超高速加工发展状况及趋势.

合集下载

超高速加工技术的现状及发展趋势

超高速加工技术的现状及发展趋势

超高速加工技术的现状及发展趋势目录摘要 (1)1 引言 (1)2 超高速加工技术简介 (1)2.1 超高速加工技术概况 (1)2.2 超高速加工技术分类 (2)2.3 超高速加工技术特点 (2)3 超高速加工技术现状 (3)3.1 超高速加工技术现状简述 (3)3.2 国外超高速加工技术发展 (4)3.3 国内发展情况 (5)4 超高速加工技术发展趋势 (5)谢辞 (8)超高速加工技术的应用和发展趋势摘要:本文介绍了超高速加工技术的概念、内容和发展现状,并分析了其发展动向。

关键词:高速加工技术、机械制造、应用、发展1 引言当前机械制造业为实现高生产率和追求利润,先进制造技术的应用越来越广泛而深入。

超高速加工技术作为先进制造技术的重要组成部分,也已被积极地推广使用。

20世纪20年代德国人Saloman最早提出高速加工(High Speed Cutting, 简称HSC)的概念,并1931 年申请了专利。

50年代末及60年代初,美国和日本开始涉足此领域,在此期间德国已针对不同的超高速切削加工过程及有效的机械结构进行了许多基础性研究工作。

随着超高速加工主轴技术的发展,使得刀具切削速度得到很大提高,70年代诞生了第一台HSC机床。

真正将HSC技术应用于实践是在80年代初期,因飞机制造业为降低加工时间以及对一些小型特殊零件的薄壁加工而提出了快速铣削的要求。

自80年代中后期以来,商品化的超高速切削机床不断出现,超高速机床从单一的超高速铣床发展成为超高速车铣床、钻铣床乃至各种高速加工中心等。

超高速磨削技术在近20年来也得到长足的发展及应用。

德国Guehring Automation公司在1983年制造出了当时世界第一台最具威力的60kW强力立方氮化硼(CBN)砂轮磨床,Vs达到140~ 160m/s。

当今, 超高速加工已经在汽车、航空航天等领域获得应用。

2 超高速加工技术简介2.1 超高速加工技术概况超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。

超高速加工技术

超高速加工技术

(2)汽车制造。
1
2
3
4
钻孔 表面倒棱 内侧倒棱 铰孔
高速钻孔 表面和内侧倒棱
专用机床 5轴×4工序 = 20轴(3万件/月)
刚性(零件、孔数、孔径、孔型固 定不变)
高速加工中心 1台1轴1工序(3万件/月)
柔性(零件、孔数、孔径、 孔型可变)
图12 汽车轮毂螺栓孔高速加工实例(日产公司)
(3)模具制造。
b)高速模具加工的过程
图14 两种模具加工过程比较
生产剃须刀的石墨电极
生产球形柄用的铜电极
图15 高速切削加工电火花加工用工具电极
(4)难加工材料领域。硬金属材料(HRC55~62),可 代替磨削,精度可达IT5~IT6级,粗糙度可达0.2~1um。
(5)超精密微细切削加工领域。
粗铣整体铝板; •精铣去口; •钻680个直径为3mm的小孔。 时间为32min。
在机床的主轴上,定子安装在主轴单元的壳体中,采用水冷 或油冷。精度高、振动小、噪声低、结构紧凑。
高速加工技术的发展与应用
图5 HSM600U型数控五轴高速加工中心
生产厂家:瑞士Mikron 主轴转速:最高42000 rpm
主轴功率:13 KW 进给速度:最高40 m / min
定位精度:0.008 mm
重复定位精度:0.005mm
图6 HSM 系列高速五轴联动小型立式加工中心
图7 HSM800 图9 HSM400
• Bremen大学在高效深磨的研究方面取得了世界公 认的高水平成果,并积极在铝合金、钛合金、铬镍 合金等难加工材料方面进行高效深磨的研究。
近年来,我国在高速、超高速加工的各关键领域 (如大功率高速主轴单元、高加减速直线进给电机、 陶瓷滚动轴承等方面)也进行了较多的研究并有相应 的研究成果。

第三章先进制造工艺技术(超高速加工)

第三章先进制造工艺技术(超高速加工)
➢ 矢量式闭环控制:借助数/模转换,将交流异步 电动机的电量值变换为直流电模型,具有无电 刷的交流电机的优点,即在低转速时,保持全 额扭矩,功率全额输出,主轴电机快速起动和 制动。
床身结构
➢落地式床身,整体铸铁结构,龙门式框架的 主轴立柱,尽可能由主轴部件来实现二轴甚 至三轴的线性移动。
➢由于刀具重量变化极小,在工件乃至工作台 不进行快速线性移动的情况下, 机床快速线 性移动的部件的重量近乎常量,更容易实现 快速加速和减速情况下的运动惯量及实现动 态平衡,减少由于动态冲击所带来的不稳定, 保证稳定的且更高的加工精度和产品质量。
内装式同轴电动机主轴温升
➢ 热升温引起主轴热变形的解决办法:采用电子传 感器控制温度,使用水冷或油冷循环系统,使主 轴在高速下成为“恒温”;而用油雾润滑、混合 陶瓷轴承等新技术,使得主轴可以免维护、长寿 命、高精度。
➢ 举例:STEP-TEC的电主轴采用了矢量式闭环控 制、高动平衡的主轴结构、油雾润滑的混合陶瓷 轴承,可以随室温调整的温度控制系统,确保主 轴在全部工作时间内温度衡定。
➢常用材料:涂层碳化钨硬质合金、碳(氮)化 钛硬质合金、陶瓷刀具材料、立方氮化硼 (CBN)、立方/六方复合氮化硼(WBN)和聚晶金 刚石(PCD)等。
➢各种常用材料的高速切削速度:铝合金 1000~7000m/min;铜合金900~5000m/min; 钢500~2000m/min;灰铸件800~3000m/min。 其进给速度范围一般为2~25m/min。
➢可获得高转速和高的加(减)角速度,转速达 到0~42000r/min,甚至更高。
➢结构简化,造价下降,精度和可靠性提高。 ➢噪声、振动源消除,主轴自身热源消除。 ➢回转精度高,摩擦振动小, ➢主轴箱成为紧凑、独立、方便移动的部件,

我国高速加工技术现状及发展趋势

我国高速加工技术现状及发展趋势

标题:我国高速加工技术现状及发展趋势在当前工业生产中,高速加工技术已成为了提高加工效率、降低成本、改善产品质量的重要手段。

我国作为全球最大的制造业大国,高速加工技术的现状和发展趋势备受关注。

本文将从深度和广度两个方面对我国高速加工技术进行全面评估,并探讨其发展趋势。

一、我国高速加工技术的现状1. 高速加工技术的定义和特点高速加工技术是指在高速度下对工件进行切削加工的一种先进加工技术,具有高效率、高精度、高表面质量、低热影响区等特点。

2. 国内高速加工技术的发展历程自20世纪80年代以来,我国的高速加工技术得到了迅猛的发展,尤其是在航空航天、汽车制造、模具制造等行业得到了广泛应用。

3. 我国高速加工技术的应用现状高速加工技术在航空航天、汽车制造、模具制造、医疗器械等领域得到了广泛应用,成为提高生产效率和产品质量的重要手段。

二、我国高速加工技术的发展趋势1. 技术创新推动高速加工技术的发展随着科技的进步和不断创新,高速加工技术将会更加高效、精密、稳定,能够满足更加复杂的加工需求。

2. 智能制造与高速加工技术的融合智能制造将成为未来高速加工技术发展的重要方向,通过智能化、自动化技术,提高生产效率和产品质量。

3. 绿色制造与高速加工技术的结合高速加工技术在减少碳排放、节能减排方面将会有更大的发展空间,应用于绿色制造领域。

4. 人工智能在高速加工技术中的应用随着人工智能技术的快速发展,其在高速加工技术中的应用将会成为新的发展趋势,将提高生产效率和产品质量。

三、总结与展望我国高速加工技术在不断发展创新的过程中,已经取得了令人瞩目的成绩,但与发达国家相比仍有一定差距。

在未来发展中,需要加大科技投入力度,加强技术研发和创新,培养更多高端技术人才,不断提升我国的高速加工技术水平,推动制造业向高质量发展。

个人观点:高速加工技术作为先进制造技术的代表,将会对我国工业生产产生深远影响。

在未来,我相信随着科技的进步和不断创新,我国的高速加工技术将不断迈向更加高效、精密、稳定的发展方向,并为我国制造业的转型升级和智能制造提供重要支撑。

超高速加工技术发展现状及趋势

超高速加工技术发展现状及趋势
件 。超高 速加 工 可获得 良好 的表 面粗 糙 度 ,几乎 可
达 到 磨 削 表 面 的 水平 ,超 高 速 铣 削 可 实 现 硬 切 削 ( RC 0以下 ) 因而可 用 于模 具 的精 加工 ,省 去 其 H 6 常规 的精 整加工 工序 或节 省抛光 工 时 。 在超 高速 加 工 中由于机 床 主轴 转速 很高 ,激 励 振 动频 率就很 高 ,远 离机 床 固有 振动频 率 ,因此 工
了 2 3倍 。 —
是超 高 速加 工 技术 对机 械制 造 业 实现 高 效 、
优 质 、低成 本 生产 有 广 泛 的适 用 性 。 超 高 速加 工 可 大 幅 度 提 高 加工 效 率 、缩 短 加 工 时 间 、降低 加
正 是 超 高 速 加 工 技 术 特 别 是 超 高 速 铣 削 ,与 新 一 代 数 控 机 床 特 别是 高 速加 工 中心 的开 发 应 用 紧密 相 关 。9 0年代 以来 ,美 、欧 、 日各 国争 相 开 发 应用 新 一 代 高 速 数 控 机 床 ,集 高 效 、精 密 、柔 性 为 一 体 的数 控 机 床 的高 效 特 征 有 了 新 的 飞 跃 。 新 一代 数 控 机 床 已经 从 原 有 数 控机 床基 型 的高 速 型 派 生 品种 ,加 快 高 速 化 发 展 步 伐 ,适 应 超 高 速 度 高效 加 工 的新 结 构 已 用 于 多 种 产 品 中 ,高 速 主 轴 单 元 、高 速且 高 加/ 速 度 的进 给运 动 部件 、高 减 性 能 数控 和 伺服 系统 以及 工 具 系 统 都 出 现 了新 的
5 0 rmi ,进 给 速 度 6 / n 中 小 型 加 工 中心 0 0/ n m mi ;
二 、超 高速 加 工技 术 的 重 要性

高速加工的发展趋势

高速加工的发展趋势

高速加工的发展趋势
高速加工技术的发展趋势主要包括以下几个方面:
1. 高速切削工艺:随着材料科学和刀具技术的不断进步,高速切削工艺的应用正在不断扩大。

高速切削工艺能够增加切削切削速度和加工效率,减少切削力和切削热量,提高切削质量和表面光洁度。

2. 高速加工中心的发展:高速加工中心是高速加工的核心设备。

未来,高速加工中心将越来越智能化,加工速度和精度将得到进一步提高。

同时,高速加工中心将根据不同的加工要求,提供更加灵活的刀具和夹具系统,以满足不同加工任务的需求。

3. 多轴加工技术的应用:多轴加工技术可以同时进行多个方向上的切削,使得曲面加工更加容易和精确。

未来,多轴加工技术将广泛应用于高速加工领域,提高加工效率和加工精度。

4. 先进的刀具材料和涂层技术:刀具是高速加工的关键因素之一。

未来,刀具材料将更加耐磨耐热,刀具涂层技术将更加先进,以满足高速切削的需求。

5. 智能化制造技术的应用:高速加工将与智能化制造技术相结合,实现工艺参数的自动优化和实时监控。

未来,高速加工设备将具有自动化、智能化和可持续发展的特点,提高生产效率和产品质量。

总体来说,高速加工的发展趋势是向着高效、智能和精准的方向发展,以满足不断变化的制造需求。

超高速切削现状和趋势

超高速切削现状和趋势

高速切削技术现状及存在的问题切削加工是机械加工应用最广泛的加工方法之一,而高速是它的重要发展方向,其中包括高速软切削、高速硬切削、高速干切削、大进给切削等。

高速切削能够大幅度提高生产效率和单位时间内材料切除率,改善加工表面质量降低加工费用。

高速切削的概念与高速切削技术高速切削是一个相对概念,如何定义,目前尚无共识。

而且由于不同的加工方式、不同工件有不同的高速切削范围,因而也很难就高速切削的速度范围给出一个确切的定义。

高速切削技术是在机床结构及材料、机床设计制造技术、高速主轴系统、快速进给系统、高性能CNC控制系统、高性能刀夹系统、高性能刀具材料及刀具设计制造技术、高效高精度测量测试技术、高速切削机理、高速切削工艺等诸多相关硬件与软件技术均得到充分发展的基础之上综合而成的。

因此,高速切削加工是一个复杂的系统工程,涉及机床、刀具、工件、加工工艺过程参数及切削机理等诸多方面。

2 高速切削技术国外发展现状从德国Carl. J. Salomon博士提出高速切削概念,并于同年申请了专利以来,高速切削技术的发展经历了高速切削的理论探索阶段、高速切削应用探索阶段、高速切削的初步应用阶段、高速切削的较成熟阶段等四个阶段,现已在生产中得到推广应用。

特别是20世纪80年代以来各工业发达国家相继投入大量人力、财力,研究开发高速切削技术及相关技术,发展迅速。

国外近几年来高速加工机床发展迅速,美国、法国、德国、日本、瑞士、英国、加拿大、意大利等国家相继开发了各自的高速切削机床。

高速主轴是高速切削技术最重要的关键技术,通常采用主轴、电动机一体化的电主轴部件,实现无中间环节的直接传动,主轴支承一般使用陶瓷轴承、静压轴承、动压轴承、空气轴承以及油0气润滑、喷射润滑等技术,也有使用磁力轴承的。

进给系统则开始采用直线电动机或小导程大尺寸高质量的滚珠丝杠或大导程多头丝杠,以提供更高的进给速度和更好的加、减速特性,最大加速度可达2~10g。

超高速切削的发展现状

超高速切削的发展现状

超高速切削的发展现状随着制造业和加工技术的不断发展,超高速切削成为现代工业制造中不可或缺的部分。

超高速切削是指在高速旋转下,利用刀具对工件进行切削、磨削、抛光等加工操作。

其主要特点是切削速度高、加工效率高、加工精度高、表面质量好、能耗低等。

本文将对超高速切削的发展现状进行探讨,以期更好的了解超高速切削技术的最新进展及应用前景。

一、超高速切削的技术原理和发展历程超高速切削技术的最大特点就是其切削速度非常高,一般在每分钟1万转以上。

其切削原理与传统切削相同,但由于材料被切削时的应力和变形会随着切削速度的提高而发生变化,所以超高速切削作为一种极端切削加工技术,需要高端的刀具、机床和监测系统等辅助设备来确保工艺可行。

超高速切削技术的发展历程可以追溯到20世纪60年代。

当时美国通用电气公司在多年的研究开发中,成功将切削速度提高到每分钟29300转以上,从而使加工效率和质量井喷式增长,为超高速切削技术的研究奠定了成功的基础。

此后,日本等国也开始积极开展超高速切削技术方面的研究,成为超高速切削的主要研究和应用国家之一。

二、超高速切削的应用领域随着超高速切削技术的不断发展和完善,其在航空航天、汽车制造、机械制造等领域的应用越来越普及。

目前,超高速切削技术已经广泛应用于以下几个领域:1、航空航天领域在航空航天领域,超高速切削技术被广泛应用于飞机发动机叶片、航空轴承等零部件的加工中。

由于这些零部件具有较高的加工难度和质量要求,而超高速切削技术的高加工效率和高加工质量正好能够满足这些要求。

2、汽车制造领域在汽车制造领域,超高速切削技术被广泛应用于汽车发动机零部件、车轮、减震器等汽车零部件的加工中。

由于该技术具有高效率、高质量、高精度的特点,能够大大提高汽车零部件的生产效率、降低生产成本。

3、机械制造领域在机械制造领域,超高速切削技术被广泛应用于高精度、高难度的零部件加工中。

由于该技术能够大大提高加工效率和精度,能够满足顾客对高精度、高质量零部件的要求,从而提高制造业的竞争优势。

超高速加工发展状况及趋势

超高速加工发展状况及趋势

班级:机制2班姓名:周明学号:1208470528超高速加工发展状况及趋势随着时代发展与科学进步,各个国家关于对超高速加工技术的投资与研究使用的比例越来越高,但是各国的发展水平却依然存在很大的差距。

超高速加工到2005年基本实现工业应用,主轴最高转速达15000r/min,进给速度达40~60m/min,砂轮磨削速度达100~150m/s;超精密加工基本实现亚微米级加工,加强纳米级加工技术应用研究,达到国际九十年代初期水平。

超高速加工已经成为先进制造技术竞争的一个制高点。

超高速加工中,工件与刀具相互高速撞击,力的瞬态作用使剪切局限在一个微区域,能量在此微区的耗散使材料局部高温,可能达到熔化或接近熔化的状态。

正反馈效应使局部绝热剪切作用愈加增强。

切削速度越高,这种绝热剪切作用也越强,接近音速的超高速切削走向极端条件,带来了诸多新机理研究和对传统切削机理的突破性挑战。

机床工作在数万转/分转速下承受冲击载荷,依然达到μ级的工作精度,要求实现机床主轴系统旋转的高精度高稳定性控制以及整机动静热特性的精确设计。

冲击载荷下,主轴的高刚度、高精度要求轴承工作间隙很小,在微间隙中轴承润滑介质受到强剪切与挤压,同样达到了一种极端的工况。

超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。

超高速加工技术主要包括:超高速切削与磨削机理研究,超高速主轴单元制造技术,超高速进给单元制造技术,超高速加工用刀具与磨具制造技术,超高速加工在线自动检测与控制技术等。

超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。

超高速切削是金属切削加工技术的新发展。

在今后15年内,现代机床技术将在机床设计、结构、金属切削效率和生产率等方面有重大突破。

预计九十年代生产的机床将比七十年代生产的机床体积更小,速度更快。

它将采用强度与重量之比很高的材料(有色金属狈非金属材料)来代替钢和铸铁。

超高速加工的现状以及发展趋势

超高速加工的现状以及发展趋势

超高速加工的现状以及发展趋势超高速加工的现状以及发展趋势09制造331—20 孙赟作业①1.技术概述超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。

超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。

目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m/min,铸铁为1500m/min,超耐热镍合金达300m/min,钛合金达150~1000m/min,纤维增强塑料为2000~9000m/min。

各种切削工艺的切速范围为:车削700~7000m/min,铣削300~6000m/min,钻削200~1100m/min,磨削250m/s以上等等。

超高速加工技术主要包括:超高速切削与磨削机理研究,超高速主轴单元制造技术,超高速进给单元制造技术,超高速加工用刀具与磨具制造技术,超高速加工在线自动检测与控制技术等对于机械零件而言,高速加工即是以较快的生产节拍进行加工。

一个生产节拍:零件送进--定位夹紧--刀具快进--刀具工进(在线检测)--刀具快退--工具松开、卸下--质量检测等七个基本生产环节。

而高速切削是指刀具切削刃相对与零件表面的切削运动(或移动)速度超过普通切削5~10倍,主要体现在刀具快进、工进及快退三个环节上,是高速加工系统技术中的一个子系统;对于整条生产自动线而言,高速加工技术表征是以较简捷的工艺流程、较短、较快的生产节拍的生产线进行生产加工。

这就要突破机械加工传统观念,在确保产品质量的前提下,改革原有加工工艺(方式):或采用一工位多工序、一刀多刃,或以车、铰、铣削替代磨削,或以拉削、搓、挤、滚压加工工艺(方式)替代滚、插、铣削加工…等工艺(方式),尽可能地缩短整条生产线的工艺流程;对于某一产品而言,高速加工技术也意味着企业要以较短的生产周期,完成研发产品的各类信息采集与处理、设计开发、加工制造、市场营销及反馈信息。

超高速加工技术最新进展综述

超高速加工技术最新进展综述

机械工程学院先进技术制造论文题目:超高速加工技术最新进展综述专业:机械设计制造及其自动化班级:10B2学生学号:20101047学生姓名:二〇一三年月日超高速加工技术最新进展综述摘要: 综述了超高速磨削加工技术的起源,概述了德国、美国以及日本等国的发展历程和目前的现状,并分析了国内近年来超高速磨削的发展。

介绍了超高速磨削的机理, 简单总结了超高速磨削的优越性和特点。

超高速磨削是提高磨削效率、降低工件表面粗糙度和提高零件加工质量的先进加工技术。

超高速磨削具有巨大的经济效益。

阐述了超高速磨削目前的发展趋势。

关键字:超高速发展1. 超高速磨削技术的发展1.1 高速和超高速磨削的理论依据高速加工和超高速加工的概念是由德国切削物理学家Salomon博士于1931年首先提出, 他发表了著名的Salomon曲线, 创造性地预言了超越Taylor切削方程式的非切削工作区域的存在, 提出如能够大幅度提高切削速度, 就可以越过切削过程产生的高温死谷而使刀具在超高速区进行高速切削, 从而大幅度减少切削工时, 成倍地提高机床生产率。

他的理论成为后来的高速超高速磨削的理论依据。

1. 2 国外高速超高速磨削的发展1. 2. 1欧洲的发展情况欧洲高速超高速磨削技术的发展起步比较早。

1979年德国Bremen大学的Werner PG[1]教授撰文预言了高效深磨区存在的合理性, 由此开创了高效深磨的概念。

1983年德国Bremen大学出资由德国Gushing Automation公司制造了当时世界上第一台高效深磨的磨床, 砂轮圆周速度达到了209m/s。

德国Gushing Automation公司于1992年成功制造出砂轮线速度为140---160m/s的CBN磨床, 并正在试制线速度达180m/s的样机[2]。

德国Apache大学、Bremen大学在高效深磨的研究方面取得了世界公认的高水平成果。

据Apache工业大学实验室的Koenig和Freeman宣称, 该实验室已经采用了圆周速度达到500m/s的超高速砂轮, 这一速度已突破了当前机床与砂轮的工作极限。

高速高精加工的趋势

高速高精加工的趋势

高速高精加工的趋势
高速高精加工的趋势可以总结为以下几点:
1. 使用更高效的加工设备:随着科技的发展,加工设备的性能不断提高,如高速切削设备、高速加工中心等。

这些设备能够在更短的时间内完成更多的加工任务,提高生产效率。

2. 运用先进的数控技术:高速高精加工中广泛应用计算机数控技术,通过精确的控制和调节,实现对加工过程的精确控制,提高加工精度。

3. 采用新的加工工艺和工具:高速高精加工使用更先进的加工工艺和工具,如超硬刀具、高速切削液等,提高加工效率和精度。

4. 引入自动化和机器人技术:高速高精加工趋向于自动化生产,通过引入机器人技术实现工件的自动上下料、加工过程的自动控制和监测等,提高生产效率和产品质量。

5. 发展模具快速制造技术:高速高精加工在模具制造领域得到广泛应用,如采用先进的快速原型制造技术、3D打印技术等,大大缩短了模具设计和制造的周期,提高了制造效率和质量。

6. 推广绿色制造理念:高速高精加工趋向于推广绿色制造理念,采用环保材料
和工艺,减少能源和资源的消耗,减少对环境的污染。

总的来说,高速高精加工的趋势是通过引入更先进的设备、技术和工艺,提高生产效率和产品质量,实现快速、精确和可持续的制造。

超高速切削的发展现状

超高速切削的发展现状

超高速切削的发展现状超高速切削是一种先进的切削加工技术,采用高速转速和小切削深度进行切削,能够有效提高切削效率和加工精度。

本文将对超高速切削的发展现状进行详细介绍。

超高速切削技术的发展可以追溯到20世纪60年代,当时由于切削过程容易产生几何形状的误差和表面质量问题,因此一直未能得到广泛应用。

随着计算机数控技术和精密制造技术的快速发展,超高速切削技术在上世纪80年代出现了突破性的进展。

发展初期,超高速切削主要用于加工金属材料,如铝合金、镁合金等,通过提高切削速度和减小切削深度,大大提高了切削效率和表面质量。

随着材料科学和刀具制造技术的进步,超高速切削技术逐渐应用到切削硬度较高的材料,如钢、铁等。

近年来,随着新材料和复杂工件的出现,超高速切削技术迎来了新的发展机遇。

首先是新材料的应用,如高性能陶瓷、纳米材料等,这些材料具有高硬度和高韧性,传统切削技术难以满足对其加工精度和表面质量的要求,而超高速切削技术能够有效解决这一问题。

其次是复杂工件的加工,如汽车发动机缸体、飞机发动机叶片等,这些工件形状复杂,表面精度要求高,传统加工方法效率低、成本高,而超高速切削技术具有快速、高效的优势。

随着超高速切削技术的不断发展,相关设备和工具也在不断更新迭代。

首先是刀具材料的优化,采用纳米材料、复合材料等先进材料制造刀具,能够提高切削效率和切削质量。

其次是机床的改进,采用高刚性、高速度的数控机床,能够满足高速切削的要求。

同时,先进的控制系统和传感器技术的应用,能够实时监测切削过程中的温度、压力等参数,保证整个加工过程的稳定性和安全性。

超高速切削技术的发展带来了巨大的经济效益和社会效益。

首先是加工效率的提高,相比传统切削技术,超高速切削能够大幅度提高切削速度和加工效率,节约了生产时间和成本。

其次是加工精度和表面质量的提升,超高速切削能够实现微米级的精度和纳米级的表面粗糙度,满足了高精度工件的需求。

此外,超高速切削技术还可以减少切削力和切削温度,降低刀具磨损和能量消耗,从而延长刀具寿命,减少了对自然资源的消耗,对环境保护具有积极意义。

超高速磨削技术在机械制造领域中的运用

超高速磨削技术在机械制造领域中的运用

超高速磨削技术在机械制造领域中的运用随着科技的不断进步,超高速磨削技术已经在机械制造领域中得到了广泛的应用。

这项技术以其高效、精密、快速的特点,带来了巨大的生产效率提升和品质改善。

本文将从超高速磨削技术的基本原理、在机械制造领域的运用以及未来发展趋势等方面进行阐述。

一、超高速磨削技术的基本原理超高速磨削技术是一种以高速旋转砂轮进行高速磨削的精密加工技术。

它主要利用高速旋转的砂轮对工件进行磨削,利用磨料颗粒对工件表面进行切削,从而实现对工件表面的加工。

相比传统磨削技术,超高速磨削技术具有以下几点优势:1. 精度高:砂轮高速旋转时,能够产生高频率的磨削切削,因此可以获得高精度的加工表面;2. 加工效率高:高速磨削可以实现快速的切削,从而提高了加工效率;3. 表面质量好:由于高速磨削能够减少切削温度和变形,因此可以获得高质量的加工表面。

在机械制造领域,超高速磨削技术已经得到了广泛的应用。

主要体现在以下几个方面:1. 高精度零部件加工:超高速磨削技术可以实现对工件表面的高精度加工,特别适用于对精密零部件的加工,如汽车发动机配件、航空发动机零部件、精密轴承等;2. 复杂曲面加工:超高速磨削技术可以实现对工件曲面的复杂加工,如汽车凸轮轴、机床导轨等曲面零部件的加工;3. 提高加工效率:超高速磨削技术可以大幅提高加工效率,减少加工时间,提高生产效率;4. 提高加工质量:超高速磨削技术可以提高加工表面的质量,减少人为因素的影响,提高加工一致性。

三、超高速磨削技术在机械制造领域的发展趋势未来,随着机械制造领域对零部件精度和表面质量要求的不断提高,超高速磨削技术将得到更广泛的应用,并且在以下几个方面有望得到进一步的发展:1. 精细化加工:超高速磨削技术将逐步实现对更为细小、复杂的零部件表面的加工,如微型零件、微加工领域;2. 自动化生产:超高速磨削技术将逐步实现自动化生产,通过自动控制系统实现加工过程的自动监控和调整,提高生产效率;3. 高速高效加工:超高速磨削技术将进一步提高旋转速度和切削频率,实现更高速、更高效的加工;4. 精密模具加工:超高速磨削技术将在模具加工领域得到更广泛的应用,如塑料模具、压铸模具等精密模具的加工。

超高速切削的发展现状

超高速切削的发展现状

超高速切削的发展现状金属切削加工已进入了一个以高速切削为代表的新的发展阶段,由于高速切削加工能极大地提高材料的切除率和零件的加工质量,降低加工成本,因而成为当今金属切削加工的发展方向之一。

高速切削刀具技术是高速切削加工的一个关键技术,它包括高速切削刀具材料、刀柄系统、刀具系统动平衡技术、刀具监测技术等。

本文就作一概述。

1.高速切削加工对刀具系统的要求所谓刀具系统是指由刀柄、夹头和切削刀具所组成的完整的刀具体系,刀柄与机床主轴相连,切削刀具通过夹头装入刀柄之中。

要使刀具系统能在高速下进行切削加工,应满足以下基本条件:较高的系统精度系统精度包括系统定位夹持精度和刀具重复定位精度,前者指刀具与刀柄、刀柄与机床主轴的连接精度;后者指每次换刀后刀具系统精度的一致性。

刀具系统具有较高的系统精度,才能保证高速加工条件下刀具系统应有的静态和动态稳定性。

较高的系统刚度刀具系统的静、动刚度是影响加工精度及切削性能的重要因素。

刀具系统刚度不足会导致刀具系统振动,从而降低加工精度,并加剧刀具的磨损,降低刀具的使用寿命。

较好的动平衡性高速切削加工条件下,微小质量的不平衡都会造成巨大的离心力,在加工过程中引起机床的急剧振动。

因此,高速刀具系统的动平衡非常重要。

2.传统实心长刀柄结构存在的问题目前,在数控铣床、数控镗床和加工中心上使用的传统刀柄是标准7:24锥度实心长刀柄。

这种刀柄与机床主轴的连接只是靠锥面定位,主轴端面与刀柄法兰端面间有较大间隙。

这种刀柄结构在高速切削条件下会出现下列问题:刀具动、静刚度低刀具高速旋转时,由于离心力的作用,主轴锥孔和刀柄均会发生径向膨胀,膨胀量大小随旋转半径和转速的增大而增大。

这就会造成刀柄的膨胀量小于主轴锥孔的膨胀量而出现配合间隙,使得本来只靠锥面结合的低刚性连接的刚度进一步降低。

动平衡性差标准7:24锥度柄较长,很难实现全长无间隙配合,一般只要求配合前段70%以上接触,而后段往往会有一定间隙。

05第二节 高速与超高速加工技术

05第二节 高速与超高速加工技术
第三章 先进制造工艺技术
第二节 高速加工及超高速加工技术
一、超高速加工技术的内涵、范围
内涵:采用超硬材料的刃具,通过极大地提 高切削速度和进给速度来提高材料切除率、 加工精度和加工质量的现代加工技术,其切 削速度通常比常规高10倍左右。
不同加工工艺、加工材料 超高速加工切削速度范围
加工 工艺 车削 铣削 钻削 磨削 拉削 铰削 锯削 切削速度范围 切削速度范围 加工材料 (m/min) (m/min) 700~7000 2000~7500 铝合金 300~6000 900~5000 铜合金 200~1100 600~3000 钢 5000~10000 800~3000 铸钢 30~75 >500 耐热合金 20~500 150~1000 钛合金 50~500 2000~9000 纤维增强塑料
超高速切削的刀具材料:
涂层刀具、 金属陶瓷刀具、 陶瓷刀具、 立方氮化硼、 聚晶金刚石(PCD)刀具 CBN(立方氮化硼)刀具材料
表1 不同CBN含量的刀片及用途 CBN含量(%) 50 65 80 90 80~90 用 途 连续切削淬硬钢(45HRC~65HRC) 半断续切削淬硬钢(45HRC~65HRC) Ni-Cr铸铁 连续重载切削淬硬钢(45HRC~65HRC) 高速切削铸铁(45HRC~65HRC), 粗、半精切削淬硬钢
90年代从两个方向上发展:
一、在普通机床的基础上对关键零部件 进行改进; 二、研制完全不同于普通机床的新型结 构机床。
关键技术
进给驱动系统高速化 运动部件较量化和伺服进给控制精密化 新运动原理机床的出现
直线电机驱动系统 :电动机与滑台刚性连接
X、Y、Z三轴均采用直线电机驱动 、 、 三轴均采用直线电机驱动
1、加工效率高 :切削速度、进给速度比常规切削高5~10倍, 、 加工时间通常可缩减到原来的1/3。 2、切削力小 :加工切削力比常规降低30%,单位功率材料切 、 除率可提高 40%以上,通常刀具寿命可提高约70%。 3、热变形小:95%以上的切削热来不及传给工件而被切屑迅 、热变形小: 速带走。 4、加工精度高 :切屑被飞快地切离工件,切削力和切削热影 、 响小,从而使工件表面的残余应力小,使刀具和工件的变形 小,保持了尺寸的精确性、较好的表面质量。

超高速切削的发展现状整理

超高速切削的发展现状整理

超高速切削的发展现状整理超高速切削的进展现状金属切削加工已进入了一个以高速切削为代表的新的进展阶段,由于高速切削加工能极大地提高材料的切除率和零件的加工质量,降低加工成本,因而成为当今金属切削加工的进展方向之一。

高速切削刀具技术是高速切削加工的一个关键技术,它包括高速切削刀具材料、刀柄系统、刀具系统动平衡技术、刀具监测技术等。

本文就作一概述。

1. 高速切削加工对刀具系统的要求所谓刀具系统是指由刀柄、夹头和切削刀具所组成的完整的刀详细系,刀柄与机床主轴相连,切削刀具通过夹头装入刀柄之中。

要使刀具系统能在高速下进行切削加工,应满意以下基本条件:较高的系统精度系统精度包括系统定位夹持精度和刀具重复定位精度,前者指刀具与刀柄、刀柄与机床主轴的连接精度;后者指每次换刀后刀具系统精度的全都性。

刀具系统具有较高的系统精度,才能保证高速加工条件下刀具系统应有的静态和动态稳定性。

较高的系统刚度刀具系统的静、动刚度是影响加工精度及切削性能的重要因素。

刀具系统刚度不足会导致刀具系统振动,从而降低加工精度,并加剧刀具的磨损,降低刀具的使用寿命。

较好的动平衡性高速切削加工条件下,微小质量的不平衡都会造成巨大的离心力,在加工过程中引起机床的急剧振动。

因此,高速刀具系统的动平衡特别重要。

2. 传统实心长刀柄结构存在的问题目前,在数控铣床、数控镗床和加工中心上使用的传统刀柄是标准7:24锥度实心长刀柄。

这种刀柄与机床主轴的连接只是靠锥面定位,主轴端面与刀柄法兰端面间有较大间隙。

这种刀柄结构在高速切削条件下会消失下列问题:刀具动、静刚度低刀具高速旋转时,由于离心力的作用,主轴锥孔和刀柄均会发生径向膨胀,膨胀量大小随旋转半径和转速的增大而增大。

这就会造成刀柄的膨胀量小于主轴锥孔的膨胀量而消失协作间隙,使得原来只靠锥面结合的低刚性连接的刚度进一步降低。

动平衡性差标准7:24锥度柄较长,很难实现全长无间隙协作,一般只要求协作前段70%以上接触,而后段往往会有肯定间隙。

超高速加工技术最新进展综述

超高速加工技术最新进展综述

机械工程学院先进技术制造论文题目:超高速加工技术最新进展综述专业:机械设计制造及其自动化班级:10B2学生学号:20101047学生姓名:二〇一三年月日超高速加工技术最新进展综述摘要: 综述了超高速磨削加工技术的起源,概述了德国、美国以及日本等国的发展历程和目前的现状,并分析了国内近年来超高速磨削的发展。

介绍了超高速磨削的机理, 简单总结了超高速磨削的优越性和特点。

超高速磨削是提高磨削效率、降低工件表面粗糙度和提高零件加工质量的先进加工技术。

超高速磨削具有巨大的经济效益。

阐述了超高速磨削目前的发展趋势。

关键字:超高速发展1. 超高速磨削技术的发展1.1 高速和超高速磨削的理论依据高速加工和超高速加工的概念是由德国切削物理学家Salomon博士于1931年首先提出, 他发表了著名的Salomon曲线, 创造性地预言了超越Taylor切削方程式的非切削工作区域的存在, 提出如能够大幅度提高切削速度, 就可以越过切削过程产生的高温死谷而使刀具在超高速区进行高速切削, 从而大幅度减少切削工时, 成倍地提高机床生产率。

他的理论成为后来的高速超高速磨削的理论依据。

1. 2 国外高速超高速磨削的发展1. 2. 1欧洲的发展情况欧洲高速超高速磨削技术的发展起步比较早。

1979年德国Bremen大学的Werner PG[1]教授撰文预言了高效深磨区存在的合理性, 由此开创了高效深磨的概念。

1983年德国Bremen大学出资由德国Gushing Automation公司制造了当时世界上第一台高效深磨的磨床, 砂轮圆周速度达到了209m/s。

德国Gushing Automation公司于1992年成功制造出砂轮线速度为140---160m/s的CBN磨床, 并正在试制线速度达180m/s的样机[2]。

德国Apache大学、Bremen大学在高效深磨的研究方面取得了世界公认的高水平成果。

据Apache工业大学实验室的Koenig和Freeman宣称, 该实验室已经采用了圆周速度达到500m/s的超高速砂轮, 这一速度已突破了当前机床与砂轮的工作极限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级:机制2班姓名:周明学号:1208470528超高速加工发展状况及趋势随着时代发展与科学进步,各个国家关于对超高速加工技术的投资与研究使用的比例越来越高,但是各国的发展水平却依然存在很大的差距。

超高速加工到2005年基本实现工业应用,主轴最高转速达15000r/min,进给速度达40~60m/min,砂轮磨削速度达100~150m/s;超精密加工基本实现亚微米级加工,加强纳米级加工技术应用研究,达到国际九十年代初期水平。

超高速加工已经成为先进制造技术竞争的一个制高点。

超高速加工中,工件与刀具相互高速撞击,力的瞬态作用使剪切局限在一个微区域,能量在此微区的耗散使材料局部高温,可能达到熔化或接近熔化的状态。

正反馈效应使局部绝热剪切作用愈加增强。

切削速度越高,这种绝热剪切作用也越强,接近音速的超高速切削走向极端条件,带来了诸多新机理研究和对传统切削机理的突破性挑战。

机床工作在数万转/分转速下承受冲击载荷,依然达到μ级的工作精度,要求实现机床主轴系统旋转的高精度高稳定性控制以及整机动静热特性的精确设计。

冲击载荷下,主轴的高刚度、高精度要求轴承工作间隙很小,在微间隙中轴承润滑介质受到强剪切与挤压,同样达到了一种极端的工况。

超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。

超高速加工技术主要包括:超高速切削与磨削机理研究,超高速主轴单元制造技术,超高速进给单元制造技术,超高速加工用刀具与磨具制造技术,超高速加工在线自动检测与控制技术等。

超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。

超高速切削是金属切削加工技术的新发展。

在今后15年内,现代机床技术将在机床设计、结构、金属切削效率和生产率等方面有重大突破。

预计九十年代生产的机床将比七十年代生产的机床体积更小,速度更快。

它将采用强度与重量之比很高的材料(有色金属狈非金属材料)来代替钢和铸铁。

在加工速度方面,未来的机床主轴将以10万转/分的速度进行工作,金属切削效率将为今夭的十倍,加工精度和表面光洁度也将有本质上的改进。

下面对美国洛克希德飞机公司研究和试验超高速切削加工的情况作一概括介绍。

超高速切削原是美国洛克希德公司在三十年代提出的一个实验理论,它认为金属切削效率直接与切削速度有关。

特别是该理论断定,当切削速度在10万英尺/分(3万米/分)以上时,金属切削效率将提高50~1。

O倍。

这个理论直到五十年代后期才得到证实。

当时该公司在加工口径为20毫米的滑膛大炮炮筒时进行了试验,试验结果表明,增加切削速度有助于提高生产率,并充分证明超高速切削的理论是可行的。

但是由于当时有些技术问题没有解决,特别是刀具和工件的高速运动的控制还存在一系列的问题,因此,对超高速切削的研究中断了。

六十年代初,美国空军主持研究用超高速切削方法,加工钦、铝、不锈钢和热处理钢,他们使用单刃刀具加工火箭发动机零件,切削速度达到1.5~36万英尺/分(。

.45、10万米/分),研究表明,用超高速切削方法加工这些宇宙航空用的金属材料,切削效率要比用普通方法加工高很多倍。

机械装备大多工作在力热耦合状态下,现代CAE技术对连续的机械结构的特性预测已达到很高的精度。

分析的困难发生在结构界面造成的不连续性。

因此,无论整机的结构设计,还是高速切削中,刀具与工件材料的强烈摩擦,以及高速轴承支承的工作表面与润滑介质的相互作用都存在界面强耦合作用问题。

Salomon高速切削(high speed machining,HSM或high speed cutting,HSC)的理念提出以来,超越“热沟”、切削力和切削热同时下降的假设始终未得到验证。

超高速加工过程中,被切材料与刀具以接近声速进行瞬间碰撞,材料的高速激烈应变和切屑的瞬间形成,工件材料的应变达到1-10,应变速率达到105-107/s,甚至更高,工件材料发生剧变,工件材料发生超强应变过程及工具-切屑-工件之间剧烈的摩擦学行为将导致在局部区域产生高温,工件材料接近或达到熔化状态,形成绝热剪切。

在这些极端工作状态下,工件材料被软化剥离去除而形成高精度、高光洁表面。

工件材料有时发生塑脆或脆塑转变,传统金属切削加工的剪切滑移理论已很难适用超高速切削研究。

揭示超高速切削的机理,探明其科学实质,不仅是对传统切削理论的突破,同时可实现切削速度的跨越,从而获得更高的制造效率和更高的加工质量,降低能耗,并为解决高速加工工具的设计、使用以及最佳工艺选择提供理论依据。

目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m/min,铸铁为1500m/min,超耐热镍合金达300m/min,钛合金达150~1000m/min,纤维增强塑料为2000~9000m/min。

各种切削工艺的切速范围为:车削700~7000m/min,铣削300~6000m/min,钻削200~1100m/min,磨削250m/s以上等等。

20世纪80年代,计算机控制的自动化生产技术的高速发展成为国际生产工程的突出特点。

工业发达国家的数控化率已高达70~80%。

从提高生产率的角度看,机床和生产过程自动化的实质,归根到底,是以加快空行程动作的速度和提高零件生产过程的连续性,从而缩短辅助工时为目的的一种技术手段。

但是辅助动作速度的提高是有一定限度的。

例如目前加工中心自动换刀时间已缩短到1S,快速空程速度已提高到30~50m/min。

再提高空程速度不但技术上有困难,经济上不合算,且对提高机床的生产率意义也不大,矛盾的主要方面已经转向切削工时。

只有大幅度地降低切削工时(即提高切削速度和进给速度等),才有可能在提高机床生产率方面出现又一次新的飞跃。

这就是近20年来超高速切削技术得以迅速发展的历史背景。

以铣削为例,1970~1980年,由于加工中心的大发展,零件加工的辅助工时迅速下降;80年代以来,由于高速切削技术的推广应用,零件加工中的切削工时开始呈现较大幅度的下降。

在整个90年代,随着超高速切削技术的飞速进步,这个趋势将继续发展下去。

工业发达国家对超高速加工的研究起步早,水平高。

在此项技术中,处于领先地位的国家主要有德国、日本、美国、意大利等。

在超高速加工技术中,超硬材料工具是实现超高速加工的前提和先决条件,超高速切削磨削技术是现代超高速超高速加工刀具加工的工艺方法,而高速数控机床和加工中心则是实现超高速加工的关键设备。

目前,刀具材料已从碳素钢和合金工具钢,经高速钢、硬质合金钢、陶瓷材料,发展到人造金刚石及聚晶金刚石(PCD)、立方氮化硼及聚晶立方氮化硼(CBN)。

切削速度亦随着刀具材料创新而从以前的12m/min提高到1200m/min以上。

砂轮材料过去主要是采用刚玉系、碳化硅系等,美国G.E公司50年代首先在金刚石人工合成方面取得成功,60年代又首先研制成功CBN。

90年代陶瓷或树脂结合剂CBN砂轮、金刚石砂轮线速度可达125m/s,有的可达150m/s,而单层电镀CBN砂轮可达250m/s。

因此有人认为,随着新刀具(磨具)材料的不断发展,每隔十年切削速度要提高一倍,亚音速乃至超声速加工的出现不会太遥远了。

在超高速切削技术方面,1976年美国的Vought公司研制了一台超高速铣床,最高转速达到了20000rpm。

特别引人注目的是,联邦德国Darmstadt工业大学生产工程与机床研究所(PTW)从1978年开始系统地进行超高速切削机理研究,对各种金属和非金属材料进行高速切削试验,联邦德国组织了几十家企业并提供了2000多万马克支持该项研究工作,自八十年代中后期以来,商品化的超高速切削机床不断出现,超高速机床从单一的超高速铣床发展成为超高速车铣床、钻铣床乃至各种高速加工中心等。

瑞士、英国、日本也相继推出自己的超高速机床。

日本日立精机的HG400III型加工中心主轴最高转速达36000~40000r/min,工作台快速移动速度为36~40m/min。

采用直线电机的美国Ingersoll公司的HVM800型高速加工中心进给移动速度为60m/min。

在高速和超高速磨削技术方面,人们开发了高速、超高速磨削、深切缓进给磨削、深切快进给磨削(即HEDG)、多片砂轮和多砂轮架磨削等许多高速高效率磨削,这些高速高效率磨削技术在近20年来得到长足的发展及应用。

德国GuehringAutomation公司1983年制造出了当时世界第一台最具威力的60kw强力CBN砂轮磨床,Vs达到140~160m/s。

德国阿享工业大学、Bremen大学在高效深磨的研究方面取得了世界公认的高水平成果,并积极在铝合金、钛合金、因康镍合金等难加工材料方面进行高效深磨的研究。

德国Bosch公司应用CBN砂轮高速磨削加工齿轮齿形,采用电镀CBN砂轮超高速磨削代替原须经滚齿及剃齿加工的工艺,加工16MnCr5材料的齿轮齿形,Vs=155m/s,其Q'达到811mm3/mm.s,德国Kapp公司应用高速深磨加工泵类零件深槽,工件材料为100Cr6轴承钢,采用电镀CBN砂轮,Vs达到300m/s,其Q`=140mm3/mm.s,磨削加工中,可将淬火后的叶片泵转子10个一次装夹,一次磨出转子槽,磨削时工件进给速度为1.2m/min,平均每个转子加工工时只需10秒钟,槽宽精度可保证在2μm,一个砂轮可加工1300个工件。

目前日本工业实用磨削速度已达200m/s,美国Conneticut大学磨削研究中心,1996年其无心外圆高速磨床上,最高砂轮磨削速度达250m/s。

在德国,超高速切削得到了国家研究技术部的鼎力支持。

1984年该部拨款1160万马克,组织了以Darmstadt(达姆斯塔特)工业大学的生产工程与机床研究所(PTW)为首的、有40家公司参加的两项联合研究计划。

该计划系统地研究了超高速切削机床、刀具、控制系统等相关的工艺技术,分别对各种工件材料(钢、铸铁、特殊合金、铝合金、铝镁铸造合金、铜合金和纤维增强塑料等)的超高速切削性能进行了深入的研究与试验,取得了国际公认的高水平研究成果,并在德国工厂广泛应用。

日本于60年代就着手超高速切削机理的研究。

日本学者发现,在超高速切削时,切削热的绝大部分被切屑迅速带走,工件基本保持冷态,其切屑要比常规切屑热得多。

日本工业界善于吸取各国的研究成果并及时应用到新产品开发中去,所以其在超高速切削机床的研究和开发方面后来居上,现已跃居世界领先地位。

1990年以来,以松浦、牧野、马扎克和新泻铁工等公司为代表的一批机床制造厂,陆续向市场推出不少超高速加工中心和数控铣床。

日本厂商现已成为世界上超高速机床的主要提供者。

近年来,我国在高速超高速加工的各关键领域如大功率高速主轴单元、高加减速直线进给电机、陶瓷滚动轴承等方面也进行了较多的研究,但总体水平同国外尚有较大差距,必须急起直追。

相关文档
最新文档