(江苏专用)2019版高考物理大一轮复习 第12单元 原子物理作业手册
推荐2019版高考物理大一轮复习第12单元原子物理学案
第12单元 原子物理(1) 裂变反应和考题可能根据某一考点命题第30讲波粒二象性氢原子能级结构一、光电效应 1.光电效应在光的照射下金属中的电子从金属表面逸出的现象,叫作光电效应,发射出来的电子叫作. 2.爱因斯坦光电效应方程(1)光子说:空间传播的光的能量是不连续的,是一份一份的,每一份叫作一个光子.光子的能量为ε=,其中h 是普朗克常量,其值为6.63×10-34J ·s .(2)光电效应方程:.其中h ν为入射光的能量,E k 为光电子的最大初动能,W 0是金属的逸出功. 二、光的波粒二象性1.光的干涉、衍射、偏振现象证明光具有性.2.光电效应和康普顿效应说明光具有性.3.光既具有波动性,又具有粒子性,称为光的性. 三、玻尔理论与氢原子的能级 1.玻尔理论(1)定态:原子只能处于一系列的能量状态中,在这些能量状态中原子是的,电子虽然绕核运动,但并不向外辐射能量.(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即h ν=.(h 是普朗克常量,h=6.63×10-34J ·s)(3)轨道:原子的不同能量状态跟电子在不同的圆轨道绕核运动相对应.原子的定态是的,因此电子的可能轨道也是的.2.氢原子的能级和轨道半径(1)氢原子的能级公式:E n=E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=eV.(2)氢原子的半径公式:r n=(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10m.(3)氢原子的能级图:能级图如图30-1所示.图30-1【思维辨析】(1)电子枪发射电子的现象就是光电效应.()(2)不同的金属对应着相同的极限频率.()(3)核外电子虽然绕核运动,但并不向外辐射能量.()(4)核外电子可以吸收或放出任意频率的光子. ()【思维拓展】玻尔的氢原子能级理论成功解释了氢原子光谱不连续的特点,解释了当时出现的“紫外灾难”.该理论也可解释其他原子光谱现象吗?考点一对光电效应的理解1.光电效应的实质光子照射到金属表面,某个电子吸收光子的能量后动能变大,当电子的动能增大到足以克服原子核的引力时,便飞出金属表面成为光电子.光电效应现象中,每个电子只能吸收一个光子的能量.2.对光电效应规律的解释(1)光照射金属时,电子吸收一个光子(形成光电子)的能量后,动能立即增大,不需要积累能量的过程.(2)电子从金属表面逸出,首先需克服金属表面原子核的引力做功(逸出功W).要使入射光子的能量不小于W,对应频率νc=为极限频率.(3)光电子的最大初动能只随入射光频率的增大而增大.(4)入射光越强,单位时间内入射到金属表面的光子数越多,产生的光电子数越多,射出的光电子做定向移动时形成的光电流越大.3.概念辨析4.用图像表示光电效应方程。
江苏省近年高考物理大一轮复习 第十二章(选修3-3)练习手册(2021年整理)
江苏省2017高考物理大一轮复习第十二章(选修3-3)练习手册编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省2017高考物理大一轮复习第十二章(选修3-3)练习手册)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省2017高考物理大一轮复习第十二章(选修3-3)练习手册的全部内容。
第十二章(选修3—3)第1讲分子动理论内能一、选择题1.下列关于布朗运动的说法中,正确的是()A。
布朗运动是液体分子的无规则运动B. 液体温度越高,悬浮粒子越小,布朗运动越剧烈C. 布朗运动是由于液体各部分的温度不同而引起的D. 布朗运动是由液体分子从各个方向对悬浮粒子撞击作用的不平衡引起的2。
关于温度的概念,下列说法中正确的是()A. 摄氏温度变化1 ℃,热力学温度变化1 KB。
温度是分子平均动能的标志,温度升高,则物体的每一个分子的动能都增大C。
当某物体的内能增加时,则该物体的温度一定升高D。
甲物体的温度比乙物体的温度高,则甲物体分子平均速率比乙物体分子平均速率大3。
(2015·山东卷)墨滴入水,扩而散之,徐徐混匀.关于该现象,下列说法中正确的是()A。
混合均匀主要是由于碳粒受重力作用B。
混合均匀的过程中,水分子和碳粒都做无规则运动C。
使用碳粒更小的墨汁,混合均匀的过程进行得更迅速D. 墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的4。
(2016·盐城三模)如图所示,压紧的铅块甲和乙“粘”在一起,下列说法中正确的是 ()A。
甲下表面与乙上表面的铅原子都保持静止B。
甲下表面的铅原子对乙上表面相邻铅原子间的引力一定大于斥力C。
高考物理-全品一轮第12单元原子物理作业详解
教师详解(作业手册)课时作业(三十)1.B[解析]一群处于n=3激发态的氢原子向较低能级跃迁,可能放出三种不同频率的光子,故选项A错误;每种原子都有自己的特征谱线,故可以根据原子光谱来鉴别物质,故选项B正确;原子中的电子没有确定的轨道,在空间各处出现的概率是不一定的,故选项C错误.α粒子散射实验揭示了原子的核式结构模型,认为电子绕核旋转,故选项D错误.2.AC[解析]光是一种概率波,少量光子的行为易显示出粒子性,而大量光子的行为往往显示出波动性,A正确,B错误;光的波动性不是由于光子之间的相互作用引起的,而是光的一种属性,C正确;粒子性和波动性是光同时具备的两种属性,D错误.3.D[解析]增大照射光的频率,若其不大于金属材料的极限频率,还是不会发生光电效应,选项A错误;光电效应是否产生与照射光频率有关,而与照射光强度无关,选项B错误;光电效应是否产生与照射光照射时间无关,选项C错误;只要照射光的频率大于该金属材料的极限频率,就能发生光电效应,选项D正确.4.BD[解析]根据爱因斯坦的光电效应方程,hν=W+m v2,最大初动能随照射光频率的增大而增大,随照射光频率的减小而减小,选项A错误,B正确;减小金属的逸出功,也能增大最大初动能,选项C错误,D正确.5.A[解析]由E=h可知,波长大,光子能量小,故Hα光子能量最小,Hδ光子能量最大,再由h=E n-E2可知,Hα对应的轨道量子数最小,A错误.6.BC[解析]发生光电效应的条件是照射光频率大于截止频率,并不是光足够强就能发生光电效应,故A错误;金属的逸出功W0=hν,得ν=,故B正确;一定强度的照射光照射某金属发生光电效应时,照射光的频率越高,单个光子的能量值越大,光子的个数越少,单位时间内逸出的光电子数就越少,故C正确;氢原子由低能级向高能级跃迁时,吸收光子的能量等于两能级间能量差,故D错误.7.BD[解析]若仅增大该单色光照射的强度,由于每个光子的能量不变,因此光电子的最大初动能不变,但单位时间内射出的光电子数增多,因此光电流增大,故选项A错误;逸出功由金属材料自身决定,与是否有光照无关,故B正确;发生光电效应不需要时间积累,只要照射光的频率大于极限频率即可,故选项C错误;若滑动变阻器滑片左移,则电压表示数减小,因为电压是反向电压,所以电压减小时,光电子更容易到达A极形成电流,电流表示数增大,故选项D正确.8.B[解析]以从阴极K逸出的且具有最大初动能的光电子为研究对象,由动能定理得-Ue=0-,由光电效应方程得nhν=+W(n=2,3,4,…),联立解得U=(n=2,3,4,…),故选项B正确. 9.D[解析]用一定频率的a单色光照射光电管时,电流计指针会发生偏转,知νa>νc,a光的波长小于b光的波长,A错误;发生光电效应的条件是ν>νc,增加b光的强度不能使电流计G的指针发生偏转,B错误;发生光电效应时,电子从光电管左端运动到右端,而电流的方向与电子定向移动的方向相反,所以流过电流计G的电流方向是由c到d,C错误;增加a光的强度可使通过电流计G的电流增大,D正确.10.BC[解析]一个处于量子数n=5激发态的氢原子向低能级跃迁时,最多可产生4种不同频率的光子,选项A错误;当n=3时,氢原子的能量E3=-1.51 eV,所以处于n=3激发态的氢原子的电离能是1.51 eV,当该氢原子吸收具有1.87 eV能量的光子后被电离,选项B正确;根据玻尔理论,处于基态的氢原子不可能吸收该光子,所以氢原子仍处于基态,选项C正确;电子从高能级到低能级跃迁时,动能增大,电势能减小,选项D错误.11.ABC[解析]由爱因斯坦光电效应方程E k=hν-W0知,当ν=0时,-W0=E k,故W0=E,A正确;而E k=0时,hν=W0,即W0=hν0,B正确;照射光的频率为2ν0时产生的光电子的最大初动能E km=2hν0-hν0=hν0=E,C正确;照射光的频率为时,不会发生光电效应,D错误.12.AB[解析]已知从n=4到n=1能级辐射的电磁波的波长为λ1,从n=4到n=2能级辐射的电磁波的波长为λ2,从n=2到n=1能级辐射的电磁波的波长为λ3,则λ1、λ2、λ3的关系为h,即,λ1<λ3,,λ3<λ2,又h,即,则,选项A、B正确.13.BC[解析]氢原子从高能级向低能级跃迁时放出的光子的能量等于前、后两个能级的能量之差,当氢原子从高能级直接跃迁到基态时放出的光子的能量最小值为-3.4 eV-(-13.6 eV)=10.2 eV,大于3.34 eV,所以一定能使逸出功为3.34 eV的金属发生光电效应,A错误;大量处于n=4能级的氢原子向基态跃迁时,辐射光子的种数为=6,B正确;大量处于n=3能级的氢原子向n=1能级跃迁时,辐射出的光子能量最大为-1.51 eV-(-13.6 eV)=12.09 eV,用此光子照射逸出功为3.34 eV 的金属,由爱因斯坦光电效应方程可得光电子的最大初动能为12.09 eV-3.34 eV=8.75 eV,C正确;当氢原子由低能级向高能级跃迁时,氢原子吸收的光子能量一定等于两能级之间的能量差,而由氢原子的能级图可知n=1能级与任何能级间的能量差都不等于10.3 eV,因此不能使n=1能级的氢原子跃迁到较高的能级,D错误.14.AB[解析]能得到电子的衍射图样,说明电子具有波动性,A正确;由德布罗意波长公式λ=,可得λ=,B正确;由λ=可知,加速电压越大,电子的波长越小,衍射现象就越不明显,C错误;用相同动能的质子替代电子,质子的波长变小,衍射现象与电子相比更不明显,故D错误.15.(1)不能(2)27.2 eV[解析](1)设运动氢原子的速度为v0,发生完全非弹性碰撞后两者的速度为v,损失的动能ΔE被静止氢原子吸收.若ΔE=10.2 eV,则静止氢原子可由n=1能级跃迁到n=2能级.由动量守恒定律和能量守恒定律有m v0=2m vm v2+ΔE=E k=13.6 eV联立解得ΔE==6.8 eV因为ΔE=6.8 eV<10.2 eV,所以不能使静止氢原子发生跃迁.(2)若要使静止氢原子电离,则ΔE≥13.6 eV联立解得E k≥27.2 eV.课时作业(三十一)1.B[解析]核反应前后质量数守恒,电荷数也守恒,A错误;半衰期是宏观统计概念,C错误;核聚变释放能量,D错误.2. C[解析]同位素的核外电子数量相同,所以一种元素的各种同位素都具有相同的化学性质,A错误;原子核内相邻的质子和中子之间均存在核力,B错误;核子数越多其结合能也越大,所以Kr都大,但Kr都小,C正确;α射线、β射线都是带电粒子流,而γ射线是电磁波,不带电,故D错误.3.AB[解析]放射性元素的半衰期只与原子核自身有关,与温度、压强无关,故A正确;玻尔理论认为原子只能处在能量不连续的一系列状态,故B正确;通过卢瑟福α粒子散射实验判定的是原子具有核式结构,并未判定原子由电子和带正电的物质组成,故C错误Pb时,质量数减小24,而质子数减小8,因β衰变时质量数不变,质子数增加1,而α衰变时质量数减小4,质子数减小2,所以要经过6次α衰变和4次β衰变,故D错误.4.C[解析] A是聚变反应,反应剧烈,至今可控聚变反应还处于实验研究阶段;B是裂变反应,虽然实现了人工控制,但因反应剧烈,防护要求高,还不能小型化;C是人工放射性同位素的衰变反应,是小型核能电池主要采用的反应方式;D是人工核反应,需要高能α粒子.5.AD[解析]根据比结合能越大,越稳定,则核燃料总是利用比结合能小的核,故A正确.核反应中γ光子的能量就是质量亏损对应的能量,故B错误Pu更稳定,说明U的比结合能大,所以Pu衰变时,会释放巨大能量,故C错误,D正确.6.C[解析]钚239Pu)和铀239U)质量数相同,质子数和中子数均不同,选项A、B错误Pu多两个中子,少两个质子Pu,选项C正确.7.B[解析]X,质量数没有发生变化,故①为β衰变Pb,质量数减少4,故③为α衰变Ti,电荷数减少2,故②为α衰变,过程④的电荷数增加1,为β衰变,故A、C、D错误,B正确.8.C[解析]该反应方程为e→2γ,由于光子的静止质量为零,所以质量亏损为Δm=2m,由质能方程,对应的能量为ΔE=2mc2,根据能量守恒定律可知2hν=2E+ΔE,即有=2E+2mc2,所以光子在真空中的波长λ=,C正确.9.BC[解析]核反应中质量数守恒、电荷数守恒,则知n,a=3,故A错误,B正确.由ΔE=Δmc2可得,ΔE=(m U+m X-m Ba-m Kr-3m X)c2=(m U-m Ba-m Kr-2m X)c2,故C正确,D错误.10.AD[解析]根据核反应方程He+X,X的质量数m1=2+3-4=1,核电荷数z1=1+1-2=0,所以X是中子,故A正确;根据核反应方程X+Y H,X是中子,所以Y的质量数m2=4+3-1=6,核电荷数z2=2+1-0=3,所以Y的质子数是3,中子数是3,故B错误;根据两个核反应方程可知,都有大量的能量释放出来,所以一定都有质量亏损,故C 错误;氘和氚的核反应过程中是质量较小的核生成质量较大的新核,所以是核聚变反应,故D正确.11.CD[解析]原子核A发生α衰变,设原子核B和α粒子的速度分别为v B和vα,由动量守恒定律有0=m B v B-mαvα,则,,A、B错误.由质能方程知原子核B和α粒子的动能之和为ΔE=Δmc2=(m A-m B-mα)c2,C正确.由质量数守恒和电荷数守恒知,A比B质子数多2,中子数多2,D正确.12.CD[解析]由核反应过程中的质量数守恒和电荷数守恒可知n,则新粒子为中子n,A错误;核反应过程中有质量亏损,释放能量,仍然满足能量守恒定律,B错误;由题意可知ΔE=(2.014 1 u×2-3.016 0 u-1.008 7 u)×931 MeV/u=3.3MeV,根据核反应中系统的能量守恒有E kHe+E kn=2E0+ΔE,根据核反应中系统的动量守恒有p He-p n=0,由E k=,可知,解得E kHe=·(2E0+ΔE)≈1 MeV,E kn=(2E0+ΔE)≈3 MeV,C、D正确.13.(1He(2)v(3)[解析](1)由电荷数守恒和质量数守恒可得衰变方程为He.(2)设Th核的反冲速度为v0,由动量守恒定律得0=m v0-m v解得v0=v.(3)由能量守恒定律有+hν=Δmc2解得Δm=.14.(1He(2)(3) [解析](1He(2)由动量守恒定律得m n v=-m H v1+m He v2由题意得v1∶v2=7∶8解得v1=,v2=(3)氚核和α粒子的动能之和为E k=m v2释放的核能为ΔE=E k-E kn=m v2由爱因斯坦质能方程得,质量亏损为Δm=。
2019届高三物理一轮复习:第十二单元 近代物理初步 作
题组层级快练(五十五)一、选择题1.(2016·江苏)贝可勒尔在120年前首先发现了天然放射现象,如今原子核的放射性在众多领域中有着广泛应用.下列属于放射性衰变的是()A. 614C→714N+-10eB. 92235U+01n→53131I+39103Y+201n C.12H+13H→24He+01n D.24He+1327Al→1530P+01n答案 A解析原子核自发地放出某种粒子而转变为新核的变化叫作原子核的衰变,只有A项符合.B项是核裂变反应.D项是人工核转变反应,C项是核聚变反应.2.(2017·洛阳二模)如图所示为研究某未知元素放射性的实验装置,实验开始时在薄铝片和荧光屏之间有图示方向的匀强电场E,通过显微镜可以观察到,在荧光屏的某一位置上每分钟闪烁的亮点数.若撤去电场后继续观察,发现每分钟闪烁的亮点数没有变化;如果再将薄铝片移开,观察到每分钟闪烁的亮点数大大增加,由此可以判断,放射源发出的射线可能为()A.β射线和γ射线B.α射线和β射线C.β射线和X射线D.α射线和γ射线答案 D解析三种射线中α射线和β射线带电,进入电场后会发生偏转,而γ射线不带电,不受电场力,电场对它没有影响,在电场中不偏转.由题意,将电场撤去,从显微镜内观察到荧光屏上每分钟闪烁亮点数没有变化,可知射线中含有γ射线.再将薄铝片移开,则从显微镜筒内观察到的每分钟闪烁亮点数大为增加,根据α射线的特性:穿透本领最弱,一张纸就能挡住,分析得知射线中含有α射线.故放射源所发出的射线可能为α射线和γ射线.故D项正确.3.(2017·河南模拟)下列说法中正确的是()A.放射性元素的半衰期随温度和压强的变化而变化B.β衰变所释放的电子是原子核内的中子转化成质子时产生的C.原子核在人工转变过程中,电荷数可能不守恒D.比结合能越大表示原子核中核子结合得越松散,原子核越不稳定答案 B解析A项,半衰期与压强无关,由原子核内部因素决定,故A项错误;B项,β衰变所释放的电子是原子核中的中子转化为质子和电子产生的,不是核外电子.故B项正确;C 项,核反应方程质量数和电荷数是守恒的.故C项错误;D项,比结合能越大,表示原子核中核子结合得越牢靠,原子核越稳定.故D项错误.4.(2017·课标全国Ⅱ)一静止的铀核放出一个α粒子衰变成钍核,衰变方程为92238U→90234Th +24He,下列说法正确的是()A.衰变后钍核的动能等于α粒子的动能B.衰变后钍核的动量大小等于α粒子的动量大小C.铀核的半衰期等于其放出一个α粒子所经历的时间D.衰变后α粒子与钍核的质量之和等于衰变前铀核的质量答案 B解析A、B项,一静止的铀核放出一个α粒子衰变成钍核,根据系统动量守恒知,衰变后钍核和α粒子动量之和为零,可知衰变后钍核的动量大小等于α粒子的动量大小,根据E k=p22m知,由于钍核和α粒子质量不同,则动能不同,故A项错误,B项正确.C项,半衰期是原子核有半数发生衰变的时间,故C项错误.D项,衰变的过程中有质量亏损,即衰变后α粒子与钍核的质量之和小于衰变前铀核的质量,故D项错误.5.(2016·上海)放射性元素A经过2次α衰变和1次β衰变后生成一新元素B,则元素B 在元素周期表中的位置较元素A的位置向前移动了()A.1位B.2位C.3位D.4位答案 C解析α粒子是24He,β粒子是-10e,因此发生一次α衰变电荷数减少2,发生一次β衰变电荷数增加1,据题意,电荷数变化为:-2×2+1=-3,所以新元素在元素周期表中的位置向前移动了3位.故C项正确.6.(2017·孝义市一模)下列说法正确的是()A. 92238U衰变为91234Pa要经过2次α衰变和1次β衰变B.β射线与γ射线一样都是电磁波,但β射线的穿透本领远比γ射线弱C.放射性元素的半衰期与原子所处的化学状态和外部条件有关D.天然放射性现象使人类首次认识到原子核可分答案 D解析A项,92238U衰变为91234Pa,质量数减小4,所以α衰变的次数为1次.故A项错误;B项,β射线的实质是电子流,γ射线的实质是电磁波,γ射线的穿透本领比较强.故B项错误;C项,根据半衰期的特点可知,放射性元素的半衰期与原子所处的化学状态和外部条件无关.故C项错误;D项,天然放射现象是原子核内部自发的放射出α粒子或电子的现象,反应的过程中核内核子数,质子数,中子数发生变化,涉及到原子核内部的变化,所以天然放射性现象使人类首次认识到原子核可分.故D项正确.7.(2017·太原一模)(多选)钍90234Th具有放射性,它能放出一个新的粒子而变为镤91234Pa,同时伴随有γ射线产生,其方程为90234Th→91234Pa+X,钍的半衰期为24天.则下列说法中正确的是()A.一块纯净的钍234矿石经过24天,矿石的质量仅剩下原来质量的一半B.X是钍核中的一个中子转化成一个质子时产生的C.γ射线是钍原子核发生衰变后产生的镤234的原子核释放的D.γ射线具有很强的电离作用,对人体细胞破坏能力较大答案BC解析A项,根据半衰期的定义可知,经过一个半衰期以后,有一半的放射性元素发生衰变;由于衰变后的产物能仍然留在原来的矿物中,所以一块纯净的钍234矿石经过24天,即经过一个半衰期,矿石的质量大于原来质量的一半.故A项错误;B项,根据质量数守恒与电荷数守恒可知,该衰变产物的质量数为0,电荷数为-1,可知X为电子,该衰变为β衰变,电子是钍核中的一个中子转化成一个质子时产生的.故B项正确;C项,γ射线是处于激发态的原子核释放的,即γ射线是钍原子核发生衰变后产生的、处于激发态的镤234的原子核向低能级跃迁时释放的.故C项正确;D项,γ射线对人体细胞破坏能力较大,但其电离作用比较弱,故D项错误.8.(2017·浙江模拟)(多选)我国首次使用核电池随“嫦娥三号”软着陆月球,并用于嫦娥三号的着陆器和月球车上,核电池是通过半导体换能器,将放射性同位素衰变过程中释放出的能量转变为电能.嫦娥三号采用放射性同位素94239Pu,静止的94239Pu衰变为铀核92235U 和α粒子,并放出频率为ν的γ光子,已知94239Pu、92235U和α粒子的质量分别为m pU、m U、mα.下列说法正确的是()A. 94239Pu的衰变方程为94239Pu→92235U+24He+γB.此核反应过程中质量亏损为Δm=m pu-m U-mαC.释放出的γ光子的能量为(m pu-m U-mα)c2D.反应后92235U和α粒子结合能之和比94239Pu的结合能大答案ABD解析A项,根据质量数守恒与电荷数守恒可知,94239Pu的衰变方程为94239Pu→92235U+4He+γ,故A项正确;B项,此核反应过程中的质量亏损等于反应前后质量的差,为Δm 2=m pu-m U-mα,故B项正确;C项,释放的γ光子的能量为hν,核反应的过程中释放的能量:E=(m pu-m U-mα)c2,由于核反应的过程中释放的核能转化为新核与α粒子的动能以及光子的能量,所以光子的能量小于(m pu-m U-mα)c2,故C项错误;D项,94239Pu衰变成92235U和α粒子后,释放核能,将原子核分解为单个的核子需要的能量更大,原子变得更稳定,所以反应后92235U和α粒子结合能之和比94239Pu的结合能大,故D项正确.9.(2017·安徽三模)关于质量亏损和原子核的结合能以下说法正确的是()A.原子核的结合能等于使其完全分解成自由核子释放的能量B.一重原子核衰变成α粒子和另一原子核,衰变产物的结合能之和一定大于原来重核的结合能C.核子结合成原子核时会出现质量亏损,亏损的质量转化为释放的能量D.原子核的平均结合能越大,则原子核中核子的平均质量就越小,在核子结合成原子核时平均每个核子的质量亏损就越小答案 B解析原子核的结合能等于使其完全分解成自由核子所需的最小能量,故A项错误;重核的比结合能比中等核小,因此重核衰变时释放能量,衰变产物的结合能之和大于原来重核的结合能,故B项正确;质量亏损只是表明了亏损的质量与释放的能量关系,而不是将亏损质量转化为释放的能量,故C项错误;比结合能也叫平均结合能,比结合能越大,表示原子核中单个核子分离所需的能量越多,原子核中核子结合时平均每个核子的质量亏损能量越多,故D项错误.10.一块氡222放在天平的左盘时,需要天平的右盘加444 g砝码,天平才能处于平衡,氡222发生α衰变,经过一个半衰期以后,欲使天平再次平衡,应从右盘中取出的砝码为() A.222 g B.8 gC.2 g D.4 g答案 D解析衰变前氡的质量为444 g,摩尔质量为222 g/mol,故共2 mol氡.经过一个半衰期,有1 mol氡衰变,放出1 mol α粒子,则左盘质量减少了4 g,故应从右盘中取出4 g砝码.D 项正确.11.太阳因核聚变释放出巨大的能量,同时其质量不断减少.太阳每秒钟辐射出的能量约为4×1026 J,根据爱因斯坦质能方程,太阳每秒钟减少的质量最接近()A.1036 kg B.1018 kgC.1013 kg D.109 kg答案 D解析本题意在考查考生对爱因斯坦质能方程的运用能力,根据ΔE=Δmc2,得Δm=ΔE c2=4×1026(3×108)2kg≈4.4×109 kg.D项正确.12.(多选)人们发现,不同的原子核,其核子的平均质量(原子核的质量除以核子数)与原子序数有如图所示的关系.下列说法正确的是()A.由图可知,原子核D和E聚变成原子核F时会有质量亏损,要吸收能量B.由图可知,原子核A裂变成原子核B和C时会有质量亏损,要放出核能C.已知原子核A裂变成原子核B和C时放出的γ射线能使某金属板逸出光电子,若增加γ射线强度,则逸出的光电子的最大初动能增大D.在核反应堆的铀棒之间插入镉棒是为了控制核反应速度E.在核反应堆的外面修建很厚的水泥层能防止放射线和放射性物质的泄漏答案BDE解析原子核D和E聚变成原子核F时会放出能量,A项错误;由E k=hν-W知增加射线强度,逸出光电子的最大初动能不变,只是单位时间内逸出光电子的个数增多,C项错误.B、D、E三项正确.13.(多选)中子和质子结合成氘核时,质量亏损为Δm,ΔE=Δmc2=2.2 MeV是氘核的结合能.下列说法正确的是()A.用能量小于2.2 MeV的光子照射静止氘核时,氘核不能分解为一个质子和一个中子B.用能量等于2.2 MeV的光子照射静止氘核时,氘核可能分解为一个质子和一个中子,它们的动能之和为零C.用能量大于2.2 MeV的光子照射静止氘核时,氘核可能分解为一个质子和一个中子,它们的动能之和为零D.用能量大于2.2 MeV的光子照射静止氘核时,氘核可能分解为一个质子和一个中子,它们的动能之和不为零答案AD解析中子和质子结合成氘核所释放的能量或氘核分解成质子和中子所吸收的能量都相等,即为此反应的结合能,根据动量守恒,用光子照射静止的氘核,系统的总动量不为零,故照射后总动量也不能为零,总动能也不能为零;故A、D两项正确.二、非选择题14.(1)关于核衰变和核反应的类型,下列表述正确的有()A. 92238U→90234Th+24He是α衰变B. 714N+24He→817O+11H是β衰变C.12H+13H→24He+01n是轻核聚变D.3482Se→3682Kr+2-1 0e是重核裂变(2)现有四个核反应:A.12H+13H→24He+01n B. 92235U+01n→X+3689Kr+301n C.1124Na→1224Mg+-10e D.24He+49Be→612C+01n①________是发现中子的核反应方程,________是研究原子弹的基本核反应方程,________是研究氢弹的基本核反应方程.②求B中X的质量数和中子数.答案(1)AC(2)①D B A②14488解析(1)A项为α衰变,B项为原子核的人工转变,C项为轻核聚变,D项为β衰变,故A、C项正确.(2)①D为查德威克发现中子的核反应方程;B是研究原子弹的基本核反应方程;A是研究氢弹的基本核反应方程.②X的质量数为:(235+1)-(89+3)=144X的质子数为:92-36=56X的中子数为:144-56=88.15.一个静止的氡核86222Rn放出一个α粒子后衰变为钋核84218Po,同时放出能量为E=0.09 MeV的光子.假设放出的核能完全转变为钋核与α粒子的动能,不计光子的动量.已知M氡=222.086 63 u、mα=4.002 6 u、M钋=218.076 6 u,1 u相当于931.5 MeV的能量.(1)写出上述核反应方程;(2)求出发生上述核反应放出的能量;(3)确定钋核与α粒子的动能.答案(1) 86222Rn→84218Po+24He+γ(2)6.92 MeV(3)0.12 MeV 6.71 MeV解析(1) 86222Rn→84218Po+24He+γ.(2)质量亏损Δm=222.086 63 u-4.002 6 u-218.076 6 u=0.007 43 uΔE=Δmc2=0.007 43×931.5 MeV=6.92 MeV(3)设α粒子、钋核的动能分别为E kα、E k钋,动量分别为pα、p钋,由能量守恒定律得:ΔE=E kα+E k钋+E不计光子的动量,由动量守恒定律得:0=pα+p钋又E k=p22m,故E kα∶E k钋=218∶4联立解得E k钋=0.12 MeV,E kα=6.71 MeV.。
2019届江苏高三一轮精品卷(十二)理综物理试卷
2019届江苏高三一轮精品卷(十二)理综物理试卷★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、单项选择题1. 下列说法符合物理学史实的是( )A. 亚里士多德最早指出力不是维持物体运动的原因B. 库仑在前人研究的基础上,通过扭秤实验研究得出了库仑定律C. 牛顿提出了万有引力定律,并通过实验测出了万有引力常量D. 哥白尼提出了日心说并发现了行星沿椭圆轨道运行的规律【答案】B【解析】伽利略最早指出力不是维持物体运动的原因,选项A错误;库仑在前人研究的基础上,通过扭秤实验研究得出了库仑定律,选项B正确;牛顿提出了万有引力定律,卡文迪许通过实验测出了万有引力常量,选项C错误;哥白尼提出了日心说,开普勒发现了行星沿椭圆轨道运行的规律,选项D错误;故选B.2. 如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R.金属棒ab与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使磁感应强度随时间均匀增加,ab始终保持静止,下列说法正确的是( )A. ab中感应电流方向由b→aB. ab中的感应电流逐渐增加C. ab所受的安培力保持不变D. ab受到水平向右的摩擦力【答案】D...............点睛:本题考查了法拉第电磁感应定律、楞次定律、安培力公式的基本运用,注意磁感应强度均匀变化,面积不变,则感应电动势不变,但是导体棒所受的安培力在变化。
江苏专用版高考物理总复习第十二章综合练含解析
江苏专用版高考物理总复习第十二章综合练含解析综合练1.(2018南京调研)(1)(多选)下列说法正确的是( )A.同一时刻撞击固体颗粒的液体分子数越多,该颗粒布朗运动越剧烈B.一滴液态金属在完全失重条件下呈球状,是由液体的表面张力所致C.晶体熔化过程中要吸收热量,分子的平均动能增大D.一定质量气体等容变化中温度升高,单位时间内分子对器壁单位面积上撞击次数增多(2)如图所示,一定质量的理想气体,在状态A的温度t A=27℃,则状态C的温度T C= K;气体从状态A依次经过状态B、C后再回到状态A,此过程中气体将(选填“吸收”或“放出”)热量。
(3)氙气灯在亮度、耗能及寿命上都比传统灯有优越性。
某轿车的灯泡的容积V=1.5mL,充入氙气的密度ρ=5.9kg/m3,摩尔质量M=0.131kg/mol,阿伏加德罗常数N A=6×1023mol-1。
试估算灯泡中:①氙气分子的总个数;②氙气分子间的平均距离。
(结果保留一位有效数字)答案(1)BD (2)900 放出(3)①4×1019个②3×10-9m解析(1)同一时刻撞击固体颗粒的液体分子数越多,该颗粒受力越容易平衡,所以布朗运动越不明显,选项A错误;表面张力使液滴表面积有收缩到最小的趋势,所以一滴液态金属在完全失重条件下呈球状,是由液体的表面张力所致,选项B正确;晶体熔化过程中要吸收热量,但温度不变,即分子的平均动能不变,选项C错误;一定质量的气体等容变化中,温度升高,压强增大,单位时间内分子对器壁单位面积上撞击次数增多,选项D正确。
(2)气体由A到C压强不变,由V VV V =V VV V可知1300=3V V,所以T C=900K;由A到B,气体对外界做功的数值等于AB线下方的梯形面积,从B到C,外界对气体不做功,从C到A,气体被压缩,外界对气体做功的数值等于CA线下方的矩形面积,所以全过程外界对气体做正功,而回到状态A气体内能不变,由热力学第一定律知此过程中气体放热。
推荐2019版高考物理大一轮复习第12单元原子物理学案
第12单元 原子物理(1) 裂变反应和考题可能根据某一考点命题第30讲 波粒二象性 氢原子能级结构一、光电效应 1.光电效应在光的照射下金属中的电子从金属表面逸出的现象,叫作光电效应,发射出来的电子叫作 . 2.爱因斯坦光电效应方程(1)光子说:空间传播的光的能量是不连续的,是一份一份的,每一份叫作一个光子.光子的能量为ε= ,其中h 是普朗克常量,其值为6.63×10-34J ·s .(2)光电效应方程: .其中h ν为入射光的能量,E k 为光电子的最大初动能,W 0是金属的逸出功. 二、光的波粒二象性1.光的干涉、衍射、偏振现象证明光具有 性.2.光电效应和康普顿效应说明光具有 性.3.光既具有波动性,又具有粒子性,称为光的 性. 三、玻尔理论与氢原子的能级 1.玻尔理论(1)定态:原子只能处于一系列 的能量状态中,在这些能量状态中原子是 的,电子虽然绕核运动,但并不向外辐射能量.(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即h ν= .(h 是普朗克常量,h=6.63×10-34J ·s)(3)轨道:原子的不同能量状态跟电子在不同的圆轨道绕核运动相对应.原子的定态是的,因此电子的可能轨道也是的.2.氢原子的能级和轨道半径(1)氢原子的能级公式:E n=E1(n=1,2,3,…),其中E1为基态能量,其数值为E1= eV.(2)氢原子的半径公式:r n= (n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10 m.(3)氢原子的能级图:能级图如图30-1所示.图30-1【思维辨析】(1)电子枪发射电子的现象就是光电效应.()(2)不同的金属对应着相同的极限频率.()(3)核外电子虽然绕核运动,但并不向外辐射能量.()(4)核外电子可以吸收或放出任意频率的光子. ()【思维拓展】玻尔的氢原子能级理论成功解释了氢原子光谱不连续的特点,解释了当时出现的“紫外灾难”.该理论也可解释其他原子光谱现象吗?考点一对光电效应的理解1.光电效应的实质光子照射到金属表面,某个电子吸收光子的能量后动能变大,当电子的动能增大到足以克服原子核的引力时,便飞出金属表面成为光电子.光电效应现象中,每个电子只能吸收一个光子的能量.2.对光电效应规律的解释(1)光照射金属时,电子吸收一个光子(形成光电子)的能量后,动能立即增大,不需要积累能量的过程.(2)电子从金属表面逸出,首先需克服金属表面原子核的引力做功(逸出功W).要使入射光子的能量不小于W,对应频率νc=为极限频率.(3)光电子的最大初动能只随入射光频率的增大而增大.(4)入射光越强,单位时间内入射到金属表面的光子数越多,产生的光电子数越多,射出的光电子做定向移动时形成的光电流越大.3.概念辨析4.用图像表示光电效应方程(1)最大初动能E k与入射光频率ν的关系图线如图30-2所示.图30-2(2)由图线可以得到的物理量:①极限频率:图线与ν轴交点的横坐标νc.②逸出功:图线与E k轴交点的纵坐标的绝对值W0=|-E|=E.③普朗克常量:图线的斜率k=h.1 (多选)[2017·全国卷Ⅲ]在光电效应实验中,分别用频率为νa、νb的单色光a、b照射到同种金属上,测得相应的遏止电压分别为U a和U b、光电子的最大初动能分别为E k a和E k b.h为普朗克常量.下列说法正确的是()A.若νa>νb,则一定有U a<U bB.若νa>νb,则一定有E k a>E k bC.若U a<U b,则一定有E k a<E k bD.若νa>νb,则一定有hνa-E k a>hνb-E k b式题 (多选)[2017·湖北八校一联]如图30-3甲所示,在“光电效应”实验中,某同学用相同频率的单色光,分别照射阴极材料为锌和铜的两个不同的光电管,结果都能发生光电效应.图乙为其中一个光电管的遏止电压U c 随照射光频率ν变化的函数关系图像.对于这两个光电管,下列判断正确的是()图30-3A.因为不同材料的逸出功不同,所以遏止电压U c不同B.光电子的最大初动能不同C.因为光强不确定,所以单位时间逸出的光电子数可能相同,饱和光电流也可能相同D.两个光电管的U c-ν图像的斜率可能不同■要点总结分析光电效应问题抓住两条对应关系和三个关系式(1)两条对应关系①光强大→光子数目多→发射光电子多→光电流大.②光子频率高→光子能量大→光电子的最大初动能大.(2)三个关系式①爱因斯坦光电效应方程:E k=hν-W0.②最大初动能与遏止电压的关系:E k=eU c.③逸出功与极限频率的关系:W0=hν0.考点二光的波粒二象性1.对光的波粒二象性的理解光既有波动性,又有粒子性,两者不是孤立的,而是有机的统一体,其表现规律为:(1)从数量上看:个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性.(2)从频率上看:频率越低波动性越显著,越容易看到光的干涉和明显的衍射现象;频率越高粒子性越显著,越不容易看到光的干涉和明显的衍射现象,贯穿本领越强.(3)从传播与作用上看:光在传播过程中往往表现出波动性;在与物质发生作用时往往表现出粒子性.(4)波动性与粒子性的统一:由光子的能量E=hν,光子的动量p=表达式也可以看出,光的波动性和粒子性并不矛盾,表示粒子性的粒子能量和动量的计算式中都含有表示波的特征的物理量——频率ν和波长λ.(5)理解光的波粒二象性时不可把光当成宏观概念中的波,也不可把光当成微观概念中的粒子.2.概率波与物质波(1)概率波:光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波是一种概率波.(2)物质波:任何一个运动着的物体,小到微观粒子,大到宏观物体,都有一种波与它对应,其波长λ=,p为运动物体的动量,h为普朗克常量.2 能够证明光具有波粒二象性的现象是()A.光电效应和康普顿效应B.光的衍射和光的色散C.光的折射和透镜成像D.光的干涉和康普顿效应式题 (多选)波粒二象性是微观世界的基本特征,以下说法正确的有()A.光电效应现象揭示了光的粒子性B.热中子束射到晶体上产生衍射图样说明中子具有波动性C.黑体辐射的实验规律可用光的波动性解释D.动能相等的质子和电子,它们的德布罗意波长也相等考点三能级的分析与计算1.氢原子跃迁条件氢原子跃迁条件hν=E m-E n只适用于光子和氢原子作用而使氢原子在各定态之间跃迁的情况.对于光子和氢原子作用而使氢原子电离时,只要入射光的能量E≥13.6 eV,氢原子就能吸收光子的能量,对于实物粒子与原子作用使氢原子激发时,实物粒子的能量大于或等于能级差即可.2.氢原子跃迁时能量的变化(1)氢原子能量:E n=E k n+E p n=,随n增大而增大,其中E1=-13.6 eV.(2)电子动能:电子绕氢原子核运动时库仑力提供向心力,即k,所以E k=随r增大而减小.(3)电势能:通过库仑力做功判断电势能的增减.当轨道半径减小时,库仑力做正功,电势能减小;反之,轨道半径增大时,电势能增加.3.光谱线条数(1)一群氢原子跃迁可能发出的光谱线条数为N=.(2)一个氢原子跃迁可能发出的光谱线条数最多为(n-1).3 如图30-4所示为氢原子的能级图,以下判断正确的是()图30-4A.处于n=3能级的氢原子可以吸收任意频率的光子B.欲使处于基态的氢原子被激发,可用能量为12.09 eV的光子照射C.当氢原子从n=5能级跃迁到n=3能级时,要吸收光子D.用氢原子从n=2能级跃迁到n=1能级辐射出的光照射金属铂(逸出功为6.34 eV)时不能发生光电效应式题1 (多选)[2017·山西太原模拟]氢原子的能级图如图30-5所示,已知可见光的光子能量范围约为1.62~3.11 eV.下列说法正确的是()图30-5A.处于n=3能级的氢原子可以吸收任意频率的紫外线,并发生电离B.大量氢原子从高能级向n=3能级跃迁时,可能发出可见光C.大量处于n=4能级的氢原子向低能级跃迁时,可能发出6种不同频率的光D.一个处于n=3能级的氢原子向低能级跃迁时,最多能发出3种不同频率的光式题2 氢原子的能级图如图30-6所示.氢原子从n=3能级直接向n=1能级跃迁所放出的光子,恰能使某种金属产生光电效应,则该金属的截止频率为Hz;用一群处于n=4能级的氢原子向低能级跃迁时所发出的光照射该金属,产生的光电子最大初动能为eV.(普朗克常量h=6.63×10-34 J·s,结果均保留2位有效数字)图30-6第31讲核反应、核能一、原子核与衰变1.原子核的组成:原子核是由和中子组成的,原子核的电荷数等于核内的.2.天然放射现象(1)天然放射现象元素地放出射线的现象,首先由贝可勒尔发现.天然放射现象的发现,说明具有复杂的结构.(2)放射性和放射性元素物质发射某种看不见的射线的性质叫.具有放射性的元素叫放射性元素.(3)三种射线:放射性元素放射出的射线共有三种,分别是、β射线、γ射线.(4)放射性同位素:有放射性同位素和人工放射性同位素两类,放射性同位素的化学性质相同.3.原子核的衰变(1)衰变:原子核放出α粒子或β粒子,变成另一种的变化称为原子核的衰变.(2)分类α衰变X Y+ .β衰变X Y+ .。
高考物理-全品一轮第12单元原子物理听课手册
原子物理高考热点统计要求2014年2015年2016年2017年高考基础要求及冷点统计ⅠⅡⅠⅡⅠⅡⅢⅠⅡⅢ光电效应Ⅰ35(1)35(1)35(1)19氢原子光谱(Ⅰ)氢原子的能级结构、能级公式(Ⅰ)放射性同位素(Ⅰ)射线的危害与防护(Ⅰ)氢原子光谱、放射性同位素、射线的危害与防护属于了解类知识,一般不会单独出题;氢原子的能级结构和能级公式属于难点、冷点.爱因斯坦光电效应方程Ⅰ35(1)35(1)35(1)19原子核的组成、放射性、原子核的衰变、半衰期Ⅰ35(1)35(1)35(1)35(1)15核力、核反应方程Ⅰ35(1)35(1)结合能、质量亏损Ⅰ35(1)1715裂变反应和聚变反应、裂变反应堆Ⅰ35(1)35(1)17考情分析1.从近几年高考试题来看,高考对本章内容的考查涉及的考点较多,具有不确定性.考题可能根据某一考点命题,也可以同时涉及多个考点,题型为选择题的几率很高,很少出现计算题.2.从整体命题趋势上看,高考对本部分的命题基本会保持原有命题思路,仍将以光电效应、能级跃迁、核反应方程、核能的分析与计算为命题重点,在2019届高考复习中应多加关注.第30讲波粒二象性氢原子能级结构一、光电效应1.光电效应在光的照射下金属中的电子从金属表面逸出的现象,叫作光电效应,发射出来的电子叫作.2.爱因斯坦光电效应方程(1)光子说:空间传播的光的能量是不连续的,是一份一份的,每一份叫作一个光子.光子的能量为ε=,其中h是普朗克常量,其值为6.63×10-34 J·s.(2)光电效应方程:.其中hν为入射光的能量,E k为光电子的最大初动能,W0是金属的逸出功.二、光的波粒二象性1.光的干涉、衍射、偏振现象证明光具有性.2.光电效应和康普顿效应说明光具有性.3.光既具有波动性,又具有粒子性,称为光的性.三、玻尔理论与氢原子的能级1.玻尔理论(1)定态:原子只能处于一系列的能量状态中,在这些能量状态中原子是的,电子虽然绕核运动,但并不向外辐射能量.(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=.(h是普朗克常量,h=6.63×10-34 J·s)(3)轨道:原子的不同能量状态跟电子在不同的圆轨道绕核运动相对应.原子的定态是的,因此电子的可能轨道也是的.2.氢原子的能级和轨道半径(1)氢原子的能级公式:E n=E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=eV.(2)氢原子的半径公式:r n=(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10 m.(3)氢原子的能级图:能级图如图30-1所示.图30-1【思维辨析】(1)电子枪发射电子的现象就是光电效应.()(2)不同的金属对应着相同的极限频率.()(3)核外电子虽然绕核运动,但并不向外辐射能量.()(4)核外电子可以吸收或放出任意频率的光子.()【思维拓展】玻尔的氢原子能级理论成功解释了氢原子光谱不连续的特点,解释了当时出现的“紫外灾难”.该理论也可解释其他原子光谱现象吗?考点一对光电效应的理解1.光电效应的实质光子照射到金属表面,某个电子吸收光子的能量后动能变大,当电子的动能增大到足以克服原子核的引力时,便飞出金属表面成为光电子.光电效应现象中,每个电子只能吸收一个光子的能量.2.对光电效应规律的解释(1)光照射金属时,电子吸收一个光子(形成光电子)的能量后,动能立即增大,不需要积累能量的过程.(2)电子从金属表面逸出,首先需克服金属表面原子核的引力做功(逸出功W).要使入射光子的能量不小于W,对应频率νc=为极限频率.(3)光电子的最大初动能只随入射光频率的增大而增大.(4)入射光越强,单位时间内入射到金属表面的光子数越多,产生的光电子数越多,射出的光电子做定向移动时形成的光电流越大.3.概念辨析4.用图像表示光电效应方程(1)最大初动能E k与入射光频率ν的关系图线如图30-2所示.图30-2(2)由图线可以得到的物理量:①极限频率:图线与ν轴交点的横坐标νc.②逸出功:图线与E k轴交点的纵坐标的绝对值W0=|-E|=E.③普朗克常量:图线的斜率k=h.1(多选)[2017·全国卷Ⅲ]在光电效应实验中,分别用频率为νa、νb的单色光a、b照射到同种金属上,测得相应的遏止电压分别为U a和U b、光电子的最大初动能分别为E k a和E k b.h为普朗克常量.下列说法正确的是()A.若νa>νb,则一定有U a<U bB.若νa>νb,则一定有E k a>E k bC.若U a<U b,则一定有E k a<E k bD.若νa>νb,则一定有hνa-E k a>hνb-E k b式题(多选)[2017·湖北八校一联]如图30-3甲所示,在“光电效应”实验中,某同学用相同频率的单色光,分别照射阴极材料为锌和铜的两个不同的光电管,结果都能发生光电效应.图乙为其中一个光电管的遏止电压U c随照射光频率ν变化的函数关系图像.对于这两个光电管,下列判断正确的是()图30-3A.因为不同材料的逸出功不同,所以遏止电压U c不同B.光电子的最大初动能不同C.因为光强不确定,所以单位时间逸出的光电子数可能相同,饱和光电流也可能相同D.两个光电管的U c-ν图像的斜率可能不同■要点总结分析光电效应问题抓住两条对应关系和三个关系式(1)两条对应关系①光强大→光子数目多→发射光电子多→光电流大.②光子频率高→光子能量大→光电子的最大初动能大.(2)三个关系式①爱因斯坦光电效应方程:E k=hν-W0.②最大初动能与遏止电压的关系:E k=eU c.③逸出功与极限频率的关系:W0=hν0.考点二光的波粒二象性1.对光的波粒二象性的理解光既有波动性,又有粒子性,两者不是孤立的,而是有机的统一体,其表现规律为:(1)从数量上看:个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性.(2)从频率上看:频率越低波动性越显著,越容易看到光的干涉和明显的衍射现象;频率越高粒子性越显著,越不容易看到光的干涉和明显的衍射现象,贯穿本领越强.(3)从传播与作用上看:光在传播过程中往往表现出波动性;在与物质发生作用时往往表现出粒子性.(4)波动性与粒子性的统一:由光子的能量E=hν,光子的动量p=表达式也可以看出,光的波动性和粒子性并不矛盾,表示粒子性的粒子能量和动量的计算式中都含有表示波的特征的物理量——频率ν和波长λ.(5)理解光的波粒二象性时不可把光当成宏观概念中的波,也不可把光当成微观概念中的粒子.2.概率波与物质波(1)概率波:光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波是一种概率波.(2)物质波:任何一个运动着的物体,小到微观粒子,大到宏观物体,都有一种波与它对应,其波长λ=,p为运动物体的动量,h为普朗克常量.2能够证明光具有波粒二象性的现象是()A.光电效应和康普顿效应B.光的衍射和光的色散C.光的折射和透镜成像D.光的干涉和康普顿效应式题(多选)波粒二象性是微观世界的基本特征,以下说法正确的有()A.光电效应现象揭示了光的粒子性B.热中子束射到晶体上产生衍射图样说明中子具有波动性C.黑体辐射的实验规律可用光的波动性解释D.动能相等的质子和电子,它们的德布罗意波长也相等考点三能级的分析与计算1.氢原子跃迁条件氢原子跃迁条件hν=E m-E n只适用于光子和氢原子作用而使氢原子在各定态之间跃迁的情况.对于光子和氢原子作用而使氢原子电离时,只要入射光的能量E≥13.6 eV,氢原子就能吸收光子的能量,对于实物粒子与原子作用使氢原子激发时,实物粒子的能量大于或等于能级差即可.2.氢原子跃迁时能量的变化(1)氢原子能量:E n=E k n+E p n=,随n增大而增大,其中E1=-13.6 eV.(2)电子动能:电子绕氢原子核运动时库仑力提供向心力,即k,所以E k=随r增大而减小.(3)电势能:通过库仑力做功判断电势能的增减.当轨道半径减小时,库仑力做正功,电势能减小;反之,轨道半径增大时,电势能增加.3.光谱线条数(1)一群氢原子跃迁可能发出的光谱线条数为N=.(2)一个氢原子跃迁可能发出的光谱线条数最多为(n-1).3如图30-4所示为氢原子的能级图,以下判断正确的是()图30-4A.处于n=3能级的氢原子可以吸收任意频率的光子B.欲使处于基态的氢原子被激发,可用能量为12.09 eV的光子照射C.当氢原子从n=5能级跃迁到n=3能级时,要吸收光子D.用氢原子从n=2能级跃迁到n=1能级辐射出的光照射金属铂(逸出功为6.34 eV)时不能发生光电效应式题1(多选)[2017·山西太原模拟]氢原子的能级图如图30-5所示,已知可见光的光子能量范围约为1.62~3.11 eV.下列说法正确的是()图30-5A.处于n=3能级的氢原子可以吸收任意频率的紫外线,并发生电离B.大量氢原子从高能级向n=3能级跃迁时,可能发出可见光C.大量处于n=4能级的氢原子向低能级跃迁时,可能发出6种不同频率的光D.一个处于n=3能级的氢原子向低能级跃迁时,最多能发出3种不同频率的光式题2氢原子的能级图如图30-6所示.氢原子从n=3能级直接向n=1能级跃迁所放出的光子,恰能使某种金属产生光电效应,则该金属的截止频率为Hz;用一群处于n=4能级的氢原子向低能级跃迁时所发出的光照射该金属,产生的光电子最大初动能为eV.(普朗克常量h=6.63×10-34 J·s,结果均保留2位有效数字)图30-6第31讲核反应、核能一、原子核与衰变1.原子核的组成:原子核是由和中子组成的,原子核的电荷数等于核内的.2.天然放射现象(1)天然放射现象元素地放出射线的现象,首先由贝可勒尔发现.天然放射现象的发现,说明具有复杂的结构.(2)放射性和放射性元素物质发射某种看不见的射线的性质叫.具有放射性的元素叫放射性元素.(3)三种射线:放射性元素放射出的射线共有三种,分别是、β射线、γ射线.(4)放射性同位素:有放射性同位素和人工放射性同位素两类,放射性同位素的化学性质相同.3.原子核的衰变(1)衰变:原子核放出α粒子或β粒子,变成另一种的变化称为原子核的衰变.(2)分类α衰变X Y+.β衰变X Y+.(3)半衰期:放射性元素的原子核有半数发生衰变所需的时间.半衰期由原子核内部的因素决定,跟原子所处的、状态无关.二、核力与核能1.核力核子间的作用力.核力是力,作用范围在1.5×10-15 m之内,只在相邻的核子间发生作用.2.核能(1)结合能:核子结合为原子核时的能量或原子核分解为核子时的能量,叫作原子核的结合能,亦称核能.(2)比结合能:①定义:原子核的结合能与之比,称作比结合能,也叫平均结合能.②特点:不同原子核的比结合能不同,原子核的比结合能越大,表示原子核中核子结合得越牢固,原子核.3.质能方程、质量亏损爱因斯坦质能方程E=,原子核的质量比组成它的核子的质量和小Δm,这就是质量亏损.由质量亏损可求出释放的核能ΔE=.三、裂变与聚变1.重核裂变(1)定义:质量数较大的原子核受到高能粒子的轰击而分裂成几个质量数较小的原子核的过程.(2)链式反应条件:裂变物质的体积临界体积.(3)典型的裂变方程n.(4)裂变的应用:原子弹、核反应堆.2.轻核聚变(1)定义:两个轻核结合成质量数较大的原子核的反应过程.(2)条件:使核发生聚变需要几百万度以上的高温,因此聚变又叫.(3)典型的聚变方程n.(4)聚变的应用:氢弹.【思维辨析】(1)天然放射现象说明原子是可分的.()(2)人们认识原子核具有复杂结构是从卢瑟福发现质子开始的.()(3)如果某放射性元素的原子核有100个,经过一个半衰期后还剩50个.()(4)质能方程表明在一定条件下,质量可以转化为能量.()【思维拓展】核能的计算是原子物理的重点知识和高考的热点问题,都有哪些方法可以求核反应中的能量呢?【物理学史】1896年,法国物理学家贝可勒尔用铀盐样品进行实验时发现了天然放射现象.1897年,英国物理学家汤姆孙从阴极射线的研究中证实了电子的存在.1898年,居里夫妇证明含有铀元素的化合物都具有放射性,并由此发现了“镭”.1911年,卢瑟福公开α粒子散射实验结论,建立原子核式结构模型.1919年,卢瑟福首次实现人工核反应,用α粒子轰击氮核,结果打出了“质子”.1932年,英国物理学家查德威克从α粒子轰击铍的核反应过程中发现了“中子”.考点一核反应方程1.核反应的四种类型类型可控性核反应方程典例衰变α衰变自发He β衰变自发e人工转变人工控制H(卢瑟福发现质子)n(查德威克发现中子)n约里奥—居里夫妇发现放射性同位素及正电子e重核裂变比较容易进行人工控制nn轻核聚变除氢弹外无法控制n2.关于核反应的三点说明(1)核反应过程一般都是不可逆的,所以核反应方程只能用单向箭头表示反应方向,不能用等号连接.(2)核反应的生成物一定要以实验为基础,不能凭空只依据两个守恒规律杜撰出生成物来写核反应方程.(3)核反应遵循电荷数守恒和质量数守恒(而不是质量守恒),核反应过程中反应前后的总质量一般会发生变化.1[2017·天津卷]我国自主研发制造的国际热核聚变核心部件在国际上率先通过权威机构认证,这是我国对国际热核聚变项目的重大贡献.下列核反应方程中属于聚变反应的是()图31-1A.nB.HC.nD.n式题下列有关原子结构和原子核的认识,正确的是()A.γ射线是高速运动的电子流B.氢原子辐射光子后,其绕核运动的电子动能增大C.太阳辐射能量的主要来源是太阳中发生的重核裂变D.Bi的半衰期是5天,100克Bi经过10天后还剩下50克考点二对天然放射现象的理解1.α衰变、β衰变的比较衰变类型α衰变β衰变衰变方程Hee衰变实质2个质子和2个中子结合成氦核n He1个中子转化为1个质子和1个电子e匀强磁场中轨迹形状衰变规律电荷数守恒、质量数守恒、动量守恒2.三种射线的比较射线名称比较项目α射线β射线γ射线组成高速氦核流高速电子流光子流(高频电磁波)带电荷量2e-e0质量4m p静止质量为零符号He eγ速度0.1c0.99c c垂直进入电场或磁场的偏转情况偏转偏转不偏转贯穿本领最弱较强最强对空气的电离作用很强较弱很弱[说明]γ射线是伴随着α衰变或β衰变产生的,γ射线不改变原子核的电荷数和质量数,其实质是放射性原子核在发生α衰变或β衰变时,产生的某些新核由于具有过多的能量(核处于激发态)而辐射出的光子.2[2017·全国卷Ⅱ]一静止的铀核放出一个α粒子衰变成钍核,衰变方程为He.下列说法正确的是()A.衰变后钍核的动能等于α粒子的动能B.衰变后钍核的动量大小等于α粒子的动量大小C.铀核的半衰期等于其放出一个α粒子所经历的时间D.衰变后α粒子与钍核的质量之和等于衰变前铀核的质量式题实验观察到,静止在匀强磁场中A点的原子核发生β衰变,衰变产生的新核与电子恰在纸面内做匀速圆周运动,运动方向和轨迹示意图如图31-2所示,则轨迹1为的轨迹,轨迹2是的轨迹,磁场方向.图31-2考点三核能的计算1.对质能方程的理解(1)质能方程E=mc2给出了物体的能量和质量之间的关系,质量为m的物体具有的总能量为mc2,质量和能量不能互相转化.(2)“质量与能量间存在着简单的正比关系”,即物体的质量(这里指动质量)越大,能量越多,反之物体的质量越小,能量也越少;当物体放出能量时,满足ΔE=Δmc2.2.求核能的三种方法:(1)根据ΔE=Δmc2计算.若Δm的单位是 kg,计算时,c的单位是 m/s,ΔE的单位是J;若Δm的单位是原子质量单位u,利用1 u相当于931.5 MeV,用ΔE=Δm×931.5 MeV进行计算,ΔE的单位是MeV,1 MeV=1.6×10-13 J.(2)根据比结合能计算.原子核的结合能=比结合能×核子数.(3)结合动量守恒定律和能量守恒定律进行分析计算,此时要注意动量与动能关系式p2=2mE k的应用.[温馨提示]利用质能方程计算核能时,不能用质量数代替质量进行计算.3[2017·全国卷Ⅰ]大科学工程“人造太阳”主要是将氘核聚变反应释放的能量用来发电.氘核聚变反应方程是H的质量为2.013 6u,n的质量为1.008 7 u,1 u=931 MeV/c2.氘核聚变反应中释放的核能约为()A.3.7 MeVB.3.3 MeVC.2.7 MeVD.0.93 MeV式题太阳内部持续不断地发生着4个质子聚变为一个氦核的热核反应,这个核反应释放出的大量能量就是太阳的能源.(m p=1.007 3 u,mα=4.001 5 u,m e=0.000 55 u,太阳的质量为2×1030 kg)(1)这一核反应能释放出多少能量?(2)已知太阳每秒释放能量为3.8×1026 J,则太阳每秒减小的质量为多少?(3)若太阳质量减小万分之三时热核反应不能继续进行,则太阳上的热核反应还能发生多少年?考点四核反应中的动量守恒问题(1)核反应过程遵循能量守恒定律:在无光子辐射的情况下,核反应中释放的核能将转化为生成的新核和新粒子的动能;有光子辐射的情况下,核反应中释放的核能将转化为生成的新核和新粒子的动能及光子的能量.一般认为核反应放出的能量与反应前原子核的动能之和等于反应后原子核的总动能.(2)核反应过程遵循动量守恒定律:即反应前原子核的总动量等于反应后原子核的总动量.(3)解决核反应与动量及能量综合的问题时,首先应用质能方程求出核反应释放出的核能,其次根据动量守恒定律和能量守恒定律列出相应的方程,最后联立求解.4[2017·北京卷]在磁感应强度为B的匀强磁场中,一个静止的放射性原子核发生了一次α衰变.放射出的α粒子He)在与磁场垂直的平面内做圆周运动,其轨道半径为R.用m、q分别表示α粒子的质量和电荷量.(1)放射性原子核用X表示,新核的元素符号用Y表示,写出该α衰变的核反应方程.(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小.(3)设该衰变过程释放的核能都转为α粒子和新核的动能,新核的质量为M,求衰变过程的质量亏损Δm.式题1海水中含有丰富的氘,完全可充当未来的主要能源.两个氘核的核反应方程为n,其中氘核的质量为2.013 0 u,氦核的质量为3.015 0 u,中子的质量为1.008 7 u.(1 u相当于931.5 MeV)(1)求核反应中释放的核能.(2)在两个氘核以相等的动能0.35 MeV进行对心碰撞并且核能全部转化为机械能的情况下,求反应中产生的中子和氦核的动能.式题2(多选)[2018·武汉一中月考]云室能显示射线的径迹,把云室放在磁场中,从带电粒子运动轨迹的弯曲方向和半径大小就能判断粒子的属性.放射性元素的原子核A静止放在磁感应强度B=2.5 T的匀强磁场中,该原子核发生衰变,放射出粒子并变成新原子核B,放射出的粒子与新核运动轨迹如图31-3所示,测得两圆的半径之比R1∶R2=42∶1,且R1=0.2 m.已知α粒子质量mα=6.64×10-27 kg,β粒子质量mβ=9.1×10-31 kg,普朗克常量h取6.6×10-34 J·s,下列说法正确的是()图31-3A.新原子核B的核电荷数为84B.原子核A发生的是β衰变C.衰变放出的粒子的速度大小为2.4×107 m/sD.如果原子核A衰变时释放出一种频率为1.2×1015 Hz的光子,那么这种光子能使逸出功为4.54 eV的金属钨发生光电效应。
「精品」高考物理大一轮复习第12单元原子物理作业手册
第12单元原子物理课时作业(三十) 第30讲波粒二象性氢原子能级结构时间 / 40分钟基础巩固1.[2017·湖南岳阳二模]关于原子物理问题,下列说法中正确的是()A.一群处于n=3激发态的氢原子向较低能级跃迁,最多可放出两种不同频率的光子B.由于每种原子都有自己的特征谱线,故可以根据原子光谱来鉴别物质C.实际上,原子中的电子没有确定的轨道,在空间各处出现的概率是一定的D.α粒子散射实验揭示了原子的可能能量状态是不连续的2.(多选)对光的认识,下列说法正确的是()A.个别光子的行为表现出粒子性B.大量光子的行为表现出粒子性C.光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的D.光表现出波动性时,就不具有粒子性了,光表现出粒子性时,就不再具有波动性了3.[2017·安徽黄山模拟]在“光电效应”实验中,用某一单色光照到某金属表面时,没有光电子从金属表面逸出,下列说法中正确的是()图K30-1A.增大照射光的频率,就一定发生光电效应B.增大照射光的强度,就一定发生光电效应C.延长照射光照射时间,就一定发生光电效应D.若照射光的频率大于该金属材料的极限频率,则能发生光电效应4.(多选)[2017·成都二诊]光伏发电是利用光电效应原理来工作的.目前,人类提高光伏发电效率的途径主要有两个方面:一是改变光源体发光谱带的频率,从而改变产生光电效应的光谱宽度;二是改变被照射金属材料的成分,从而改变其逸出功.下列提高光伏发电效率的途径正确的是()A.减小光源体发光谱带的频率B.增大光源体发光谱带的频率C.增大金属材料的逸出功D.减小金属材料的逸出功5.氢光谱在可见光的区域内有4条谱线,按照在真空中波长由长到短的顺序,这4条谱线分别是Hα、Hβ、Hγ和Hδ,它们都是氢原子的电子从量子数大于2的可能轨道上跃迁到量子数为2的轨道时所发出的光.下列判断错误的是()A.电子处于激发态时,Hα所对应的轨道量子数大B.Hγ的光子能量大于Hβ的光子能量C.对于同一种玻璃,4种光的折射率以Hα为最小D.对同一种金属,若Hα能使它发生光电效应,则Hβ、Hγ、Hδ都可以使它发生光电效应6.(多选)[2017·太原模拟] 20世纪初,爱因斯坦提出光子理论,使得光电效应现象得以完美解释.玻尔的氢原子模型也是在光子概念的启发下提出的.关于光电效应和氢原子模型,下列说法正确的是()A.光电效应实验中,照射光足够强就可以有光电流B.若某金属的逸出功为W0,则该金属的截止频率为C.保持照射光强度不变,增大照射光频率,在单位时间内逸出的光电子数将减少D.氢原子由低能级向高能级跃迁时,吸收光子的能量可以稍大于两能级间能量差技能提升7.(多选)[2018·河北衡水中学月考]如图K30-2所示为研究光电效应的实验装置示意图,闭合开关,滑片P处于滑动变阻器中央位置,当一束单色光照到此装置的金属表面K时,电流表有示数.下列说法正确的是()图K30-2A.若仅增大该单色光照射的强度,则光电子的最大初动能增大,电流表示数也增大B.无论增大照射光的频率还是增加照射光的强度,金属的逸出功都不变C.保持照射光频率不变,当强度减弱时,发射光电子的时间将明显增加D.若滑动变阻器滑片左移,则电压表示数减小,电流表示数增大8.[2017·长沙模拟]以往我们认识的光电效应是单光子光电效应,即一个电子在极短时间内只能吸收到一个光子而从金属表面逸出.强激光的出现丰富了人们对于光电效应的认识,用强激光照射金属,由于其光子密度极大,一个电子在极短时间内吸收多个光子成为可能,从而形成多光子光电效应,这已被实验证实.光电效应实验装置示意图如图K30-3所示.用频率为ν的普通光源照射阴极K,没有发生光电效应,换用同样频率为ν的强激光照射阴极K,则发生了光电效应;此时,若加上反向电压U,即将阴极K接电源正极,阳极A接电源负极,在K、A之间就形成了使光电子减速的电场.逐渐增大U,光电流会逐渐减小;当光电流恰好减小到零时,所加反向电压U可能是(其中W为逸出功,h为普朗克常量,e为电子电荷量) ()图K30-3A.U=C.U=2hν-WD.U=9.[2017·湖北武昌调研]用如图K30-4所示的光电管研究光电效应,用某种频率的单色光a照射光电管阴极K,电流计G的指针发生偏转,而用另一频率的单色光b照射光电管阴极K时,电流计G的指针不发生偏转,那么()图K30-4A.a光的波长一定大于b光的波长B.增加b光的强度可能使电流计G的指针发生偏转C.用a光照射光电管阴极K时通过电流计G的电流是由d到cD.只增加a光的强度可使通过电流计G的电流增大10.(多选)[2017·太原模拟]图K30-5为氢原子的能级示意图.关于氢原子跃迁,下列说法中正确的是()图K30-5A.一个处于量子数n=5激发态的氢原子,它向低能级跃迁时,最多可产生10种不同频率的光子B.处于n=3激发态的氢原子吸收具有1.87 eV能量的光子后被电离C.用12 eV的光子照射处于基态的氢原子,氢原子仍处于基态D.氢原子从高能级向低能级跃迁时,动能增大,电势能增大11.(多选)[2017·济南模拟]如图K30-6所示是某金属在光的照射下产生的光电子的最大初动能E k与照射光频率ν的关系图像.由图像可知()图K30-6A.该金属的逸出功等于EB.该金属的逸出功等于hν0C.照射光的频率为2ν0时,产生的光电子的最大初动能为ED.照射光的频率为时,产生的光电子的最大初动能为12.(多选)[2017·东北三校一联]如图K30-7所示为氢原子的能级示意图.氢原子可在下列各能级间发生跃迁,设从n=4能级跃迁到n=1能级辐射的电磁波的波长为λ1,从n=4能级跃迁到n=2能级辐射的电磁波的波长为λ2,从n=2能级跃迁到n=1能级辐射的电磁波的波长为λ3,则下列关系式中正确的是()图K30-7A.λ1<λ3B.λ3<λ2C.λ3>λ2D.13.(多选)图K30-8为氢原子的能级示意图,则下列对氢原子跃迁的理解正确的是()图K30-8A.由高能级向低能级跃迁时辐射出来的光子一定不能使逸出功为3.34 eV的金属发生光电效应B.大量处于n=4能级的氢原子向n=1能级跃迁时,向外辐射6种不同频率的光子C.大量处于n=3能级的氢原子向n=1能级跃迁时,用发出的光照射逸出功为3.34 eV的金属,从金属表面逸出的光电子的最大初动能为8.75 eVD.如果用光子能量为10.3 eV的光照射处于n=1能级的氢原子,则该能级的氢原子能够跃迁到较高能级14.(多选)利用金属晶格(大小约10-10 m)作为障碍物观察电子的衍射图样,方法是让电子束通过电场加速后,照射到金属晶格上,从而得到电子的衍射图样.已知电子质量为m,电荷量为e,初速度为0,加速电压为U,普朗克常量为h.下列说法中正确的是()A.该实验说明了电子具有波动性B.实验中电子束的德布罗意波长为λ=C.加速电压U越大,电子的衍射现象越明显D.若用相同动能的质子替代电子,衍射现象将更加明显挑战自我15.原子可以从原子间的碰撞中获得能量,从而发生能级跃迁(在碰撞中,动能损失最大的是完全非弹性碰撞).一个具有13.6 eV动能、处于基态的氢原子与另一个静止的、也处于基态的氢原子发生对心正碰.(1)能否使静止氢原子发生能级跃迁?(氢原子能级图如图K30-9所示)(2)若上述碰撞中可以使静止氢原子发生电离,则运动氢原子的初动能至少为多少?图K30-9课时作业(三十一) 第31讲核反应、核能时间 / 40分钟基础巩固1.[2017·青岛模拟]下列说法正确的是()A.在核反应过程的前后,反应体系的质量数守恒,但电荷数不守恒B.用加温、加压或改变其化学状态的方法都不能改变放射性原子核的半衰期C.18个放射性元素的原子核经一个半衰期一定有9个发生了衰变D.由两种元素的原子核结合成一种新元素的原子核时,一定吸收能量2.[2017·石家庄二中模拟]下列说法正确的是()A.12C与14C是同位素,它们的化学性质并不相同B.核力是原子核内质子与质子之间的力,中子和中子之间并不存在核力C.在裂变反应K r都大,但比结合能没有Kr大D.α、β、γ三种射线都是带电粒子流3.(多选)下列说法中正确的是()A.放射性元素的半衰期与温度、压强无关B.玻尔理论认为,原子中的核外电子轨道是量子化的C.“原子由电子和带正电的物质组成”是通过卢瑟福α粒子散射实验判定的D.天然放射性元素Th(钍)共经过4次α衰变和6次β衰变成为Pb(铅)4.[2017·太原模拟]我国科学家为解决“玉兔号”月球车长时间处于黑夜工作的需要,研制了一种小型核能电池,将核反应释放的核能转变为电能,需要的功率并不大,但要便于防护其产生的核辐射.请据此猜测“玉兔号”所用核能电池有可能采纳的核反应方程是()A.nB.nC. eD.n5.(多选) [2018·黑龙江牡丹江一中月考]Pu衰变时释放巨大能量,如图K31-1所示,其衰变反应方程为He,并伴随γ光子辐射,则下列说法中正确的是()图K31-1A.核燃料总是利用比结合能小的核B.核反应中γ光子的能量就是Pu的结合能C.Pu核更稳定,说明U的结合能大D.由于U的比结合能小,所以衰变时释放巨大能量6.钚239Pu)可由铀239U)经过衰变而产生.下列说法正确的是()A.U的核内具有相同的中子数B.U的核内具有相同的质子数C.PuD.Pu技能提升7.[2017·广州二模]U的衰变有多种途径,其中一种途径是先衰成为Bi,然后可以经一次衰变成为X(X代表某种元素),也可以经一次衰变成为Ti,最后都变成Pb,衰变路径如图K31-2所示,下列说法中正确的是()图K31-2A.过程①是β衰变,过程③是α衰变;过程②是β衰变,过程④是α衰变B.过程①是β衰变,过程③是α衰变;过程②是α衰变,过程④是β衰变C.过程①是α衰变,过程③是β衰变;过程②是β衰变,过程④是α衰变D.过程①是α衰变,过程③是β衰变;过程②是α衰变,过程④是β衰变8.[2018·西安铁一中月考]在正、负电子对撞机中,一个电子和一个正电子对撞发生湮灭而转化为一对光子.设正、负电子的质量在对撞前均为m,对撞前的动能均为E,光在真空中的传播速度为c,普朗克常量为h,则对撞后转化成光子的波长等于()A.C.9.(多选)[2017·湖南十校联考]核反应堆是利用中子轰击重核发生裂变反应,释放出大量核能Kr+a X是反应堆中发生的许多核反应中的一种,X是某种粒子,a是X粒子的个数,用m U、m Ba、m Kr分别表示Kr核的质量,m X表示X粒子的质量,c为真空中的光速,以下说法正确的是()A.X为中子,a=2B.X为中子,a=3C.上述核反应中放出的核能ΔE=(m U-m Ba-m Kr-2m X)c2D.上述核反应中放出的核能ΔE=(m U-m Ba-m Kr-3m X)c210.(多选)[2018·山西大学附中月考]科学家利用核反应获取氚,再利用氘和氚的核反应获得能量,核反应方程分别为:X+Y He+X+17.6 MeV.下列表述正确的是()A.X是中子B.Y的质子数是3,中子数是6C.两个核反应都没有出现质量亏损D.氘和氚的核反应是核聚变反应11.(多选)一静止的原子核A发生α衰变后变成原子核B,已知原子核A、原子核B和α粒子的质量分别为m A、m B和mα,光速为c,反应释放的核能全部转化为粒子的动能,则()A.原子核B与α粒子的速度之比为m B∶mαB.原子核B与α粒子的动能之比为m B∶mαC.原子核B与α粒子的动能之和为(m A-m B-mα)c2D.原子核A比原子核B的中子数多2,质子数多212.(多选)[2018·武汉华师一附中月考]现有两动能均为E0=0.35 MeV的H核在一条直线上相向运动,两个H核发生对撞后能发生核反应,得到He核和新粒子,且在核反应过程中释放的能量完全转化为He核的质量为3.016 0 u,新粒子的质量为1.008 7 u,核反应时质量亏损1 u释放的核能约为931 MeV.下列说法正确的是(如果涉及计算,结果保留整数) ()A.核反应方程为HB.核反应前后不满足能量守恒定律C.新粒子的动能约为3 MeVD.He核的动能约为1 MeV挑战自我13.静止的铀238U)经历一次α衰变成为Th原子核,同时放出一个γ光子(频率为ν),已知α粒子的质量为m.(普朗克常量为h,光速为c)(1)写出衰变方程.(2)若衰变后,α粒子的速度为v,而Th原子核的运动方向恰好与α粒子的速度方向相反,不考虑γ光子的动量,那么Th原子核的速度为多大?(3)如果核反应放出的能量全部转化为粒子的动能和γ光子的能量,那么该衰变发生的质量亏损Δm为多大?14.[2017·湖北黄石模拟]用速度大小为v的中子轰击静止的锂核Li),发生核反应后生成氚核和α粒子.生成的氚核速度方向与中子的速度方向相反,氚核与α粒子的速度之比为7∶8,已知中子的质量为m,质子的质量可近似看作m,光速为c.(1)写出核反应方程;(2)求氚核和α粒子的速度大小;(3)若核反应过程中放出的核能全部转化为α粒子和氚核的动能,求质量亏损.教师详解(作业手册)课时作业(三十)1.B[解析] 一群处于n=3激发态的氢原子向较低能级跃迁,可能放出三种不同频率的光子,故选项A错误;每种原子都有自己的特征谱线,故可以根据原子光谱来鉴别物质,故选项B正确;原子中的电子没有确定的轨道,在空间各处出现的概率是不一定的,故选项C错误.α粒子散射实验揭示了原子的核式结构模型,认为电子绕核旋转,故选项D错误.2.AC[解析] 光是一种概率波,少量光子的行为易显示出粒子性,而大量光子的行为往往显示出波动性,A 正确,B错误;光的波动性不是由于光子之间的相互作用引起的,而是光的一种属性,C正确;粒子性和波动性是光同时具备的两种属性,D错误.3.D[解析] 增大照射光的频率,若其不大于金属材料的极限频率,还是不会发生光电效应,选项A错误;光电效应是否产生与照射光频率有关,而与照射光强度无关,选项B错误;光电效应是否产生与照射光照射时间无关,选项C错误;只要照射光的频率大于该金属材料的极限频率,就能发生光电效应,选项D正确.4.BD[解析] 根据爱因斯坦的光电效应方程,hν=W+mv2,最大初动能随照射光频率的增大而增大,随照射光频率的减小而减小,选项A错误,B正确;减小金属的逸出功,也能增大最大初动能,选项C错误,D正确.5.A[解析] 由E=h可知,波长大,光子能量小,故Hα光子能量最小,Hδ光子能量最大,再由h=E n-E2可知,Hα对应的轨道量子数最小,A错误.6.BC[解析] 发生光电效应的条件是照射光频率大于截止频率,并不是光足够强就能发生光电效应,故A错误;金属的逸出功W0=hν,得ν=,故B正确;一定强度的照射光照射某金属发生光电效应时,照射光的频率越高,单个光子的能量值越大,光子的个数越少,单位时间内逸出的光电子数就越少,故C正确;氢原子由低能级向高能级跃迁时,吸收光子的能量等于两能级间能量差,故D错误.7.BD[解析] 若仅增大该单色光照射的强度,由于每个光子的能量不变,因此光电子的最大初动能不变,但单位时间内射出的光电子数增多,因此光电流增大,故选项A错误;逸出功由金属材料自身决定,与是否有光照无关,故B正确;发生光电效应不需要时间积累,只要照射光的频率大于极限频率即可,故选项C错误;若滑动变阻器滑片左移,则电压表示数减小,因为电压是反向电压,所以电压减小时,光电子更容易到达A极形成电流,电流表示数增大,故选项D正确.8.B[解析] 以从阴极K逸出的且具有最大初动能的光电子为研究对象,由动能定理得-Ue=0-,由光电效应方程得nhν=+W(n=2,3,4,…),联立解得U=(n=2,3,4,…),故选项B正确.9.D[解析] 用一定频率的a单色光照射光电管时,电流计指针会发生偏转,知νa>νc,a光的波长小于b 光的波长,A错误;发生光电效应的条件是ν>νc,增加b光的强度不能使电流计G的指针发生偏转,B错误;发生光电效应时,电子从光电管左端运动到右端,而电流的方向与电子定向移动的方向相反,所以流过电流计G的电流方向是由c到d,C错误;增加a光的强度可使通过电流计G的电流增大,D正确.10.BC[解析] 一个处于量子数n=5激发态的氢原子向低能级跃迁时,最多可产生4种不同频率的光子,选项A错误;当n=3时,氢原子的能量E3=-1.51 eV,所以处于n=3激发态的氢原子的电离能是1.51 eV,当该氢原子吸收具有1.87 eV能量的光子后被电离,选项B正确;根据玻尔理论,处于基态的氢原子不可能吸收该光子,所以氢原子仍处于基态,选项C正确;电子从高能级到低能级跃迁时,动能增大,电势能减小,选项D错误.11.ABC[解析] 由爱因斯坦光电效应方程E k=hν-W0知,当ν=0时,-W0=E k,故W0=E,A正确;而E k=0时,hν=W0,即W0=hν0,B正确;照射光的频率为2ν0时产生的光电子的最大初动能E km=2hν0-hν0=hν0=E,C 正确;照射光的频率为时,不会发生光电效应,D错误.12.AB[解析] 已知从n=4到n=1能级辐射的电磁波的波长为λ1,从n=4到n=2能级辐射的电磁波的波长为λ2,从n=2到n=1能级辐射的电磁波的波长为λ3,则λ1、λ2、λ3的关系为h,即,λ1<λ3,,λ3<λ2,又h,即,则,选项A、B正确.13.BC[解析] 氢原子从高能级向低能级跃迁时放出的光子的能量等于前、后两个能级的能量之差,当氢原子从高能级直接跃迁到基态时放出的光子的能量最小值为-3.4 eV-(-13.6 eV)=10.2 eV,大于3.34 eV,所以一定能使逸出功为3.34 eV的金属发生光电效应,A错误;大量处于n=4能级的氢原子向基态跃迁时,辐射光子的种数为=6,B正确;大量处于n=3能级的氢原子向n=1能级跃迁时,辐射出的光子能量最大为-1.51 eV-(-13.6 eV)=12.09 eV,用此光子照射逸出功为3.34 eV的金属,由爱因斯坦光电效应方程可得光电子的最大初动能为12.09 eV-3.34 eV=8.75 eV,C正确;当氢原子由低能级向高能级跃迁时,氢原子吸收的光子能量一定等于两能级之间的能量差,而由氢原子的能级图可知n=1能级与任何能级间的能量差都不等于10.3 eV,因此不能使n=1能级的氢原子跃迁到较高的能级,D错误.14.AB[解析] 能得到电子的衍射图样,说明电子具有波动性,A正确;由德布罗意波长公式λ=,可得λ=,B正确;由λ=可知,加速电压越大,电子的波长越小,衍射现象就越不明显,C错误;用相同动能的质子替代电子,质子的波长变小,衍射现象与电子相比更不明显,故D错误.15.(1)不能(2)27.2 eV[解析] (1)设运动氢原子的速度为v0,发生完全非弹性碰撞后两者的速度为v,损失的动能ΔE被静止氢原子吸收.若ΔE=10.2 eV,则静止氢原子可由n=1能级跃迁到n=2能级.由动量守恒定律和能量守恒定律有mv0=2mvmv2+ΔE=Ek=13.6 eV联立解得ΔE==6.8 eV因为ΔE=6.8 eV<10.2 eV,所以不能使静止氢原子发生跃迁.(2)若要使静止氢原子电离,则ΔE≥13.6 eV联立解得E k≥27.2 eV.课时作业(三十一)1.B[解析] 核反应前后质量数守恒,电荷数也守恒,A错误;半衰期是宏观统计概念,C错误;核聚变释放能量,D错误.2. C[解析] 同位素的核外电子数量相同,所以一种元素的各种同位素都具有相同的化学性质,A错误;原子核内相邻的质子和中子之间均存在核力,B错误;核子数越多其结合能也越大,所以Kr都大,但Kr都小,C正确;α射线、β射线都是带电粒子流,而γ射线是电磁波,不带电,故D错误.3.AB[解析] 放射性元素的半衰期只与原子核自身有关,与温度、压强无关,故A正确;玻尔理论认为原子只能处在能量不连续的一系列状态,故B正确;通过卢瑟福α粒子散射实验判定的是原子具有核式结构,并未判定原子由电子和带正电的物质组成,故C错误Pb时,质量数减小24,而质子数减小8,因β衰变时质量数不变,质子数增加1,而α衰变时质量数减小4,质子数减小2,所以要经过6次α衰变和4次β衰变,故D错误.4.C[解析] A是聚变反应,反应剧烈,至今可控聚变反应还处于实验研究阶段;B是裂变反应,虽然实现了人工控制,但因反应剧烈,防护要求高,还不能小型化;C是人工放射性同位素的衰变反应,是小型核能电池主要采用的反应方式;D是人工核反应,需要高能α粒子.5.AD[解析] 根据比结合能越大,越稳定,则核燃料总是利用比结合能小的核,故A正确.核反应中γ光子的能量就是质量亏损对应的能量,故B错误Pu更稳定,说明U的比结合能大,所以Pu衰变时,会释放巨大能量,故C错误,D正确.6.C[解析] 钚239Pu)和铀239U)质量数相同,质子数和中子数均不同,选项A、B错误Pu多两个中子,少两个质子Pu,选项C正确.7.B[解析]X,质量数没有发生变化,故①为β衰变Pb,质量数减少4,故③为α衰变Ti,电荷数减少2,故②为α衰变,过程④的电荷数增加1,为β衰变,故A、C、D错误,B正确.8.C[解析] 该反应方程为e→2γ,由于光子的静止质量为零,所以质量亏损为Δm=2m,由质能方程,对应的能量为ΔE=2mc2,根据能量守恒定律可知2hν=2E+ΔE,即有=2E+2mc2,所以光子在真空中的波长λ=,C正确.9.BC[解析] 核反应中质量数守恒、电荷数守恒,则知n,a=3,故A 错误,B正确.由ΔE=Δmc2可得,ΔE=(m U+m X-m Ba-m Kr-3m X)c2=(m U-m Ba-m Kr-2m X)c2,故C正确,D错误.10.AD[解析] 根据核反应方程He+X,X的质量数m1=2+3-4=1,核电荷数z1=1+1-2=0,所以X是中子,故A正确;根据核反应方程X+Y H,X是中子,所以Y的质量数m2=4+3-1=6,核电荷数z2=2+1-0=3,所以Y的质子数是3,中子数是3,故B错误;根据两个核反应方程可知,都有大量的能量释放出来,所以一定都有质量亏损,故C错误;氘和氚的核反应过程中是质量较小的核生成质量较大的新核,所以是核聚变反应,故D正确.11.CD[解析] 原子核A发生α衰变,设原子核B和α粒子的速度分别为v B和vα,由动量守恒定律有0=m B v B-mαvα,则,,A、B错误.由质能方程知原子核B和α粒子的动能之和为ΔE=Δmc2=(m A-m B-mα)c2,C正确.由质量数守恒和电荷数守恒知,A比B质子数多2,中子数多2,D正确.12.CD[解析] 由核反应过程中的质量数守恒和电荷数守恒可知n,则新粒子为中子n,A错误;核反应过程中有质量亏损,释放能量,仍然满足能量守恒定律,B错误;由题意可知ΔE=(2.014 1 u×2-3.016 0 u-1.008 7 u)×931 MeV/u=3.3 MeV,根据核反应中系统的能量守恒有E kHe+E kn=2E0+ΔE,根据核反应中系统的动量守恒有p He-p n=0,由E k=,可知,解得E kHe=·(2E0+ΔE)≈1 MeV,E kn=(2E0+ΔE)≈3 MeV,C、D正确.13.(1He(2)v (3)[解析] (1)由电荷数守恒和质量数守恒可得衰变方程为He.(2)设Th核的反冲速度为v0,由动量守恒定律得0=mv0-mv解得v0=v.(3)由能量守恒定律有+hν=Δmc2解得Δm=.14.(1He(2)(3)[解析](1He(2)由动量守恒定律得m n v=-m H v1+m He v2由题意得v1∶v2=7∶8解得v1=,v2=(3)氚核和α粒子的动能之和为E k=mv2释放的核能为ΔE=E k-E kn=mv2由爱因斯坦质能方程得,质量亏损为Δm=。
2019版高考物理(江苏专用)大一轮复习:第十二章 波粒二象性 原子结构 原子核 章末检测
章末检测(十二)(时间:40分钟满分:100分)一、单项选择题(本题共6小题,每小题6分,共36分,每小题只有一个选项符合题意。
)1.某一放射性物质发生衰变时放出α、β、γ三种射线,让这三种射线进入磁场,运动情况如图1所示,下列说法正确的是()图1A.该放射性物质的半衰期随着温度的升高会增大B.C粒子是原子核的重要组成部分C.A粒子一定带正电D.B粒子的穿透性最弱解析半衰期是由放射性元素本身决定的,不随温度的升高发生变化,故选项A 错误;根据左手定则可知,C粒子带负电,所以是电子,电子是原子核内的一个中子转化为一个质子时放出的,电子不是原子核的组成部分,故选项B错误;A 粒子在垂直于纸面向里的磁场中向上运动,向左偏转,由左手定则可知,A粒子一定带正电,故选项C正确;B粒子在磁场中不发生偏转,可知B为γ射线,B 粒子的穿透性最强,故选项D错误。
★答案★ C2.放射性元素钋(210 84Po)发生衰变时,会产生42He和一种未知粒子,并放出γ射Po―→y82X+42He+γ。
下列说法正确的是()线,其核反应方程为21084A.42He的穿透能力比γ射线强B.y=206C.X核的中子个数为126D.这种核反应为β衰变解析42He的穿透能力比γ射线弱,选项A错误;y=210-4=206,选项B正确;X 核的中子个数为206-82=124,选项C 错误;题中的核反应为α衰变,选项D 错误。
★答案★ B3.在某次光电效应实验中,得到的遏止电压U c 与入射光的频率ν的关系如图2所示。
若该直线的斜率和截距分别为k 和b ,电子电荷量的绝对值为e ,则普朗克常量和所用材料的逸出功可分别表示为( )图2A.ek ebB.-ek ebC.ek -ebD.-ek -eb解析 光电效应中,入射光子能量hν,克服逸出功W 0后多余的能量转换为电子动能,即E km =hν-W 0,以及E km =eU ,有eU =hν-W 0,整理得U =h e ν-W 0e ,斜率即h e =k ,所以普朗克常量h =ek ,截距为b ,即eb =-W 0,所以逸出功W 0=-eb 。
2019高考物理一轮复习课时作业12.3原子核
第十二章第三节原子核[基础落实课][限时45分钟;满分100分]一、选择题(每小题8分,满分64分)1.导学号:82211045(2019·上海模拟)由放射性元素放出的氦核流被称为A.阴极射线B.α射线C.β射线D.γ射线解析在天然放射现象中,放出α、β、γ三种射线,其中α射线属于氦核流,选项B 正确。
答案 B2.导学号:82211046(2019·上海模拟)在同位素氢、氘、氚的核内具有相同的A.核子数B.电子数C.中子数D.质子数解析同位素是指在原子核中的质子数相同而中子数不同的元素,故氢、氘、氚的核内具有相同的质子数,D项正确。
答案 D3.(2018·武昌调研)以下说法正确的是A.放射性元素的半衰期跟原子所处的化学状态无关,但与外部条件有关导学号:82211047B.某种频率的紫外线照射到金属锌板表面时能够发生光电效应,若增大该种紫外线照射的强度,从锌板表面逸出的光电子的最大初动能并不改变C.根据玻尔的原子理论,氢原子的核外电子由能量较高的定态轨道跃迁到能量较低的定态轨道时,会辐射一定频率的光子,同时核外电子的动能变小D.用一光电管进行光电效应实验时,当用某一频率的光入射,有光电流产生,若保持入射光的总能量不变而不断减小入射光的频率,则始终有光电流产生解析放射性元素的半衰期跟原子所处的化学状态无关,与外部条件也无关,选项A 错误;某种频率的紫外线照射到金属锌板表面时能够发生光电效应,若增大该种紫外线照射的强度,根据爱因斯坦光电效应方程,从锌板表面逸出的光电子的最大初动能并不改变,选项B 正确;根据玻尔的原子理论,氢原子的核外电子由能量较高的定态轨道跃迁到能量较低的定态轨道时,会辐射一定频率的光子,同时核外电子的势能减小,动能变大,总能量减小,选项C 错误;用一光电管进行光电效应实验时,当用某一频率的光入射,有光电流产生,若保持入射光的总能量不变而不断减小入射光的频率,当入射光的频率小于金属的极限频率时,则不能发生光电效应,就没有光电流产生,选项D 错误。
2019届高考物理一轮复习第十二单元近代物理初步12_2原
考点讲练
考点一 α粒子散射实验的现象与分析
1.实验现象 (1)绝大多数 α 粒子穿过金箔后,仍按原来的方向前进. (2)少数 α 粒子发生了较大的偏转 (3)极少数的 α 粒子偏转超过 90°,有的甚至被弹回. 2.实验分析 第(1)条说明原子内部是“空”的;第(2)、(3)两条说明原子 的正电荷以及绝大部分质量都集中在一个很小的核上.
二、氢原子的能级结构 玻尔的原子模型:
(1)定态假设:原子的能量是量子化的、不连续的. (2)轨道假设:电子的轨道是量子化的、不连续的. (3)跃迁假设:原子从一种定态跃迁到另一种定态时,它辐射 或吸收一定频率的光子,光子的能量由这两个定态的能量差决 定.即 hν=Em-En.
氢原子的轨道半径和能级公式: (1)轨道半径公式:rn=n2r1(n=1,2,3,…),r1=0.53×10 -10 m,为基态半径. (2)能级公式:En=n12E1(n=1,2,3,…),E1=-13.6 eV, 为基态能量.
考点三 氢原子能级公式的应用
1.氢原子的能级公式 En=n12E1(n=1,2,3,…),基态能量 E1=-13.6 eV. 注意:En 为负值. 2.吸收(放出)的光子的能量 hν=Em-En=n12E1-m12E1 3.激发态 n 的氢原子的电离能 ΔE=0-En=-n12E1
氢原子从 n=3 的能级跃迁到 n=2 的能级放出光子的
考点四 能级图与能级跃迁
1.氢原子能级图的特点 量子数 n 越大,能量值越小,相邻的能级差越小.
2.谱线条数的确定方法 (1)一个氢原子跃迁发出可能的光谱线条数最多为(n-1). (2)一群氢原子跃迁发出可能的光谱线条数最多为 Cn2= n(n-1) 2. 3.原子吸收能量的两种情况 (1)光照激发:能量等于能级差的光子可被吸收,能量大于电 离能的光子可被吸收,其他光子不能被吸收. (2)实物粒子激发:只要粒子能量大于或等于能级差即可被吸 收.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12单元原子物理课时作业(三十) 第30讲波粒二象性氢原子能级结构时间 / 40分钟基础巩固1.[2017·湖南岳阳二模]关于原子物理问题,下列说法中正确的是()A.一群处于n=3激发态的氢原子向较低能级跃迁,最多可放出两种不同频率的光子B.由于每种原子都有自己的特征谱线,故可以根据原子光谱来鉴别物质C.实际上,原子中的电子没有确定的轨道,在空间各处出现的概率是一定的D.α粒子散射实验揭示了原子的可能能量状态是不连续的2.(多选)对光的认识,下列说法正确的是()A.个别光子的行为表现出粒子性B.大量光子的行为表现出粒子性C.光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的D.光表现出波动性时,就不具有粒子性了,光表现出粒子性时,就不再具有波动性了3.[2017·安徽黄山模拟]在“光电效应”实验中,用某一单色光照到某金属表面时,没有光电子从金属表面逸出,下列说法中正确的是()图K30-1A.增大照射光的频率,就一定发生光电效应B.增大照射光的强度,就一定发生光电效应C.延长照射光照射时间,就一定发生光电效应D.若照射光的频率大于该金属材料的极限频率,则能发生光电效应4.(多选)[2017·成都二诊]光伏发电是利用光电效应原理来工作的.目前,人类提高光伏发电效率的途径主要有两个方面:一是改变光源体发光谱带的频率,从而改变产生光电效应的光谱宽度;二是改变被照射金属材料的成分,从而改变其逸出功.下列提高光伏发电效率的途径正确的是()A.减小光源体发光谱带的频率B.增大光源体发光谱带的频率C.增大金属材料的逸出功D.减小金属材料的逸出功5.氢光谱在可见光的区域内有4条谱线,按照在真空中波长由长到短的顺序,这4条谱线分别是Hα、Hβ、Hγ和Hδ,它们都是氢原子的电子从量子数大于2的可能轨道上跃迁到量子数为2的轨道时所发出的光.下列判断错误的是()A.电子处于激发态时,Hα所对应的轨道量子数大B.Hγ的光子能量大于Hβ的光子能量C.对于同一种玻璃,4种光的折射率以Hα为最小D.对同一种金属,若Hα能使它发生光电效应,则Hβ、Hγ、Hδ都可以使它发生光电效应6.(多选)[2017·太原模拟] 20世纪初,爱因斯坦提出光子理论,使得光电效应现象得以完美解释.玻尔的氢原子模型也是在光子概念的启发下提出的.关于光电效应和氢原子模型,下列说法正确的是()A.光电效应实验中,照射光足够强就可以有光电流B.若某金属的逸出功为W0,则该金属的截止频率为C.保持照射光强度不变,增大照射光频率,在单位时间内逸出的光电子数将减少D.氢原子由低能级向高能级跃迁时,吸收光子的能量可以稍大于两能级间能量差技能提升7.(多选)[2018·河北衡水中学月考]如图K30-2所示为研究光电效应的实验装置示意图,闭合开关,滑片P处于滑动变阻器中央位置,当一束单色光照到此装置的金属表面K时,电流表有示数.下列说法正确的是()图K30-2A.若仅增大该单色光照射的强度,则光电子的最大初动能增大,电流表示数也增大B.无论增大照射光的频率还是增加照射光的强度,金属的逸出功都不变C.保持照射光频率不变,当强度减弱时,发射光电子的时间将明显增加D.若滑动变阻器滑片左移,则电压表示数减小,电流表示数增大8.[2017·长沙模拟]以往我们认识的光电效应是单光子光电效应,即一个电子在极短时间内只能吸收到一个光子而从金属表面逸出.强激光的出现丰富了人们对于光电效应的认识,用强激光照射金属,由于其光子密度极大,一个电子在极短时间内吸收多个光子成为可能,从而形成多光子光电效应,这已被实验证实.光电效应实验装置示意图如图K30-3所示.用频率为ν的普通光源照射阴极K,没有发生光电效应,换用同样频率为ν的强激光照射阴极K,则发生了光电效应;此时,若加上反向电压U,即将阴极K接电源正极,阳极A接电源负极,在K、A之间就形成了使光电子减速的电场.逐渐增大U,光电流会逐渐减小;当光电流恰好减小到零时,所加反向电压U可能是(其中W为逸出功,h为普朗克常量,e为电子电荷量) ()图K30-3A.U=C.U=2hν-WD.U=9.[2017·湖北武昌调研]用如图K30-4所示的光电管研究光电效应,用某种频率的单色光a照射光电管阴极K,电流计G的指针发生偏转,而用另一频率的单色光b照射光电管阴极K时,电流计G的指针不发生偏转,那么()图K30-4A.a光的波长一定大于b光的波长B.增加b光的强度可能使电流计G的指针发生偏转C.用a光照射光电管阴极K时通过电流计G的电流是由d到cD.只增加a光的强度可使通过电流计G的电流增大10.(多选)[2017·太原模拟]图K30-5为氢原子的能级示意图.关于氢原子跃迁,下列说法中正确的是()图K30-5A.一个处于量子数n=5激发态的氢原子,它向低能级跃迁时,最多可产生10种不同频率的光子B.处于n=3激发态的氢原子吸收具有1.87 eV能量的光子后被电离C.用12 eV的光子照射处于基态的氢原子,氢原子仍处于基态D.氢原子从高能级向低能级跃迁时,动能增大,电势能增大11.(多选)[2017·济南模拟]如图K30-6所示是某金属在光的照射下产生的光电子的最大初动能E k与照射光频率ν的关系图像.由图像可知()图K30-6A.该金属的逸出功等于EB.该金属的逸出功等于hν0C.照射光的频率为2ν0时,产生的光电子的最大初动能为ED.照射光的频率为时,产生的光电子的最大初动能为12.(多选)[2017·东北三校一联]如图K30-7所示为氢原子的能级示意图.氢原子可在下列各能级间发生跃迁,设从n=4能级跃迁到n=1能级辐射的电磁波的波长为λ1,从n=4能级跃迁到n=2能级辐射的电磁波的波长为λ2,从n=2能级跃迁到n=1能级辐射的电磁波的波长为λ3,则下列关系式中正确的是()图K30-7A.λ1<λ3B.λ3<λ2C.λ3>λ2D.13.(多选)图K30-8为氢原子的能级示意图,则下列对氢原子跃迁的理解正确的是()图K30-8A.由高能级向低能级跃迁时辐射出来的光子一定不能使逸出功为3.34 eV的金属发生光电效应B.大量处于n=4能级的氢原子向n=1能级跃迁时,向外辐射6种不同频率的光子C.大量处于n=3能级的氢原子向n=1能级跃迁时,用发出的光照射逸出功为3.34 eV的金属,从金属表面逸出的光电子的最大初动能为8.75 eVD.如果用光子能量为10.3 eV的光照射处于n=1能级的氢原子,则该能级的氢原子能够跃迁到较高能级14.(多选)利用金属晶格(大小约10-10 m)作为障碍物观察电子的衍射图样,方法是让电子束通过电场加速后,照射到金属晶格上,从而得到电子的衍射图样.已知电子质量为m,电荷量为e,初速度为0,加速电压为U,普朗克常量为h.下列说法中正确的是()A.该实验说明了电子具有波动性B.实验中电子束的德布罗意波长为λ=C.加速电压U越大,电子的衍射现象越明显D.若用相同动能的质子替代电子,衍射现象将更加明显挑战自我15.原子可以从原子间的碰撞中获得能量,从而发生能级跃迁(在碰撞中,动能损失最大的是完全非弹性碰撞).一个具有13.6 eV动能、处于基态的氢原子与另一个静止的、也处于基态的氢原子发生对心正碰.(1)能否使静止氢原子发生能级跃迁?(氢原子能级图如图K30-9所示)(2)若上述碰撞中可以使静止氢原子发生电离,则运动氢原子的初动能至少为多少?图K30-9课时作业(三十一) 第31讲核反应、核能时间 / 40分钟基础巩固1.[2017·青岛模拟]下列说法正确的是()A.在核反应过程的前后,反应体系的质量数守恒,但电荷数不守恒B.用加温、加压或改变其化学状态的方法都不能改变放射性原子核的半衰期C.18个放射性元素的原子核经一个半衰期一定有9个发生了衰变D.由两种元素的原子核结合成一种新元素的原子核时,一定吸收能量2.[2017·石家庄二中模拟]下列说法正确的是()A.12C与14C是同位素,它们的化学性质并不相同B.核力是原子核内质子与质子之间的力,中子和中子之间并不存在核力C.在裂变反应Kr都大,但比结合能没有Kr大D.α、β、γ三种射线都是带电粒子流3.(多选)下列说法中正确的是()A.放射性元素的半衰期与温度、压强无关B.玻尔理论认为,原子中的核外电子轨道是量子化的C.“原子由电子和带正电的物质组成”是通过卢瑟福α粒子散射实验判定的D.天然放射性元素Th(钍)共经过4次α衰变和6次β衰变成为Pb(铅)4.[2017·太原模拟]我国科学家为解决“玉兔号”月球车长时间处于黑夜工作的需要,研制了一种小型核能电池,将核反应释放的核能转变为电能,需要的功率并不大,但要便于防护其产生的核辐射.请据此猜测“玉兔号”所用核能电池有可能采纳的核反应方程是()A.nB.nC. eD.n5.(多选) [2018·黑龙江牡丹江一中月考]Pu衰变时释放巨大能量,如图K31-1所示,其衰变反应方程为He,并伴随γ光子辐射,则下列说法中正确的是()图K31-1A.核燃料总是利用比结合能小的核B.核反应中γ光子的能量就是Pu的结合能C.Pu核更稳定,说明U的结合能大D.由于U的比结合能小,所以衰变时释放巨大能量6.钚239Pu)可由铀239U)经过衰变而产生.下列说法正确的是()A.U的核内具有相同的中子数B.U的核内具有相同的质子数C.PuD.Pu技能提升7.[2017·广州二模]U的衰变有多种途径,其中一种途径是先衰成为Bi,然后可以经一次衰变成为X(X代表某种元素),也可以经一次衰变成为Ti,最后都变成Pb,衰变路径如图K31-2所示,下列说法中正确的是()图K31-2A.过程①是β衰变,过程③是α衰变;过程②是β衰变,过程④是α衰变B.过程①是β衰变,过程③是α衰变;过程②是α衰变,过程④是β衰变C.过程①是α衰变,过程③是β衰变;过程②是β衰变,过程④是α衰变D.过程①是α衰变,过程③是β衰变;过程②是α衰变,过程④是β衰变8.[2018·西安铁一中月考]在正、负电子对撞机中,一个电子和一个正电子对撞发生湮灭而转化为一对光子.设正、负电子的质量在对撞前均为m,对撞前的动能均为E,光在真空中的传播速度为c,普朗克常量为h,则对撞后转化成光子的波长等于()A.C.9.(多选)[2017·湖南十校联考]核反应堆是利用中子轰击重核发生裂变反应,释放出大量核能Kr+a X是反应堆中发生的许多核反应中的一种,X是某种粒子,a是X粒子的个数,用m U、m Ba、m Kr分别表示Kr核的质量,m X表示X粒子的质量,c为真空中的光速,以下说法正确的是()A.X为中子,a=2B.X为中子,a=3C.上述核反应中放出的核能ΔE=(m U-m Ba-m Kr-2m X)c2D.上述核反应中放出的核能ΔE=(m U-m Ba-m Kr-3m X)c210.(多选)[2018·山西大学附中月考]科学家利用核反应获取氚,再利用氘和氚的核反应获得能量,核反应方程分别为:X+Y He+X+17.6 MeV.下列表述正确的是()A.X是中子B.Y的质子数是3,中子数是6C.两个核反应都没有出现质量亏损D.氘和氚的核反应是核聚变反应11.(多选)一静止的原子核A发生α衰变后变成原子核B,已知原子核A、原子核B和α粒子的质量分别为m A、m B和mα,光速为c,反应释放的核能全部转化为粒子的动能,则 ()A.原子核B与α粒子的速度之比为m B∶mαB.原子核B与α粒子的动能之比为m B∶mαC.原子核B与α粒子的动能之和为(m A-m B-mα)c2D.原子核A比原子核B的中子数多2,质子数多212.(多选)[2018·武汉华师一附中月考]现有两动能均为E0=0.35 MeV的H核在一条直线上相向运动,两个H核发生对撞后能发生核反应,得到He核和新粒子,且在核反应过程中释放的能量完全转化为He核的质量为3.016 0 u,新粒子的质量为1.008 7u,核反应时质量亏损1 u释放的核能约为931 MeV.下列说法正确的是(如果涉及计算,结果保留整数) ()A.核反应方程为HB.核反应前后不满足能量守恒定律C.新粒子的动能约为3 MeVD.He核的动能约为1 MeV挑战自我13.静止的铀238U)经历一次α衰变成为Th原子核,同时放出一个γ光子(频率为ν),已知α粒子的质量为m.(普朗克常量为h,光速为c)(1)写出衰变方程.(2)若衰变后,α粒子的速度为v,而Th原子核的运动方向恰好与α粒子的速度方向相反,不考虑γ光子的动量,那么Th原子核的速度为多大?(3)如果核反应放出的能量全部转化为粒子的动能和γ光子的能量,那么该衰变发生的质量亏损Δm为多大?14.[2017·湖北黄石模拟]用速度大小为v的中子轰击静止的锂核Li),发生核反应后生成氚核和α粒子.生成的氚核速度方向与中子的速度方向相反,氚核与α粒子的速度之比为7∶8,已知中子的质量为m,质子的质量可近似看作m,光速为c.(1)写出核反应方程;(2)求氚核和α粒子的速度大小;(3)若核反应过程中放出的核能全部转化为α粒子和氚核的动能,求质量亏损.教师详解(作业手册)课时作业(三十)1.B[解析] 一群处于n=3激发态的氢原子向较低能级跃迁,可能放出三种不同频率的光子,故选项A错误;每种原子都有自己的特征谱线,故可以根据原子光谱来鉴别物质,故选项B正确;原子中的电子没有确定的轨道,在空间各处出现的概率是不一定的,故选项C错误.α粒子散射实验揭示了原子的核式结构模型,认为电子绕核旋转,故选项D错误.2.AC[解析] 光是一种概率波,少量光子的行为易显示出粒子性,而大量光子的行为往往显示出波动性,A正确,B错误;光的波动性不是由于光子之间的相互作用引起的,而是光的一种属性,C正确;粒子性和波动性是光同时具备的两种属性,D错误.3.D[解析] 增大照射光的频率,若其不大于金属材料的极限频率,还是不会发生光电效应,选项A错误;光电效应是否产生与照射光频率有关,而与照射光强度无关,选项B错误;光电效应是否产生与照射光照射时间无关,选项C错误;只要照射光的频率大于该金属材料的极限频率,就能发生光电效应,选项D正确.4.BD[解析] 根据爱因斯坦的光电效应方程,hν=W+mv2,最大初动能随照射光频率的增大而增大,随照射光频率的减小而减小,选项A错误,B正确;减小金属的逸出功,也能增大最大初动能,选项C错误,D 正确.5.A[解析] 由E=h可知,波长大,光子能量小,故Hα光子能量最小,Hδ光子能量最大,再由h=E n-E2可知,Hα对应的轨道量子数最小,A错误.6.BC[解析] 发生光电效应的条件是照射光频率大于截止频率,并不是光足够强就能发生光电效应,故A错误;金属的逸出功W0=hν,得ν=,故B正确;一定强度的照射光照射某金属发生光电效应时,照射光的频率越高,单个光子的能量值越大,光子的个数越少,单位时间内逸出的光电子数就越少,故C正确;氢原子由低能级向高能级跃迁时,吸收光子的能量等于两能级间能量差,故D错误.7.BD[解析] 若仅增大该单色光照射的强度,由于每个光子的能量不变,因此光电子的最大初动能不变,但单位时间内射出的光电子数增多,因此光电流增大,故选项A错误;逸出功由金属材料自身决定,与是否有光照无关,故B正确;发生光电效应不需要时间积累,只要照射光的频率大于极限频率即可,故选项C错误;若滑动变阻器滑片左移,则电压表示数减小,因为电压是反向电压,所以电压减小时,光电子更容易到达A极形成电流,电流表示数增大,故选项D正确.8.B[解析] 以从阴极K逸出的且具有最大初动能的光电子为研究对象,由动能定理得-Ue=0-,由光电效应方程得nhν=+W(n=2,3,4,…),联立解得U=(n=2,3,4,…),故选项B正确.9.D[解析] 用一定频率的a单色光照射光电管时,电流计指针会发生偏转,知νa>νc,a光的波长小于b光的波长,A错误;发生光电效应的条件是ν>νc,增加b光的强度不能使电流计G的指针发生偏转,B 错误;发生光电效应时,电子从光电管左端运动到右端,而电流的方向与电子定向移动的方向相反,所以流过电流计G的电流方向是由c到d,C错误;增加a光的强度可使通过电流计G的电流增大,D正确. 10.BC[解析] 一个处于量子数n=5激发态的氢原子向低能级跃迁时,最多可产生4种不同频率的光子,选项A错误;当n=3时,氢原子的能量E3=-1.51 eV,所以处于n=3激发态的氢原子的电离能是1.51 eV,当该氢原子吸收具有1.87 eV能量的光子后被电离,选项B正确;根据玻尔理论,处于基态的氢原子不可能吸收该光子,所以氢原子仍处于基态,选项C正确;电子从高能级到低能级跃迁时,动能增大,电势能减小,选项D错误.11.ABC[解析] 由爱因斯坦光电效应方程E k=hν-W0知,当ν=0时,-W0=E k,故W0=E,A正确;而E k=0时,hν=W0,即W0=hν0,B正确;照射光的频率为2ν0时产生的光电子的最大初动能E km=2hν0-hν0=hν0=E,C正确;照射光的频率为时,不会发生光电效应,D错误.12.AB[解析] 已知从n=4到n=1能级辐射的电磁波的波长为λ1,从n=4到n=2能级辐射的电磁波的波长为λ2,从n=2到n=1能级辐射的电磁波的波长为λ3,则λ1、λ2、λ3的关系为h,即,λ1<λ3,,λ3<λ2,又h,即,则,选项A、B正确.13.BC[解析] 氢原子从高能级向低能级跃迁时放出的光子的能量等于前、后两个能级的能量之差,当氢原子从高能级直接跃迁到基态时放出的光子的能量最小值为-3.4 eV-(-13.6 eV)=10.2 eV,大于3.34 eV,所以一定能使逸出功为3.34 eV的金属发生光电效应,A错误;大量处于n=4能级的氢原子向基态跃迁时,辐射光子的种数为=6,B正确;大量处于n=3能级的氢原子向n=1能级跃迁时,辐射出的光子能量最大为-1.51 eV-(-13.6 eV)=12.09 eV,用此光子照射逸出功为3.34 eV的金属,由爱因斯坦光电效应方程可得光电子的最大初动能为12.09 eV-3.34 eV=8.75 eV,C正确;当氢原子由低能级向高能级跃迁时,氢原子吸收的光子能量一定等于两能级之间的能量差,而由氢原子的能级图可知n=1能级与任何能级间的能量差都不等于10.3 eV,因此不能使n=1能级的氢原子跃迁到较高的能级,D 错误.14.AB[解析] 能得到电子的衍射图样,说明电子具有波动性,A正确;由德布罗意波长公式λ=,可得λ=,B正确;由λ=可知,加速电压越大,电子的波长越小,衍射现象就越不明显,C错误;用相同动能的质子替代电子,质子的波长变小,衍射现象与电子相比更不明显,故D错误.15.(1)不能(2)27.2 eV[解析] (1)设运动氢原子的速度为v0,发生完全非弹性碰撞后两者的速度为v,损失的动能ΔE被静止氢原子吸收.若ΔE=10.2 eV,则静止氢原子可由n=1能级跃迁到n=2能级.由动量守恒定律和能量守恒定律有mv0=2mvmv2+ΔE=Ek=13.6 eV联立解得ΔE==6.8 eV因为ΔE=6.8 eV<10.2 eV,所以不能使静止氢原子发生跃迁.(2)若要使静止氢原子电离,则ΔE≥13.6 eV联立解得E k≥27.2 eV.课时作业(三十一)1.B[解析] 核反应前后质量数守恒,电荷数也守恒,A错误;半衰期是宏观统计概念,C错误;核聚变释放能量,D错误.2. C[解析] 同位素的核外电子数量相同,所以一种元素的各种同位素都具有相同的化学性质,A错误;原子核内相邻的质子和中子之间均存在核力,B错误;核子数越多其结合能也越大,所以Kr都大,但Kr都小,C正确;α射线、β射线都是带电粒子流,而γ射线是电磁波,不带电,故D错误.3.AB[解析] 放射性元素的半衰期只与原子核自身有关,与温度、压强无关,故A正确;玻尔理论认为原子只能处在能量不连续的一系列状态,故B正确;通过卢瑟福α粒子散射实验判定的是原子具有核式结构,并未判定原子由电子和带正电的物质组成,故C错误Pb时,质量数减小24,而质子数减小8,因β衰变时质量数不变,质子数增加1,而α衰变时质量数减小4,质子数减小2,所以要经过6次α衰变和4次β衰变,故D错误.4.C[解析] A是聚变反应,反应剧烈,至今可控聚变反应还处于实验研究阶段;B是裂变反应,虽然实现了人工控制,但因反应剧烈,防护要求高,还不能小型化;C是人工放射性同位素的衰变反应,是小型核能电池主要采用的反应方式;D是人工核反应,需要高能α粒子.5.AD[解析] 根据比结合能越大,越稳定,则核燃料总是利用比结合能小的核,故A正确.核反应中γ光子的能量就是质量亏损对应的能量,故B错误Pu更稳定,说明U的比结合能大,所以Pu衰变时,会释放巨大能量,故C错误,D正确.6.C[解析] 钚239Pu)和铀239U)质量数相同,质子数和中子数均不同,选项A、B错误Pu多两个中子,少两个质子Pu,选项C正确.7.B[解析]X,质量数没有发生变化,故①为β衰变Pb,质量数减少4,故③为α衰变Ti,电荷数减少2,故②为α衰变,过程④的电荷数增加1,为β衰变,故A、C、D错误,B正确.8.C[解析] 该反应方程为e→2γ,由于光子的静止质量为零,所以质量亏损为Δm=2m,由质能方程,对应的能量为ΔE=2mc2,根据能量守恒定律可知2hν=2E+ΔE,即有=2E+2mc2,所以光子在真空中的波长λ=,C正确.9.BC[解析] 核反应中质量数守恒、电荷数守恒,则知n,a=3,故A 错误,B正确.由ΔE=Δmc2可得,ΔE=(m U+m X-m Ba-m Kr-3m X)c2=(m U-m Ba-m Kr-2m X)c2,故C正确,D错误.10.AD[解析] 根据核反应方程He+X,X的质量数m1=2+3-4=1,核电荷数z1=1+1-2=0,所以X是中子,故A正确;根据核反应方程X+Y H,X是中子,所以Y的质量数m2=4+3-1=6,核电荷数z2=2+1-0=3,所以Y的质子数是3,中子数是3,故B错误;根据两个核反应方程可知,都有大量的能量释放出来,所以一定都有质量亏损,故C错误;氘和氚的核反应过程中是质量较小的核生成质量较大的新核,所以是核聚变反应,故D正确.11.CD[解析] 原子核A发生α衰变,设原子核B和α粒子的速度分别为v B和vα,由动量守恒定律有0=m B v B-mαvα,则,,A、B错误.由质能方程知原子核B和α粒子的动能之和为ΔE=Δmc2=(m A-m B-mα)c2,C正确.由质量数守恒和电荷数守恒知,A比B质子数多2,中子数多2,D正确. 12.CD[解析] 由核反应过程中的质量数守恒和电荷数守恒可知n,则新粒子为中子n,A错误;核反应过程中有质量亏损,释放能量,仍然满足能量守恒定律,B错误;由题意可知ΔE=(2.014 1 u×2-3.016 0 u-1.008 7 u)×931 MeV/u=3.3 MeV,根据核反应中系统的能量守恒有E kHe+E kn=2E0+ΔE,根据核反应中系统的动量守恒有p He-p n=0,由E k=,可知,解得E kHe=·(2E0+ΔE)≈1 MeV,E kn=(2E0+ΔE)≈3 MeV,C、D正确.13.(1He(2)v (3)[解析] (1)由电荷数守恒和质量数守恒可得衰变方程为He.(2)设Th核的反冲速度为v0,由动量守恒定律得0=mv0-mv解得v0=v.(3)由能量守恒定律有+hν=Δmc2解得Δm=.14.(1He(2)(3) [解析](1He(2)由动量守恒定律得m n v=-m H v1+m He v2由题意得v1∶v2=7∶8解得v1=,v2=(3)氚核和α粒子的动能之和为E k=mv2释放的核能为ΔE=E k-E kn=mv2由爱因斯坦质能方程得,质量亏损为Δm=。