214()4,222020,840,7x x m x mx m m m ++=++-=∆>-><<得即令得分设()()1122,,,A x y B x y ,AB 中点为()00,M x y()21212012002,22 111,,2221,2x x m x x m AB x x x m y x m m M m m +=-=-====+=-=+=⎛⎫∴- ⎪⎝⎭则(),0,1012,1233,,044MT AB T t mMT AB k k t m t m T m -⊥∴⋅=⋅=-+⎛⎫=-∴- ⎪⎝⎭设解得………………11分||45)2(521||||21.||4541161||222m m MT AB S m m m MT TAB ⋅-⋅=⋅=∴=+=∴∆.1)1(8522+--=m ………………13分 22<<-m ,∴当21m =,即1m =±时,TAB S ∆取得最大值为.85………………14分解法二:(I )同解法一(II )221412x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩由2222214()4,222020,840,7x x m x mx m m m ++=++-=∆>-><<得即令得分设()()1122,,,A x y B x y ,AB 中点为()00,M x y212122,22x x m x x m ∴+=-=-………………8分()01200111,,2221,2x x x m y x m m M m m =+=-=+=⎛⎫∴- ⎪⎝⎭………………10分MT AB ⊥MT ∴的方程为322y x m =--令0y =,得34x m =-,3,04T m ⎛⎫∴- ⎪⎝⎭………………9分 设AB 交x 轴与点R,则()2,0R m -.||45||m TR =∴ ………………11分 2122121214)(||41||||41||||21x x x x TR x x TR y y TR S TAB -+⋅=-⋅=-⋅=∴∆)2(8522m m -= ,852)2(8522=-+⋅≤m m ………………13分 ∴当21m =,即1m =±时,TAB S ∆取得最大值为.85…………14分20.(本小题满分14分)解:(Ⅰ)121(21)n n a a a a n n -++⋅⋅⋅++=+,121(1)(21)n a a a n n -++⋅⋅⋅+=--, 两式相减,得41(2)n a n n =-≥ . 又111211a =⨯+,解得 13411a ==⨯- , ∴ 41()n a n n N +=-∈ . ………4分 (Ⅱ)∵4132212121n n a n c n n n -===-+++, 11322323n n a c n n ++==-++ , ∴1332123n n c c n n +-=-++>0, 即1n n c +>c . ………7分(Ⅲ)∵41()n a n nb t t t -==>0,∴374112n n n S b b b t t t -=++⋅⋅⋅+=++⋅⋅⋅+,当1t=时,n S n = ,11n n S n S n++=; ………8分 当t >0且1t ≠时, 344(1)1n n t t S t -=-,441411n n nn S tS t ++-=-. ………10分综上得,⎪⎪⎩⎪⎪⎨⎧≠>--=+=++1,0,111,14441t t tt t nn S S n n nn ………11分 (Ⅳ)由(Ⅱ)知数列 {}n c 是单调递增数列,11c =是其的最小项,即11n c c ≥=.假设存在最大实数,使当x λ≤时,对于一切正整数n ,都有2()4021na f x x x n =-+-≤+ 恒成立,则2421nn a x x c n -+≤=+ ()n N +∈.只需2141x x c -+≤=,即2410x x -+≥.解之得2x ≥+ 或 2x ≤-.于是,可取2λ=-………14分一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.44.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.728.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.39.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.16810.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=.12.(5分)函数f(x)=log2•log(2x)的最小值为.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(13)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列【分析】利用等比中项的性质,对四个选项中的数进行验证即可.【解答】解:A项中a3=a1•q2,a1•a9=•q8,(a3)2≠a1•a9,故A项说法错误,B项中(a3)2=(a1•q2)2≠a2•a6=•q6,故B项说法错误,C项中(a4)2=(a1•q3)2≠a2•a8=•q8,故C项说法错误,D项中(a6)2=(a1•q5)2=a3•a9=•q10,故D项说法正确,故选:D.【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.【解答】解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选:A.【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2﹣3=(2k﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=0'∴2(2k﹣3)+1×(﹣6)=0,解得,k=3.故选:C.【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>【分析】程序运行的S=××…×,根据输出k的值,确定S的值,从而可得判断框的条件.【解答】解:由程序框图知:程序运行的S=××…×,∵输出的k=6,∴S=××=,∴判断框的条件是S>,故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q【分析】由命题p,找到x的范围是x∈R,判断p为真命题.而q:“x>1”是“x>2”的充分不必要条件是假命题,然后根据复合命题的判断方法解答.【解答】解:因为命题p对任意x∈R,总有2x>0,根据指数函数的性质判断是真命题;命题q:“x>1”不能推出“x>2”;但是“x>2”能推出“x>1”所以:“x>1”是“x>2”的必要不充分条件,故q是假命题;所以p∧¬q为真命题;故选:D.【点评】判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.72【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.【解答】解:由三视图知:几何体是直三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∵AB⊥平面BEFC,∴AB⊥BC,BC=5,FC=2,AD=BE=5,DF=5∴几何体的表面积S=×3×4+×3×5+×4+×5+3×5=60.故选:B.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.3【分析】不妨设右支上P点的横坐标为x,由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,结合条件可得a=b,从而c==b,即可求出双曲线的离心率.【解答】解:不妨设右支上P点的横坐标为x由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,∵|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,∴2ex=3b,(ex)2﹣a2=ab∴b2﹣a2=ab,即9b2﹣4a2﹣9ab=0,∴(3b﹣4a)(3b+a)=0∴a=b,∴c==b,∴e==.故选:B.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.9.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168【分析】根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.【解答】解:分2步进行分析:1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,排好后,最后1个小品类节目放在2端,有2种情况,此时同类节目不相邻的排法种数是6×4×2=48种;②将中间2个空位安排2个小品类节目,有A22=2种情况,排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,此时同类节目不相邻的排法种数是6×2×6=72种;则同类节目不相邻的排法种数是48+72=120,故选:B.【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.10.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24【分析】根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论. 【解答】解:∵△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,∴sin2A+sin2B=﹣sin2C+,∴sin2A+sin2B+sin2C=,∴2sinAcosA+2sin(B+C)cos(B﹣C)=,2sinA(cos(B﹣C)﹣cos(B+C))=,化为2sinA[﹣2sinBsin(﹣C)]=,∴sinAsinBsinC=.设外接圆的半径为R,由正弦定理可得:=2R,由S=,及正弦定理得sinAsinBsinC==,即R2=4S,∵面积S满足1≤S≤2,∴4≤R2≤8,即2≤R≤,由sinAsinBsinC=可得,显然选项C,D不一定正确,A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16,不一定正确,故选:A.【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B={7,9}.【分析】由条件利用补集的定义求得∁UA,再根据两个集合的交集的定义求得(∁UA)∩B.【解答】解:∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁UA)={4,6,7,9 },∴(∁UA)∩B={7,9},故答案为:{7,9}.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.12.(5分)函数f(x)=log2•log(2x)的最小值为.【分析】利用对数的运算性质可得f(x)=,即可求得f(x)最小值. 【解答】解:∵f(x)=log2•log(2x)∴f(x)=log()•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是.故答案为:﹣【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆心C(1,a),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d=,平方得a2﹣8a+1=0,解得a=4±,故答案为:4±【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=4.【分析】由题意,∠PAB=∠C,可得△PAB∽△PCA,从而,代入数据可得结论.【解答】解:由题意,∠PAB=∠C,∠APB=∠CPA,∴△PAB∽△PCA,∴,∵PA=6,AC=8,BC=9,∴,∴PB=3,AB=4,故答案为:4.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.【分析】直线l的参数方程化为普通方程、曲线C的极坐标方程化为直角坐标方程,联立求出公共点的坐标,即可求出极径.【解答】解:直线l的参数方程为,普通方程为y=x+1,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0的直角坐标方程为y2=4x,直线l与曲线C联立可得(x﹣1)2=0,∴x=1,y=2,∴直线l与曲线C的公共点的极径ρ==.故答案为:.【点评】本题考查直线l的参数方程、曲线C的极坐标方程,考查学生的计算能力,属于中档题.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是[﹣1,].【分析】利用绝对值的几何意义,确定|2x﹣1|+|x+2|的最小值,然后让a2+a+2小于等于它的最小值即可.【解答】解:|2x﹣1|+|x+2|=,∴x=时,|2x﹣1|+|x+2|的最小值为,∵不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,∴a2+a+2≤,∴a2+a﹣≤0,∴﹣1≤a≤,∴实数a的取值范围是[﹣1,].故答案为:[﹣1,].【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合﹣≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α﹣)=.再根据α﹣的范围求得cos(α﹣)的值,再根据cos(α+)=sinα=sin[(α﹣)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得 2×+φ=kπ+,k∈z.结合﹣≤φ<可得φ=﹣.(Ⅱ)∵f()=(<α<),∴sin(α﹣)=,∴sin(α﹣)=.再根据 0<α﹣<,∴cos(α﹣)==,∴cos(α+)=sinα=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)【分析】第一问是古典概型的问题,要先出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可,相对简单些;第二问应先根据题意求出随机变量X的所有可能取值,此处应注意所取三张卡片可能来自于相同数字(如1或2)或不同数字(1和2、1和3、2和3三类)的卡片,因此应按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现.【解答】解:(Ⅰ)由古典概型的概率计算公式得所求概率为P=,(Ⅱ)由题意知X的所有可能取值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,所以X的分布列为:X 1 2 3P所以E(X)=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题. 19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.【分析】(Ⅰ)连接AC,BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,分别求出向量,的坐标,进而根据MP⊥AP,得到•=0,进而求出PO的长;(Ⅱ)求出平面APM和平面PMC的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得:二面角A﹣PM﹣C的正弦值.【解答】解:(Ⅰ)连接AC,BD,∵底面是以O为中心的菱形,PO⊥底面ABCD,故AC∩BD=O,且AC⊥BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,∵AB=2,∠BAD=,∴OA=AB•cos(∠BAD)=,OB=AB•sin(∠BAD)=1,∴O(0,0,0),A(,0,0),B(0,1,0),C(﹣,0,0),=(0,1,0),=(﹣,﹣1,0),又∵BM=,∴=(﹣,﹣,0),则=+=(﹣,,0),设P(0,0,a),则=(﹣,0,a),=(,﹣,a),∵MP⊥AP,∴•=﹣a2=0,解得a=,即PO的长为.(Ⅱ)由(Ⅰ)知=(﹣,0,),=(,﹣,),=(,0,),设平面APM的法向量=(x,y,z),平面PMC的法向量为=(a,b,c),由,得,令x=1,则=(1,,2),由,得,令a=1,则=(1,﹣,﹣2),∵平面APM的法向量和平面PMC的法向量夹角θ满足:cosθ===﹣故sinθ==【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.【分析】(Ⅰ)根据函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,构造关于a,b的方程,可得a,b的值;(Ⅱ)将c=3代入,利用基本不等式可得f′(x)≥0恒成立,进而可得f(x)在定义域R为均增函数;(Ⅲ)结合基本不等式,分c≤4时和c>4时两种情况讨论f(x)极值的存在性,最后综合讨论结果,可得答案.【解答】解:(Ⅰ)∵函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)∴f′(x)=2ae2x+2be﹣2x﹣c,由f′(x)为偶函数,可得2(a﹣b)(e2x﹣e﹣2x)=0,即a=b,又∵曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,即f′(0)=2a+2b﹣c=4﹣c,故a=b=1;(Ⅱ)当c=3时,f′(x)=2e2x+2e﹣2x﹣3≥2=1>0恒成立,故f(x)在定义域R为均增函数;(Ⅲ)由(Ⅰ)得f′(x)=2e2x+2e﹣2x﹣c,而2e2x+2e﹣2x≥2=4,当且仅当x=0时取等号,当c≤4时,f′(x)≥0恒成立,故f(x)无极值;当c>4时,令t=e2x,方程2t+﹣c=0的两根均为正,即f′(x)=0有两个根x1,x2,当x∈(x1,x2)时,f′(x)<0,当x∈(﹣∞,x1)∪(x2,+∞)时,f′(x)>0,故当x=x1,或x=x2时,f(x)有极值,综上,若f(x)有极值,c的取值范围为(4,+∞).【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.【分析】(Ⅰ)若b=1,利用an+1=+b,可求a2,a3;证明{(an﹣1)2}是首项为0,公差为1的等差数列,即可求数列{an}的通项公式;(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.用数学归纳法证明加强命题a2n<c<a2n+1<1即可.【解答】解:(Ⅰ)∵a1=1,an+1=+b,b=1,∴a2=2,a3=+1;又(an+1﹣1)2=(an﹣1)2+1,∴{(an﹣1)2}是首项为0,公差为1的等差数列;∴(an﹣1)2=n﹣1,∴an=+1(n∈N*);(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.下面用数学归纳法证明加强命题a2n<c<a2n+1<1.n=1时,a2=f(1)=0,a3=f(0)=﹣1,∴a2<c<a3<1,成立;设n=k时结论成立,即a2k<c<a2k+1<1∵f(x)在(﹣∞,1]上为减函数,∴c=f(c)>f(a2k+1)>f(1)=a2,∴1>c>a2k+2>a2,∴c=f(c)<f(a2k+2)<f(a2)=a3<1,∴c<a2k+3<1,∴a2(k+1)<c<a2(k+1)+1<1,即n=k+1时结论成立,综上,c=使得a2n<c<a2n+1对所有的n∈N*成立.【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.【分析】(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆的半径.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战80066
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战80066](https://img.taocdn.com/s3/m/e816cd29c8d376eeaeaa31f2.png)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的模长为()A.B. C.D.22.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2] C.(1,2)D.(1,2]3.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A. B. C. D.4.(5分)下列关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列是递增数列;p4:数列{an+3nd}是递增数列;其中真命题是()A.p1,p2 B.p3,p4 C.p2,p3 D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C.D.7.(5分)使得(3x+)n(n∈N+)的展开式中含有常数项的最小的n为()A.4 B.5 C.6 D.78.(5分)执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3 B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的较大值,min{p,q}表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.16 B.﹣16 C.﹣16a2﹣2a﹣16 D.16a2+2a﹣1612.(5分)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值二、填空题:本大题共4小题,每小题5分.13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.(5分)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(Ⅰ)求证:平面PAC⊥平面PBC;(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C﹣PB﹣A的余弦值.19.(12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(Ⅰ)求张同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.请考生在21、22、23题中任选一题作答,如果多做,则按所做的第一题计分。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战48029
![高三数学寒假作业冲刺培训班之历年真题汇编复习实战48029](https://img.taocdn.com/s3/m/a1f422c9a8114431b80dd8c9.png)
学生签字:教学主任审批:华实教育一对一个性化学案教师:肖老师学生:日期: 年月日时间:§教学内容:高考专题——数列◆教学目标:掌握的数列、等差(比)数列的概念,掌握等差(比)数列的通项公式、求和公式及相关的性质,能够运用等差(比)数列的性质去解决相关问题◆重难点:能够运用等差(比)数列的性质与不等式、函数结合去解决综合问题◆教学步骤及内容:数列一.数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应函数的解析式。
如(1)已知*2()156nna n N n =∈+,则在数列{}n a 的最大项为. (2)数列}{n a 的通项为1+=bn ana n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为.(3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,则实数λ的取值范围.二.等差数列的有关概念:1.等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
如设{}n a 是等差数列,求证:以bn=na a a n+++ 21*n N ∈为通项公式的数列{}n b 为等差数列。
2.等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。
如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a =(2)首项为24的等差数列,从第10项起开始为正数,则公差的取值范围是______3.等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。
如 (1)数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,则1a =_,n =_(2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T4.等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.2.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.3.(5分)如图是一个算法流程图,则输出的n的值是.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.高考模拟题复习试卷习题资料高考数学试卷(附详细答案)参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.【分析】根据集合的基本运算即可得到结论.【解答】解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为 21 .【分析】根据复数的有关概念,即可得到结论.【解答】解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21【点评】本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.3.(5分)如图是一个算法流程图,则输出的n的值是 5 .【分析】算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.【解答】解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5.故答案为:5.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.【分析】首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.【解答】解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.【点评】本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.【分析】由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.【解答】解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=.∵0≤φ<π,∴,∴+φ=,解得φ=.故答案为:.【点评】本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 24 株树木的底部周长小于100cm.【分析】根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数.【解答】解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株).故答案为:24.【点评】本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是 4 . 【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{an}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.【点评】本题考查了等比数列的通项公式,属于基础题.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.【分析】设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.【解答】解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.【点评】本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.【分析】求出已知圆的圆心为C(2,﹣1),半径r=2.利用点到直线的距离公式,算出点C 到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.【解答】解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.【点评】本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0) .【分析】由条件利用二次函数的性质可得,由此求得m的范围.【解答】解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3 .【分析】由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.【解答】解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是 22 .【分析】由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.【解答】解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.【点评】本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,) .【分析】在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.【解答】解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.故答案为:(0,).【点评】本题考查函数的图象以函数的零点的求法,数形结合的应用.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.【分析】根据正弦定理和余弦定理,利用基本不等式即可得到结论.【解答】解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.【点评】本题主要考查正弦定理和余弦定理的应用,结合基本不等式的性质是解决本题的关键.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.【分析】(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.【解答】解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.【点评】本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.【分析】(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可. 【解答】证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.【点评】本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.【分析】(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.【解答】解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,﹣),且A,C关于x轴对称,∴C(,),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.【点评】本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?【分析】(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大. 【解答】解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x≤35.∴当且仅当x=10时R取到最大值.∴OM=10m时,保护区面积最大.【点评】本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.【分析】(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.【解答】解:(1)∵f(x)=ex+e﹣x,∴f(﹣x)=e﹣x+ex=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(ex+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴ex+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=ex,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=ex+e﹣x﹣a(﹣x3+3x),则g′(x)=ex﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立.①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而ea﹣1<ae﹣1,②当a=e时,ae﹣1=ea﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e ﹣1)lna,从而ea﹣1>ae﹣1.【点评】本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.【分析】(1)利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”即可得到an,再利用“H”数列的意义即可得出.(2)利用等差数列的前n项和即可得出Sn,对∀n∈N*,∃m∈N*使Sn=am,取n=2和根据d<0即可得出;(3)设{an}的公差为d,构造数列:bn=a1﹣(n﹣1)a1=(2﹣n)a1,cn=(n﹣1)(a1+d),可证明{bn}和{cn}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.【解答】解:(1)当n≥2时,an=Sn﹣Sn﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,Sn=an+1.∴数列{an}是“H”数列.(2)Sn==,对∀n∈N*,∃m∈N*使Sn=am,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{an}的公差为d,令bn=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,bn+1﹣bn=﹣a1,cn=(n﹣1)(a1+d),对∀n∈N*,cn+1﹣cn=a1+d,则bn+cn=a1+(n﹣1)d=an,且数列{bn}和{cn}是等差数列.数列{bn}的前n项和Tn=,令Tn=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使Tn=bm成立,即{bn}为H数列.数列{cn}的前n项和Rn=,令cm=(m﹣1)(a1+d)=Rn,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使Rn=cm成立,即{cn}为H数列.因此命题得证.【点评】本题考查了利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”求an、等差数列的前n项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【分析】利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论.【解答】证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D.【点评】本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题. 【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【分析】利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y 的值.【解答】解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=【点评】本题考查矩阵的乘法,考查学生的计算能力,属于基础题.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【分析】直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.【解答】解:直线l的参数方程为(t为参数),化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8.故答案为:8.【点评】本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.【分析】由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.【解答】证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.【点评】本题考查不等式的证明,正确运用均值不等式是关键.(二)必做题(本部分包括25、26两题,每题10分,共计20分)26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【分析】(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.【解答】解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵fn(x)为fn﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kfk﹣1(x)+xfk(x)]′=kfk﹣1′(x)+fk(x)+xfk′(x)=(k+1)fk(x)+xfk+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,由①②得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nfn﹣1()+fn()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【点评】本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力. 25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).【分析】(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.【解答】解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X 2 3 4P故X数学期望E(X)=.【点评】本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题.1. 【高考北京理第2题】“21=m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件【答案】B考点:两条直线垂直,充分必要条件。