电力拖动自动控制系统课程设计

合集下载

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计电力拖动自动控制系统课程设计基于转速负反馈闭环调速系统的matlab7.1仿真基于转速、电流反馈控制直流调速系统的matlab7.1仿真学院班级:自动化学院09电本二指导老师:xxx姓名:邹xx学号:20091041xxx日期: 2012-6-14(一)基于转速负反馈闭环调速系统的matlab7.1 仿真一、设计思路转速闭环控制可以降低转速降落,降低转差率,扩大调速范围。

根据自动控制原理,采用了PI调节器,加大比例系数可以减少静差,积分环节的加入有助于消除系统静差。

但Kp过大时,会使动态品质变坏;而在Kp不变的情况下,积分时间过小,将使稳定性降低,振荡加剧等。

总的来说,matlab只需要调节两个参数:(1)比例系数Kp,参数由小到大调节(2)积分系数Ki(1/τ),1/τ参数是倒数,所以由小到大调节(下面把Ki定义为Ti)二、系统的各环节参数设置1、直流电动机:额定电压U N = 220V额定电流I dN = 55 A额定转速nN = 1000r/ min电动机电势系数Ce = 0.192V ⋅min/ r2、晶闸管整流装置输出电流可逆,装置的放大系数K s = 44滞后时间常数Ts = 0.00167s3、电枢回路总电阻R = 1.0Ω电枢回路电磁时间常数T l = 0.00167s电力拖动系统机电时间常数Tm = 0.075s4、转速反馈系数 α = 0.01V ⋅min /r5、对应额定转速时的给定电压U n = 10V6、PI调节器的直暂定为Kp=0.56 ,Ti=1/τ=11.43三、比例积分控制的直流调速系统的仿真框图四、建立 matlab 仿真模块模块地方数目Step(阶跃输入模块)Source 组1个Sum (加法器模块)Math Operations组3个Gain(增益模块)Math Operations组4个Transfer Fcn(控制器模块)Continuous 组3个Integrator(积分模块) Continuous 组1个Scope(示波器模块)Sinks 组2个五、仿真图初值效果1.系统框图2.参数设计(1)在本例中,额定转速的给定是10V,所以修改step time=1,final time=10(2)PI调节器的比例环节的Kp初值=0.56,积分时间Ti初值=11.43(3)把积分饱和值改为-10~10,键入传递函数模块数据,键入增益比值,仿真时间修改为0~0.6s。

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计

电气与电子信息工程学院《控制系统课程设计》课程设计报告名称:直流调速系统设计及仿真和串级调速系统建模及仿真专业名称:电气工程及其自动化班级:学号:姓名:指导教师:设计地点:课程设计任务书学生姓名: 专业班级: 指导教师: 工作部门:一、课程设计题目:直流调速系统设计及仿真和串级调速系统建模及仿真二、设计目的:《控制系统课程设计》是继“自动控制系统”课之后开设的实践性环节课程。

由于它是一门理论深、综合性强的专业课,单是学习理论而不进行实践将不利于知识的接受及综合应用。

本课程设计将起到从理论过渡到实践的桥梁作用,通过该环节训练达到下述教学目的:1、通过课程设计,使学生进一步巩固、深化和扩充在交直流调速及相关课方面的基本知识、基本理论和基本技能,达到培养学生独立思考、分析和解决问题的能力。

2、通过课程设计,让学生独立完成一项直流或交流调速系统课题的基本设计工作,使学生熟悉设计过程,了解设计步骤,达到培养学生综合应用所学知识能力、培养学生实际查阅相关设计资料能力的目的、培养学生工程绘画和编写设计说明书的能力。

3、通过课程设计,提高学生理论联系实际,综合分析和解决实际工程问题的能力。

通过它使学生理论联系实际,以实际系统作为实例,对系统进行分析设计,掌握控制系统设计必须遵循的原则、基本内容、设计程序、设计规范、设计步骤方法及系统调试步骤。

通过设计培养学生严肃认真、一丝不苟和实事求是的工作作风。

培养学生的创新意识和创新精神,为今后走向工作岗位从事技术打下良好基础。

三、课程设计内容(含技术指标)1.直流调速系统设计及仿真题目和设计要求:(2)技术数据1.电枢回路总电阻取R=2Ra ;总飞轮力矩:225.2a GD GD =。

2.其他参数可参阅教材中“双闭环调速系统调节器的工程设计举例”的有关数据。

3.要求:调速范围D=10,静差率S≤5%:稳态无静差,电流超调量%5%≤i σ;启动到额定转速时的转速退饱和超调量%10≤n σ。

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计

课程设计任务书
m。

Ks=
路总电
m。

采用三相全平波电抗器电阻R
图1 系统电气原理框图
图4 转速环仿真图形
图5 电流环仿真图形
从图中可以看出,扰动很快得到了调节,这是两个PI型调节器自动调节的作用。

另外从图中也可以看到,系统是无静差运行的,符合设计的要求。

从仿真的结果来看,得到这样结论:
(1) 工程设计方法在推导过程中为了简化计算做了许多近似的处理
而这些简化处理必须在一定的条件下才能成立。

例如: 将可控硅触发和整流环节近似地看作一阶惯性环节, 设计电流环时不考虑反电势变化的影响; 将小时间常数当作小参数近似地合并处理; 设计转速环时将电流闭环从二阶振荡环节近似地等效为一阶惯性环节等。

(2) 仿真实验得到的结果也并不是和系统实际的调试结果完全相同
课程设计说明书N O.10。

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计

《运动控制系统设计》课程设计报告设计题目:转速、电流双闭环直流调速系统设计与实践班级:04 级自动化一班学号:姓名:指导教师:设计时间:2007.11.20 —2007.12.14目录摘要第一章概述第二章设计任务及要求2.1设计任务:2.2设计要求:2.3理论设计3.1方案论证3.2系统设计3.2.1电流调节器设计3.2.1.1确定时间常数3.2.1.2 选择电流调节器结构3.2.1.3计算电流调节器参数3.2.1.4 校验近似条件3.2.1.5 计算调节器电阻和电容3.2.2速度调节器设计3.2.2.1 确定时间常数3.2.2.2 选择转速调节器结构3.2.2.3 计算转速调节器参数3.2.2.4 校验近似条件3.2.2.5 计算调节器电阻和电容3.2.2.6 校核转速超调量第三章系统建模及仿真实验4.1MATLAB 仿真软件介绍4.2仿真建模及实验4.2.1单闭环仿真实验4.2.2双闭环仿真实验4.2.3仿真波形分析第四章实际系统设计及实验5.1 系统组成及工作原理5.2 设备及仪器5.3 实验过程5.3.1 实验内容5.3.2 实验步骤第五章总结与体会参考文献摘要从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。

双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等.给定信号为0~10V直流信号,可对主电路输出电压进行平滑调节。

由于其机械特性硬,调速范围宽,而且是无级调速,所以可对直流电动机进行调压调速。

动静态性能好,抗扰性能佳。

速度调节及抗负载和电网扰动,采用双PI调节器,可获得良好的动静态效果。

电流环校正成典型I型系统。

为使系统在阶跃扰动时无稳态误差,并具有较好的抗扰性能,速度环设计成典型Ⅱ型系统。

根据转速、电流双闭环调速系统的设计方法,用Simulink做了带电流补偿的电压负反馈直流调速系统进行仿真综合调试,分析系统的动态性能,并进行校正,得出正确的仿真波形图。

电力拖动自动控制系统 教案

电力拖动自动控制系统 教案

电力拖动自动控制系统1. 介绍1.1 任务背景电力拖动自动控制系统是一种能够通过电力传动实现自动控制的技术系统。

该系统通过电动机驱动机械传动装置,实现对机械设备的运动控制和工作过程的自动化。

在工业生产中,电力拖动自动控制系统被广泛应用于各种生产过程中,提高了生产效率、质量和安全性。

1.2 目标本教案旨在介绍电力拖动自动控制系统的原理、应用和发展趋势,帮助学生理解和掌握该技术的基本概念、工作原理和应用场景,并培养学生的动手实践能力和解决问题的能力。

2. 原理2.1 电力拖动原理电力拖动自动控制系统的核心是电动机,通过电动机的转动来驱动机械设备。

电动机将电能转化为机械能,通过机械传动装置将动力传递给工作设备。

电动机的转速和扭矩可以通过控制电机的电压、电流等参数来实现调节。

2.2 控制原理电力拖动自动控制系统通过控制电动机的参数来实现对设备的自动控制。

控制系统可以根据预设的工艺要求和工作条件,自动调节电动机的转速、运行时间等参数。

控制系统通常包括传感器、执行器、控制器和人机界面等组成部分。

3. 应用3.1 工业应用电力拖动自动控制系统在工业领域有广泛的应用,例如生产线上的输送系统、机械加工设备、装配线等。

通过电力拖动自动控制系统,可以实现设备的精确控制,提高生产效率和质量,同时减少人力投入和工作风险。

3.2 交通运输应用电力拖动自动控制系统在交通运输领域也有重要的应用。

例如,电动车、地铁、高铁等交通工具都采用了电力拖动自动控制系统来驱动车辆。

通过该系统,可以实现对车辆的自动运行、刹车和悬挂等控制,提高了交通运输的安全性和舒适性。

4. 发展趋势4.1 智能化随着人工智能和物联网技术的发展,电力拖动自动控制系统也呈现出智能化的趋势。

未来的电力拖动自动控制系统将更加智能化,能够自动学习和优化控制策略,实现更高效、更精准的控制。

4.2 节能环保电力拖动自动控制系统也将朝着节能环保的方向发展。

通过优化控制策略和节能设备的应用,可以减少能源消耗和环境污染,实现可持续发展。

电力拖动自动控制系统课设

电力拖动自动控制系统课设

电力拖动自动控制系统课设一、引言电力拖动自动控制系统是一种用于控制和驱动电力动力设备的自动化系统。

它通过将电力传递到动力设备上,实现自动控制和驱动,在工业生产中起到重要的作用。

本文将介绍电力拖动自动控制系统的设计和实施。

二、系统设计2.1 系统需求分析在设计电力拖动自动控制系统之前,首先需要进行需求分析。

根据实际情况和用户要求,明确电力拖动自动控制系统所需的功能和性能。

2.2 系统功能设计基于系统需求分析的结果,确定电力拖动自动控制系统的功能设计。

包括控制模块、驱动模块、传感模块等,以实现系统的自动化控制和驱动。

2.3 系统硬件设计根据系统功能设计的结果,进行系统硬件设计。

选择适当的硬件设备,包括计算机、PLC、电机、传感器等,以满足系统的需求,并确保硬件设备的稳定性和可靠性。

2.4 系统软件设计在系统硬件设计的根底上,进行系统软件设计。

包括编写控制程序、驱动程序和界面程序等,以实现系统的自动化控制和监控。

3.1 系统搭建根据系统设计的结果,进行系统搭建。

连接硬件设备,安装软件程序,并进行测试和调试,确保系统能够正常工作。

3.2 系统运行在系统搭建完成后,进行系统运行。

对系统进行实际操作和测试,验证系统的功能和性能是否符合需求。

3.3 系统优化在系统运行过程中,发现问题和缺乏之处,进行系统优化。

对硬件设备和软件程序进行调整和改进,提高系统的性能和稳定性。

电力拖动自动控制系统广泛应用于工业生产中,具有自动化程度高、效率高、平安可靠等优点。

例如,在生产线上实现自动化装配和操作,提高生产效率和产品质量。

五、系统总结电力拖动自动控制系统是一种重要的自动化系统,能够满足工业生产中对于控制和驱动设备的需求。

本文介绍了电力拖动自动控制系统的设计和实施过程,包括系统需求分析、功能设计、硬件设计、软件设计、系统搭建、系统运行和系统优化等。

通过系统的实施和应用,可以提高生产效率和产品质量,为工业生产带来重要的价值。

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计设计目的本课程设计旨在让学生掌握电力拖动自动控制系统的基本原理和设计方法,通过实际操作和仿真,深化对电力拖动自动控制系统的理解和应用。

设计背景电力拖动自动控制系统被广泛应用于各种工业设备和交通工具中,通过自动电控技术实现设备的高效、安全和稳定运行。

本课程设计旨在让学生通过实际操作和仿真,深化对电力拖动自动控制系统的理解和应用。

设计内容本课程设计包括以下三个部分:1. 电力拖动自动控制系统的原理本部分主要介绍电力拖动自动控制系统的基本原理,包括:•电力拖动系统的结构和组成•电力拖动系统的各种传感器和执行器的工作原理•电力拖动系统的信号处理和控制方法2. 电力拖动自动控制系统的实际操作本部分主要介绍电力拖动自动控制系统的实际运行和操作方法,包括:•电力拖动系统的系统参数和性能测试•电力拖动系统的PID控制器的参数设置和校准•电力拖动系统的自动控制模式的设置和调试3. 电力拖动自动控制系统的仿真本部分主要介绍电力拖动自动控制系统的仿真和模拟方法,包括:•电力拖动系统的MATLAB/Simulink仿真模型的建立和调试•电力拖动系统的虚拟仿真平台的使用和应用案例分析设计流程本课程设计的流程如下:1.学习电力拖动自动控制系统的基本原理和相关知识。

2.利用实际设备进行电力拖动自动控制系统的实际操作和调试。

3.利用MATLAB/Simulink软件进行电力拖动自动控制系统的仿真模拟。

4.根据仿真结果进行电力拖动自动控制系统的优化和改进。

设计要求本课程设计的要求如下:1.学生需要按要求完成每个部分的实验和作业。

2.学生需要完成一份课程设计报告,内容应涵盖各个部分,报告格式为Markdown文本格式。

3.学生需要在规定时间内提交课程设计报告,否则视为未完成课程设计。

设计评价本课程设计的评价主要考核以下方面:1.学生是否达到了课程设计目的和要求。

2.学生对电力拖动自动控制系统的掌握程度和应用能力。

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计

《电力拖动自动控制系统》课程设计题目:直流电机双闭环调速系统设计专业:自动化班级:学号:姓名:2009022时间:2013年1月6日--2013年1月10日直流电机双闭环调速系统设计1 序言电力拖动自动控制系统课程设计与综合实验是工业电气自动化专业的一门专业课程,它是一次综合性的理论与实践相结合的训练,也是本专业的一次基本技能训练。

1.1 目的和意义1) 理论联系实际,掌握根据实际工艺要求设计电力拖动自动控制系统的基本方法。

2) 对一种典型的双闭环调速自动控制系统进行综合性的分析设计,掌握各部件和整个系统的设计调试步骤、方法及操作实际系统的方法。

加强基本技能训练。

3) 掌握参数变化对系统性能影响的规律,培养灵活运用所学理论解决控制系统中各种实际问题的能力。

4) 培养分析问题、解决问题的独立工作能力,学会实验数据的分析与处理能力及编写设计说明书和技术总结报告的能力。

为下学期毕业设计作准备。

5) 通过设计熟练地查阅有关资料和手册。

1.2 设计要求要求设计一个直流双闭环调速系统。

其主要内容为: 1) 测定综合实验中所用控制对象的参数(由实验完成)。

2) 根据给定指标设计电流调节器和转速调节器,并选择调节器参数和具体实现电路。

3) 按设计结果组成系统,以满足以下性能指标。

a.调速范围D =5~10,静差率10%S ≤。

b.空载启动时电流超调5%i σ≤,转速超调10%n σ≤ (在额定转速时)。

c.动态速降小于10%。

d.振荡次数小于2次。

4) 研究参数变化对系统性能的影响。

5) 在时间允许的情况下进行调试。

1.3 设计对象及有关数据直流电机:185W ,220V ,1.2A ,1600转/分。

直流测速机:10W ,10V ,0.2A ,1900转/分。

T oi =0.0011s ,T on =0.005s ,两个调节器的输入电阻020R K =Ω ,λ=1.5。

2 系统结构方案的选择2.1 调压、变组、及弱磁方案调速的选择与论证直流电动机的转速和其他参量的关系可用式(2-1)表达e U IRn K -=Φ(2-1)式中 n ——转速,单位为/min r ;U ——电枢电压,单位为V ; I ——电枢电流,单位为A ;R ——电枢回路总电阻,单位为Ω;Φ——励磁磁通,单位为b W ;e K ——由电机结构决定的电动势常数。

《电力拖动自动控制系统》课程设计报告

《电力拖动自动控制系统》课程设计报告

《电力拖动自动控制系统》课程设计报告(1)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊目录一﹑前言 (2)1. 1设计目的 (2)1. 2设计内容 (2)二﹑伺服系统的基本组成原理及电路设 (2)1.伺服系统基本原理及系统框图 (2)三﹑调试后的图 (8)四﹑设计心得与体会 (13)五﹑参考文献 (14)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊《电力拖动自动控制系统》课程设计报告一、前言1.1设计目的和要求1.使学生进一步掌握电力拖动自动控制系统的理论知识,培养学生工程设计能力和综合分析问题、解决问题的能力;2.使学生基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力;3.熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。

1.2设计内容1、分析和设计具有三环结构的伺服系统,用绘图软件(matlab)画原理图还有波形图;2、分析并理解具有三环结构的伺服系统原理。

二﹑伺服系统的基本组成原理及电路设计2.1伺服系统基本原理及系统框图伺服系统三环的PID控制原理以转台伺服系统为例,其控制结构如图2-1所示,其中r为框架参考角位置输入信号, 为输出角位置信号.┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊图2-1 转台伺服系统框图伺服系统执行机构为典型的直流电动驱动机构,电机输出轴直接与负载-转动轴相连,为使系统具有较好的速度和加速度性能,引入测速机信号作为系统的速度反馈,直接构成模拟式速度回路.由高精度圆感应同步器与数字变换装置构成数字式角位置伺服回路.转台伺服系统单框的位置环,速度环和电流环框图如图2-2,图2-3和图2-4所示.图2-2 伺服系统位置环框图┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊图2-3 伺服系统速度环框图图2-4 伺服系统电流框图图中符号含义如下:r为位置指令;θ为转台转角;u K为PWM功率放大倍数;d K为速度环放大倍数;v K为速度环反馈系数;i K为电流反馈系数;L为电枢电感;R为电枢电阻;m K为电机力矩系数;e C为电机反电动势系数;J为等效到转轴上的转动惯量;b为粘性阻尼系数,其中J=m J+L J,b=m b+L b,m J和L J分别为电机和负载的转动惯量,m b和L b分别为电机和负载的粘性阻尼系数;f T为扰动力矩,包括摩擦力矩和耦合力矩。

电力拖动自动控制系统课程设计(DOC)

电力拖动自动控制系统课程设计(DOC)

HENAN INSTITUTE OF ENGINEERING实训报告题目十机架连轧机分部传动直流调速系统的设计学生姓名李东盼专业班级电气工程1222 学号************系部电气信息工程学院指导教师程辉完成时间 2014年 1 月 3 日实训报告评语一、实训期间个人表现□1.尊敬师长,团结他人,能吃苦耐劳。

□2.在现场能坚持不迟到,不早退,勤奋学习。

□3.出现少于3次迟到和早退现象,表现一般。

□4.能主动向指导老师提问,能积极做好各项设计任务。

□5.在实训中能灵活运用相关专业知识,有较强的创新意识。

二、实训报告内容完成质量□1.能按时完成报告内容等实训成果资料,无任务遗漏。

□2.能按时完成报告内容等实训成果资料,有少许任务遗漏。

□3.不能按时完成报告内容等实训成果资料,有多处任务遗漏。

□4.条理清晰,书写规范工整,图文并茂,报告内容全面,主要内容阐述详细,能体现实训过程中做了大量工作,与专业相关知识能紧密联系,认识体会深刻,起到了实训的作用。

□5.条理清晰,书写规范工整,图文并茂,报告内容全面,主要内容阐述详细,能体现实训过程中做了大量工作,与专业相关知识能较紧密联系,认识体会较深刻,起到了实训的作用。

□6.条理清晰,书写较规范工整,报告内容全面,主要内容阐述较详细,能体现实训工作过程,能与专业相关知识联系起来,认识体会较深刻,起到了实训的作用。

□7.条理较清晰,书写较规范工整,报告内容较全面,主要内容阐述较详细,能体现实训过程中的相关工作,与专业相关知识不能紧密联系,认识体会不太深刻,基本起到了实训的作用。

□8.内容有雷同现象。

三、成绩不合格原因□1.实训期间旷课超过3次。

□2.报告有严重抄袭现象。

□3.未同时上交实训报告。

四、需要改进之处□1.进一步端正实训态度。

□2.加强报告书写的规范化训练,对主要内容要加强理解。

□3.加强相关专业知识的学习,深刻理解各设计步骤具体的要求。

五、其他说明等级:评阅人:职称:讲师年月日交直流调速系统的设计摘要直流调速系统具有调速范围广精度高动态性能好和易于控制等优点,因此本设计运用《电力拖动控制系统》的理论知识设计出可行的直流调速系统,并详细分析系统的原理及其静态和动态性能,且利用SIMULINK对系统进行各种参数的给定下的仿真。

电力拖动与控制课程设计

电力拖动与控制课程设计

电力拖动与控制课程设计一、课程目标知识目标:1. 学生能够理解电力拖动的基本原理,掌握常用电动机的工作特性。

2. 学生能够阐述控制电路的构成及工作原理,掌握基本的控制电路分析方法。

3. 学生能够解释电力拖动系统中常见的故障及排除方法。

技能目标:1. 学生能够设计简单的电力拖动与控制电路,进行电路连接和调试。

2. 学生能够运用所学知识分析电力拖动与控制电路故障,并提出解决方案。

3. 学生能够运用电力拖动与控制技术解决实际工程问题。

情感态度价值观目标:1. 学生通过学习电力拖动与控制课程,培养对电气工程领域的兴趣,增强探索精神。

2. 学生能够认识到电力拖动与控制在工业生产中的重要性,增强社会责任感和使命感。

3. 学生在团队协作中培养沟通、协作能力,形成良好的工程素养。

课程性质分析:本课程为电气工程及其自动化专业核心课程,旨在培养学生掌握电力拖动与控制技术的基本理论、分析和设计能力。

学生特点分析:学生已具备基础电路、模拟电子技术等基础知识,具有一定的电路分析和动手能力。

教学要求:1. 结合实际工程案例,提高学生的理论联系实际能力。

2. 强化实践环节,培养学生的动手能力和创新能力。

3. 注重团队协作,提高学生的沟通与协作能力。

4. 通过课程学习,使学生具备电力拖动与控制领域的基本素养。

二、教学内容1. 电力拖动基本原理- 电动机工作特性- 电力拖动系统概述- 常用电动机类型及特性分析2. 控制电路原理与分析- 控制电路基本元件- 常用控制电路类型- 控制电路分析方法3. 电力拖动与控制电路设计- 设计原则与步骤- 控制电路的设计方法- 电路仿真与调试4. 故障分析与排除- 电力拖动系统常见故障- 故障诊断方法- 排除故障的步骤与技巧5. 实践教学环节- 实验项目设置- 实验操作指导- 实践成果评价6. 课程案例分析- 典型电力拖动与控制工程案例- 案例分析与讨论- 案例启示与应用教学内容安排与进度:第1-2周:电力拖动基本原理及电动机工作特性第3-4周:控制电路原理与分析第5-6周:电力拖动与控制电路设计第7-8周:故障分析与排除第9-10周:实践教学环节第11-12周:课程案例分析及总结教材章节关联:《电力拖动与控制》第1章:电力拖动基本原理《电力拖动与控制》第2章:控制电路原理与分析《电力拖动与控制》第3章:电力拖动与控制电路设计《电力拖动与控制》第4章:故障分析与排除《电力拖动与控制》第5章:实践环节及案例分析三、教学方法为了提高教学效果,激发学生的学习兴趣和主动性,本课程将采用以下多样化的教学方法:1. 讲授法:教师通过系统讲解电力拖动与控制的基本理论、原理和关键技术,使学生掌握课程的核心知识。

电力拖动自动控制系统课程设计报告

电力拖动自动控制系统课程设计报告

一.课程设计的目的与内容1.1课程设计的目的电力拖动自动控制系统课程设计是自动化专业的一门专业课,它是一次综合性的理论与实际相结合的训练,也是本专业的一次基本技能训练,其主要目的是:(1)理论联系实际,掌握根据实际工艺要求,设计直流拖动自动控制系统的基本方法;(2)对典型的直流拖动自动控制系统进行综合性的实验,掌握各部件和整个系统的调试步骤与方法,加强基本技能训练;(3)掌握参数变化对系统性能影响的规律,培养灵活运用所学理论解决控制系统中各种实际问题的能力;(4)培养分析问题、解决问题的能力,学会实验数据的分析与处理,编写设计说明和技术总结报告。

1.2课程设计的内容本课程的具体对象是直流调速系统,其主要内容为:(1)测定综合实验中所用控制对象的参数;(2)根据给定指标设计调速系统的调节器,并选择各环节参数;(3)按设计结果组成系统,进行系统调试以满足给定指标;(4)研究参数变化对系统性能的影响;(5)在不可逆系统调试的基础上,组成可逆系统并进行调试;(6)设计并计算主回路参数;(7)书写课程设计论文一份(6000-10000字),绘制双闭环逻辑无环流可逆调速系统原理图一张(2#图)。

二.主电路的设计2.1主电路电气原理图及说明主电路采用转速电流双闭环调速系统,是电流环(ACR)作为控制系统的内环,转速环(ASR)作为控制系统的外环,以此来提高系统的动态和静态性能。

二者串级连接,即把电流调节器的输出作为转速调节器的输入,再用转速调节器的输出控制电力电子变换器UPE,从而改变电机的转速,通过电流和转速反馈电路来实现电动机无静差地运行。

2.2整流变压器参数的选择变压器副边电压采用如下公式进行计算:已知Udmax=220V,取Ut=1V,n=2,A=2.34In/I2n=1 C=0.5 则U2=110V由此得:变压器的变化为:K=U1/U2=380/110=3.45一次侧电流和二次侧电流I1、I2的计算:I1=1.05*287*0.861/3.45=75AI2=0.861*287=247A变压器容量的选择:S1=M1U1I1=85.5KV AS2=M2U2I2=81.5KV AS=0.5*(S1+S2)=83.5KV A因此整流变压器的参数为:变化K=3.45,容量S=83.5KV A2.3平波电抗器参数的确定Ud=2.34U2cosαUd=Un=220V, 取α=0U2=Ud/2.34cos0=94.0171VId min=(5%-10%)In,这里取10%,则有:L=0.693*U2/I d min=37.2308mHα=U*min/n N=0.0067β=U*im/2In=0.28752.4晶闸管参数的计算晶闸管的额定电压通常选取断态重复峰值电压U DRM和反向重复电压U RRM 中较小的值作为该器件的额定电压。

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计电力拖动自动控制系统课程设计是电力工程专业的一门重要课程。

该课程旨在培养学生的电力拖动系统设计与控制能力,为学生今后从事相关工作打下坚实的基础。

本文将对电力拖动自动控制系统课程设计进行详细介绍。

1.课程设计目标:本课程设计旨在通过理论与实践相结合的方式,培养学生综合运用所学知识进行电力拖动控制系统的设计与调试的能力。

重点培养学生的动力电气控制技术、电动机的控制与保护技术、传感器与信号处理技术以及自动化控制系统的设计与实现能力。

2.课程设计内容:本课程设计主要包括以下几个方面的内容:(1)电力拖动系统的基本原理与构成要素。

(2)电动机的类型、特性及其控制方法。

(3)传感器与信号处理技术在电力拖动控制系统中的应用。

(4)自动化控制系统的设计与实现。

(5)电力拖动系统的运行与维护。

3.课程设计过程:(1)学生通过自主学习,查阅相关资料,掌握电力拖动系统的基本原理与构成要素。

(2)学生根据所学知识,设计一套电力拖动自动控制系统。

(3)学生搭建实验平台,完成电力拖动自动控制系统的硬件连接与软件编程。

(4)学生进行实验测试,对系统进行调试与优化,确保系统的正常运行。

(5)学生撰写课程设计报告,详细介绍自己设计的电力拖动自动控制系统的原理、设计过程与实验结果。

4.课程设计评价:学生的课程设计成绩将根据以下几个方面进行评价:(1)设计方案的合理性与可行性。

包括电力拖动系统的设计思路、硬件选型与连接方案等。

(2)实验结果的准确性与稳定性。

包括系统调试过程中的测试数据与系统运行的稳定性。

(3)报告内容的完整性与条理性。

包括设计思路的论述、实验步骤的说明以及实验结果的分析等。

综上所述,电力拖动自动控制系统课程设计是一门重要的实践性课程。

通过该课程的学习和实践,学生将能够全面掌握电力拖动系统的设计与调试技术,并具备工程实践能力。

同时,本课程也为学生今后从事相关工作提供了一定的实践基础和理论指导。

电力拖动自动控制系统课程设计(25页)

电力拖动自动控制系统课程设计(25页)

图2 模型编辑窗 口
■ (3)修改模块参数:
双击模块图案,则出现关于该图 案的对话框,
通过修改对话框内容来设定模块 的参数。
描述加法器 三路输入的 符号,|表示 该路没有信 号,用|+-取 代原来的符 号。得到减 法器。
图3 加法器模块对话 框
图4 传递函数模块对话框
分子多项式 系数
分母多项式 系数
■ 设计要求:系统中各个参数计算过程 双闭环调速系统的仿真模型 ASR、ACR的仿真模型 转速、电流波形图 转速超调量的验证
■ 设计说明书内容 1 目录
2 正文(可分几章来写) 3 总结 4 参考文献
转速反馈控制直流调速系统的仿真
■ MATLAB下的SIMULINK软件进行系 统仿真是十分简单和直观的,
例如,0.002s+1是 用向量[0.002 1]来 表示的。
阶跃时刻, 可改到0 。
阶跃值,可 改到10 。
图5 阶跃输入模块对话框
填写所需要 的放大系数
图6 增益模块对话框
图7 Integrator模块对话框
积分饱和值, 可改为10。
积分饱和值,可 改为-10。
(4)模块连接
■ 以鼠标左键点击起点模块输出端,拖动鼠标至 终点模块输入端处,则在两模块间产生“→” 线。
图 SIMULINK模块浏览 器窗口
■ (1)打开模型编辑窗口:通过单击SIMULINK工具栏 中新模型的图标或选择→Model菜单项实现。
■ (2)复制相关模块:双击所需子模块库图标,则可打 开它,以鼠标左键选中所需的子模块,拖入模型编 辑窗口。
■ 在本例中拖入模型编辑窗口的为:Source组中的 Step模块;Math Operations组中的Sum模块和Gain 模块;Continuous组中的Transfer Fcn模块和 Integrator模块;Sinks组中的Scope模块;

电力拖动自动控制系统课程设计题目

电力拖动自动控制系统课程设计题目

一、 设计题目:双闭环V-M 调速系统中主电路,电流调节器及转速调节器的设计。

二、 已知条件及控制对象的基本参数:(1)已知电动机参数为:nom p =3kW ,nom U =220V ,nom I =17.5A ,nom n =1500r/min ,电枢绕组电阻a R =1.25Ω,2GD =3.532N m 。

采用三相全控桥式电路,整流装置内阻rec R =1.3Ω。

平波电抗器电阻L R =0.3Ω。

整流回路总电感L=200mH 。

(2)这里暂不考虑稳定性问题,设ASR 和ACR 均采用PI 调节器,ASR 限幅输出im U *=-8V ,ACR 限幅输出ctm U =8V ,最大给定nm U *=10V ,调速范围D=20,静差率s=10%,堵转电流 dbl I =2.1nom I ,临界截止电流 dcr I =2nom I 。

(3)设计指标:电流超调量δi %≤5%,空载起动到额定转速时的转速超调量δn≤10%,空载起动到额定转速的过渡过程时间 t s ≤0.5。

三、 设计要求(1)用工程设计方法和[西门子调节器最佳整定法]* 进行设计,决定ASR 和ACR 结构并选择参数。

(2)对上述两种设计方法进行分析比较。

(3)设计过程中应画出双闭环调速系统的电路原理图及动态结构图 (4)利用matlab/simulink 进行结果仿真。

* 为可选作内容四、 设计方法及步骤:Ⅰ 用工程设计方法设计(1) 系统设计的一般原则:直流双闭环调速系统中设置了两个调节器,即转速调节器(ASR)和电流调节器(ACR),分别调节转速和电流,即分别引入转速负反馈和电流负反馈。

按照设计多环控制系统的先内环后外环的一般原则,从内环开始,逐步向外扩展。

在双闭环系统中,应该首先设计电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器。

图1双闭环直流调速系统的稳态结构图α一转速反馈系数;β一电流反馈系数(2)主电路的主要参数的计算 1)22:(1~1.2)2.34cos 00.9dU U U =⨯⨯=114.9V 其中系数0. 9为电网波动系数,系数1-1. 2为考虑各种因素的安全系数,这里取1. 10(2)电流环设计2)电动势系数:22017.5 1.250.132min/1500N N e N U I R C V r n --⨯===∙3) 转矩系数:301.26/m e C C kg m A π==4)由题意得,平波电抗器电阻L R =0.3Ω5)机电时间常数:223.530.30.1693753750.13230m e m GD R T s C C π⨯=∙=∙=⨯ (3)电流环调节器的参数计算 1) 确定时间常数a.整流装置滞后时间常数s T 。

电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计

2
安徽工业大学
摘要
本课程设计是设计一个转速、电流双闭环控制系统。转速、电 流反馈控制直流调速系统是静态特性和动态特性优良、 应用最广泛的 直流调速系统。为了实现转速和电流两种负反馈分别起作用,可在系 统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈 和电流负反馈,二者之间实行嵌套联接。本设计介绍了双闭环调速系 统的基本原理,转速环、电流环的设计,最后使用 Matalab 中的 Simulink 对系统进行仿真验证。
6
安徽工业大学
三.参数计算 3.1 电流调节器参数计算:
电流反馈系数: 电机转矩时间常数:
电机电磁时间常数:
三相晶闸管整流电路平均失控时间:
电流环的小时间常数为:
电流环可按典型 I 型系统进行设计,电流调节器选用 PI 调节器,其传 递函数为
其中:
7
电力拖动自动控制系统课程设计
3.2 转速调节器参数计算:
图 4.1a 仿真模型图
图 4.1b ASR-BLOCK
9
电力拖动自动控制系统课程设计
图 4.1c ACR-BLOCK
4.2 设定模型仿真参数
按工程设计方法和选择转速和电流调节器部分参数设定如下:
图 4.2a
10
安徽工业大学
图 4.2b
图 4.2c
11
电力拖动自动控制系统课程设计
图 4.2d
图 4.2e
14
安徽工业大学
五.总结
本次课程设计是根据给定的初始值设计一个双闭环直流调速系统, 并进行仿 真验证。经过了一段时间的努力,终于完成了这个课程设计,并且很好的满足课 题要求。在完成课程设计的过程中,虽然遇到了一些困难,也发费了不少时间, 但是从中学到了大量的的知识,这些知识都是在课堂上无法学到的。 经过这

电力拖动整体课程设计

电力拖动整体课程设计

电力拖动整体课程设计一、课程目标知识目标:1. 理解电力拖动的概念、分类及在工业生产中的应用;2. 掌握电力拖动系统中常用电动机的类型、结构、原理及特性;3. 学会分析简单电力拖动电路,并能进行基本的计算。

技能目标:1. 能够正确使用万用表、示波器等工具进行电力拖动系统的检测;2. 能够根据实际需求,设计简单的电力拖动控制系统;3. 能够解决电力拖动系统中的常见故障,并进行基本的维护。

情感态度价值观目标:1. 培养学生对电力拖动技术的兴趣和热情,提高学生的专业认同感;2. 培养学生严谨、细致的科学态度,树立安全意识;3. 培养学生的团队协作精神,提高沟通与交流能力。

课程性质:本课程为电气工程及其自动化专业核心课程,具有较强的理论性和实践性。

学生特点:学生已具备一定的电路分析基础和电机原理知识,具有一定的动手实践能力。

教学要求:结合课程性质、学生特点,注重理论与实践相结合,提高学生的实际操作能力。

通过课程学习,使学生能够将所学知识应用于实际工程中,为今后从事电力拖动相关领域工作打下坚实基础。

教学过程中,注重培养学生的安全意识、团队协作能力和创新能力。

将课程目标分解为具体的学习成果,便于后续教学设计和评估。

二、教学内容1. 电力拖动基本概念与分类:介绍电力拖动的定义、作用及分类,以教材第一章内容为基础,使学生建立电力拖动系统的整体认识。

- 电动机类型及原理- 电力拖动系统的基本组成2. 常用电动机结构与特性:分析交流异步电动机、直流电动机的结构、原理及特性,结合教材第二章内容,进行详细讲解。

- 电动机的结构与工作原理- 电动机的运行特性与控制方法3. 电力拖动控制系统设计:讲解电力拖动控制系统设计原则、方法及步骤,以教材第三章内容为参考,引导学生学会设计简单控制系统。

- 控制系统设计原则与要求- 控制系统设计方法与步骤4. 电力拖动电路分析与计算:分析典型电力拖动电路,并进行基本计算,以教材第四章内容为主,提高学生分析问题和解决问题的能力。

电力拖动自动控制系统设计

电力拖动自动控制系统设计

(2)转速环小时间常数近似条件:
1 KI ,显然成立。 40.78rad / min cn , 3 Ton 综上: n 0.0834s, K n 56.8445, K ( s 1) 56.8445 (0.0834s 1) 681.5889 ASR : n n 56.8445 ns 0.0834s s
六>、仿真波形 (1)给定=1V
(2)给定=2
(3)给定=3
(4)给定=4
(5)给定=5
(6)给定=6
(7)给定=7
(8)给定=8
(9)给定=9
(10)给定=10
(11)给定=-1
(12)给定=-3
(13)给定=-5
(14)给定=-8
(15)给定=-10
(16)全过程仿真
有以上仿真波形可见,调速系统能够平滑地速度调节,负载电机能够可逆 运行,且具有较宽的转速调节范围(D≥10) ,系统在工作范围内能稳定工作。同 时,系统静特性良好,能够实现无静差。 (17)正向起动 正向停车 (18)反向启动 反向停车

过电压或过电流保护后电流转速波形(电流*10)
四>、系统参数
本次设计被控对象为29.42kW直流电动机 (即simulink第11号直流电动机) 。 其具体参数如下图所示。
(1)主电路等效电阻的处理
主电路等效电阻应该包括电机电枢电阻和晶闸管的压降对应的电阻。 在本次 仿真设计中,所使用的晶闸管管压降为零,同时平波电抗器采用纯电感,所以主 电路等效电阻就等于电枢电阻。 (2)平波电抗器的选取 平波电抗器电感一般按低速轻载时保证电流连续的条件来选择。 通常首先给 定最小电流 I d min ,再利用它计算所需的总电感量(以 mH 为单位) ,减去电枢电 感,即得平波电抗器应有的电感值。 对于三相桥式整流电路,总电感量的计算公式为 U 280 L 0.693 2 0.693 30m H 0.03H I d min 58.84 *1.1 *10% L1 0.03 0.001558 0.028442 H (3)拖动系统转动惯量处理 电动机本身的转动惯量为 0.2053 由于设计过程中需要考虑负载的转 kg m 2 , 动惯量,所以取拖动系统总转动惯量为电机转动惯量的十倍,即 2.053kg m 2 。 (4)晶闸管整流装置放大倍数求取 在进行调速系统的分析和设计时, 可以把晶闸管触发和整流装置当作系统中 的一个环节来看待。 实际的触发电路和整流电路都是非线性的, 只能在一定的工作范围内近似看 成线性环节。然后通过实验方法测出该环节的输入-输出特性,如图所示,曲线 是采用锯齿波触发器移相时的特性。设计时,希望整个调速范围的工作点都落在 特性的近似线性范围之中,并有一定的调节余量。 晶闸管触发和整流装置的放 大系数可由工作范围内的特性率 决定,计算方法是:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计任务书
双闭环直流调速与仿真
1、前言 (3)
2、设计方案论证.............................................. .4..
3、系统仿真 (7)
4、心得体会............................................... .9
5、参考文献.................................................. .10
称作外环。

以保证电动机的转速准确跟随给定电压,把由电流负反馈组成
的环作为内环,以实现在最大电流约束下的转速过渡过程最快的“最优” 控制。

为了获得良好的静、动态性能,转速和电流两个调节器一般都米用PI调节器,这样构成了双闭环调速系统的原理图。

2.2.2平波电抗器参数的计算:
U d=2.34U2COS
图1系统电气原理框图
图2双闭环调速系统结构图
I
因此变压器的变比近似为:K U l
U 2
算 I 1=1.05 X 287X 0.861/3.45=75A
12=0.861 X 287=247A
变压器容量的计算
S 二mUI 1=3X 380X 75=85.5kVA, S=mUI 2=3 X 110X 247=81.5kVA S=0.5X (S 1+S)=0.5 X (85.5+81.5)=83.5kVA ,因此整流变压器的参数为: 变 比 K=3.45,容量 S=83.5kVA 。

计算转速调节器参数
按跟随和抗扰性能都较好的原则,取
n hT n 5 0.0174
0.087s
转速环开环增益为
K N 丄^1
U d =U=220V,取=0
2.34 cos0
220
2.34
94.0171V
nm
n N
10 1500
0.0067
U m 2I N
10 2 17.5
0.2857
2.2.3变压器参数的计算
变压器副边电压采用如下公式进行计算:
A
cos min
U d max nU T
T
CU s^— !
2N
已知U dmax
220V,取 U T 1V n 2 A 2.34
0.9
min
10
U sh 0.05
旦 1 C 0.5 则 U 2
I 2N
220 2 1
2.34 0.9(0.9848 0.5 0.05 1)
110V
型3 45一次侧和二次侧电流I 1和I 2的计
110
h=5,则ASR 的超前时间常数为
2h T
6 --- 2 396.4s 2
--- 厂
2 5 0.0174
式中,为电流反馈系数其值为10V/n max 0.0067
ASR的比例系数为K n (h 1} CeTm6°.2857 °132 °1610.95
2h RT 2 5 0.0067 2.85 0.0174
3系统仿真
2.1理论计算参数仿真分析
根据理论设计结果,构建直流双闭环调速系统的仿真模型,如图2所示。

在额定转速和空载下,对系统进行仿真得到电动机电枢电流和转速的仿真输出波形,如图3。

图3直流双闭环调速系统的仿真模型
图4转速环仿真图形
图5电流环仿真图形
从图中可以看出,扰动很快得到了调节,这是两个PI型调节器自动调节的作用。

另外从图中也可以看到,系统是无静差运行的,符合设计的要求。

从仿真的结果来看,得到这样结论:
(1)工程设计方法在推导过程中为了简化计算做了许多近似的处理,而这些简化处理必须在一定的条件下才能成立。

例如:将可控硅触发和整流环节近似地看作一阶惯性环节,设计电流环时不考虑反电势变化的影响;将小时间常数当作小参数近似地合并处理;设计转速环时将电流闭环从二阶振荡环节近似地等效为一阶惯性环节等。

(2)仿真实验得到的结果也并不是和系统实际的调试结果完全相同,因为仿真实验在辨识过程中难免会产生模型参数的测量误差,而且在建立模型过程中为了简化计算,忽略了许多环节的非线性因素和次要因素。


5参考文献
[1] 陈伯时电力拖动自动控制系统一一运动控制系统,第三版,机械工业出版社,2003
[2] 杨威张金栋主编电力电子技术,重庆大学出版社,2002
[3] 王兆安,黄俊电力电子技术,第四版,机械工业出版社,2008
[4] 黄俊王兆安电力电子变流技术第三版,机械工业出版社,2005
[5] 莫正康电力电子应用技术,第三版,机械工业出版社,2000
[6] 丁丽娜自动控制系统实验指导书,大连海洋大学,2009。

相关文档
最新文档