2008年河南专升本高等数学真题+真题解析
河南专升本高等数学试题(含答案)
高数试题练习一、函数、极限连续 1.函数)(x f y =的定义域是( )A .变量x 的取值范围B .使函数)(x f y =的表达式有意义的变量x 的取值范围C .全体实数D .以上三种情况都不是 2.以下说法不正确的是( )A .两个奇函数之和为奇函数B .两个奇函数之积为偶函数C .奇函数与偶函数之积为偶函数D .两个偶函数之和为偶函数 3.两函数相同则( )A .两函数表达式相同B .两函数定义域相同C .两函数表达式相同且定义域相同D .两函数值域相同 4.函数y =的定义域为( )A .(2,4)B .[2,4]C .(2,4]D .[2,4) 5.函数3()23sin f x x x =-的奇偶性为( )A .奇函数B .偶函数C .非奇非偶D .无法判断6.设,121)1(-+=-x xx f 则)(x f 等于( )A .12-x xB .x x 212--C .121-+x xD .xx212--7. 分段函数是( )A .几个函数B .可导函数C .连续函数D .几个分析式和起来表示的一个函数 8.下列函数中为偶函数的是( ) A .x e y -= B .)ln(x y -= C .x x y cos 3= D .x y ln =9.以下各对函数是相同函数的有( ) A .x x g x x f -==)()(与 B .xx g x x f cos )(sin 1)(2=-=与C .1)()(==x g x xx f 与 D .⎩⎨⎧<->-=-=2222)(2)(x xx x x g x x f 与10.下列函数中为奇函数的是( )A .)3cos(π+=x y B .x x y sin = C .2xx e e y --=D .23x x y +=11.设函数)(x f y =的定义域是[0,1],则)1(+x f 的定义域是( )A .]1,2[--B .]0,1[- C .[0,1] D . [1,2]12.函数⎪⎩⎪⎨⎧≤<+=<<-+=20200022)(2x x x x x x f 的定义域是( )A .)2,2(-B .]0,2(-C .]2,2(-D . (0,2]13.若=---+-=)1(,23321)(f xx x x x f 则( )A .3-B .3C .1-D .1 14.若)(x f 在),(+∞-∞内是偶函数,则)(x f -在),(+∞-∞内是( )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x f15.设)(x f 为定义在),(+∞-∞内的任意不恒等于零的函数,则)()()(x f x f x F -+=必是( )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x F16. 设⎪⎩⎪⎨⎧<<≤<-≤<--=42,021,1211,1)(2x x x x x x f 则)2(πf 等于 ( ) A .12-π B .182-π C . 0 D .无意义17.函数x x y sin 2=的图形( )A .关于ox 轴对称B .关于oy 轴对称C .关于原点对称D .关于直线x y =对称18.下列函数中,图形关于y 轴对称的有( )A .x x y cos = B .13++=x x yC .2xx e e y -+=D .2xx e e y --=19.函数)(x f 与其反函数)(1x f -的图形对称于直线( )A .0=y B .0=x C .x y = D .x y -= 20. 曲线)1,0(log ≠>==a a x y a y a x 与在同一直角坐标系中,它们的图形( )A .关于x 轴对称B .关于y 轴对称C .关于直线x y =轴对称D .关于原点对称21.对于极限)(limx f x →,下列说法正确的是( ) A .若极限)(lim 0x f x →存在,则此极限是唯一的 B .若极限)(lim 0x f x →存在,则此极限并不唯一C .极限)(limx f x →一定存在D .以上三种情况都不正确 22.若极限A )(lim=→x f x 存在,下列说法正确的是( )A .左极限)(lim 0x f x -→不存在 B .右极限)(lim 0x f x +→不存在C .左极限)(lim 0x f x -→和右极限)(lim 0x f x +→存在,但不相等D .A )(lim )(lim )(lim 00===→→→-+x f x f x f x x x23.极限ln 1limx e x x e→--的值是( )A .1B .1eC .0D .e24.极限ln cot lim ln x xx→+0的值是( ).A . 0B . 1C .∞D . 1-25.已知2sin lim20=+→xx bax x ,则( ) A .0,2==b aB .1,1==b aC .1,2==b aD .0,2=-=b a26.设b a<<0,则数列极限l i m n n n n a b →+∞+是A .aB .bC .1D .b a + 27.极限xx 1321lim+→的结果是A .0B .21C .51D .不存在28.∞→x lim xx 21sin 为( )A .2B .21C .1D .无穷大量29. n m nxmxx ,(sin sin lim 0→为正整数)等于( )A .nm B .mn C .n m nm --)1( D .mn m n --)1( 30.已知1tan lim230=+→xx bax x ,则( ) A .0,2==b aB .0,1==b aC .0,6==b aD .1,1==b a31.极限xx xx x cos cos lim+-∞→( )A .等于1B .等于0C .为无穷大D .不存在32.设函数⎪⎩⎪⎨⎧>-=<+=010001sin )(x e x x x x f x 则=→)(limx f x ( )A .1B .0C .1-D .不存在 33.下列计算结果正确的是( )A .e x x x =+→10)41(lim B .410)41(lim e xx x =+→ C .410)41(lim --→=+e x x x D .4110)41(lim e x x x =+→34.极限x x xtan 0)1(lim +→等于( ) A . 1 B .∞ C .0 D .21 35.极限⎪⎭⎫⎝⎛-→x x x x x sin 11sinlim 0的结果是 A .1- B .1 C .0 D .不存在36.()01sinlim≠∞→k kxx x 为 ( )A .kB .k1C .1D .无穷大量37.极限xx sin lim 2π-→=( )A .0B .1C .1-D .2π-38.当∞→x时,函数x x)11(+的极限是( )A .eB .e -C .1D .1-39.设函数⎪⎩⎪⎨⎧>-=<+=01cos 001sin )(x x x x x x f ,则=→)(lim 0x f xA .1B .0C .1-D .不存在40.已知a xax x x 则,516lim21=-++→的值是( ) A .7 B .7- C . 2 D .341.设⎪⎩⎪⎨⎧≥+<=020tan )(x x x xaxx f ,且)(limx f x →存在,则a 的值是( )A .1B .1-C .2D .2- 42.无穷小量就是( )A .比任何数都小的数B .零C .以零为极限的函数D .以上三种情况都不是 43.当0→x 时,)2sin(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 44.当0→x 时,与x 等价的无穷小是( ) A .xx sin B .)1ln(x + C .)11(2x x -++ D .)1(2+x x45.当0→x 时,)3tan(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 46.设,1)(,)1(21)(x x g x xx f -=+-=则当1→x 时( )A .)(x f 是比)(x g 高阶的无穷小B .)(x f 是比)(x g 低阶的无穷小C .)(x f 与)(x g 为同阶的无穷小 D .)(x f 与)(x g 为等价无穷小 47.当+→0x 时, 11)(-+=a x x f 是比x 高阶的无穷小,则( )A .1>aB .0>aC .a 为任一实常数D .1≥a48.当0→x 时,x 2tan 与2x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 49.“当0x x→,A x f -)(为无穷小”是“A x f x x =→)(lim 0”的( )A .必要条件,但非充分条件B .充分条件,但非必要条件C .充分且必要条件D .既不是充分也不是必要条件 50. 下列变量中是无穷小量的有( ) A .)1ln(1lim0+→x x B .)1)(2()1)(1(lim 1-+-+→x x x x xC .x x x 1cos 1lim ∞→D .x x x 1sin cos lim 0→ 51.设时则当0,232)(→-+=x x f x x ( )A .)(x f 与x 是等价无穷小量B .)(x f 与x 是同阶但非等价无穷小量C .)(x f 是比x 较高阶的无穷小量 D .)(x f 是比x 较低阶的无穷小量 52. 当+→0x时,下列函数为无穷小的是( )A .x x 1sinB .x e 1C .x lnD .x xsin 153. 当0→x 时,与2sin x 等价的无穷小量是 ( ) A .)1ln(x + B .x tan C .()x cos 12- D .1-x e54. 函数,1sin )(xx x f y ==当∞→x 时)(x f ( )A .有界变量B .无界变量C .无穷小量D .无穷大量55. 当0→x 时,下列变量是无穷小量的有( )A .xx 3B .xx cos C .x ln D .xe -56. 当0→x 时,函数xxy sec 1sin +=是( )A .不存在极限的B .存在极限的C .无穷小量D .无意义的量 57.若0x x→时, )(x f 与)(x g 都趋于零,且为同阶无穷小,则( )A .0)()(lim=→x g x f x x B .∞=→)()(lim 0x g x f x xC .)1,0()()(lim≠=→c c x g x f x x D .)()(lim 0x g x f x x →不存在58.当0→x 时,将下列函数与x 进行比较,与x 是等价无穷小的为( )A .x 3tan B .112-+x C .x x cot csc - D .xx x 1sin2+ 59.函数)(x f 在点0x 有定义是)(x f 在点0x 连续的( )A .充分条件B .必要条件C .充要条件D .即非充分又非必要条件 60.若点0x 为函数的间断点,则下列说法不正确的是( )A .若极限A )(lim 0=→x f x x 存在,但)(x f 在0x 处无定义,或者虽然)(x f 在0x 处有定义,但)(A 0x f ≠,则0x 称为)(x f 的可去间断点B .若极限)(lim 0x f x x +→与极限)(lim 0x f x x -→都存在但不相等,则0x 称为)(x f 的跳跃间断点C .跳跃间断点与可去间断点合称为第二类的间断点D .跳跃间断点与可去间断点合称为第一类的间断点 61.下列函数中,在其定义域内连续的为( )A .x x x f sin ln )(+= B .⎩⎨⎧>≤=00sin )(x ex xx f xC .⎪⎩⎪⎨⎧>-=<+=01011)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f62.下列函数在其定义域内连续的有( ) A .x x f 1)(=B .⎩⎨⎧>≤=0cos 0sin )(x xx x x fC .⎪⎩⎪⎨⎧>-=<+=01001)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f63.设函数⎪⎩⎪⎨⎧=-≠=021arctan )(x x x x f π 则)(x f 在点0=x 处( )A .连续B .左连续C .右连续D .既非左连续,也非右连续64.下列函数在0=x 处不连续的有( )A .⎪⎩⎪⎨⎧=≠=-00)(2x x e x f xB .⎪⎩⎪⎨⎧=≠=010sin )(21x x xx x f C .⎩⎨⎧≥<-=00)(2x xx xx f D .⎩⎨⎧≤->+=00)1ln()(2x xx x x f65.设函数⎪⎩⎪⎨⎧=≠--=12111)(2x x x x x f , 则在点)(1x f x 处函数=( ) A .不连续 B .连续但不可导 C .可导,但导数不连续 D .可导,且导数连续 66.设分段函数⎩⎨⎧<+≥+=011)(2x x x x x f ,则)(x f 在0=x 点( )A .不连续B .连续且可导C .不可导D .极限不存在 67.设函数)(x f y =,当自变量x 由0x 变到y x x ∆∆+相应函数的改变量时,0=( )A .)(0x x f ∆+ B .x x f ∆)('0 C .)()(00x f x x f -∆+ D .x x f ∆)(068.已知函数⎪⎩⎪⎨⎧>+=<=012000)(x x x x e x f x ,则函数)(x f ( )A .当0→x 时,极限不存在B .当0→x 时,极限存在C .在0=x 处连续D .在0=x 处可导69.函数)1ln(1-=x y 的连续区间是( )A .),2[]2,1[+∞⋃B .),2()2,1(+∞⋃C .),1(+∞D .),1[+∞ 70.设nxnxx f x -=∞→13lim )(,则它的连续区间是( )A .),(+∞-∞B .处为正整数)(1n nx ≠C .)0()0,(∞+⋃-∞D .处及n x x 10≠≠71.设函数⎪⎪⎩⎪⎪⎨⎧=≠-+=031011)(x x x x x f , 则函数在0=x 处( )A .不连续B .连续不可导C .连续有一阶导数D .连续有二阶导数72.设函数⎪⎩⎪⎨⎧=≠=00x x xx y ,则)(x f 在点0=x 处( )A .连续B .极限存在C .左右极限存在但极限不存在D .左右极限不存在73.设11cot)(2-+=x arc x x f ,则1=x 是)(x f 的( )A .可去间断点B .跳跃间断点C .无穷间断点D .振荡间断点74.函数2x y e x z y-+=的间断点是( )A .)1,1(),1,1(),0,1(--B .是曲线y e y -=上的任意点C .)1,1(),1,1(),0,0(-D .曲线2x y =上的任意点75.设2)1(42-+=x x y ,则曲线( ) A .只有水平渐近线2-=y B .只有垂直渐近线0=x C .既有水平渐近线2-=y ,又有垂直渐近线0=x D .无水平,垂直渐近线76.当0>x时, xx y 1sin=( ) A .有且仅有水平渐近线 B .有且仅有铅直渐近线C .既有水平渐近线,也有铅直渐近线D .既无水平渐近线,也无铅直渐近线 二、一元函数微分学 77.设函数)(x f 在点0x 处可导,则下列选项中不正确的是( )A .x yx f x ∆∆=→∆00lim)(' B .xx f x x f x f x ∆-∆+=→∆)()(lim )('0000C .00)()(lim)('0x x x f x f x f x x --=→ D .hx f h x f x f h )()21(lim)('0000--=→ 78.若e cos x y x =,则'(0)y =( )A .0B .1C .1-D .2 79.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .xe sin B .xecos - C .xecos D .xesin -80.设函数)(x f 在点0x 处可导,且2)('0=x f ,则h x f h x f h )()21(lim 000--→等于( )A .1-B .2C .1D .21-81.设)(x f 在a x =处可导,则xx a f x a f x )()(lim 0--+→=( )A .)('a fB .)('2a fC .0D .)2('a f 82.设)(x f 在2=x 处可导,且2)2('=f ,则=--+→hh f h f h )2()2(lim( )A .4B .0C .2D .383.设函数)3)(2)(1()(---=x x x x x f ,则)0('f 等于( )A .0B .6-C .1D .3 84.设)(x f 在0=x 处可导,且1)0('=f ,则=--→hh f h f h )()(lim( )A .1B .0C .2D .385.设函数)(x f 在0x 处可导,则0lim→h hx f f )()h - x (00-( )A .与0x ,h 都有关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 都无关 86.设)(x f 在1=x 处可导,且21)1()21(lim0=--→h f h f h ,则=)1('f ( )A .21B . 21-C . 41D .41-87.设==-)0('')(2f e x f x 则( )A .1-B .1C .2-D .2 88.导数)'(log x a等于( )A .a x ln 1B .a x ln 1 C .x x a log 1 D .x 1 89.若),1()2(249102+-++=x x x x y 则)29(y =( )A .30B .29!C .0D .30×20×10 90.设',)(',)()(y x f e e f y x f x 则存在且==( )A .)()()()('x f x x f x e e f e e f +B .)(')(')(x f e e f x f x ⋅C .)(')()(')()(x f e e f e e f x f x x f x x ⋅++D .)()('x f x e e f91.设=---=)0('),100()2)(1()(f x x x x x f 则 ( )A .100B .100!C .!100-D .100- 92.若==',y x y x 则( )A .1-⋅x x x B .x xxln C .不可导 D .)ln 1(x x x +93.处的导数是在点22)(=-=x x x f ( )A .1B .0C .1-D .不存在 94.设==-',)2(y x y x 则( )A .)1()2(x x x +--B .2ln )2(x x -C .)2ln 21()2(x x x+- D .)2ln 1()2(x x x +--95.设函数)(x f 在区间],[b a 上连续,且,0)()(<b f a f 则 ( )A .)(x f 在),(b a 内必有最大值或最小值B .)(x f 在),(b a 内存在唯一的0)(,=ξξf 使C .)(x f 在),(b a 内至少存在一个0)(,=ξξf 使D .)(x f 在),(b a 内存在唯一的0)(',=ξξf 使96.设,)()(x g x f y =则=dx dy ( ) A .])()(')()('[2x g x g x f x f y - B .])(1)(1[2x g x f y - C .)()('21x g x f y ⋅ D .)()('2x g x f y ⋅97.若函数)(x f 在区间)b a,(内可导,则下列选项中不正确的是( )A .若在)b a,(内0)('>x f ,则)(x f 在)b a,(内单调增加B .若在)b a,(内0)('<x f ,则)(x f 在)b a,(内单调减少C .若在)b a,(内0)('≥x f ,则)(x f 在)b a,(内单调增加D .)(x f 在区间)b a,(内每一点处的导数都存在98.若)(y x f =在点0x 处导数存在,则函数曲线在点))(,(00x f x 处的切线的斜率为( )A .)('0x f B .)(0x f C .0 D .199.设函数)(yx f =为可导函数,其曲线的切线方程的斜率为1k ,法线方程的斜率为2k ,则1k 与2k 的关系为( ) A .211k k =B .121-=⋅k k C .121=⋅k k D .021=⋅k k100.设0x 为函数)(x f 在区间()b a ,上的一个极小值点,则对于区间()b a ,上的任何点x ,下列说法正确的是( )A .)()(0x f x f >B .)()(0x f x f <C .)()(0x f x f -> D .)()(0x f x f -<101.设函数)(x f 在点0x 的一个邻域内可导且0)('0=x f (或)('0x f 不存在),下列说法不正确的是( )A .若0x x <时, 0)('>x f ;而0x x >时, 0)('<x f ,那么函数)(x f 在0x 处取得极大值B .若0x x <时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极小值C .若0x x<时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极大值D .如果当x 在0x 左右两侧邻近取值时, )('x f 不改变符号,那么函数)(x f 在0x 处没有极值102.0)('0=x f ,0)(''0≠x f ,若0)(''0>x f ,则函数)(x f 在0x 处取得( )A .极大值B .极小值C .极值点D .驻点 103.b x a <<时,恒有0)(>''x f ,则曲线)(x f y =在()b a ,内( )A .单调增加B .单调减少C .上凹D .下凹 104.数()e x f x x =-的单调区间是( ) .A .在),(+∞-∞上单增B .在),(+∞-∞上单减C .在(,0)-∞上单增,在(0,)+∞上单减D .在(,0)-∞上单减,在(0,)+∞上单增 105.数43()2f x x x =-的极值为( ).A .有极小值为(3)fB .有极小值为(0)fC .有极大值为(1)fD .有极大值为(1)f -106.x e y =在点(0,1)处的切线方程为( )A .x y +=1 B .x y +-=1 C .x y -=1 D .x y --=1107.函数x x x x x f 处的切线与的图形在点)1,0(162131)(23+++=轴交点的坐标是( ) A .)0,61(- B .)0,1(- C .)0,61( D .)0,1(108.抛物线xy =在横坐标4=x的切线方程为 ( )A .044=+-y xB .044=++y xC .0184=+-y xD .0184=-+y x109.线)0,1()1(2在-=x y 点处的切线方程是( )A .1+-=x y B .1--=x y C .1+=x y D .1-=x y 110.曲线)(x f y =在点x 处的切线斜率为,21)('x x f -=且过点(1,1),则该曲线的方程是( ) A .12++-=x x y B .12-+-=x x y C .12++=x x y D .12-+=x x y111.线22)121(++=x e y x 上的横坐标的点0=x 处的切线与法线方程( )A .063023=-+=+-y x y x 与B .063023=--=++-y x y x 与C .063023=++=--y x y x 与D .063023=+-=++y x y x 与112.函数处在点则0)(,)(3==x x f x x f ( )A .可微B .不连续C .有切线,但该切线的斜率为无穷D .无切线113.以下结论正确的是( )A .导数不存在的点一定不是极值点B .驻点肯定是极值点C .导数不存在的点处切线一定不存在D .0)('0=x f 是可微函数)(x f 在0x 点处取得极值的必要条件114.若函数)(x f 在0=x 处的导数,0)0('=f 则0=x 称为)(x f 的( )A .极大值点B .极小值点C .极值点D .驻点 115.曲线)1ln()(2+=x x f 的拐点是( )A .)1ln ,1(与)1ln ,1(-B .)2ln ,1(与)2ln ,1(-C .)1,2(ln 与)1,2(ln -D .)2ln ,1(-与)2ln ,1(-- 116.线弧向上凹与向下凹的分界点是曲线的( )A .驻点B .极值点C .切线不存在的点D .拐点 117.数)(x f y =在区间[a,b]上连续,则该函数在区间[a,b]上( )A .一定有最大值无最小值B .一定有最小值无最大值C .没有最大值也无最小值D .既有最大值也有最小值 118.下列结论正确的有( )A .0x 是)(x f 的驻点,则一定是)(x f 的极值点B .0x 是)(x f 的极值点,则一定是)(x f 的驻点C .)(x f 在0x 处可导,则一定在0x 处连续D .)(x f 在0x 处连续,则一定在0x 处可导119.由方程y x e xy+=确定的隐函数)(x y y ==dxdy( ) A .)1()1(x y y x -- B .)1()1(y x x y -- C .)1()1(-+y x x y D .)1()1(-+x y y x120.=+=x y y xe y ',1则( )A .yy xe e -1 B .1-yy xe e C .yyxe e -+11 D .y e x )1(+121.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .xe sin B .xecos - C .xecos D .xesin -122.设x x g e x f x cos )(,)(-==,则=)]('[x g fA .xe sin B .xecos - C .xecos D .xesin -123.设)(),(x t t f y φ==都可微,则=dyA .dt t f )(' B .)('x φdx C .)('t f )('x φdt D .)('t f dx124.设,2sin xey =则=dy ( )A .x d e x 2sinB .x d e x 2sin sin 2C .xxd e x sin 2sin 2sin D .x d e x sin 2sin125.若函数)(x f y =有dy x x x x f 处的微分该函数在时则当00,0,21)('=→∆=是( ) A .与x ∆等价的无穷小量 B .与x ∆同阶的无穷小量 C .比x ∆低阶的无穷小量 D .比x ∆高阶的无穷小量126.给微分式21xxdx -,下面凑微分正确的是( )A .221)1(xx d ---B .221)1(xx d -- C .2212)1(xx d ---D .2212)1(xx d --127.下面等式正确的有( ) A .)(sin sin x x x xe d e dx e e= B .)(1x d dx x=-C .)(222x d e dx xe x x -=-- D .)(cos sin cos cos x d e xdx e x x =128.设)(sin x f y =,则=dy ( )A .dx x f )(sin ' B .x x f cos )(sin ' C .xdx x f cos )(sin ' D .xdx x f cos )(sin '-129.设,2sin x e y =则=dyA .xd e x 2sin B .x d ex2sinsin 2C .x xd e xsin 2sin 2sinD .x d e x sin 2sin三、一元函数积分学130.可导函数)(F x 为连续函数)(x f 的原函数,则( )A .0)('=x f B .)()(F'x f x = C .0)(F'=x D .0)(=x f131.若函数)(F x 和函数)(x Φ都是函数)(x f 在区间I 上的原函数,则有( )A .I x x x ∈∀=Φ),(F )('B .I x x x ∈∀Φ=),()(FC .I x x x ∈∀Φ=),()(F' D .I x C x x ∈∀=Φ-,)()(F132.有理函数不定积分2d 1x x x⎰+等于( ).A .2ln 12x x x C ++++B .2ln 12x x x C --++ C .2ln 12x x x C -+++ D .2ln 122x xx C -+++ 133.不定积分x 等于( ).A .2arcsin x C +B .2arccos xC + C .2arctan x C +D .2cot arc x C +134.不定积分2e e (1)d xxx x-⎰-等于( ).A .1exC x -++ B .1e x C x -+ C .1e x C x ++ D .1e xC x--+135.函数x e x f 2)(=的原函数是( )A .4212+x eB .x e 22C .3312+x eD .x e 231 136.⎰xdx 2sin 等于( )A .c x +2sin 21 B .c x +2sin C .c x +-2cos2 D .c x +2cos 21137.若⎰⎰-=xdx x x dx x xf sin sin )(,则)(x f 等于( )A .x sinB .x x sin C .x cos D .xxcos 138. 设x e -是)(x f 的一个原函数,则⎰=dx x xf )('( )A .c x e x+--)1( B .c x e x ++--)1( C .c x e x +--)1( D . c x e x ++-)1(139.设,)(x e x f -= 则⎰=dx xx f )(ln ' ( ) A .c x +-1 B .c x+1C .c x +-lnD .c x +ln140.设)(x f 是可导函数,则()')(⎰dx x f 为( )A .)(x f B .c x f +)( C .)('x f D .c x f +)('141. 以下各题计算结果正确的是( )A .⎰=+x x dxarctan 12B .c xdx x +=⎰21 C .⎰+-=c x xdx cos sin D .⎰+=c x xdx 2sec tan142. 在积分曲线族⎰dx x x中,过点(0,1)的积分曲线方程为( )A .12+x B .1)(525+x C .x 2 D .1)(255+x143.⎰dx x 31=( )A .c x +--43 B .c x+-221 C . c x +-221 D . c x +-221 144.设)(x f 有原函数x x ln ,则⎰dx x xf )(=( )A .c x x++)ln 4121(2B .c x x ++)ln 2141(2C .c x x +-)ln 2141(2D .c x x +-)ln 4121(2 145.⎰=xdx x cos sin ( )A .c x +-2cos 41 B .c x +2cos 41 C .c x +-2sin 21 D .c x +2cos 21146.积分=+⎰dx x ]'11[2( ) A .211x + B .c x++211 C .x tan arg D .c x +arctan 147.下列等式计算正确的是( )A .⎰+-=c x xdx cos sinB .c x dx x +=---⎰43)4( C .c x dx x +=⎰32 D .c dx x x +=⎰22 148.极限⎰⎰→xxx xdxtdt000sin lim的值为( )A .1-B .0C .2D .1149.极限⎰⎰→x xx dx x tdt 0202sin lim的值为( )A .1-B .0C .2D .1150.极限4030sin limx dt t xx ⎰→=( )A .41 B .31 C .21D .1 151.=⎰+2ln 01x t dt e dxd( )A .)1(2+xe B .ex C .ex 2 D .12+xe152.若⎰=xtdt dx d x f 0sin )(,则()A .x x f sin )(=B .x x f cos 1)(+-=C .c x x f +=sin )( D .x x f sin 1)(-=153.函数()⎰+-=xdt t t tx 0213φ在区间]10[,上的最小值为( )A .21 B .31C .41D .0 154.若()⎰+==xtxc dt t e x f e x x g 02122213)(,)(,且23)(')('lim=+∞→x g x f x 则必有( )A .0=cB .1=cC .1-=cD .2=c 155.⎰=+xdt t dx d14)1(( )A .21x + B .41x + C .2121x x+ D .x x+121 156.=⎰]sin [02dt t dx d x( ) A .2cos x B .2cos 2x x C .2sin x D .2cos t157.设函数⎪⎪⎩⎪⎪⎨⎧=≠=⎰00sin )(20x ax x tdt x f x在0=x 点处连续,则a 等于( )A .2B .21C .1D .2- 158.设)(x f 在区间],[b a 连续, ),()()(b x a dt t f x F xa≤≤=⎰则)(x F 是)(x f 的( )A .不定积分B .一个原函数C .全体原函数D .在],[b a 上的定积分159.设则为连续函数其中,)(,)()(2x f dt t f ax x x F xa ⎰-=)(lim x F a x →=( ) A .2a B .)(2a f a C . 0 D .不存在160.函数x2sin 1的原函数是( )A .c x +tanB .c x +cotC .c x +-cotD . xsin 1-161.函数)(x f 在[a,b]上连续, ⎰=xadt t f x )()(ϕ,则( )A .)(x ϕ是)(x f 在[a,b]上的一个原函数B .)(x f 是)(x ϕ的一个原函数C .)(x ϕ是)(x f 在[a,b]上唯一的原函数 D . )(x f 是)(x ϕ在[a,b]上唯一的原函数162.广义积分=⎰+∞-0dx e x ( )A .0B .2C .1D .发散 163.=+⎰dx x π2cos 1( )A .0B . 2C .22D .2164.设)(x f 为偶函数且连续,又有等于则)(,)()(0x F dt t f x F x -=⎰( )A .)(x FB .)(x F -C . 0D . 2)(x F165.下列广义积分收敛的是( )A .⎰+∞1xdx B .⎰+∞1xxdx C .dx x ⎰+∞1D .⎰+∞132xdx166.下列广义积分收敛的是( )A .⎰+∞13x dx B .⎰+∞1cos xdx C .dx x ⎰+∞1ln D .⎰+∞1dx e x167.⎰+∞->apxp dx e )0(等于( ) A .pae- B .pae a-1 C .pa e p -1 D .)1(1pa e p --168.=⎰∞+ex x dx2)(ln ( )A .1B .e1C .eD .∞+(发散) 169.积分dx e kx-+∞⎰收敛的条件为( )A .0>kB .0<kC .0≥kD .0≤k170.下列无穷限积分中,积分收敛的有( ) A .⎰∞-0dx e x B .⎰+∞1xdxC .⎰∞--0dx e xD .⎰∞-0cos xdx171.广义积分⎰∞+edx xxln 为( ) A .1 B .发散 C .21D .2 172.下列广义积分为收敛的是( ) A .⎰+∞edx x xln B .⎰+∞e xx dx lnC .⎰∞+edx x x 2)(ln 1D .⎰+∞edx x x 21)(ln 1173.下列积分中不是广义积分的是( ) A .⎰+∞+0)1ln(dx x B .⎰-42211dx x C .⎰11-21dx x D .⎰+03-11dx x174.函数()f x 在闭区间[a,b]上连续是定积分⎰badx x f )(在区间[a,b]上可积的( ). A .必要条件 B .充分条件C .充分必要条件D .既非充分又飞必要条件 175.定积分121sin 1xdx x -+⎰等于( ). A .0 B .1 C .2 D .1- 176.定积分⎰-122d ||x x x 等于( ). A .0 B . 1 C .174 D .174- 177.定积分x x x d e )15(405⎰+等于( ). A .0 B .5e C .5-e D .52e178.设)(x f 连续函数,则=⎰22)(dx x xf ( )A .⎰40)(21dx x f B .⎰2)(21dx x f C .⎰40)(2dx x f D .⎰4)(dx x f179.积分⎰--=-11sin 2xdx x e e xx ()A .0B .1C .2D .3 180.设)(x f 是以T 为周期的连续函数,则定积分⎰+=Tl ldx x f I )(的值( )A .与l 有关B .与T 有关C .与l ,T 均有关D .与l ,T 均无关 181.设)(x f 连续函数,则=⎰2)(dx xx f ( ) A .⎰+210)(21dx x f B .⎰+210)(2dx x f C .⎰2)(dx x f D .⎰2)(2dx x f182.设)(x f 为连续函数,则⎰1)2('dx x f 等于( )A .)0()2(f f - B .[])0()1(21f f - C .[])0()2(21f f - D .)0()1(f f - 183.C 数)(x f 在区间[a,b]上连续,且没有零点,则定积分⎰b adx x f )(的值必定( )A .大于零B .大于等于零C .小于零D .不等于零 184.下列定积分中,积分结果正确的有( ) A .c x f dx x f ba+=⎰)()(' B .)()()('a f b f dx x f ba+=⎰C .)]2()2([21)2('a f b f dx x f ba-=⎰D .)2()2()2('a f b f dx x f b a -=⎰185.以下定积分结果正确的是( ) A .2111=⎰-dx x B .21112=⎰-dx x C .211=⎰-dx D .211=⎰-xdx 186.⎰=adx x 0)'(arccos ( )A .211x-- B .c x+--211 C .c a +-2arccos πD .0arccos arccos -a187.下列等式成立的有( ) A .0sin 11=⎰-xdx x B .011=⎰-dx e xC .a b xdx abtan tan ]'tan [-=⎰D .xdx xdx d xsin sin 0=⎰188.比较两个定积分的大小( ) A .⎰⎰<213212dx x dx x B .⎰⎰≤213212dx x dx xC .⎰⎰>213212dx x dx x D .⎰⎰≥213212dx x dx x189.定积分⎰-+22221sin dx x xx 等于( ) A .1 B .-1 C .2 D .0 190.⎰=11-x dx ( )A .2B .2-C .1D .1- 191.下列定积分中,其值为零的是( ) A .⎰22-sin xdx x B .⎰2cos xdx xC .⎰+22-)(dx x e x D .⎰+22-)sin (dx x x192.积分⎰-=21dx x ( )A .0B .21 C .23 D .25 193.下列积分中,值最大的是( ) A .⎰12dx x B .⎰13dx x C .⎰14dx x D .⎰15dx x194.曲线x y -=42与y 轴所围部分的面积为()A .[]⎰--2224dy y B .[]⎰-224dy y C .⎰-44dx x D .⎰--444dx x195.曲线x e y =与该曲线过原点的切线及y 轴所围形的为面积( )A .()⎰-exxdx xe e1 B .()⎰-1ln ln dy y y yC .()⎰-1dx ex exD .()⎰-edy y y y 1ln ln196.曲线2x y x y ==与所围成平面图形的面积( )A .31B .31- C .1 D .-1四、常微分方程 197.函数y c x =-(其中c 为任意常数)是微分方程1x y y '+-=的( ). A .通解 B .特解 C .是解,但不是通解,也不是特解 D .不是解 198.函数23x y e =是微分方程40y y ''-=的( ).A .通解B .特解C .是解,但不是通解,也不是特解D .不是解 199.2()sin y y x y x '''++=是( ).A .四阶非线性微分方程B .二阶非线性微分方程C .二阶线性微分方程D .四阶线性微分方程 200.下列函数中是方程0y y '''+=的通解的是( ). A .12sin cos y C x C x =+ B .x y Ce -=C .y C =D .12x y C e C -=+专升本高等数学综合练习题参考答案1.B 2.C 3.C4.B 在偶次根式中,被开方式必须大于等于零,所以有40x -≥且20x -≥,解得24x ≤≤,即定义域为[2,4].5.A 由奇偶性定义,因为33()2()3sin()23sin ()f x x x x x f x -=---=-+=-,所以3()23sin f x x x =-是奇函数.6.解:令t x-=1,则t t t t t f 21212211)(--=---+=,所以xxx f 212)(--= ,故选D7.解:选D 8. 解:选D 9. 解:选B 10.解:选C 11. 解:110≤+≤x ,所以01≤≤-x ,故选B 12. 解:选C 13. 解:选B 14. 解:选B 15.解:选B 16. 解:)(x f 的定义域为)4,1[-,选D17.解:根据奇函数的定义知选C 18. 解:选C 19. 解:选C 20.解:因为函数)1,0(log ≠>==a a x y a y a x 与互为反函数,故它们的图形关于直线x y =轴对称,选C 21.A 22.D23.解:这是00型未定式ln 1l 1limlim x e x e x x e x e →→-==-,故选B . 24.解:这是∞∞型未定式22csc ln cot sin cot lim lim lim lim 11ln sin cos sin cos x x x x xx x x x x x x x x xx→→→→-==-⋅=-=-++++0000 故选D .25.解:因为2sin lim20=+→x x b ax x 所以0)(lim 2=+→b ax x ,得0=b ,2sin lim 20=→x x ax x 所以2=a ,故选A 26.解:b b b b b a b b n n n n n n n nn ==+≤+≤=2选B27.解:选D28.解:因为∞→x lim2121lim 21sin==∞→x x x x x ,故选B29.解:nmnx mx nx mx x x ==→→00lim sin sin lim 故选A30.解:因为1tan lim230=+→x x b ax x 所以0)(lim 2=+→b ax x ,得0=b ,1tan lim 230=→x x ax x ,所以1=a ,故选B 31.解:1cos 1cos 1lim cos cos lim=+-=+-∞→∞→xxx x x x x x x x ,选A32.解:因为01lim )(lim 0=-=++→→)(xx x e x f ,11sin lim )(lim 00=+=--→→)(x x f x x 所以)(limx f x →不存在,故选D33.解:41414010])41(lim [)41(lim e xx x x x x =+=+→→,选D34.解:极限0sin lim cotx lnx - lim )1(lim 200tan 0===+++→→→xxx x x x x ,选C 35.解:110sin 11sinlim 0-=-=⎪⎭⎫⎝⎛-→x x x x x ,选A 36.解:kkx x kx x x x 11lim 1sinlim ==∞→∞→选B 37.解:1sin lim 2=-→x x π,选B 38.解:选A 39. 解:选D40.解:06lim21=++→ax x x ,7-=a ,选B41.解:2),2(lim tan lim 00=+=-+→→a x xaxx x ,选C 42.解:根据无穷小量的定义知:以零为极限的函数是无穷小量,故选C43.解:因为22lim )2sin(lim2020=+=+→→xx x x x x x x ,故选C 44.解:因为11ln(lim0=+→xx x ),故选B45.解:因为33lim )3tan(lim2020=+=+→→xx x x x x x x ,故选C 46.解:因为21)1(21lim1)1(21lim11=++=-+-→→x x xx xx x ,故选C47.解:因为021lim 11lim 00==-+++→→xxx x ax ax ,所以1>a ,故选A48.解:因为02tan lim 20=→x xx ,故选D49.解:由书中定理知选C 50.解:因为01cos 1lim=∞→xx x ,故选C51.解:因为6ln 13ln 32ln 2lim 232lim00=+=-+→→x x x x x x x ,选B 52.解:选A 53.解:1sin )cos 1(2lim20=-→xx x ,选C54.解:因为1)(lim =+∞→x f x ,选A55.解:选A 56.解:0sec 1sin lim0=+→xxx ,选C57.解:选C58.解:,11sinlim20=+→xx x x x 选D59.解:根据连续的定义知选B 60.C 61.解:选A 62.解:选A 63.解:)0(2)(lim 0f x f x ≠=+→π, )0(2)(lim 0f x f x =-=-→π,选B64.解:选A65.解:因为21)1)(1(lim 11lim 21=-+-=--++→→x x x x x x x ,21)1)(1(lim 11lim 21-=-+--=----→→x x x x x x x ,选A66.解:因为)0(1)(lim 0f x f x ==+→,又)0(1)(lim 0f x f x ==-→,所以)(x f 在0=x 点连续,但111lim )0()(lim )0('00=-+=-=--→→-xx x f x f f x x ,011lim )0()(lim )0('200=-+=-=++→→+xx x f x f f x x 所以)(x f 在0=x 点不可导,选C67.解:选C68.解:因为)0(1)(lim 0f x f x ≠=+→,又)0(1)(lim 0f x f x ≠=-→,所以)(x f 在0=x 点不连续,从而在0=x 处不可导,但当0→x 时,极限存在,选B69.解:选B 70.解:313lim)(-=-=∞→nxnxx f x ,选A71.解:)0(2111limf x x x ≠=-+→,选A72.解:选C 73.解:因为0)11cot(lim )(lim211=-+=++→→x arc x x f x x , π=-+=--→→)11cot(lim )(lim 211x arc x x f x x 故选B74.解:选D 75.解:因为2lim ,lim-=∞=∞→→y y x x ,曲线既有水平渐近线2-=y ,又有垂直渐近线0=x ,选C76.解:因为11sinlim =+∞→xx x ,所以有水平渐近线1=y ,但无铅直渐近线,选A 77.D 78.C 解:e cos e sin x x y x x '=-,(0)101y '=-=.选C .79.C 解:x x g cos )('=,所以x e x g f cos )]('[=,故选C .80.解:=--→h x f h x f h )()21(lim 000 1)('21)21(21)()21(lim0000-=-=----→x f h x f h x f h ,选C 81.解:)('2])()()()([lim )()(lim 00a f xa f x a f x a f x a f x x a f x a f x x =---+-+=--+→→,选B82.解:因为=--+→h h f h f h )2()2(lim 0 +-+→h f h f h )2()2([lim 0 ])2()2(hf h f ---=)2('2f ,故选A83.解:)0('f 6)3)(2)(1(lim )0()(lim 00-=---=-=→→x x x x x x f x f x x ,故选B84.解:因为=--→h h f h f h )()(lim 0 +-→h f h f h )0()([lim 0 ])0()(hf h f ---=)0('2f ,故选C85.解:因为0lim→h )(')()h - x (000x f hx f f -=-,故选B86.解:因为=--→h f h f h )1()21(lim 021)1('222)1()21(lim 0=-=----→f h f h f h )( ,故选D87.解:222242)('',2)('xx x e x e x f xe x f ---+-=-=,2)0(''-=f 选C88.解:选B 89.解:01282829.....a x a x a x y ++++=,所以!29)29(=y ,选B90.解:)(')()('')()(x f e e f e e f y x f x x f x x ⋅+=+,选C91.解:!100)100()2)(1(lim )0()(lim)0('00=---=-=→→xx x x x x f x f f x x ,选B 92.解:)'('ln x x e y =)ln 1(x x x +=,选D。
2008年河南省数学文科试题数学
2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn nP k C P P k n -=-= ,,,一、选择题1.函数y = ) A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤1D 解析:依题意,10,0x x -≥⎧⎨≥⎩解得, 0≤x ≤1,所以函数y ={|01}x x ≤≤,选择D;点评:本题考查了不等式的解法,函数定义域的求法以及交集、并集等集合运算,是基础题目。
2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )2A 解析:(法一)由于汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,所以,从路程与时间的图像看,其图像的切线斜率由逐渐增大、定值、逐渐减小,易知,A 正确; (法二)根据汽车加速行驶212s at =、匀速行驶s=vt 、减速行驶212s at =-并结合图像易知选择A ;点评:本题考查了学生的识图能力与导数的概念及几何意义。
2008年河南省专升本(高等数学)真题试卷(题后含答案及解析)
2008年河南省专升本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.函数f(x)=ln(1-x)+的定义域是( )A.[-2,-1]B.[-2,1]C.[-2,1)D.(-2,1)正确答案:C解析:解不等式组,得C为正确选项.2.= ( )A.1B.0C.D.正确答案:D解析:3.点x=0是函数y=的( )A.连续点B.跳跃间断点C.可去间断点D.第二类间断点正确答案:B解析:=-1,左右极限均存在,但不相等,故选B.4.下列极限存在的是( )A.B.C.D.正确答案:B解析:选项A的极限为正的无穷大,选项B的极限为2,选项C的极限振荡不存在,选项D的极限也为正的无穷大.5.当x→0时,ln(1+x2)是比1-cosx的( )A.低阶无穷小B.高阶无穷小C.等价无穷小D.同阶但不等价无穷小正确答案:D解析:因为=2故选D.6.设函数f(x)=,则f(x) ( )A.在x=-1处连续,在x=0处不连续B.在x=0处连续,在x=-1处不连续C.在x=-1,x=0处均连续D.在x=-1,x=0处均不连续正确答案:A解析:=1=f(-1),所以f(x)在x=-1处连续;,所以在x=0处不连续7.过曲线y=arctanx+ex上的点(0,1)处的法线方程为( )A.2x-y+1=0B.x-2y+2=0C.2x-y-1=0D.x+2y-2=0正确答案:D解析:y’=+ex,曲线上点(0,1)处的切线斜率为y’|0=2,所以法线的斜率为k=,因此法线方程为y-1=(x-0),即x+2y-2=08.设函数f(x)在x=0处满足f(x)=f(0)-3x+a(x),且=0,则f’(0)=( ) A.-1B.1C.-3D.3正确答案:C解析:f’(0)=9.函数(x)=(lnx)x(x>1),则f’(x)= ( )A.(lnx)x-1B.(lnx)x-+(lnx)xln(lnx)C.(lnx)xln(lnx)D.x(lnx)x正确答案:B解析:f(x)=(lnx)x=exln(lnx),则f’(x)=exln(lnx)×[ln(lnx)+],即f’(x)=(lnx)x[ln(lnx)+]=(lnx)x-1+(lnx)xln(lnx)·10.设函数y=y(x)由参数方程确定,则= ( )A.-2B.-1C.D.正确答案:D解析:11.下列函数中,在区间[-1,1]上满足罗尔定理条件的是( )A.y=exB.y=ln|x|C.y=1-x2D.y=正确答案:C解析:选项A在[-1,1]两端的值不相等,选项B在[-1,1]内不连续,选项D在[-1,1]内不连续.12.曲线y=x3+5x-2的拐点是( )A.x=0B.(0,-2)C.无拐点D.z=0,y=-2正确答案:B解析:y’=3x2+5,令y’’=6x=0,得x=0,此时y=-2,当x>0时,f’’>0;当x ( )A.仅有水平渐近线B.既有水平渐近线,又有垂直渐近线C.仅有垂直渐近线D.既无水平渐近线,又无垂直渐近线正确答案:B解析:因=+∞,所以有垂直渐近线,又因=0,所以有水平渐近线14.f(x)的一个原函数是xlnx,那么∫x2f’’(x)x= ( )A.lnx+CB.x2+CC.x3lnx+CD.C-x正确答案:D解析:f(x)的一个原函数是xlnx,则f(x)=(xlnx)l=lnx+1,f’(x)=,f’’(x)=,那么∫x2f’’(x)dx=∫-1dx=-x+C.15.= ( )A.B.C.ln(x-3)-ln(x-1)+CD.ln(x-1)-ln(x-3)+C正确答案:A解析:16.设I=,则I的取值范围为( )A.0≤I≤1B.≤I≤1C.0≤I≤D.<I<1正确答案:B解析:在区间[0,1]上,1≤1+x4≤2,从而,所以选B.17.下列广义积分收敛的是( )A.B.C.D.正确答案:D解析:因广义积分(a>1)在k>1时均收敛,k≤1时均发散,所以选项A、B、C中积分均发散,故选D.18.= ( )A.B.C.D.正确答案:D解析:19.若函数f(x)为可导函数,f(x)>0,且满足f2(x)=ln22-,则f(x)= ( )A.ln(1+cosx)B.-ln(1+cosx)+CC.-ln(1+cosx)D.ln(1+cosx)+C正确答案:A解析:对f2(x)=ln22-两边求导得,2f(x)f’(x)=,即f’(x)=+cosx=ln(1+cosx)+C,又因f(x)满足初始条件f(0)=ln2,代入上式可得C=0,所以f(x)=ln(1+cosx).20.若函数f(x)满足f(x)=x+1-f(x)dx,则f(x)=( )A.B.C.D.正确答案:C解析:因为f(x)dx的值为常数,不妨令其为k,则对f(x)=x+1-f(x)dx 两边同时积分得k==2-k,所以k=1,从而f(x)=x+1-21.若I=,则I=( )A.B.C.D.正确答案:C解析:I=22.直线与平面4x-3y+7z=5的位置关系是( )A.直平与平面斜B.直线与平面垂直C.直线在平面内D.直线与平面平行正确答案:D解析:直线的方向向量为={5,9,1},平面的法向量为={4,-3,7},因为=0,即,从而可知直线与平面平行或重合,又因直线过定点M0(-2,-4,0),将该点坐标代人平面方程得4×(-2)-3×(-4)+7×0=4≠5,即表明该点不在平面内,故选D.23.= ( )A.2B.3C.1D.不存在正确答案:A解析:令x2+y2=t,则24.曲面z=x2+y2在点(1,2,5)处的切平面方程为( )A.2x+4y-z=5B.4x+2y-z=5C.x+2y-4z=5D.2x-4y+z=5正确答案:A解析:令F(x,y,z)=x2+y2-z,则(x,y,z)=2x,(z,y,z)=2y,(x,y,z)=-1,则在点(1,2,5)处,=2,=4,=-1,曲面z=x2+y2在该点处切平面的法向量为{2,4,-1},所以切平面方程为2(x-1)+4(y-2)-(x-5)=0,即2x+4y-z=5.25.设函数z=x3y-xy3,则= ( )A.6xyB.3x2-3y2C.-6xyD.3y2-3x2正确答案:B解析:=3x2y-y3,=3x2-3y226.如果区域D被分成两个子区域D1和D2,且f(x,y)dxdy=5,f(x,y)dxdy=1,则f(x,y)dxdy= ( )A.5B.4C.6D.1正确答案:C解析:如果区域D被分成两个子区域D1和D2,则f(x,y)dxdy=f(x,y)dxdy+f(x,y)dxay=5+1=6.27.如果L是摆线从点a(2π,0)到B(0,0)的一段弧,则曲线积分∫L(x2y+3xex)dx+(-ysiny)dy= ( )A.e2π(1-2π)-1B.2[eπ(1-2π)-1]C.3[e2π(1-2π)-1]D.4[e2π(1-2π)-1]正确答案:C解析:令P(x,y)=x2y+3xex,Q(x,y)=,则表明曲线积分与路径无关,取x轴上从A(2π,0)到B(0,0)的直线段,则有∫L(x2y+3xex)dx+(x3-ysiny)dy==3[e2π(1-2π)-]28.通解为y=Cex(C为任意常数)的微分方程为( )A.y’+y=0B.y’-y=0C.y’y=1D.y’-y+1=0正确答案:B解析:对y=Cex求导可得y’=Cex=y,即y-y’=0.显然B为正确选项.29.微分方程y’’+y=ce-x的特解形式应设为( )A.x(ax+b)e-xB.ax+bC.(ax+b)e-xD.x2(ax+b)e-x正确答案:A解析:根据自由项的形式为f(x)=xe-x,知多项式为1次多项式,且λ=-1,又知y’’+y’=0对应特征方程的根为r1=0,r2=-1,所以λ为单根,故特解形式应设为x(ax+b)e-x30.下列四个级数中,发散的级数是( )A.B.C.D.正确答案:B解析:的一般项为,其极限为≠0,故选项B的级数为发散的填空题31.(x)=A的______条件是正确答案:充要解析:函数在点x0处极限存在的充分必要条件是左右极限存在且相等.32.函数y=x-sinx在区间(0,2π)内单调______,其曲线在区间(0,)内的凹凸性为______的正确答案:递增凹解析:因y’=1-cosx,在区间(0,2π)内y’≥0,故单调递增;y’=sinx在区间(0,)内恒大于0,故为凹的.33.设方程3x2+2y2+z2=a(a为常数)所确定的隐函数为z=f(x,y),则=______正确答案:解析:方程两边同时对x求偏导(视y为常数),得6x+2z.34.=______正确答案:2-2ln(1+)+C解析:=2t-2ln(1+t)+C=2-2ln(1+)+C 35.=________正确答案:0解析:对称区间上奇函数的定积分恒为零.36.在空间直角坐标系中,以点A(0,-4,1),B(-1,-3,1),C(2,-4,0)为顶点的△ABC的面积为________正确答案:解析:={-1,1,0},={2,0,-1},则={-1,-1,-2},,故S△ABC=37.方程组在空间直角坐标系下的图形为________正确答案:两条平行直线解析:将x=-2代入=1,得y=,则该方程组的另一种形式为,因此在空间直角坐标系下的图形表示两条平行直线。
2008年全国成人高考专升本高等数学(一)
2008年全国成人高考专升本高等数学(一)、高等数学(二)试卷以教育部考试中心颁布的《全国各类成人高等学校招生复习考试大纲》为依据,充分考虑到成人考生不同学习背景的实际情况与成人考生的基本特点,力求贯彻《复习考试大纲》的思想与原则,与前两年试卷相比较,体现出较好地延续性和稳定性。
试卷的题型结构没有变化,仍然是选择题10个小题,共40分,填空题10个小题,共40分,解答题8个小题,共70分。
试卷的知识内容结构基本合理,知识点的分布相对均匀,重点考查高等数学中的基础知识、基本理论、基本技能和基本方法,兼顾考查各种能力,特别是考查考生运用所学过的数学知识和方法,分析问题与解决问题的能力。
试卷适当程度地降低了难度,可以说,2008年成人高考专升本高等数学(一)、(二)的考试实际上是一种达标性质的水平测试,即考查考生是否具有从专科教育毕业后进一步接受本科教育时,应当具备的基本数学知识与数学能力。
试卷主要特点如下:一、试卷知识内容比例基本上与《复习考试大纲》相吻合高等数学(一):极限和连续:共3个小题,计12分,占总分值8%,大纲规定约13%;一元函数微分学:共9个小题,计50分,占总分值33.3%,大纲规定约25%;一元函数积分学:共6个小题,计32分,占总分值21.3%,大纲规定约25%;多元函数微积分学:共6个小题,计30分,占总分值20%,大纲规定约20%;无穷级数:共1个小题,计10分,占总分值6.7%,大纲规定约7%;常微分方程:共3个小题,计16分,占总分值10.7%,大纲规定约10%.高等数学(二):极限和连续:共4个小题,计20分,占总分值13.3%,大纲规定约15%;一元函数微分学:共10个小题,计56分,占总分值37.3%,大纲规定约30%;一元函数积分学:共7个小题,计38分,占总分值25.3%,大纲规定约32%;多元函数微分学:共5个小题,计24分,占总分值16%,大纲规定约15%;概率论初步:共2个小题,计12分,占总分值8%,大纲规定约8%.二、强调基础,突出主线试卷强调考查高等数学中的基础知识、基本理论、基本技能和基本方法,试题所涉及到的都是高等数学中最基本的、最主要的、最突出的知识点,是学完高等数学必须掌握而且极易掌握的知识点。
2008年河南省普通高等学校对口招收中等职业学校毕业生考试--数学试卷
2008年河南省普通高等学校对口招收中等职业学校毕业生考试数学试卷一、选择题(每小题2分, 共20分. 每小题只有一个选项是正确的, 请将正确选项的序号填在题后的括号内)1.已知集合{}|02M x x =≤<,{}2|230N x x x =--<, 则M N 等于( )A .{}|01x x ≤≤B .{}|02x x ≤<C .{}|01x x ≤<D .{}|02x x ≤≤2.设不等式1||2x a -<的解集为{}|12x x -<<, 则a 等于( ) A . 14 B . 12 C . 23 D . 323.若2()f x ax bx =+()0ab ≠, 且(2)(3)f f =, 则(5)f 等于 ( )A . 1B . 1-C . 0D . 2 4.设1()()2x xf x e e -=+, 则()f x 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数5.设1sin()63πα-=, 且02πα<<, 则cos α等于( )ABCD6. 2a c b +=是,,a b c 成等差数列的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.若()2,1=-a , (),2x =b , 且()⊥+a a b , 则x 等于( )A .12-B .12C .32-D .328.直线1:5230l x y ++=与2:37130l x y +-=的夹角为( )A .15B .30C .45D .609.在棱长为1的正方体1111ABCD A B C D -中, 直线11A B 到直线1BC 的距离为( )AB .12C .1D10.抛掷两颗骰子, 两次出现6点的概率为( )A .112B .124C .136D .148二、判断题(每小题1分,共10分. 正确的,在题后括号内打“√ ”, 错误的打“×”)11.对任意实数x , 都有2250x x -+>. ( ) 12.若a b >,c d >, 则ac bd >. ( )13.函数(),y f x x =∈R 与函数(),x f y y =∈R 相等. ( ) 14.若01a b <<<, 则log 1a b >. ( ) 15.第一象限角总小于90. ( )16x +4x =-. ( ) 17.若≠0a , ≠0b , 则0⋅≠a b . ( ) 18.抛物线28x y =-的焦点是()0,2-. ( )19.平行于同一平面的两条直线平行. ( )20.若事件A 与事件B 相互独立, 则事件A 与事件B 也相互独立. ( )三、填空题(每小题2分, 共20分)21.满足条件{}{}1,21,2,3,4M ⊆⊆的集合M 的个数是 . 22.不等式2250x x ++>的解集是 . 23.函数265y x x =-+的递减区间是 . 24.设lg x a =, 则()lg 1000x = . 25.在ABC 中, 若cos cos a A b B =, 则ABC 是 三角形.26.设()2,3=-a , ()8,5=-b , 则53-=a b . 27.在等比数列{}n a 中, 54a =, 76a =, 则9a = . 28.双曲线2233x y -=的渐近线方程是 . 29.)62展开式中2x 的系数为 .30.从1,2,3,4,5,6六个数字中任取两数, 则两数都是偶数的概率是 . 四、计算题(每小题6分, 共18分)31.在ABC 中, 角,,A B C 的对边分别为,,a b c , 且cos cos 2cos a C c A b B +=, 求角B 的大小.32.求焦点在x 轴上, 实轴长等于2,.33.已知,A B 是直二面角l αβ--的棱上两点, 线段AC α⊂, 线段BD β⊂, 且AC l ⊥,BD l ⊥, 6AC AB ==, 24BD =, 求线段CD 的长.五、证明题(每小题8分, 共16分)34. 证明: 函数11()(,0)122xf x x x x ⎛⎫=-∈≠⎪-⎝⎭R 是偶函数. 35.证明: 33sin cos tan sin 0x x x x +-=.六、综合应用题(每小题8分, 共16分)36.为支援四川汶川抗震救灾,某医院从8名医生中选派4名医生同时去4个受灾地区工作, 每地1人.(1) 若甲和乙同去, 但丙不去, 问有多少不同的选派方案? (2) 若甲去, 但乙和丙不去, 问有多少不同的选派方案? (3) 若甲, 乙, 丙都不去, 问有多少不同的选派方案?37. 设集合{}1,sin A x y =-, {}cos ,1B y x =-, 且A B =.(1) 求()y f x =的解析表达式; (2) 求()y f x =的最小正周期和最大值.。
2008年专转本考试真题(08)
17
2008年专转本考试真题(答案)
9.已知曲线 y 2 x 3 x 4 x 5 ,则其拐点为?
3 2
1 13 答案 : ( , ) 2 2
18
2008年专转本考试真题
1 10. 设 函 数 f ( x ) 的 导 数 为 x, 且 f (0) , cos 2 则 不 定 积 分 f ( x )dx ?
3
2008年专转本考试真题(答案)
2.设 函数 f ( x ) 可导,则下列式子中正 确的是( A f ( 0) f ( x ) A. lim f (0) x 0 x f ( x0 2 x ) f ( x0 ) B. lim f ( x0 ) x 0 x f ( x 0 x ) f ( x 0 x ) C. lim f ( x0 ) x 0 x f ( x 0 x ) f ( x 0 x ) D. lim 2 f ( x0 ) x 0 x )
38
2008年专转本考试真题
2 y x2 的 通 解 20.求 微 分 方 程 y x (计 算 题 8分 ) ,
39
2008年专转本考试真题(答案)
20.求 微 分 方 程 y 2 y x 的 通 解 x
2
(计 算 题 8分 ) , 答案: x ln x C x y
1 21. 求曲线 y ( x 0)的切线,使其在两坐标 x 最小,并求此最小值. ( 分) 10 答案:最小值为 4, y x 2 轴上的截距之和
42
2008年专转本考试真题
22. 设平面图形 y x , y 2 x 与 由
2 2
直线 x 1 所围成 (1)求该平面图形绕 轴旋转一周 X 所得的旋转体的体积; (2)求常数a,使直线 x a 将
2008年成人高考专升本高等数学真题
2008年成人高考专升本高等数学真题浇钢工题库一、填空题1、钢的生产过程主要分为炼钢和浇注两大环节。
2、钢水铸造有两种方法:一是钢锭浇注法,一是连续铸钢法。
3、将高温钢水直接浇注成钢坯的工艺就是连铸铸钢。
4、连铸机按外形可分为立式连铸机、立弯式连铸机、弧形连铸机、椭圆形连铸机、水平连铸机。
我公司目前的 4 机 4 流连铸机是弧形的。
5、钢包回转台由回转部分、固定部分、润滑系统和电控系统组成。
6、中间包是钢包与结晶器之间的中间贮存容器,它有贮钢、稳流、缓冲、分流和分渣的作用,是实现多炉连浇的基础。
7、我厂中间包容量是27吨。
钢水深度为850mm。
8、连铸耐火材料三大件是指:大包套管、塞棒和浸入式水口。
9、塞棒控制是通过塞棒控制机构控制塞棒上下运动,以达到关闭和开启水口调节钢水流量的目的。
10、管式结晶器由铜管、冷却水套、底脚板和足辊等组成。
11、结晶器内腔纵断面的尺寸做成上大下小,形成一个锥度。
12、钢水在结晶器中冷却,若结晶器没有锥度或锥度偏小,就会在坯壳和结晶器之间形成间隙,称气隙。
由于气隙的存在降低了冷却效果,同时由于坯壳过早地脱离了结晶器内壁,在钢水静压力下坯壳会产生鼓肚变形。
13、结晶器倒锥度过大会增加拉坯阻力,结晶器内壁磨损快,寿命短,同时还会形成坯料的凹陷、角裂等缺陷。
14、结晶器振动的目的是为了防止连铸坯在凝固过程中与铜管粘结而发生粘挂拉裂或拉漏事故,以保证拉坯顺利进行。
15、结晶器振动形式有以下几种:同步式、负滑脱式、正弦振动、非正弦振动。
16、负滑脱是指:当结晶器下振速度大于拉坯速度时,铸坯对结晶器的相对运动向上,即逆着拉坯方向运动,这种运动称负滑脱。
17、连铸坯的表面振痕深度与结晶器振动负滑脱时间有关,负滑脱时间越短,振痕深度就越浅。
18、2012年公司挖潜创效目标,质量异议万元产值损失率为小于等于 4 元/万元19、对于二冷区为弧形的连铸机,连铸坯出二冷区必须矫直,否则铸坯无法进行切割、运输、堆垛、以及轧制等后道工序。
08年专升本高数真题答案
2008年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试高等数学 答案及解析一. 单项选择题(每题2分,共计60分)1.答案:C 【解析】:C x x x ⇒<≤-⇒⎩⎨⎧≥+>-120201.2.答案:C【解析】:0033sin cos 21lim===⎪⎭⎫ ⎝⎛π--π→x x x D x xx ⇒=⨯=⎪⎭⎫ ⎝⎛π-π→312323cos sin 2lim 3.3.答案:B【解析】: ,1111313lim 11-=-=+--→xxx B x xx x xx ⇒===+-++→→13ln 33ln 3lim 1313lim 11000110. 4.答案:B【解析】:显然只有22sin lim 0=→xxx ,其他三个都不存在,应选B.5.答案:D【解析】: 22~)1ln(x x +,D x x x ⇒=-2~2sin 2cos 122. 6.答案:A【解析】:⇒=-==+--→-→1)1(,1)(lim ,1)(lim 111f x f x f x x )(x f 在1-=x 处连续;⇒===+-→→1)0(,0)(lim ,1)(lim 001f x f x f x x )(x f 在0=x 处不连续;应选A.7.答案:D 【解析】: D k f e xy x⇒-=⇒='⇒++='212)0(112法. 8.答案:C【解析】:3)(lim 3)(3lim 0)0()(lim )0(000-=α+-=α+-=--='→→→xx x x x x f x f f x x x ,应选C. 9.答案:B【解析】:='='⇒==])ln(ln [)(ln )(ln )()ln(ln x x x y e x x f x x x x )ln(ln )(ln )(ln 1x x x x x +-,应选B. 10.答案:D【解析】:⇒⨯=⇒-=t t t dx y d t t dx dy sin cos 31cos 1cos sin 2222 =π=422x dxyd 234,应选D. 11.答案:C【解析】:验证罗尔中值定理的条件,只有21x y -=满足,应选C. 12.答案:B【解析】:⇒=⇒==''006x x y )2,0(-,应选B. 13.答案:B 【解析】:,0|1|1lim =-∞→x x B x x ⇒∞=-→|1|1lim 1.14.答案:D【解析】:⇒-=''⇒+='=21)(ln 1)ln ()(xx f x x x x f C x dx dx x f x +-=-=''⎰⎰)(2,应选D. 15.答案:A 【解析】:C x x dx x x x x dx x x dx +--=⎥⎦⎤⎢⎣⎡---=--=+-⎰⎰⎰13ln 21113121)1)(3(342,应选A. 16.答案:B【解析】:此题有问题,定积分是一个常数,有111214≤+≤x ,根据定积分的估值性质,有121≤≤I ,但这个常数也在其它三个区间,都应该正确,但真题中答案是B.17.答案:D 【解析】:显然应选D. 18.答案:D 【解析】:=-⎰-33|1|dx x =-+-⎰⎰-3113|1||1|dx x dx x ⎰⎰-+--3113)1()1(dx x dx x ,应选D.19.答案:A【解析】:对⎰+-=xdt t t t f x f 022cos 1sin )(22ln )(两边求有:xxx f x f x f cos 1sin )(2)()(2+-=', 即有 ⎰⎰++=+-=⇒+-='xx d dx x x x f x x x f cos 1)cos 1(cos 1sin )(cos 1sin )( C x ++=)cos 1ln(,还初始条件2ln )0(=f ,代入得0=C ,应选A.20.答案:C【解析】:令⎰-=11)(dx x f a ,则a x x f 211)(-+=, 故有⎰⎰--⇒=⇒-=-+==111112)211()(a a dx a x dx x f a =)(x f 21+x ,应选C.21.答案:C【解析】:⎰⎰⎰======22200222)()(21)()(21)()(21e e t x e x d x xf t d t tf x d x f x I ,应选C.22.答案:D【解析】:n s n s⊥⇒-==}7,3,4{},1,9,5{ ,而点(-2,-4,0)不在平面内,为平行,应选D. 23.答案:A 【解析】: 22222200222200)11)((lim11limy x y x y x y x y x y x y x +++++=-+++→→→→2)11(lim 2200=+++=→→y x y x ,应选A.24.答案:A【解析】:令z y x z y x F -+=22),,(,⇒-='='='1)5,2,1(,4)5,2,1(,2)5,2,1(z y x F F F⇒=---+-0)5()2(4)1(2z y x 542=-+z y x ,也可以把点(1,2,5)代入方程验证,应选A.25.答案:B【解析】: ⇒-=∂∂233xy x y z =∂∂∂xy z 22233y x -,应选B. 26.答案:C【解析】:根据二重积分的可加性, 6),(=⎰⎰dxdy y x f D,应选C.27.答案:C 【解析】:有⇒=∂∂=∂∂2x x Qy P 此积分与路径无关,取直线段x y x x ,0⎩⎨⎧==从π2变到0,则 02020232)(333)sin 31()3(πππ-===-++⎰⎰⎰x x x x x L e xe xde dx xe dy y y x dx xe y x ]1)21([32-π-=πe ,应选C. 28.答案:B【解析】:0=-'⇒='⇒=y y Ce y Ce y xx,应选B. 29.答案:A【解析】:-1是单特征方程的根,x 是一次多项式,应设xe b ax x y -+=*)(,应选A.30.答案:B 【解析】:级数∑∞=-1100032n n n 的一般项n n 100032-的极限为05001≠,是发散的,应选B. 二、填空题(每题2分,共30分)31.答案:充要条件【解析】:显然为充要条件(充分且必要). 32.答案:单调增加,凹函数【解析】:⇒>-='0cos 1x y 在)2,0(π内单调增加,x y sin =''在π0,2⎛⎫⎪⎝⎭内大于零,应为凹的. 33.答案:zx 3-【解析】:⇒='='⇒-++=x F z F a z y x F x z 6,223222zxF F x z z x 3-=''-=∂∂. 34.答案:C x x ++-)1ln(22【解析】:⎰⎰⎰++-=⎪⎭⎫ ⎝⎛+-=+==+=C t t dt t t tdt xdx tx )1ln(221112121C x x ++-=)1ln(22.35.答案:0【解析】:函数x x cos 1+在区间⎥⎦⎤⎢⎣⎡ππ-3,3是奇函数,所以⎰ππ⋅-=+330cos 1dx x x .36. 答案:26 【解析】:}2,1,1{102011}1,0,2{},0,1,1{---=--=⨯⇒-=-=kj i AC AB AC AB ,所以ABC ∆的面积为26=. 37.答案:两条平行直线 【解析】:是椭圆柱面与平面2-=x 的交线,为两条平行直线. 38.答案:)1,1(),0,0(【解析】: )1,1(),0,0(03303322⇒⎪⎪⎩⎪⎪⎨⎧=-=∂∂=-=∂∂x y yz y x xz.39.答案:0【解析】:⇒=∂∂⇒=00)0,(x z x f 0)0,1(=∂∂xz.40.答案:22【解析】: 22sin cos cos 1cos 14040040440====πππππ⎰⎰⎰⎰⎰x ydy ydx y dy ydy y dx y x. 41.答案:⎰⎰3120)sin ,cos (rdr r r f d θθθπ【解析】:⎰⎰⎰⎰θθθ=π3120)sin ,cos (),(rdr r r f d dxdy y x f D.42.答案:096=+'+''y y y 【解析】: 由x xxe C eC y 3231--+=为通解知,有二重特征根-3,从而9,6==q p ,微分方程为096=+'+''y y y .43.答案:1||<q ,1||≥q 【解析】: 级数∑∞=0n naq是等比级数, 当1||<q 时,级数收敛,当1||≥q 时,级数发散.44.答案:()()11,23131011<<-⎥⎦⎤⎢⎣⎡⋅--∑∞=++x x nn n n 【解析】:21161113121113121)(2x x x x x x x f -⨯-+⨯-=⎥⎦⎤⎢⎣⎡-++-=--=1100011(1)1(1),(11)362332n n n nn n n n n n x x x x +∞∞∞+===⎡⎤-=---=--<<⎢⎥⋅⎣⎦∑∑∑. 45.答案:发散 【解析】:021lim 2lim lim 2)2(2≠=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=--⨯-∞→∞→∞→e n n n u nn nn n n ,级数发散.三、计算题(每小题5分,共40分)46.求2522232lim +∞→⎪⎪⎭⎫⎝⎛-+x x x x .【解析】:252)23(32252222522252231312121lim3121lim 32lim 2222⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫⎝⎛-+-⨯-∞→+∞→+∞→x x x x x x x x x x x x x x x2523252)23(32252223131lim 2121lim 22e eex x x x x x x x ==⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+=--⨯-∞→∞→.47. 求⎰+→23241limx x dtt t x .【解析】:212lim214lim1lim3403423003242=+=⨯+===+→→→⎰xxx xx dtt t xx x x x .48.已知)21sin(ln x y -=,求dxdy. 【解析】:[][])21sin()21cos(221)21sin()21cos()21sin()21sin(1x x x x x x x dx dy ---='---='--=)21cot(2x --=. 49. 计算不定积分⎰xdx x arctan .【解析】:⎰⎰⎰+⨯-=⎪⎪⎭⎫ ⎝⎛=dx x x x x x xd xdx x 2222112arctan 22arctan arctan ⎰⎪⎭⎫ ⎝⎛+--=dx x x x 2211121arctan 2 C x x x x ++-=arctan 2121arctan 22. 50.求函数)cos(y x e z x+=的全微分. 【解析】:利用微分的不变性,x x x de y x y x d e y x e d dz )cos()cos()]cos([+++=+=dx e y x y x d y x e x x )cos()()sin(++++-= dx e y x dy dx y x e x x )cos(])[sin(++++-= dy y x e dx y x y x e x x )sin()]sin()[cos(+-+-+=.51.计算⎰⎰σDd y x2,其中D 是由1,,2===xy x y y 所围成的闭区域. 【解析】:积分区域D 如图所示:把区域看作 Y 型,则有⎭⎬⎫⎩⎨⎧≤≤≤≤=y x y y y x D 1,21|),(,故 ⎰⎰⎰⎰=y y D dx y x dy dxdy yx12212yyy yx dy y xdx dy y 122121212211⨯==⎰⎰⎰481731211121213214=⎪⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-=⎰y y dy y . 52.求微分方程xex y y sin cos -=+'满足初始条件1)0(-=y 的特解.【解析】:这是一阶线性非齐次微分方程,它对应的齐次微分方程0cos =+'x y y 的通解为x Ce y sin -=,设x e x C y sin )(-=是原方程解,代入方程有x x e e x C sin sin )(--=',即有1)(='x C ,所以C x x C +=)(,故原方程的通解为x xxe Cey sin sin --+=,把初始条件1)0(-=y 代入得:1-=C ,故所求的特解为xex y sin )1(--=.53.求级数∑∞=+013n nn x n 的收敛半径及收敛区间(考虑区间端点).【解析】:这是标准的不缺项的幂级数,收敛半径ρ=1R ,而321lim 33123lim lim 11=++=+⨯+==ρ∞→+∞→+∞→n n n n a a n n n n nn n ,故收敛半径31=R .当31=x 时,级数化为∑∞=+011n n ,这是调和级数,发散的;当31-=x 时,级数化为∑∞=+-01)1(n nn ,这是交错级数,满足莱布尼兹定理的条件,收敛的;所以级数的收敛域为⎪⎭⎫⎢⎣⎡-31,31.四、应用题(每题7分,共计14分)54. 过曲线2x y =上一点)1,1(M 作切线L ,D 是由曲线2x y =,切线L 及x 轴所围成的平面图形,求(1)平面图形D 的面积;y x =→yx 11=→ 1(2)该平面图形D 绕x 轴旋转一周所成的旋转体的体积.【解析】:平面图形D 如图所示:因x y 2=',所以切线L 的斜率2)1(='=y k , 切线L 的方程为)1(21-=-x y ,即12-=x y 取x 为积分变量,且]1,0[∈x .(1)平面图形D 的面积为12)(3)12(1212103121102=--=--=⎰⎰x x x dx x dx x S (2)平面图形D 绕x 轴旋转一周所生成旋转体的体积为302345)12(1212315121214π=⎪⎪⎭⎫ ⎝⎛+-π-π=-π-π=⎰⎰x x x xdx x dx x V x .55.一块铁皮宽为24厘米,把它的两边折上去,做成一正截面为等腰梯形的槽(如下图),要使梯形的面积A 最大,求腰长x 和它对底边的倾斜角α. 【解析】:梯形截面的下底长为x 224-,上底长为 α+-cos 2224x x ,高为αsin x ,所以截面面积为 α⋅-+α+-=sin )224cos 2224(21x x x x A , )20,120(π<α<<<x即αα+α-α=cos sin sin 2sin 2422x x x A ,令⎪⎪⎩⎪⎪⎨⎧=α-α+α-α=α∂∂=αα+α-α=∂∂0)sin (cos cos 2cos 240cos sin 2sin 4sin 242222x x x A x x xA得唯一驻点⎪⎩⎪⎨⎧π=α=38x .根据题意可知,截面的面积最大值一定存在,且在20,120:π<α<<<x D 内取得,又函数在D 内只有一个可能的最值点,因此可以断定3,8π=α=x 时,截面的面积最大. 五、证明题(6分)56. 证明方程⎰π--=2cos 1ln dx x e xx 在区间),(3e e 内仅有一个实根. 【证明】:构造函数 ⎰π-+-=02cos 1ln )(dx x e xx x f ,即有22ln sin 2ln )(0+-=+-=⎰πex x xdx e x x x f ,显然函数)(x f 在区间],[3e e 连续,且有06223)(,022)(223<-<+-=>=e e e f e f ,由连续函数的零点定理知方程0)(=x f 即⎰π--=2cos 1ln dx x e xx 在区间),(3e e 有至少有一实数根. 另一方面, e x x f 11)(-='在区间),(3e e 内恒小于零,有方程0)(=xf ,即⎰π--=02cos 1ln dx x e x x 在区间),(3e e 有至多有一实数根.xy x =→2x 224-x α综上所述, 方程⎰π--=02cos 1ln dx x e xx 在区间),(3e e 内仅有一个实根.。
2008年专升本(高等数学二)真题试卷(题后含答案及解析)
2008年专升本(高等数学二)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.A.B.C.D.正确答案:C解析:2.A.B.C.D.正确答案:C解析:3.A.B.C.D.正确答案:A解析:4.A.B.C.D.正确答案:B解析:5.A.B.C.D.正确答案:D解析:6.A.B.C.D.正确答案:A解析:7.A.B.C.D.正确答案:C解析:8.A.B.C.D.正确答案:B解析:9.A.B.C.D.正确答案:A解析:10.A.B.C.D.正确答案:D解析:填空题11.正确答案:解析:12.正确答案:解析:13.正确答案:cosx-xsinx解析:14.正确答案:20x3解析:15.正确答案:解析:16.正确答案:解析:17.正确答案:x3+x解析:18.正确答案:解析:19.正确答案:x2+y2≤1解析:20.正确答案:解析:解答题21.正确答案:22.正确答案:23.正确答案:24.正确答案:25.正确答案:26.正确答案:27.正确答案:28.正确答案:。
河南专升本高等数学试题(含答案)
高数试题练习一、函数、极限连续1.函数)(x f y 的定义域是()A .变量x 的取值范围B .使函数)(x f y 的表达式有意义的变量x 的取值范围C .全体实数D .以上三种情况都不是2.以下说法不正确的是()A .两个奇函数之和为奇函数B .两个奇函数之积为偶函数C .奇函数与偶函数之积为偶函数D .两个偶函数之和为偶函数3.两函数相同则()A .两函数表达式相同B .两函数定义域相同C .两函数表达式相同且定义域相同D .两函数值域相同4.函数42y x x 的定义域为()A .(2,4)B .[2,4]C .(2,4]D .[2,4)5.函数3()23sin f x x x 的奇偶性为()A .奇函数B .偶函数C .非奇非偶D .无法判断6.设,121)1(x xx f 则)(x f 等于( )A .12x xB .xx212C .121x xD .xx2127.分段函数是()A .几个函数B .可导函数C .连续函数D .几个分析式和起来表示的一个函数8.下列函数中为偶函数的是()A .xey B .)ln(x yC .xx y cos 3D .xy ln 9.以下各对函数是相同函数的有()A .xx g x x f )()(与B .x x g x x f cos )(sin 1)(2与C .1)()(x g x x x f 与D .2222)(2)(xxx xx g xx f 与10.下列函数中为奇函数的是()A .)3cos(x y B .xx y sin C .2xxe eyD .23xxy 11.设函数)(x f y的定义域是[0,1],则)1(x f 的定义域是( )A .]1,2[B .]0,1[ C .[0,1]D .[1,2]12.函数20200022)(2xxx x xx f 的定义域是( )A .)2,2(B .]0,2(C .]2,2(D .(0,2]13.若)1(,23321)(f xxx xx f 则( )A .3B .3C .1D .114.若)(x f 在),(内是偶函数,则)(x f 在),(内是()A .奇函数B .偶函数C .非奇非偶函数D .0)(x f 15.设)(x f 为定义在),(内的任意不恒等于零的函数,则)()()(x f x f x F 必是()A .奇函数B .偶函数C .非奇非偶函数D .)(x F 16.设42,021,1211,1)(2xx x x x x f 则)2(f 等于( )A .12B .182C .D .无意义17.函数x x ysin 2的图形()A .关于ox 轴对称B .关于oy 轴对称C .关于原点对称D .关于直线x y 对称18.下列函数中,图形关于y 轴对称的有()A .xx ycos B .13xx y C .2xxe eyD .2xxe ey19.函数)(x f 与其反函数)(1x f的图形对称于直线( )A .y B .x C .xy D .xy 20. 曲线)1,0(log aax y a y a x与在同一直角坐标系中,它们的图形()A .关于x 轴对称B .关于y 轴对称C .关于直线x y 轴对称D .关于原点对称21.对于极限)(lim 0x f x ,下列说法正确的是()A .若极限)(lim 0x f x存在,则此极限是唯一的B .若极限)(lim 0x f x 存在,则此极限并不唯一C .极限)(lim 0x f x 一定存在D .以上三种情况都不正确22.若极限A )(lim 0x f x存在,下列说法正确的是()A .左极限)(lim 0x f x不存在B .右极限)(lim 0x f x不存在C .左极限)(lim 0x f x和右极限)(lim 0x f x存在,但不相等D .A)(lim )(lim )(lim 0x f x f x f x xx23.极限ln 1limxex xe的值是()A .1B .1eC .0D .e24.极限ln cot lim ln x x x+0的值是().A .0B . 1C .D .125.已知2sin lim2xx bax x,则()A .,2ba B .1,1ba C .1,2b a D .,2b a 26.设b a,则数列极限limn nnnab是A .aB .bC .1D .ba 27.极限x x1321lim的结果是A .0B .21C .51D .不存在28.xlim xx 21sin为()A .2B .21C .1 D .无穷大量29.nm nxmxx ,(sin sin lim 0为正整数)等于()A .n mB .m n C .nm nm )1(D .mn mn )1(30.已知1tan lim23xx bax x,则()A .0,2b a B .,1b aC .,6b a D .1,1b a 31.极限xxx x xcos cos lim()A .等于 1B .等于0C .为无穷大D .不存在32.设函数10001sin )(xexx x x f x则)(lim 0x f x( )A .1B .0C .1D .不存在33.下列计算结果正确的是()A .ex xx1)41(lim B .41)41(lim ex xxC .41)41(lim ex xxD .4110)41(lim e x x x34.极限xx xtan 0)1(lim 等于()A . 1B .C .0D .2135.极限xxxx xsin 11sinlim 0的结果是A .1B .1C .0D .不存在36.1sinlim k kxx x为()A .kB .k1C .1 D .无穷大量37.极限xxsin lim 2=()A .0B .1C .1D .238.当x 时,函数xx)11(的极限是( )A .eB .eC .1D .139.设函数1cos 0001sin )(xx x x x x f ,则)(lim 0x f xA .1B .0C .1D .不存在40.已知a xax xx 则,516lim 21的值是()A .7B .7C . 2D .341.设20tan )(xxx xaxx f ,且)(lim 0x f x 存在,则a 的值是( )A .1B .1C .2D .242.无穷小量就是()A .比任何数都小的数B .零C .以零为极限的函数D .以上三种情况都不是43.当0x 时,)2sin(3x x与x 比较是()A .高阶无穷小B .等价无穷小C .同阶无穷小,但不是等价无穷小D .低阶无穷小44.当0x时,与x 等价的无穷小是()A .xxsin B .)1ln(x C .)11(2x x D .)1(2x x45.当0x 时,)3tan(3x x 与x 比较是()A .高阶无穷小B .等价无穷小C .同阶无穷小,但不是等价无穷小D .低阶无穷小46.设,1)(,)1(21)(x x g x x x f 则当1x 时()A .)(x f 是比)(x g 高阶的无穷小B .)(x f 是比)(x g 低阶的无穷小C .)(x f 与)(x g 为同阶的无穷小D .)(x f 与)(x g 为等价无穷小47.当x时,11)(ax x f 是比x 高阶的无穷小,则( )A .1aB .aC .a 为任一实常数D .1a 48.当0x时,x 2tan 与2x比较是()A .高阶无穷小B .等价无穷小C .同阶无穷小,但不是等价无穷小D .低阶无穷小49.“当0x x,A x f )(为无穷小”是“A x f x x)(lim”的()A .必要条件,但非充分条件B .充分条件,但非必要条件C .充分且必要条件D .既不是充分也不是必要条件50.下列变量中是无穷小量的有()A .)1ln(1limx xB .)1)(2()1)(1(lim1x xx x xC .x x x1cos 1limD .xx x1sincos lim51.设时则当0,232)(x x f xx()A .)(x f 与x 是等价无穷小量B .)(x f 与x 是同阶但非等价无穷小量C .)(x f 是比x 较高阶的无穷小量D .)(x f 是比x 较低阶的无穷小量52.当0x时,下列函数为无穷小的是( )A .xx 1sinB .xe1C .xln D .xxsin 153.当0x时,与2sin x等价的无穷小量是( )A .)1ln(x B .xtan C .xcos 12D .1xe54.函数,1sin)(xx x f y当x时)(x f ( )A .有界变量B .无界变量C .无穷小量D .无穷大量55.当0x时,下列变量是无穷小量的有( )A .xx3B .xx cos C .x ln D .xe56.当0x 时,函数xx ysec 1sin 是( )A .不存在极限的B .存在极限的C .无穷小量D .无意义的量57.若0x x 时, )(x f 与)(x g 都趋于零,且为同阶无穷小,则()A .)()(limx g x f x xB .)()(limx g x f x xC .)1,0()()(limc c x g x f x xD .)()(limx g x f x x不存在58.当0x时,将下列函数与x 进行比较,与x 是等价无穷小的为( ) A .x 3tan B .112xC .xx cot csc D .xx x 1sin259.函数)(x f 在点0x 有定义是)(x f 在点0x 连续的()A .充分条件B .必要条件C .充要条件D .即非充分又非必要条件60.若点0x 为函数的间断点,则下列说法不正确的是()A .若极限A )(lim 0x f xx 存在,但)(x f 在0x 处无定义,或者虽然)(x f 在0x 处有定义,但)(A0x f ,则0x 称为)(x f 的可去间断点B .若极限)(lim 0x f x x与极限)(lim 0x f x x都存在但不相等,则0x 称为)(x f 的跳跃间断点C .跳跃间断点与可去间断点合称为第二类的间断点D .跳跃间断点与可去间断点合称为第一类的间断点61.下列函数中,在其定义域内连续的为()A .xx x f sin ln )(B .00sin )(x ex x x f xC .10101)(xx x x x x f D .01)(xx x x f 62.下列函数在其定义域内连续的有()A .x x f 1)(B .0cos 0sin )(x x x x x f C .10001)(xx x x xx f D .01)(xx x x f 63.设函数21ar c t an)(xx x x f 则)(x f 在点0x 处()A .连续B .左连续C .右连续D .既非左连续,也非右连续64.下列函数在0x处不连续的有( )A .0)(2xx e x f x B .1sin )(21xx x x x f C .0)(2x xx x x f D .0)1ln()(2xxx x x f 65.设函数12111)(2xx x xx f , 则在点)(1x f x 处函数()A .不连续B .连续但不可导C .可导,但导数不连续D .可导,且导数连续66.设分段函数101)(2xx x xx f ,则)(x f 在0x 点()A .不连续B .连续且可导C .不可导D .极限不存在67.设函数)(x f y,当自变量x 由0x 变到y x x 相应函数的改变量时,0=()A .)(0x x f B .xx f )('0C .)()(00x f x x f D .xx f )(068.已知函数12000)(xxxx ex f x,则函数)(x f ( )A .当0x 时,极限不存在B .当0x 时,极限存在C .在0x处连续D .在0x 处可导69.函数)1ln(1x y的连续区间是( )A .),2[]2,1[B .),2()2,1(C .),1(D .),1[70.设nxnx x f x13lim)(,则它的连续区间是()A .),(B .处为正整数)(1n nx C .)()0,(D .处及n xx1071.设函数31011)(xx xx x f ,则函数在0x 处()A .不连续B .连续不可导C .连续有一阶导数D .连续有二阶导数72.设函数0xx x xy,则)(x f 在点0x 处()A .连续B .极限存在C .左右极限存在但极限不存在D .左右极限不存在73.设11cot)(2x arc xx f ,则1x 是)(x f 的()A .可去间断点B .跳跃间断点C .无穷间断点D .振荡间断点74.函数2xy e x zy的间断点是( )A .)1,1(),1,1(),0,1(B .是曲线yey 上的任意点C .)1,1(),1,1(),0,0(D .曲线2xy上的任意点75.设2)1(42xx y,则曲线( )A .只有水平渐近线2y B .只有垂直渐近线x C .既有水平渐近线2y ,又有垂直渐近线0x D .无水平,垂直渐近线76.当0x 时, xx y1sin()A .有且仅有水平渐近线B .有且仅有铅直渐近线C .既有水平渐近线,也有铅直渐近线D .既无水平渐近线,也无铅直渐近线二、一元函数微分学77.设函数)(x f 在点0x 处可导,则下列选项中不正确的是()A .xy x f x 00lim )('B .xx f x x f x f x)()(lim)('000C .00)()(lim)('0x xx f x f x f x xD .hx f h x f x f h )()21(lim )('00078.若e cos xy x ,则'(0)y ( )A .0B .1C .1D .279.设x x g e x f xsin )(,)(,则)]('[x g f ()A .xesin B .xecos C .xecos D .xesin 80.设函数)(x f 在点0x 处可导,且2)('0x f ,则hx f h x f h)()21(lim00等于()A .1B .2C .1D .2181.设)(x f 在a x处可导,则xx af x a f x)()(lim=()A .)('a f B .)('2a f C .0D .)2('a f 82.设)(x f 在2x 处可导,且2)2('f ,则hh f h f h)2()2(lim()A .4B .0C .2D .383.设函数)3)(2)(1()(xx x x x f ,则)0('f 等于()A .0B .6C .1D .384.设)(x f 在0x 处可导,且1)0('f ,则hh f h f h )()(lim 0()A .1B .0C .2D .385.设函数)(x f 在0x 处可导,则0limhhx f f )()h - x (00( )A .与0x ,h 都有关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 都无关86.设)(x f 在1x处可导,且21)1()21(lim 0h f h f h ,则)1('f ()A .21B .21C .41D .4187.设)0('')(2f ex f x则( ) A .1B .1C .2D .288.导数)'(log x a 等于( )A .a x ln 1B .a x ln 1C .xxa log 1D .x189.若),1()2(249102x xx xy则)29(y=()A .30B .29!C .0D .30×20×1090.设',)(',)()(y x f ee f y x f x 则存在且=( )A .)()()()('x f xx f xee f e e f B .)(')(')(x f ee f x f xC .)(')()(')()(x f ee f ee f x f x x f x xD .)()('x f xee f 91.设)0('),100()2)(1()(f x xx x x f 则()A .100B .100!C .!100D .10092.若',y x yx则( )A .1x xx B .xx xln C .不可导D .)ln 1(x x x93.处的导数是在点22)(xx x f ( ) A .1 B .0C .1D .不存在94.设',)2(y x yx则()A .)1()2(x x x B .2ln )2(xx C .)2ln 21()2(x x xD .)2ln 1()2(x x x95.设函数)(x f 在区间],[b a 上连续,且,0)()(b f a f 则( )A .)(x f 在),(b a 内必有最大值或最小值B .)(x f 在),(b a 内存在唯一的0)(,f 使C .)(x f 在),(b a 内至少存在一个0)(,f 使D .)(x f 在),(b a 内存在唯一的)(',f 使96.设,)()(x g x f y则dx dy ( )A .])()(')()('[2x g x g x f x f y B .])(1)(1[2x g x f yC .)()('21x g x f yD .)()('2x g x f y 97.若函数)(x f 在区间)b a,(内可导,则下列选项中不正确的是()A .若在)b a,(内0)('x f ,则)(x f 在)b a,(内单调增加B .若在)b a,(内0)('x f ,则)(x f 在)b a,(内单调减少C .若在)b a,(内0)('x f ,则)(x f 在)b a,(内单调增加D .)(x f 在区间)b a,(内每一点处的导数都存在98.若)(yx f 在点0x 处导数存在,则函数曲线在点))(,(00x f x 处的切线的斜率为()A .)('0x f B .)(0x f C .0 D .199.设函数)(y x f 为可导函数,其曲线的切线方程的斜率为1k ,法线方程的斜率为2k ,则1k 与2k 的关系为()A .211k k B .121k k C .121k k D .21k k 100.设0x 为函数)(x f 在区间b a,上的一个极小值点,则对于区间ba,上的任何点x ,下列说法正确的是()A .)()(0x f x fB .)()(0x f x f C .)()(0x f x f D .)()(0x f x f 101.设函数)(x f 在点0x 的一个邻域内可导且0)('0x f (或)('0x f 不存在),下列说法不正确的是()A .若0x x 时, 0)('x f ;而0x x 时, 0)('x f ,那么函数)(x f 在0x 处取得极大值B .若0x x 时, 0)('x f ;而0x x 时, 0)('x f ,那么函数)(x f 在0x 处取得极小值C .若0x x时, 0)('x f ;而0x x时, 0)('x f ,那么函数)(x f 在0x 处取得极大值D .如果当x 在0x 左右两侧邻近取值时,)('x f 不改变符号,那么函数)(x f 在0x 处没有极值102.0)('0x f ,0)(''0x f ,若0)(''0x f ,则函数)(x f 在0x 处取得()A .极大值B .极小值C .极值点D .驻点103.b x a时,恒有0)(x f ,则曲线)(x f y在ba,内()A .单调增加B .单调减少C .上凹D .下凹104.数()exf x x 的单调区间是() .A .在),(上单增B .在),(上单减C .在(,0)上单增,在(0,)上单减D .在(,0)上单减,在(0,)上单增105.数43()2f x xx的极值为().A .有极小值为(3)f B .有极小值为(0)f C .有极大值为(1)f D .有极大值为(1)f 106.xey 在点(0,1)处的切线方程为()A .x y1B .xy 1C .xy 1D .xy 1107.函数x xxxx f 处的切线与的图形在点)1,0(162131)(23轴交点的坐标是()A .)0,61(B .)0,1(C .)0,61(D .)0,1(108.抛物线x y 在横坐标4x 的切线方程为()A .44yx B .44yxC .184y x D .184y x 109.线)0,1()1(2在x y 点处的切线方程是()A .1x yB .1x y C .1x y D .1x y 110.曲线)(x f y在点x 处的切线斜率为,21)('x x f 且过点(1,1),则该曲线的方程是( )A .12x xy B .12x x y C .12x xy D .12xxy111.线22)121(x ey x上的横坐标的点0x处的切线与法线方程()A .063023y x y x 与B .63023y x y x 与C .063023yxy x与D .063023yxy x与112.函数处在点则0)(,)(3xx f x x f ( )A .可微B .不连续C .有切线,但该切线的斜率为无穷D .无切线113.以下结论正确的是( )A .导数不存在的点一定不是极值点B .驻点肯定是极值点C .导数不存在的点处切线一定不存在D .0)('0x f 是可微函数)(x f 在0x 点处取得极值的必要条件114.若函数)(x f 在0x 处的导数,0)0('f 则0x称为)(x f 的()A .极大值点B .极小值点C .极值点D .驻点115.曲线)1ln()(2xx f 的拐点是()A .)1ln ,1(与)1ln ,1(B .)2ln,1(与)2ln ,1(C .)1,2(ln 与)1,2(ln D .)2ln ,1(与)2ln ,1(116.线弧向上凹与向下凹的分界点是曲线的()A .驻点B .极值点C .切线不存在的点D .拐点117.数)(x f y 在区间[a,b]上连续,则该函数在区间[a,b]上()A .一定有最大值无最小值B .一定有最小值无最大值C .没有最大值也无最小值D .既有最大值也有最小值118.下列结论正确的有()A .0x 是)(x f 的驻点,则一定是)(x f 的极值点B .0x 是)(x f 的极值点,则一定是)(x f 的驻点C .)(x f 在0x 处可导,则一定在0x 处连续D .)(x f 在0x 处连续,则一定在0x 处可导119.由方程yx exy确定的隐函数)(x y y dxdy ( )A .)1()1(x y y x B .)1()1(y x x y C .)1()1(y x x y D .)1()1(x y y x 120.xyy xe y',1则()A .yyxee 1B .1yyxee C .yy xee 11D .yex)1(121.设x x g e x f xsin )(,)(,则)]('[x g f ()A .xesin B .xecos C .xecos D .xesin 122.设x x g e x f xcos )(,)(,则)]('[x g f A .xesin B .xecos C .xecos D .xesin 123.设)(),(x t t f y 都可微,则dyA .dtt f )('B .)('x dxC .)('t f )('x dtD .)('t f dx124.设,2sin xey则dy()A .xd e x2sin B .xd ex2sinsin 2C .xxd exsin 2sin 2sin D .xd exsin 2sin 125.若函数)(x f y 有dy x xxx f 处的微分该函数在时则当00,0,21)('是()A .与x 等价的无穷小量B .与x 同阶的无穷小量C .比x 低阶的无穷小量D .比x 高阶的无穷小量126.给微分式21xxdx ,下面凑微分正确的是( )A .221)1(xx d B .221)1(xx d C .2212)1(xx d D .2212)1(xx d 127.下面等式正确的有( )A .)(sin sin xxxx e d e dxe e B .)(1x d dx xC .)(222x d e dx xex x D .)(cos sin cos cos x d exdx exx128.设)(sin x f y,则dy()A .dx x f )(sin 'B .xx f cos )(sin 'C .xdxx f cos )(sin 'D .xdxx f cos )(sin '129.设,2sin xey则dyA .xd e x2sinB .x d ex2sinsin2C .xxd exsin 2sin 2sin D .xd exsin 2sin 三、一元函数积分学130.可导函数)(F x 为连续函数)(x f 的原函数,则( )A .)('x f B .)()(F'x f x C .)(F'x D .)(x f 131.若函数)(F x 和函数)(x 都是函数)(x f 在区间I 上的原函数,则有()A .I x x x ),(F )('B .I x x x ),()(F C .Ix x x ),()(F'D .IxC x x ,)()(F 132.有理函数不定积分2d 1x x x等于().A .2ln 12xx x CB .2ln 12xx x CC .2ln 12xx x CD .2ln 122xx x C133.不定积分22d 1x x等于().A .2arcsin x CB .2arccosx C C .2arctan x CD .2cot arc x C134.不定积分2e e (1)d x xx x等于().A .1e xC xB .1e xC x C .1exC xD .1exCx135.函数xe xf 2)(的原函数是( )A .4212xeB .xe22C .3312xeD .xe231136.xdx 2sin 等于()A .cx2sin 21B .cx 2sin C .cx2cos 2D .cx 2cos 21137.若xdx x x dx x xf sin sin )(,则)(x f 等于()A .xsin B .xx sin C .xcos D .xx cos 138.设xe是)(x f 的一个原函数,则dxx xf )('()A .cx e x)1(B .cx e x)1(C .cx e x)1(D .cx e x)1(139.设,)(xe xf 则dxx x f )(ln '()A .cx1B .cx1C .cx ln D .cx ln 140.设)(x f 是可导函数,则')(dxx f 为()A .)(x f B .cx f )(C .)('x f D .cx f )('141.以下各题计算结果正确的是( )A .xxdx arctan 12B .cxdxx 21C .cx xdx cos sin D .cx xdx 2sec tan142.在积分曲线族dx x x 中,过点(0,1)的积分曲线方程为( )A .12x B .1)(525x C .x2D .1)(255x 143.dx x31=()A .cx 43B .cx221C .cx221D .cx221144.设)(x f 有原函数x xln ,则dx x xf )(=()A .cx x )ln 4121(2B .cx x )ln 2141(2C .cx x )ln 2141(2D .cx x )ln 4121(2145.xdxxcos sin ()A .c x 2cos 41B .cx 2cos 41C .cx2sin 21D .cx2cos 21146.积分dxx]'11[2()A .211xB .cx211C .xtan arg D .cx arctan 147.下列等式计算正确的是()A .cx xdx cos sin B .cx dx x 43)4(C .cxdxx 32D .cdxxx22148.极限xx xxdxtdt00sin lim的值为()A .1B .0C .2D .1149.极限xxxdxx tdt202sin lim的值为()A .1B .0C .2D .1150.极限403sin limxdtt xx=( )A .41B .31C .21D .1151.2ln 01x t dte dxd ()A .)1(2xe B .exC .ex2D .12xe152.若xtdt dx dx f 0sin )(,则()A .x x f sin )(B .x x f cos 1)(C .cx x f sin )(D .xx f sin 1)(153.函数xdt t t tx213在区间]10[,上的最小值为()A .21B .31C .41D .0154.若xtxc dt te xf e x xg 02122213)(,)(,且23)(')('lim x g x f x则必有()A .0cB .1cC .1cD .2c155.x dt t dxd 14)1(()A .21xB .41xC .2121xxD .xx121156.]sin [2dt t dxd x ( )A .2cos xB .2cos 2xx C .2sin xD .2cost157.设函数0sin )(2xa x x tdtx f x在0x 点处连续,则a 等于()A .2B .21C .1D .2158.设)(x f 在区间],[b a 连续, ),()()(b xadt t f x F x a则)(x F 是)(x f 的( )A .不定积分B .一个原函数C .全体原函数D .在],[b a 上的定积分159.设则为连续函数其中,)(,)()(2x f dt t f axx x F xa)(lim x F ax=()A .2a B .)(2a f a C .0 D .不存在160.函数x2sin 1的原函数是()A .cx tan B .cxcot C .cxcot D .xsin 1161.函数)(x f 在[a,b]上连续, x adt t f x )()(,则()A .)(x 是)(x f 在[a,b]上的一个原函数B .)(x f 是)(x 的一个原函数C .)(x 是)(x f 在[a,b]上唯一的原函数D .)(x f 是)(x 在[a,b]上唯一的原函数162.广义积分dxe x( ) A .0 B .2C .1D .发散163.dxx 02cos 1( )A .0B .2C .22D .2164.设)(x f 为偶函数且连续,又有等于则)(,)()(0x F dt t f x F x( )A .)(x F B .)(x F C .0D .2)(x F 165.下列广义积分收敛的是()A .1xdx B .1xx dx C .dxx 1D .132xdx166.下列广义积分收敛的是()A .13xdx B .1cosxdxC .dxx 1ln D .1dxe x167.apxp dx e)0(等于()A .paeB .paea1C .paep1D .)1(1paep168.ex x dx2)(ln ( )A .1B .e1C .eD .(发散)169.积分dx e kx收敛的条件为()A .kB .0k C .0k D .k 170.下列无穷限积分中,积分收敛的有()A .dxe xB .1x dxC .dxe xD .cos xdx171.广义积分edx xxln 为()A .1B .发散C .21D .2172.下列广义积分为收敛的是( )A .edxxxln B .exx dxlnC .edxx x 2)(ln 1D .edxx x 21)(ln 1173.下列积分中不是广义积分的是()A .0)1ln(dxx B .42211dxx C .11-21dxxD .3-11dxx174.函数()f x 在闭区间[a,b]上连续是定积分badx x f )(在区间[a,b]上可积的().A .必要条件B .充分条件C .充分必要条件D .既非充分又飞必要条件175.定积分121sin 1x dx x等于().A .0B .1C .2D .1176.定积分122d ||xx x 等于().A .0B . 1C .174D .174177.定积分x x xd e )15(45等于().A .0B .5eC .5-eD .52e178.设)(x f 连续函数,则22)(dxx xf ()A .4)(21dx x f B .20)(21dxx f C .40)(2dxx f D .4)(dxx f 179.积分11sin 2xdxx e exx()A .0B .1C .2D .3180.设)(x f 是以T 为周期的连续函数,则定积分Tl ldx x f I)(的值()A .与l有关B .与T 有关C .与l ,T 均有关D .与l ,T 均无关181.设)(x f 连续函数,则2)(dxxx f ()A .21)(21dxx f B .210)(2dxx f C .20)(dxx f D .2)(2dxx f 182.设)(x f 为连续函数,则1)2('dx x f 等于()A .)0()2(f f B .)0()1(21f f C .)0()2(21f f D .)0()1(f f 183.C 数)(x f 在区间[a,b]上连续,且没有零点,则定积分b adx x f )(的值必定()A .大于零B .大于等于零C .小于零D .不等于零184.下列定积分中,积分结果正确的有()A .cx f dx x f ba )()('B .)()()('a f b f dxx f baC .)]2()2([21)2('a f b f dxx f baD .)2()2()2('a f b f dx x f ba185.以下定积分结果正确的是()A .2111dx xB .21112dx xC .211dx D .211xdx 186.adxx 0)'(arccos ()A .211xB .cx211C .ca2arccos D .arccos arccosa 187.下列等式成立的有( )A .0sin 11xdx x B .11dxe xC .abxdx abtan tan ]'tan [D .xdxxdxdxsin sin 0188.比较两个定积分的大小()A .213212dx x dx x B .213212dx x dx x C .213212dxx dxx D .213212dxx dxx 189.定积分22221sin dx xx x 等于()A .1B .-1C .2D .0190.11-x dx( )A .2B .2C .1D .1191.下列定积分中,其值为零的是()A .22-sin xdx x B .20cos xdx x C .22-)(dx x e xD .22-)sin (dxx x192.积分21dxx ()A .0B .21C .23D .25193.下列积分中,值最大的是()A .12dx x B .13dxx C .14dxx D .15dxx 194.曲线x y42与y 轴所围部分的面积为()A .2224dyy B .224dyy C .44dxx D .444dxx 195.曲线xey 与该曲线过原点的切线及y 轴所围形的为面积()A .e xxdxxe e1B .10ln ln dyy y y C .1dxex exD .edyy y y 1ln ln 196.曲线2xyx y 与所围成平面图形的面积( )A .31B .31C .1 D .-1四、常微分方程197.函数y c x (其中c 为任意常数)是微分方程1x y y 的().A .通解B .特解C .是解,但不是通解,也不是特解D .不是解198.函数23xy e是微分方程40y y 的().A .通解B .特解C .是解,但不是通解,也不是特解D .不是解199.2()sin y y x y x 是().A .四阶非线性微分方程B .二阶非线性微分方程C .二阶线性微分方程D .四阶线性微分方程200.下列函数中是方程0y y 的通解的是().A .12sin cos y C x C xB .xy Ce C .yCD .12xyC eC 专升本高等数学综合练习题参考答案1.B2.C3.C4.B 在偶次根式中,被开方式必须大于等于零,所以有40x 且20x ,解得24x ,即定义域为[2,4].5.A 由奇偶性定义,因为33()2()3sin()23sin ()f x x x xx f x ,所以3()23sin f x xx 是奇函数.6.解:令t x 1,则tt tt t f 21212211)(,所以xx x f 212)(,故选 D 7.解:选D8.解:选D 9.解:选B 10.解:选C11.解:110x ,所以01x ,故选 B 12.解:选C13.解:选 B14.解:选 B15.解:选 B16.解:)(x f 的定义域为)4,1[,选D17.解:根据奇函数的定义知选 C18.解:选 C19. 解:选 C20.解:因为函数)1,0(log a ax ya ya x与互为反函数,故它们的图形关于直线x y 轴对称,选 C 21.A 22.D23.解:这是00型未定式ln 1l 1limlimx exex x exe,故选B .24.解:这是型未定式。
2008年河南省专升本高数真题(带答案)
第 1 页 共 10 页2008年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试高等数学 试卷题号 一二 三 四 五 总分 核分人 分数一. 单项选择题(每题2分,共计60分) 在每小题的四个备选答案中选出一个正确答案,并将其代码写在题干后面的括号内.不选、错选或多选者,该题不得分.1. 函数2)1l n ()(++-=x x x f 的定义域为 ( )A. ]1,2[--B. ]1,2[-C. )1,2[-D. )1,2(-解:C x x x ⇒<≤-⇒⎩⎨⎧≥+>-120201.2.=⎪⎭⎫ ⎝⎛π--π→3sin cos 21lim3x x x ( ) A.1 B. 0 C. 2 D.3 解:0033sin cos 21lim ===⎪⎭⎫ ⎝⎛π--π→x x x D x x x ⇒=⨯=⎪⎭⎫ ⎝⎛π-π→312323cos sin 2lim 3. 3. 点0=x 是函数131311+-=xxy 的 ( )A.连续点B. 跳跃间断点C.可去间断点D. 第二类间断点解: ,1111313lim 110-=-=+--→xxx B x xx x xx ⇒===+-++→→13ln 33ln 3lim 1313lim 11000110.4.下列极限存在的为 ( )A.xx e +∞→lim B. x x x 2sin lim 0→ C.xx 1cos lim 0+→ D.32lim 2-++∞→x x x解:显然只有22sin lim0=→xxx ,其他三个都不存在,应选B.5. 当0→x 时,)1ln(2x +是比x cos 1-的( )A .低阶无穷小B .高阶无穷小C .等阶无穷小 D.同阶但不等价无穷小解: 22~)1ln(x x +,D x x x ⇒=-2~2sin 2cos 122. 6.设函数⎪⎪⎩⎪⎪⎨⎧>≤≤--<+++=0,a r c t a n 01,11,11s i n )1(1)(x x x x x x x f ,则)(x f( )得分 评卷人第 2 页 共 10 页A .在1-=x 处连续,在0=x 处不连续B .在0=x 处连续,在1-=x 处不连续C .在1-=x ,0,处均连续D .在1-=x ,0,处均不连续 解:⇒=-==+--→-→1)1(,1)(lim ,1)(lim 111f x f x f x x )(x f 在1-=x 处连续;⇒===+-→→1)0(,0)(lim ,1)(lim 001f x f x f x x )(x f 在0=x 处不连续;应选A.7.过曲线x e x y +=a r c t a n 上的点(0,1)处的法线方程为 ( )A. 012=+-y xB. 022=+-y xC. 012=--y xD. 022=-+y x 解: D k f e xy x⇒-=⇒='⇒++='212)0(112法. 8.设函数)(x f 在0=x 处可导,)(3)0()(x x f x f α+-=且0)(lim0=α→xx x ,则=')0(f( )A. -1B.1C. -3D. 3 解:3)(lim 3)(3lim 0)0()(lim )0(000-=α+-=α+-=--='→→→xx x x x x f x f f x x x ,应选C. 9.若函数)1()(l n )(>=x x x f x,则=')(x f( )A. 1)(ln -x x B. )ln(ln )(ln )(ln 1x x x x x +-C. )ln(ln )(ln x x xD. xx x )(ln 解:='='⇒==])l [)()(l)()lx x x y e x x f x x x x )l)()(1x x x x x +-,应选B.10.设函数)(x y y =由参数方程⎪⎩⎪⎨⎧==ty t x 33sin cos 确定,则=π=422x dxy d( )A.-2B.-1C.234-D. 234 解:⇒⨯=⇒-=t t t dx y d t t dx dy sin cos 31cos 1cos sin 2222 =π=422x dxyd 234,应选D.11.下列函数中,在区间[-1,1]上满足罗尔中值定理条件的是 ( )A.xe y = B.||ln x y = C.21x y -= D.21xy = 解:验证罗尔中值定理的条件,只有21x y -=满足,应选C.12. 曲线253-+=x x y 的拐点是 ( )A.0=xB.)2,0(-C.无拐点D. 2,0-==y x第 3 页 共 10 页解: ⇒=⇒==''006x x y )2,0(-,应选B. 13. 曲线|1|1-=x y ( )A. 只有水平渐进线B. 既有水平渐进线又有垂直渐进线C. 只有垂直渐进线D. 既无水平渐进线又无垂直渐进线解:,0|1|1lim =-∞→x x B x x ⇒∞=-→|1|1lim1. 14.如果)(x f 的一个原函数是x x ln ,那么=''⎰dx x f x )(2( )A. C x +lnB. C x +2C. C x x +ln 3D. x C - 解:⇒-=''⇒+='=21)(ln 1)ln ()(xx f x x x x f C x dx dx x f x +-=-=''⎰⎰)(2,应选D.15. =+-⎰342x x dx( )A .C x x +--13ln21 B.C x x +--31ln 21 C. C x x +---)1ln()3ln( D. C x x +---)3ln()1ln(解: C x x dx x x x x dx x x dx +--=⎥⎦⎤⎢⎣⎡---=--=+-⎰⎰⎰13ln 21113121)1)(3(342,应选A. 16.设⎰+=1041x dx I ,则I的取值范围为( )A .10≤≤I B.121≤≤I C. 40π≤≤I D.121<<I 解:此题有问题,定积分是一个常数,有111214≤+≤x ,根据定积分的估值性质,有121≤≤I ,但这个常数也在其它三个区间,都应该正确,但真题中答案是B. 17. 下列广义积分收敛的是 ( ) A.dx x ⎰+∞13 B. ⎰+∞1ln dx xxC.⎰+∞1dx xD. dx e x ⎰+∞-0解:显然应选D. 18.=-⎰-33|1|dx x ( )A.⎰-3|1|2dx x B.⎰⎰-+--3113)1()1(dx x dx xC. ⎰⎰----3113)1()1(dx x dx x D. ⎰⎰-+--3113)1()1(dx x dx x解:=-⎰-33|1|dx x =-+-⎰⎰-3113|1||1|dx x dx x ⎰⎰-+--3113)1()1(dx x dx x ,应选D.第 4 页 共 10 页19.若)(x f 可导函数,0)(>x f ,且满足⎰+-=xdt ttt f x f 022cos 1sin )(22ln )(,则=)(x f ( )A. )cos 1ln(x +B. C x ++-)cos 1ln(C. )cos 1ln(x +-D. C x ++)cos 1ln( 解:对⎰+-=xdtttt f x f 022cos 1sin )(22ln )(两边求导有:x xx f x f x f cos 1sin )(2)()(2+-=',即有 ⎰⎰++=+-=⇒+-='xx d dx x x x f x x x f cos 1)cos 1(cos 1sin )(cos 1sin )( C x ++=)cos 1ln(,还初始条件2ln )0(=f ,代入得0=C ,应选A.20. 若函数)(x f 满足⎰--+=11)(211)(dx x f x x f ,则=)(x f( )A. 31-x B. 21-x C. 21+x D. 31+x解:令⎰-=11)(dx x f a ,则a x x f 211)(-+=,故有⎰⎰--⇒=⇒-=-+==111112)211()(a a dx a x dx x f a =)(x f 21+x ,应选C. 21. 若⎰=edxx f x I 023)( 则=I( )Adx x f )(0⎰2e x B dx xf )(0⎰exC dx x f )(210⎰2e xD dx x f )(210⎰ex解: ⎰⎰⎰======22200222)()(21)()(21)()(21e e t x e x d x xf t d t tf x d x f x I ,应选C.22.直线19452zy x =+=+与平面5734=+-z y x 的位置关系为 A. 直线与平面斜交 B. 直线与平面垂直C. 直线在平面内D. 直线与平面平行 解:n s n s⊥⇒-==}7,3,4{},1,9,5{ ,而点(-2,-4,0)不在平面内,为平行,应选D. 23.=-+++→→11lim222200y x y x y x ( )A. 2B.3C. 1D.不存在 解: 2222220022220)11)((lim11limy x y x y x y x y x y x y x +++++=-+++→→→→2)11(lim 220=+++=→→y x y x ,应选A.第 5 页 共 10 页24.曲面22y x z +=在点(1,2,5)处切平面方程( ) A .542=-+z y x B .524=-+z y x C .542=-+z y x D .542=+-z y x解:令z y x z y x F -+=22),,(,⇒-='='='1)5,2,1(,4)5,2,1(,2)5,2,1(z y x F F F⇒=---+-0)5()2(4)1(2z y x 542=-+z y x ,也可以把点(1,2,5)代入方程验证,应选A. 25.设函数33xyy x z -=,则=∂∂∂x y z2 ( )A. xy 6B. 2233y x - C. xy 6- D. 2233x y -解:⇒-=∂∂233xy x yz =∂∂∂x y z 22233y x -,应选B. 26.如果区域D 被分成两个子区域1D 和2D 且5),(1=⎰⎰dxdy y x f D ,1),(2=⎰⎰dxdy y x f D ,则=⎰⎰dxdy y x f D),(( )A. 5B. 4C. 6D.1 解:根据二重积分的可加性,6),(=⎰⎰dxdy y x f D,应选C.27.如果L 是摆线⎩⎨⎧-=-=t y tt x cos 1sin 从点)0,2(πA 到点)0,0(B 的一段弧,则=-++⎰dy y y x dx xe y x xL)sin 31()3(32 ( ) A.1)21(2-π-πe B. ]1)21([22-π-πe C.]1)21([32-π-πe D. ]1)21([42-π-πe解:有⇒=∂∂=∂∂2x x Q y P 此积分与路径无关,取直线段x y x x ,0⎩⎨⎧==从π2变到0,则 02020232)(333)sin 31()3(πππ-===-++⎰⎰⎰x x x x x L e xe xde dx xe dy y y x dx xe y x ]1)21([32-π-=πe ,应选C. 28.以通解为xCey =(C 为任意常数)的微分方程为( )A. 0=+'y yB. 0=-'y yC. 1='y yD. 01=+'-y y解: 0=-'⇒='⇒=y y Ce y Ce y xx,应选B.29. 微分方程x xe y y -='+''的特解形式应设为=*y ( )第 6 页 共 10 页A .xeb ax x -+)( B.b ax + C.xe b ax -+)(D.xeb ax x -+)(2解:-1是单特征方程的根,x 是一次多项式,应设xeb ax x y -+=*)(,应选A.30.下列四个级数中,发散的级数是 ( )A. ∑∞=1!1n n B. ∑∞=-1100032n n n C. ∑∞=12n n n D. ∑∞=121n n解:级数∑∞=-1100032n n n 的一般项n n 100032-的极限为05001≠,是发散的,应选B.二、填空题(每题2分,共30分)31.A x f x x =→)(lim 0的____________条件是A x f x f x x x x ==-+→→)(lim )(lim 0.解:显然为充要(充分且必要).32. 函数x x y sin -=在区间)2,0(π单调 ,其曲线在区间⎪⎭⎫⎝⎛π2,0内的凹凸性为 的.解:⇒>-='0cos 1x y 在)2,0(π内单调增加,x y sin =''在π0,2⎛⎫⎪⎝⎭内大于零,应为凹的.33.设方程a a z y x (23222=++为常数)所确定的隐函数),(y x f z = ,则=∂∂xz_____. 解:⇒='='⇒-++=x F z F a z y x F x z 6,223222zx F F x z z x 3-=''-=∂∂. 34.=+⎰xdx 1 .解:⎰⎰⎰++-=⎪⎭⎫ ⎝⎛+-=+==+=C t t dt t t tdt xdx tx )1ln(221112121 C x x ++-=)1ln(22.35.⎰ππ⋅-=+33________cos 1dx x x. 解:函数x x cos 1+在区间⎥⎦⎤⎢⎣⎡ππ-3,3是奇函数,所以⎰ππ⋅-=+330cos 1dx x x . 36. 在空间直角坐标系中,以)042()131()140(,,,,,,,,----C B A 为顶点的ABC ∆的面积为__ .解:}2,1,1{102011}1,0,2{},0,1,1{---=--=⨯⇒-=-=kj i ,所以A B C∆26=. 得分 评卷人第7 页 共 10 页37. 方程⎪⎩⎪⎨⎧-==+214922x y x 在空间直角坐标下的图形为__________. 解:是椭圆柱面与平面2-=x 的交线,为两条平行直线. 38.函数xy y x y x f 3),(33-+=的驻点为 .解: )1,1(),0,0(03303322⇒⎪⎪⎩⎪⎪⎨⎧=-=∂∂=-=∂∂x y yz y x xz. 39.若xyxy ey x z xtan2312++=-,则=∂∂)0,1(x z .解:⇒=∂∂⇒=00)0,(xzx f0)0,1(=∂∂x z .40.⎰⎰ππ=440___________cos xdy yydx 解:22sin cos cos 1cos 14040040440====πππππ⎰⎰⎰⎰⎰x ydy ydx y dy ydy y dx y x.41.直角坐标系下的二重积分⎰⎰Ddxdy y x f ),((其中D 为环域9122≤+≤y x )化为极坐标形式为___________________________.解:⎰⎰⎰⎰θθθ=π3120)sin ,cos (),(rdr r r f d dxdy y x f D.42.以x xxe C e C y 3231--+=为通解的二阶常系数线性齐次微分方程为 .解:由x xxe C eC y 3231--+=为通解知,有二重特征根-3,从而9,6==q p ,微分方程为096=+'+''y y y .43.等比级数)0(0≠∑∞=a aq n n,当_______时级数收敛,当_______时级数发散. 解: 级数∑∞=0n naq是等比级数, 当1||<q 时,级数收敛,当1||≥q 时,级数发散.44.函数21)(2--=x x x f 展开为x 的幂级数为__________________ 解: 21161113121113121)(2x x x x x x x f -⨯-+⨯-=⎥⎦⎤⎢⎣⎡-++-=--=1100011(1)1(1),(11)362332n n n nn n n n n n x x x x +∞∞∞+===⎡⎤-=---=--<<⎢⎥⋅⎣⎦∑∑∑.45.∑∞=⎪⎭⎫⎝⎛-12n nn n 的敛散性为________的级数.第8 页 共 10 页解:021lim 2lim lim 2)2(2≠=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=--⨯-∞→∞→∞→e n n n u nn nn n n ,级数发散.三、计算题(每小题5分,共40分)46.求2522232lim +∞→⎪⎪⎭⎫⎝⎛-+x x x x .解:252)23(32252222522252231312121lim3121lim 32lim 2222⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫⎝⎛-+-⨯-∞→+∞→+∞→x x x x x x x x x x x x x x x2523252)23(32252223131lim 2121lim 22e eex x x x x x x x ==⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+=--⨯-∞→∞→.47. 求⎰+→23241limx x dtt t x .解:212lim214lim1lim34034233242=+=⨯+===+→→→⎰x xx x xdtt t xx x x x .48.已知)21sin(ln x y -=,求dxdy . 解:[][])21s i )21c o221)21s i n ()21c o s ()21s i n()21si n (1x x x x x x x dx dy ---='---='--= )21cot(2x --=. 49. 计算不定积分⎰xdx x arctan .解:⎰⎰⎰+⨯-=⎪⎪⎭⎫ ⎝⎛=dx x x x x x xd xdx x 2222112arctan 22arctan arctan ⎰⎪⎭⎫ ⎝⎛+--=dx x x x 2211121arctan 2 C x x x x ++-=arctan 2121arctan 22. 50.求函数)cos(y x e z x+=的全微分.解:利用微分的不变性,x x x de y x y x d e y x e d dz )cos()cos()]cos([+++=+= dx e y x y x d y x e x x )cos()()sin(++++-= dx e y x dy dx y x e x x )cos(])[sin(++++-=得分 评卷人第9 页 共 10 页dy y x e dx y x y x e x x )sin()]sin()[cos(+-+-+=.51.计算⎰⎰σDd yx2,其中D 是由1,,2===xy x y y 所围成的闭区域. 解:积分区域D 如图所示:把区域看作 Y 型,则有⎭⎬⎫⎩⎨⎧≤≤≤≤=y x y y y x D 1,21|),(,故 ⎰⎰⎰⎰=y y D dx y x dy dxdy yx12212yyy yx dy y xdx dy y 122121212211⨯==⎰⎰⎰481731211121213214=⎪⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-=⎰y y dy y . 52.求微分方程x e x y y s i nc o s-=+'满足初始条件1)0(-=y 的特解.解:这是一阶线性非齐次微分方程,它对应的齐次微分方程0cos =+'x y y 的通解为x Ce y sin -=,设x e x C y sin )(-=是原方程解,代入方程有x x e e x C sin sin )(--=',即有1)(='x C ,所以C x x C +=)(,故原方程的通解为x xxe Cey sin sin --+=,把初始条件1)0(-=y 代入得:1-=C ,故所求的特解为xex y sin )1(--=.53.求级数∑∞=+013n nn x n 的收敛半径及收敛区间(考虑区间端点).解:这是标准的不缺项的幂级数,收敛半径ρ=1R ,而321lim 33123lim lim11=++=+⨯+==ρ∞→+∞→+∞→n n n n a a n n n n nn n , 故收敛半径31=R . 当31=x 时,级数化为∑∞=+011n n ,这是调和级数,发散的; 当31-=x 时,级数化为∑∞=+-01)1(n n n ,这是交错级数,满足莱布尼兹定理的条件,收敛的;所以级数的收敛域为⎪⎭⎫⎢⎣⎡-31,31.四、应用题(每题7分,共计14分)54. 过曲线2x y =上一点)1,1(M 作切线L ,D 是由曲线2x y =,切线L 及x 轴所围成的平面图形,求(1)平面图形D 的面积;(2)该平面图形D 绕x 轴旋转一周所成的旋转体的体积.解:平面图形D 如图所示:得分 评卷人y x =→y x 11=→1x =→2第10 页 共 10 页因x y 2=',所以切线L 的斜率2)1(='=y k , 切线L 的方程为)1(21-=-x y ,即12-=x y 取x 为积分变量,且]1,0[∈x . (1)平面图形D 的面积为121)(3)12(121213121102=--=--=⎰⎰x x x dx x dx x S . (2)平面图形D 绕x 轴旋转一周所生成旋转体的体积为 302345)12(1212315121214π=⎪⎪⎭⎫ ⎝⎛+-π-π=-π-π=⎰⎰x x x xdx x dx x V x .55.一块铁皮宽为24厘米,把它的两边折上去,做成一正截面为等腰梯形的槽(如下图),要使梯形的面积A 最大,求腰长x 和它对底边的倾斜角α.解: 梯形截面的下底长为x 224-,上底长为 α+-cos 2224x x ,高为αsin x ,所以截面面积为α⋅-+α+-=sin )224cos 2224(21x x x x A ,)20,120(π<α<<<x即αα+α-α=cos sin sin 2sin 2422x x x A ,令⎪⎪⎩⎪⎪⎨⎧=α-α+α-α=α∂∂=αα+α-α=∂∂0)sin (cos cos 2cos 240cos sin 2sin 4sin 242222x x x A x x x A得唯一驻⎪⎩⎪⎨⎧π=α=38x .根据题意可知,截面的面积最大值一定存在,且在20,120:π<α<<<x D 内取得,又函数在D 内只有一个可能的最值点,因此可以断定3,8π=α=x 时,截面的面积最大.五、证明题(6分)⎰π--=02cos 1ln dx x e xx 在区间56. 证明方程),(3e e 内仅有一个实根.证明:构造函数 ⎰π-+-=02cos 1ln )(dx x e xx x f , 即有22ln sin 2ln )(0+-=+-=⎰πexx xdx e x x x f ,显然函数)(x f 在区间],[3e e 连续,且有06223)(,022)(223<-<+-=>=e e e f e f ,由连续函数的零点定理知方程0)(=x f 即⎰π--=02cos 1ln dx x e xx 在区间),(3e e 有至少有一实数根.另一方面, ex x f 11)(-='在区间),(3e e 内恒小于零,有方程0)(=x f ,即⎰π--=2cos 1ln dx x e xx 在区间),(3e e 有至多有一实数根. 综上所述, 方程⎰π--=02cos 1ln dx x e x x 在区间),(3e e 内仅有一个实根.x 224-x α。
河南省专升本高等数学真题(带答案详细讲解)
2009年省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学注意事项:答题前,考生务必将自己的、座位号、考生号涂写在答题卡上。
本试卷的试卷答案在答题卡上,答试卷上无效。
一、选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,有铅笔把答题卡上对应的题目的标号涂黑。
如需改动,用橡皮擦干净后,再涂其他答案标号.1.下列函数相等的是 ( )A.2x y x=,y x = B. y =y x =C.x y =,2y = D. y x =,y =【答案】D.解:注意函数的定义围、解读式,应选D.2.下列函数中为奇函数的是 ( )A.e e ()2x xf x -+= B. ()tan f x x x =C. ()ln(f x x =D. ()1x f x x=- 【答案】C.解:()ln(f x x -=-,()()ln(ln(ln10f x f x x x +-=-+==()()f x f x -=-,选C.3.极限11lim1x x x →--的值是( ) A.1B.1-C.0 D.不存在 【答案】D. 解:11lim 11x x x +→-=-,11lim 11x x x -→-=--,应选D.4.当0x →时,下列无穷小量中与x 等价是( )A.22x x - C. ln(1)x + D.2sin x【答案】C.解:由等价无穷小量公式,应选C.5.设e 1()x f x x-=,则0=x 是()f x 的 ( )A.连续点B.可去间断点C.跳跃间断点D.无穷间断点 【答案】B.解:00e 1lim ()lim1x x x f x x→→-==⇒0=x 是)(x f 的可去间断点,应选B. 6. 已知函数()f x 可导,且0(1)(1)lim12x f f x x→--=-,则(1)f '= ( )A. 2B. -1C.1D.-2 【答案】D. 解:0(1)(1)1lim(1)1(1)222x f f x f f x →--''==-⇒=-,应选D.7.设()f x 具有四阶导数且()f x ''=(4)()f x = ()AB .1 D .3214x --【答案】D. 解:1(3)21()2fx x -=,(4)()f x =3214x --,应选D.8.曲线sin 2cos y t x t=⎧⎨=⎩在π4t =对应点处的法线方程( )A.2x =B.1y =C.1y x =+D.1y x =- 【答案】A.解:0d 2cos 20d sin y t k x x x t =⇒=⇒==切,应选A. 9.已知d e ()e d x xf x x -⎡⎤=⎣⎦,且(0)0f =,则()f x =( )A .2e e x x + B. 2e e x x - C. 2e e x x -+ D. 2e e x x -- 【答案】B.解:由d e ()e d x x f x x -⎡⎤=⎣⎦得2d e ()d(e )e ()e ()e e x x x x x xf x f x C f x C --⎡⎤=⇒=+⇒=+⎣⎦, 把(0)0f =代入得1C =-,所以2()e e x x f x =-,应选B. 10.函数在某点处连续是其在该点处可导的( )A. 必要条件B. 充分条件C. 充分必要条件D. 无关条件 【答案】A.解:根据可导与连续的关系知,应选A.11.曲线42246y x x x =-+的凸区间为 ( ) A.(2,2)- B.(,0)-∞ C.(0,)+∞ D. (,)-∞+∞ 【答案】A.解:34486y x x '=-+,212480(2,2)y x x ''=-<⇒∈-,应选A.12.设e xy x=( )A.仅有水平渐近线B.既有水平又有垂直渐近线C.仅有垂直渐近线D.既无水平又无垂直渐近线 【答案】B.解:e lim0x x x →-∞=,0e lim xx x→=∞,应选B. 13.下列说确的是 ( ) A. 函数的极值点一定是函数的驻点 B. 函数的驻点一定是函数的极值点C. 二阶导数非零的驻点一定是极值点D. 以上说法都不对 【 答案】D.解:根据极值点与驻点的关系和第二充分条件,应选D.14. 设函数()f x 在[,]a b 连续,且不是常数函数,若()()f a f b =,则在(,)a b ( )A. 必有最大值或最小值B.既有最大值又有最小值C.既有极大值又有极小值D.至少存在一点ξ,使()0f ξ'= 【答案】A.解:根据连续函数在闭区间上的性质及()()f a f b =的条件,在对应的开区间至少有一个最值,应选A.15.若()f x 的一个原函数为ln x ,则()f x '=( )A.1x B.21x- C.ln x D.ln x x 【答案】B.解:()1()ln f x x x '==⇒21()f x x'=-,应选B.16.若2()f x dx x C =+⎰,则2(1)xf x dx -=⎰( ) A. 222(1)x C --+ B. 222(1)x C -+C. 221(1)2x C --+D. 221(1)2x C -+【答案】C. 解:2221(1)(1)(1)2xf x dx f x d x -=---⎰⎰=221(1)2x C --+,应选C. 17.下列不等式不成立的是( )A. 22211ln (ln )xdx x dx >⎰⎰ B.220sin xdx xdx ππ<⎰⎰C.22ln(1)x dx xdx +<⎰⎰ D.22(1)x e dx x dx <+⎰⎰【答案】D.解:根据定积分的保序性定理,应有22(1)x e dx x dx ≥+⎰⎰,应选D.18.1ln eex dx ⎰= ( )A.111ln ln e exdx xdx +⎰⎰ B.111ln ln eexdx xdx -⎰⎰C. 111ln ln e exdx xdx -+⎰⎰ D.111ln ln eexdx xdx --⎰⎰【答案】C.解:因1ln ,1|ln |ln ,1x x x ex x e⎧-≤≤⎪=⎨⎪≤≤⎩,考察积分的可加性有 1111ln ln ln eeeexdx xdx xdx =-+⎰⎰⎰,应选C.19.下列广义积分收敛的是( )A.lnex dx x +∞⎰B.1ln e dx x x+∞⎰ C.21(ln )e dx x x +∞⎰ D.e +∞⎰ 【答案】C.解:由广义积分性质和结论可知:21(ln )edx x x +∞⎰是2p =的积分,收敛的,应选C.20.方程220x y z +-=在空间直角坐标系中表示的曲面是 ( ) A.球面 B.圆锥面C. 旋转抛物面D.圆柱面 【答案】C.解:根据方程的特点是抛物面,又因两个平方项的系数相等,从而方程220x y z +-=在空间直角坐标系中表示的曲面是旋转抛物面,应选C.21. 设{}1,1,2a =-r ,{}2,0,1b =r,则a r 与b r 的夹角为 ( )A .0B .6πC .4πD .2π 【答案】D.解:0(,)2a b a b a b π=⇒⊥⇒=r r r r r r g ,应选D.22.直线34273x y z++==--与平面4223x y z --=的位置关系是 ( ) A.平行但直线不在平面 B.直线在平面 C. 垂直 D.相交但不垂直 【答案】A.解:因{}2,7,3s =--r ,{}4,2,20n s n s n =--⇒⋅=⇒⊥⇒r r r r直线在平面或平行但直线不在平面.又直线上点(3,4,0)--不在平面.故直线与平面的位置关系是平行但直线不在平面,应选A.23.设(,)f x y 在点(,)a b 处有偏导数,则0(,)(,)limh f a h b f a h b h→+--=( )A.0B.2(,)x f a b 'C.(,)x f a b 'D.(,)y f a b ' 【答案】B. 解:原式00(,)(,)(,)(,)limlimh h f a h b f a b f a h b f a b h h→→+---=- 00(,)(,)(,)(,)limlim 2(,)x h h f a h b f a b f a h b f a b f a b h h→-→+---'=+=- 应选B. 24.函数x yz x y+=-的全微dz =() A .22()()xdx ydy x y -- B .22()()ydy xdx x y -- C .22()()ydx xdy x y --D .22()()xdy ydx x y --【答案】D 解:22()()()()2()()()x y x y d x y x y d x y xdy ydx z dz x y x y x y +-+-+--=⇒==---,应选D25.0(,)ady f x y dx ⎰化为极坐标形式为( )A .20(cos ,sin )ad f r r rdr πθθθ⎰⎰B .2cos 0(cos ,sin )d f r r rdr πθθθθ⎰⎰C .sin 20(cos ,sin )a d f r r rdr πθθθθ⎰⎰D .20(cos ,sin )ad f r r rdr πθθθ⎰⎰【答案】D.解:积分区域{(,)|0,0(,)|0,02x y y a x r r a πθθ⎧⎫≤≤≤≤=≤≤≤≤⎨⎬⎩⎭有(,)ady f x y dx ⎰2(cos ,sin )ad f r r rdr πθθθ=⎰⎰,应选D.26.设L 是以A(-1,0),B(-3,2),C(3,0)为顶点的三角形区域的边界,方向为ABCA,则(3)(2)Lx y dx x y dy -+-=⎰ÑA.-8B.0 C 8 D.20【答案】A.解:由格林公式知,(3)(2)228LDx y dx x y dy d S σ∆-+-=-=-=-⎰⎰⎰Ñ,应选A.27.下列微分方程中,可分离变量的是 ( ) A .tan dy y ydx x x=+ B .22()20x y dx xydy +-= C .220x y x dx e dy y ++=D . 2x dy y e dx+= 【答案】C.解:根据可分离变量微分的特点,220x y xdx e dy y++=可化为 22y x ye dy xe dx -=-知,应选C.28.若级数1n n u ∞=∑收敛,则下列级数收敛的是( )A .110nn u ∞=∑ B .1(10)n n u ∞=+∑C .110n nu ∞=∑D .1(10)nn u∞=-∑【答案】A.解:由级数收敛的性质知,110nn u ∞=∑收敛,其他三个一定发散,应选A. 29.函数()ln(1)f x x =-的幂级数展开为( )A .23,1123x x x x +++-<≤LB .23,1123x x x x -+--<≤LC .23,1123x x x x -----≤<LD . 23,1123x x x x -+-+-≤<L【答案】C.解:根据23ln(1),1123x x x x x +=-+--<≤L 可知,23ln(1),1123x x x x x -=-----≤<L ,应选C.30.级数1(1)n n n a x ∞=-∑在1x =-处收敛,则此级数在2x =处 ( )A .条件收敛B .绝对收敛C .发散D .无法确定 【答案】B.解:令1x t -=,级数1(1)nn n a x ∞=-∑化为1n n n a t ∞=∑,问题转化为:2t =-处收敛,确定1t =处是否收敛.由阿贝尔定理知是绝对收敛的,故应选B.二、填空题(每小题2分,共30分)31.已知()1xf x x=-,则[()]______f f x =. 解:()1[()](1,)1()122f x x f f x x x f x x ==≠≠--.32.当0x →时,()f x 与1cos x -等价,则0()lim_______sin x f x x x→=. 解:2211cos ()1cos 2220sin 00()1cos 12lim lim lim sin 2x x f x x x x x x x x f x x x x x x --→→→-==============:::. 33.若2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则_______a =. 解:因2223()221lim 12lim lim 1lim 1x xa axa x a x x a x x a a x a a x a e x x e x a e a a x x ⋅→∞-→∞→∞⋅--→∞⎛⎫⎛⎫++ ⎪ ⎪+⎛⎫⎝⎭⎝⎭==== ⎪-⎝⎭⎛⎫⎛⎫- ⎪- ⎪⎝⎭⎝⎭, 所以有 38a e =ln 2a ⇒=.34.设函数sin ,0(),0xx f x x a x ⎧≠⎪=⎨⎪=⎩在(,)-∞+∞处处连续,则_______a =.解:函数在(,)-∞+∞处处连续,当然在0x =处一定连续,又因为0sin lim ()lim1;(0)x x x f x f a x→→===,所以0lim ()(0)1x f x f a →=⇒=.35.曲线31xy x=+在(2,2)点处的切线方程为___________. 解:因2231340(1)3x y k y x y x =''=⇒==⇒-+=+. 36.函数2()2f x x x =--在区间[0,2]上使用拉格朗日中值定理结论中____ξ=. 解:(2)(0)()2121120f f f x x ξξ-'=-⇒-=⇒=-.37.函数()f x x =-的单调减少区间是 _________.解:1()100,4f x x ⎛⎫'=<⇒∈ ⎪⎝⎭,应填10,4⎛⎫ ⎪⎝⎭或10,4⎡⎤⎢⎥⎣⎦或10,4⎡⎫⎪⎢⎣⎭或10,4⎛⎤⎥⎝⎦. 38.已知(0)2,(2)3,(2)4,f f f '===则20()______xf x dx ''=⎰. 解:222200()()()()2(2)(2)(0)7xf x dx xdf x xf x f x dx f f f ''''''==-=-+=⎰⎰⎰.39.设向量b r 与}{1,2,3a =-r共线,且56a b ⋅=r r ,则b =r _________. 解:因向量b r 与a r共线,b r 可设为{},2,3k k k -,5649564a b k k k k ⋅=⇒++=⇒=rr ,所以{}4,8,12b =-r . 40.设22x y z e +=,则22zx∂=∂_______.解:22222222222(12)x y x y x y z z z exe x e x x+++∂∂=⇒=⇒=+∂∂. 41.函数22(,)22f x y x xy y =+-的驻点为________.解:40(,)(0,0)40fx y xx y f x y y∂⎧=+=⎪∂⎪⇒=⎨∂⎪=-=∂⎪⎩.42.区域D 为229x y +≤,则2______Dx yd σ=⎰⎰.解:利用对称性知其值为0或232420cos sin 0Dx yd d r dr πσθθθ==⎰⎰⎰⎰.43.交换积分次序后,10(,)_____________xdx f x y dy =⎰.解:积分区域{{}2(,)|01,(,)|01,D x y x x y x y y y x y =≤≤≤≤=≤≤≤≤,则有21100(,)(,)yxydx f x y dy dy f x y dx =⎰⎰⎰.44.14x y xe -=-是23x y y y e -'''--=的特解,则该方程的通解为_________.解:230y y y '''--=的通解为312x x y C e C e -=+,根据方程解的结构,原方程的通解为31214x x x y C e C e xe --=+-.45.已知级数1n n u ∞=∑的部分和3n S n =,则当2n ≥时,_______n u =.解:当2n ≥时,3321(1)331n n n u S S n n n n -=-=--=-+.三、计算题(每小题5分,共40分)46.求011lim 1x x x e →⎛⎫- ⎪-⎝⎭.解:20001111lim lim lim 1(1)x x x x x x x e x e x x e x e x →→→----⎛⎫-== ⎪--⎝⎭0011lim lim 222x x x e x x x →→-===. 47.设()y y x =是由方程ln sin 2xy e y x x +=确定的隐函数,求dxdy . 解:方程两边对x 求导得()ln 2cos 2xy ye xy y x x x''++= 即()ln 2cos 2xy e x y xy y y x x x x ''+++=2(ln )2cos 2xy xy x e x x y x x e xy y '+=--所以dydx=22cos 2ln xy xy x x e xy y y x e x x --'=+.48.已知2()x xf x dx e C -=+⎰,求1()dx f x ⎰. 解:方程2()x xf x dx e C -=+⎰两边对x 求导得2()2xxf x e-=-,即22()xe f x x--=,所以211()2x xe f x =-. 故22111()24x x dx xe dx xde f x =-=-⎰⎰⎰ 222211114448x x x x xe e dx xe e C =-+=-++⎰.49.求定积分44|(1)|x x dx --⎰.解:4014441|(1)||(1)||(1)||(1)|x x dx x x dx x x dx x x dx ---=-+-+-⎰⎰⎰⎰01441(1)(1)(1)x x dx x x dx x x dx -=-+-+-⎰⎰⎰14322332401322332x x x x x x -⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 641164118843323332=++-+--+=. 50.已知22x xy y z e +-= 求全微分dz .解:因222222()(2)x xy y x xy y x ze x xy y e x y x+-+-∂'=+-=+∂, 222222()(2)x xy y x xy y y ze x xy y e x y y+-+-∂'=+-=-∂, 且它们在定义域都连续,从而函数22xxy y z e +-=可微,并有z zdz dx dy x y∂∂=+∂∂22[(2)(2)]x xy y e x y dx x y dy +-=++-. 51.求(2)Dx y d σ+⎰⎰,其中区域D 由直线,2,2y x y x y ===围成.x x y =→=2yx =2解:积分区域D 如图所示: 把D 看作Y 型区域,且有(,)|02,2y D x y y x y ⎧⎫=≤≤≤≤⎨⎬⎩⎭故有22(2)(2)yy Dx y d dy x y dx σ+=+⎰⎰⎰⎰2222025()4yy x xy dy y dy =+=⎰⎰230510123y ==. 52.求微分方程22x y xy xe -'-=的通解. 解:这是一阶线性非齐次微分方程,它对应的齐次微分方程20y xy '-=的通解为2x y Ce =, 设原方程的解为2()x y C x e =代入方程得22()x x C x e xe -'=, 即有22()x C x xe -'=,所以222222211()(2)44x x x C x xe dx e d x e C ---==--=-+⎰⎰, 故原方程的通解为2214x x y e Ce -=-+.53.求幂级数212nn n n x ∞=∑的收敛区间(考虑区间端点). 解:这是规缺项的幂级数,考察正项级数212nn n n x ∞=∑, 因221112limlim 22n n n n n nu n x l x u n ++→∞→∞+==⨯=, 当212x l =<,即||x <212n n n nx ∞=∑是绝对收敛的; 当212x l =>,即||x >212n n n nx ∞=∑是发散的; 当212x l ==,即x =212nn n n x ∞=∑化为1n n ∞=∑,显然是发散的。
河南省专升本高等数学真题(带答案详细讲解)
2009年省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学题号一二三四五总分分值60 30 40 14 6150注意事项:答题前,考生务必将自己的、座位号、考生号涂写在答题卡上。
本试卷的试卷答案在答题卡上,答试卷上无效。
一、选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,有铅笔把答题卡上对应的题目的标号涂黑。
如需改动,用橡皮擦干净后,再涂其他答案标号.1.下列函数相等的是()A.2xy x,y x B. 2yx ,y x C.x y,2()yx D. yx ,2yx【答案】D.解:注意函数的定义围、解读式,应选 D.2.下列函数中为奇函数的是()A.ee ()2xxf x B. ()tan f x x xC. 2()ln(1)f x x xD. ()1x f x x【答案】C.解:2()ln(1)f x x x,22()()ln(1)ln(1)ln10f x f x x xx x()()f x f x ,选C. 3.极限11lim1xx x 的值是( ) A.1B.1C.0 D.不存在【答案】D. 解:11lim11x x x ,11lim11xx x ,应选D. 4.当0x 时,下列无穷小量中与x 等价是()A.22xx B.3xC. ln(1)xD.2sin x【答案】C.解:由等价无穷小量公式,应选 C.5.设e1()xf x x,则0x 是()f x 的()A.连续点B.可去间断点C.跳跃间断点D.无穷间断点【答案】B. 解:0e1lim ()lim 1xx x f x x0x 是)(x f 的可去间断点,应选B.6. 已知函数()f x 可导,且0(1)(1)lim12xf f x x,则(1)f ()A.2B. -1C.1D.-2【答案】D. 解:0(1)(1)1lim(1)1(1)222x f f x f f x,应选D. 7.设()f x 具有四阶导数且()f x x ,则(4)()f x ()A .12xB .xC .1D .3214x【答案】D. 解:1(3)21()2fx x,(4)()fx 3214x,应选 D.8.曲线sin 2cos y t xt在π4t对应点处的法线方程()A.22xB.1yC.1y xD.1y x 【答案】A. 解:d 2cos 220d sin 2y t k xx xt切,应选A.9.已知d e ()e d xxf x x ,且(0)0f ,则()f x ()A .2ee xxB. 2ee xx C. 2eexxD. 2eexx【答案】B. 解:由d e ()e d x x f x x 得2d e ()d(e )e ()e()ee xxxxxxf x f x Cf x C ,把(0)0f 代入得1C ,所以2()ee xxf x ,应选B.10.函数在某点处连续是其在该点处可导的()A. 必要条件B. 充分条件C. 充分必要条件D. 无关条件【答案】A.解:根据可导与连续的关系知,应选 A.11.曲线42246yxxx 的凸区间为()A.(2,2)B.(,0)C.(0,)D. (,)【答案】A.解:34486y x x,212480(2,2)y x x,应选A.12.设e xyx()A.仅有水平渐近线B.既有水平又有垂直渐近线C.仅有垂直渐近线D.既无水平又无垂直渐近线【答案】B.解:elim0xx x,elimxx x,应选B.13.下列说确的是()A. 函数的极值点一定是函数的驻点B. 函数的驻点一定是函数的极值点C. 二阶导数非零的驻点一定是极值点D. 以上说法都不对【答案】D.解:根据极值点与驻点的关系和第二充分条件,应选 D.14. 设函数()f x在[,]a b连续,且不是常数函数,若()()f a f b,则在(,)a b()A. 必有最大值或最小值B.既有最大值又有最小值C.既有极大值又有极小值D.至少存在一点,使()0f【答案】A.解:根据连续函数在闭区间上的性质及()()f a f b的条件,在对应的开区间至少有一个最值,应选A.15.若()f x的一个原函数为ln x,则()f x()A.1xB.21xC.ln xD.ln x x【答案】B. 解:1()ln f x xx21()f x x,应选B.16.若2()f x dxxC ,则2(1)xf x dx()A. 222(1)x C B. 222(1)x C C.221(1)2x CD.221(1)2x C【答案】C. 解:2221(1)(1)(1)2xf x dxf x d x =221(1)2x C ,应选C.17.下列不等式不成立的是()A. 22211ln (ln )xdx x dx B.220sin xdxxdxC.220ln(1)x dx xdxD.220(1)xe dxx dx【答案】D.解:根据定积分的保序性定理,应有220(1)xe dxx dx ,应选D.18.1ln e ex dx = ()A.111ln ln eexdxxdx B.111ln ln e exdxxdxC.111ln ln eexdxxdx D.111ln ln eexdxxdx【答案】C.解:因1ln ,1|ln |ln ,1x x x e x xe,考察积分的可加性有1111ln ln ln e eeexdxxdxxdx ,应选C.19.下列广义积分收敛的是()A.ln exdxxB.1ln edx x xC.21(ln )edxx x D.31ln edxxx【答案】C.解:由广义积分性质和结论可知:21(ln )edx x x 是2p 的积分,收敛的,应选C.20.方程220xy z 在空间直角坐标系中表示的曲面是()A.球面B.圆锥面C. 旋转抛物面D.圆柱面【答案】C.解:根据方程的特点是抛物面,又因两个平方项的系数相等,从而方程22xyz 在空间直角坐标系中表示的曲面是旋转抛物面,应选C.21. 设1,1,2a r ,2,0,1b r,则a r 与b r 的夹角为()A .0B .6C .4D .2【答案】D.解:0(,)2a ba b a b r r r r r r g ,应选D.22.直线34273x y z 与平面4223x y z的位置关系是( )A.平行但直线不在平面B.直线在平面C. 垂直D.相交但不垂直【答案】A. 解:因2,7,3sr ,4,2,2ns nsnr r r r 直线在平面或平行但直线不在平面.又直线上点(3,4,0)不在平面.故直线与平面的位置关系是平行但直线不在平面,应选A.23.设(,)f x y 在点(,)a b 处有偏导数,则0(,)(,)limh f a h b f a h b h()A.0B.2(,)x f a b C.(,)x f a b D.(,)y f a b 【答案】B. 解:原式(,)(,)(,)(,)limlimhhf a h b f a b f a h b f a b hh(,)(,)(,)(,)lim lim 2(,)x h h f a h b f a b f a h b f a b f a b hh应选B. 24.函数x y zxy的全微dz ()A .22()()xdx ydy x y B .22()()ydy xdx xy C .22()()ydx xdy xy D .22()()xdy ydx xy 【答案】D 解:22()()()()2()()()x y x y d x y x y d x y xdy ydx zdzxyxy xy ,应选D25.22(,)a a y dyf x y dx 化为极坐标形式为()A .20(cos ,sin )a df r r rdr B .2cos(cos ,sin )df r r rdrC .sin 20(cos ,sin )a df r r rdr D .20(cos ,sin )a d f r r rdr【答案】D. 解:积分区域22(,)|0,0(,)|0,02x y y a x ayr r a有22(,)a a y dy f x y dx20(cos ,sin )a df r r rdr ,应选D.26.设L 是以A(-1,0),B(-3,2),C(3,0)为顶点的三角形区域的边界,方向为ABCA,则(3)(2)Lx y dx xy dyA.-8B.0C 8D.20【答案】A. 解:由格林公式知,(3)(2)228LDx y dx x y dyd S,应选A.27.下列微分方程中,可分离变量的是()A .tandy y y dx x xB .22()20xy dx xydyC .220xyx dxedy y D .2xdy y edx【答案】C.解:根据可分离变量微分的特点,220xyx dx edyy可化为22y x ye dy xe dx 知,应选C.28.若级数1n n u 收敛,则下列级数收敛的是()A .110n n u B .1(10)n n u C .110n nu D .1(10)n n u 【答案】A.解:由级数收敛的性质知,110n n u 收敛,其他三个一定发散,应选A.29.函数()ln(1)f x x 的幂级数展开为()A .23,1123xxxx L B .23,1123xxxx L C .23,1123xxxx L D .23,1123xxxx L 【答案】C.解:根据23ln(1),1123xxx xx L 可知,23ln(1),1123xxx xx L ,应选C.30.级数1(1)nn n a x 在1x处收敛,则此级数在2x处()A .条件收敛B .绝对收敛C .发散D .无法确定【答案】B. 解:令1x t ,级数1(1)nn n a x 化为1nn n a t ,问题转化为:2t处收敛,确定1t 处是否收敛.由阿贝尔定理知是绝对收敛的,故应选B.二、填空题(每小题2分,共30分)31.已知()1x f x x,则[()]______f f x .解:()1[()](1,)1()122f x x f f x x xf x x.32.当0x时,()f x 与1cosx 等价,则0()lim_______sin x f x x x.解:2211cos ()1cos 222sin 0()1cos 12limlim lim sin 2x x f x x x x x x x x f x x x xxx:::. 33.若2lim8xxx ax a,则_______a .解:因2223()221lim 12limlim1lim 1x xa axa xaxxaxxa axa a x a ex x e xaea a xx,所以有38aeln 2a .34.设函数sin ,0(),0xx f x xa x 在(,)处处连续,则_______a .解:函数在(,)处处连续,当然在0x 处一定连续,又因为sin lim ()lim1;(0)xxx f x f a x ,所以0lim ()(0)1xf x f a .35.曲线31xy x 在(2,2)点处的切线方程为___________.解:因2231340(1)3x yk yx y x .36.函数2()2f x xx 在区间[0,2]上使用拉格朗日中值定理结论中____.解:(2)(0)()2121120f f f x x .37.函数()f x x x 的单调减少区间是_________.解:11()10,42f x xx,应填10,4或10,4或10,4或10,4.38.已知(0)2,(2)3,(2)4,f f f 则20()______xf x dx . 解:22220()()()()2(2)(2)(0)7xf x dxxdf x xf x f x dxf f f .39.设向量b r 与1,2,3a r共线,且56a b rr ,则br_________.解:因向量b r 与a r共线,b r 可设为,2,3k k k ,5649564a bkkkkr r ,所以4,8,12br.40.设22xyze,则22zx_______.解:22222222222(12)x yxyx y z zzexe x exx.41.函数22(,)22f x y xxy y 的驻点为________.解:40(,)(0,0)40f xyx x y f x yy.42.区域D 为229x y,则2______Dx yd.解:利用对称性知其值为0或23242cos sin 0Dx yd d r dr.43.交换积分次序后,10(,)_____________xxdxf x y dy . 解:积分区域2(,)|01,(,)|01,D x y xx yxx y yyx y ,则有2110(,)(,)x y xy dxf x y dydyf x y dx .44.14xy xe 是23xy y ye 的特解,则该方程的通解为_________. 解:230yy y 的通解为312x xyC eC e ,根据方程解的结构,原方程的通解为31214xxxyC eC exe.45.已知级数1n n u 的部分和3nS n ,则当2n 时,_______nu .解:当2n 时,3321(1)331nnnu S S nn nn .三、计算题(每小题5分,共40分)46.求011lim1xx xe .解:21111limlimlim1(1)xxxxx xxe xe xxex e x11limlim222xxxex xx.47.设()y y x 是由方程ln sin 2xye y x x 确定的隐函数,求dxdy .解:方程两边对x 求导得()ln 2cos 2xyy e xy y x xx即()ln 2cos 2xye x yxy yy x x x x 2(ln )2cos 2xyxyx ex x y x xe xyy所以dy dx22cos 2ln xyxyx x e xyyyx ex x.48.已知2()x xf x dx eC ,求1()dx f x .解:方程2()xxf x dxeC 两边对x 求导得2()2xxf x e ,即22()xe f x x,所以211()2xxe f x .故22111()24xxdx xe dxxde f x 222211114448xxxxxee dxxeeC .49.求定积分44|(1)|x x dx .解:414441|(1)||(1)||(1)||(1)|x x dx x x dx x x dx x x dx014401(1)(1)(1)x x dxx x dxx x dx1432233241322332xxxxxx641164118843323332.50.已知22xxy yz e求全微分dz.解:因222222()(2)xxy yxxy yxz exxy y exy x ,222222()(2)x xy y x xy y yz exxyy exy y,且它们在定义域都连续,从而函数22x xy yze可微,并有z z dzdxdyx y 22[(2)(2)]xxy yex y dx x y dy .51.求(2)Dx y d ,其中区域D 由直线,2,2yx yx y围成. y x x y22y yxxy2解:积分区域D 如图所示:把D 看作Y 型区域,且有(,)|02,2y Dx y yx y故有22(2)(2)yy Dx y ddyx y dx222225()4y y xxy dyy dy230510123y.52.求微分方程22x yxy xe 的通解.解:这是一阶线性非齐次微分方程,它对应的齐次微分方程20y xy 的通解为2x yCe ,设原方程的解为2()xy C x e 代入方程得22()xxC x e xe,即有22()x C x xe,所以222222211()(2)44x x x C x xedxe d x eC ,故原方程的通解为2214x x y eCe .53.求幂级数212nnn n x 的收敛区间(考虑区间端点).解:这是规缺项的幂级数,考察正项级数212nnn n x,因221112lim lim 22nn n nnnu n xlx u n, 当212xl,即||2x 时,级数212nnn nx 是绝对收敛的;当212xl,即||2x 时,级数212nn n n x是发散的;当212xl,即2x 时,级数212nnn n x 化为1n n ,显然是发散的。
08年专升本高数真题答案
2023年河南省普通高等学校选拔优秀专科生进入本科阶段学习考试高等数学 解析及解析一. 单项选择题(每题2分,共计60分)1.解析:C【解析】:C x x x ⇒<≤-⇒⎩⎨⎧≥+>-120201.2.解析:C【解析】:033sin cos 21lim===⎪⎭⎫ ⎝⎛π--π→x xx D x x x ⇒=⨯=⎪⎭⎫ ⎝⎛π-π→312323cos sin 2lim3.3.解析:B 【解析】: ,1111313lim 11-=-=+--→xxx B x xx x xx ⇒===+-++→→13ln 33ln 3lim 1313lim 11000110.4.解析:B【解析】:显然只有22sin lim 0=→xxx ,其他三个都不存在,应选B.5.解析:D【解析】: 22~)1ln(x x +,D x x x ⇒=-2~2sin 2cos 122.6.解析:A【解析】:⇒=-==+--→-→1)1(,1)(lim ,1)(lim 111f x f x f x x )(x f 在1-=x 处连续;⇒===+-→→1)0(,0)(lim ,1)(lim 001f x f x f x x )(x f 在0=x 处不连续;应选A.7.解析:D 【解析】: D k f e xy x⇒-=⇒='⇒++='212)0(112法.8.解析:C【解析】:3)(lim 3)(3lim 0)0()(lim)0(000-=α+-=α+-=--='→→→xx x x x x f x f f x x x ,应选C.9.解析:B【解析】:='='⇒==])ln(ln [)(ln )(ln )()ln(ln x x x y e x x f x x x x )ln(ln )(ln )(ln 1x x x x x +-,应选B. 10.解析:D【解析】:⇒⨯=⇒-=tt t dx y d t t dx dy sin cos 31cos 1cos sin 2222 =π=422x dx y d 234,应选D.11.解析:C【解析】:验证罗尔中值定理地条件,只有21x y -=满足,应选C. 12.解析:B【解析】:⇒=⇒==''006x x y )2,0(-,应选B.13.解析:B 【解析】:,0|1|1lim =-∞→x x B x x ⇒∞=-→|1|1lim 1.14.解析:D【解析】:⇒-=''⇒+='=21)(ln 1)ln ()(xx f x x x x f C x dx dx x f x +-=-=''⎰⎰)(2,应选D.15.解析:A 【解析】:C x x dx x x x x dx x x dx +--=⎥⎦⎤⎢⎣⎡---=--=+-⎰⎰⎰13ln 21113121)1)(3(342,应选A.16.解析:B【解析】:此题有问题,定积分是一个常数,有111214≤+≤x ,根据定积分地估值性质,有121≤≤I ,但这个常数也在其它三个区间,都应该正确,但真题中解析是B.17.解析:D【解析】:显然应选D.18.解析:D 【解析】:=-⎰-33|1|dx x =-+-⎰⎰-3113|1||1|dx x dx x ⎰⎰-+--3113)1()1(dx x dx x ,应选D.19.解析:A【解析】:对⎰+-=xdt t t t f x f 022cos 1sin )(22ln )(两边求有:xxx f x f x f cos 1sin )(2)()(2+-=',即有 ⎰⎰++=+-=⇒+-='xx d dx x x x f x x x f cos 1)cos 1(cos 1sin )(cos 1sin )(C x ++=)cos 1ln(,还初始条件2ln )0(=f ,代入得0=C ,应选A.20.解析:C【解析】:令⎰-=11)(dx x f a ,则a x x f 211)(-+=,故有⎰⎰--⇒=⇒-=-+==111112)211()(a a dx a x dx x f a =)(x f 21+x ,应选C.21.解析:C【解析】:⎰⎰⎰======22200222)()(21)()(21)()(21e e t x e x d x xf t d t tf x d x f x I ,应选C.22.解析:D【解析】:n s n s⊥⇒-==}7,3,4{},1,9,5{ ,而点(-2,-4,0)不在平面内,为平行,应选D.23.解析:A 【解析】: 22222200222200)11)((lim11limy x y x y x y x y x y x y x +++++=-+++→→→→ 2)11(lim 220=+++=→→y x y x ,应选A.24.解析:A【解析】:令z y x z y x F -+=22),,(,⇒-='='='1)5,2,1(,4)5,2,1(,2)5,2,1(z y x F F F⇒=---+-0)5()2(4)1(2z y x 542=-+z y x ,也可以把点(1,2,5)代入方程验证,应选A.25.解析:B【解析】: ⇒-=∂∂233xy x yz =∂∂∂x y z 22233y x -,应选B.26.解析:C【解析】:根据二重积分地可加性, 6),(=⎰⎰dxdy y x f D,应选C.27.解析:C 【解析】:有⇒=∂∂=∂∂2x x Qy P 此积分与路径无关,取直线段x y x x ,0⎩⎨⎧==从π2变到0,则02020232)(333)sin 31()3(πππ-===-++⎰⎰⎰x x x x x L e xe xde dx xe dy y y x dx xe y x ]1)21([32-π-=πe ,应选C.28.解析:B【解析】:0=-'⇒='⇒=y y Ce y Ce y xx ,应选B.29.解析:A【解析】:-1是单特征方程地根,x 是一次多项式,应设xe b ax x y -+=*)(,应选A.30.解析:B 【解析】:级数∑∞=-1100032n n n 地一般项n n 100032-地极限为05001≠,是发散地,应选B.二、填空题(每题2分,共30分)31.解析:充要条件【解析】:显然为充要条件(充分且必要).32.解析:单调增加,凹函数【解析】:⇒>-='0cos 1x y 在)2,0(π内单调增加,x y sin =''在π0,2⎛⎫⎪⎝⎭内大于零,应为凹地.33.解析:zx 3-【解析】:⇒='='⇒-++=x F z F a z y x F x z 6,223222zx F F x z z x 3-=''-=∂∂.34.解析:Cx x ++-)1ln(22【解析】:⎰⎰⎰++-=⎪⎭⎫ ⎝⎛+-=+==+=C t t dt t t tdt xdx tx )1ln(221112121 C x x ++-=)1ln(22.35.解析:0【解析】:函数x x cos 1+在区间⎥⎦⎤⎢⎣⎡ππ-3,3是奇函数,所以⎰ππ⋅-=+330cos 1dx x x .36. 解析:26【解析】:}2,1,1{102011}1,0,2{},0,1,1{---=--=⨯⇒-=-=kj i AC AB AC AB ,所以ABC ∆地面积为26.37.解析:两条平行直线【解析】:是椭圆柱面与平面2-=x 地交线,为两条平行直线.38.解析:)1,1(),0,0(【解析】: )1,1(),0,0(03303322⇒⎪⎪⎩⎪⎪⎨⎧=-=∂∂=-=∂∂x y yz y x xz .39.解析:0【解析】:⇒=∂∂⇒=00)0,(x z x f 0)0,1(=∂∂xz.40.解析:22【解析】: 22sin cos cos 1cos 14040040440====πππππ⎰⎰⎰⎰⎰x ydy ydx y dy ydy y dx y x.41.解析:⎰⎰3120)sin ,cos (rdrr r f d θθθπ【解析】:⎰⎰⎰⎰θθθ=π3120)sin ,cos (),(rdr r r f d dxdy y x f D.42.解析:096=+'+''y y y 【解析】: 由x xxe C eC y 3231--+=为通解知,有二重特征根-3,从而9,6==q p ,微分方程为096=+'+''y y y .43.解析:1||<q ,1||≥q 【解析】: 级数∑∞=0n naq是等比级数, 当1||<q 时,级数收敛,当1||≥q 时,级数发散.44.解析:()()11,23131011<<-⎥⎦⎤⎢⎣⎡⋅--∑∞=++x x nn n n 【解析】:21161113121113121)(2x x x x x x x f -⨯-+⨯-=⎥⎦⎤⎢⎣⎡-++-=--=1100011(1)1(1),(11)362332n n n nn n n n n n x x x x +∞∞∞+===⎡⎤-=---=--<<⎢⎥⋅⎣⎦∑∑∑.45.解析:发散【解析】:021lim 2lim lim 2)2(2≠=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=--⨯-∞→∞→∞→e n n n u nn nn n n ,级数发散.三、计算题(每小题5分,共40分)46.求2522232lim +∞→⎪⎪⎭⎫⎝⎛-+x x x x .【解析】:252)23(32252222522252231312121lim3121lim 32lim 2222⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫⎝⎛-+-⨯-∞→+∞→+∞→x x x x x x x x x x x x x x x 2523252)23(32252223131lim 2121lim 22e eex x x x x x x x ==⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+=--⨯-∞→∞→.47. 求⎰+→23241limx x dtt t x .【解析】:212lim214lim1lim3403423003242=+=⨯+===+→→→⎰xxx xx dtt t xx x x x .48.已知)21sin(ln x y -=,求dxdy .【解析】:[][])21sin()21cos(221)21sin()21cos()21sin()21sin(1x x x x x x x dx dy ---='---='--=)21cot(2x --=.49. 计算不定积分⎰xdx x arctan .【解析】:⎰⎰⎰+⨯-=⎪⎪⎭⎫ ⎝⎛=dx x x x x x xd xdx x 2222112arctan 22arctan arctan ⎰⎪⎭⎫ ⎝⎛+--=dx x x x 2211121arctan 2C x x x x ++-=arctan 2121arctan 22.50.求函数)cos(y x e z x+=地全微分.【解析】:利用微分地不变性,xx x de y x y x d e y x e d dz )cos()cos()]cos([+++=+=dx e y x y x d y x e x x )cos()()sin(++++-=dxe y x dy dx y x e x x )cos(])[sin(++++-=dy y x e dx y x y x e x x )sin()]sin()[cos(+-+-+=.51.计算⎰⎰σDd y x2,其中D 是由1,,2===xy x y y 所围成地闭区域. 【解析】:积分区域D 如下图所示:把区域看作Y 型,则有⎭⎬⎫⎩⎨⎧≤≤≤≤=y x y y y x D 1,21|),(,故 ⎰⎰⎰⎰=y y D dxy x dy dxdy yx12212 yyy yx dy y xdx dy y 122121212211⨯==⎰⎰⎰481731211121213214=⎪⎪⎭⎫ ⎝⎛+=⎦⎤⎢⎣⎡-=⎰y y dy y .52.求微分方程xex y y sin cos -=+'满足初始条件1)0(-=y 地特解.【解析】:这是一阶线性非齐次微分方程,它对应地齐次微分方程0cos =+'x y y 地通解为x Ce y sin -=,设x e x C y sin )(-=是原方程解,代入方程有x x e e x C sin sin )(--=',即有1)(='x C ,所以C x x C +=)(,故原方程地通解为x xxe Cey sin sin --+=,把初始条件1)0(-=y 代入得:1-=C ,故所求地特解为xex y sin )1(--=.53.求级数∑∞=+013n nn x n 地收敛半径及收敛区间(考虑区间端点).【解析】:这是标准地不缺项地幂级数,收敛半径ρ=1R ,而321lim 33123lim lim 11=++=+⨯+==ρ∞→+∞→+∞→n n n n a a n n n n nn n ,故收敛半径31=R .当31=x 时,级数化为∑∞=+011n n ,这是调和级数,发散地;当31-=x 时,级数化为∑∞=+-01)1(n n n ,这是交错级数,满足莱布尼兹定理地条件,收敛地;所以级数地收敛域为⎪⎭⎫⎢⎣⎡-31,31.四、应用题(每题7分,共计14分)54. 过曲线2x y =上一点)1,1(M 作切线L ,D 是由曲线2x y =,切线L 及x 轴所围成地平面图形,求(1)平面图形D 地面积;(2)该平面图形D 绕x 轴旋转一周所成地旋转体地体积.【解析】:平面图形D 如下图所示:因x y 2=',所以切线L 地斜率2)1(='=y k ,yx =→yx 11=→1xyx =→2切线L 地方程为)1(21-=-x y ,即12-=x y 取x 为积分变量,且]1,0[∈x .(1)平面图形D 地面积为121)(3)12(1212103121102=--=--=⎰⎰x x x dx x dx x S .(2)平面图形D 绕x 轴旋转一周所生成旋转体地体积为302345)12(1212315121214π=⎪⎪⎭⎫ ⎝⎛+-π-π=-π-π=⎰⎰x x x x dx x dx x V x .55.一块铁皮宽为24厘米,把它地两边折上去,做成一正截面为等腰梯形地槽(如下图),要使梯形地面积A 最大,求腰长x 和它对底边地倾斜角α.【解析】:梯形截面地下底长为x 224-,上底长为α+-cos 2224x x ,高为αsin x ,所以截面面积为 α⋅-+α+-=sin )224cos 2224(21x x x x A ,)20,120(π<α<<<x 即αα+α-α=cos sin sin 2sin 2422x x x A ,令⎪⎪⎩⎪⎪⎨⎧=α-α+α-α=α∂∂=αα+α-α=∂∂0)sin (cos cos 2cos 240cos sin 2sin 4sin 242222x x x A x x x A得唯一驻点⎪⎩⎪⎨⎧π=α=38x .根据题意可知,截面地面积最大值一定存在,且在20,120:π<α<<<x D 内取得,又函数在D 内只有一个可能地最值点,因此可以断定3,8π=α=x 时,截面地面积最大.五、证明题(6分)56. 证明方程⎰π--=02cos 1ln dx x e x x 在区间),(3e e 内仅有一个实根.【证明】:构造函数 ⎰π-+-=02cos 1ln )(dx x e xx x f ,即有22ln sin 2ln )(0+-=+-=⎰πex x xdx e x x x f ,显然函数)(x f 在区间],[3e e 连续,且有06223)(,022)(223<-<+-=>=e e e f e f ,由连续函数地零点定理知方程0)(=x f 即⎰π--=2cos 1ln dx x e xx 在区间),(3e e 有至少有一实数根.另一方面,e x xf 11)(-='在区间),(3e e 内恒小于零,有方程0)(=xf ,即⎰π--=02cos 1ln dx x e x x 在区间),(3e e 有至多有一实数根.综上所述, 方程⎰π--=2cos 1ln dx x e xx 在区间),(3e e 内仅有一个实根.x224-x α。
2008-2012年成人考试教育专升本高数一真题及答案
绝密★启用前2011年成人高等学校专升本招生全国统一考试高等数学(一)答案必须答在答题卡上指定的位置,答在试卷上无效.......。
一、选择题:1~10小题,每题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上............。
1.2211lim 33x x x x x →++=-+ A. 0 B. 1 C.2 D. 32.设4y x =,则'y = A. 515x B. 314x C. 34x D. 4ln x x 3.设ln y x x =+,则dy =A. (1)x e dx +B.1(1)dx x+ C. 1dx xD. dx 4.设sin y x =,则''y =A. sin x -B. sin xC. cos x -D. cos x 5.31dx x =⎰ A. 22C x -+ B. 212C x -+ C. 212C x + D. 22C x+6.151x dx -=⎰ A. 12 B. 13 C.16 D. 0 7.设arcsin y z x e =+,则z y∂∂y e +C.y e8.在空间直角坐标系中,方程221x y +=表示的曲面是 A. 柱面 B. 球面 C. 锥面 D. 旋转抛物面9.设23z x y =-,则dz =A. 23xdx ydy -B. 23x dx dy - C. 23xdx dy - D. 23x dx ydy - 10.微分方程'2y y =的通解为y =A. 2x CeB. 2x Ce C. x Cxe D. 2x Cxe二、填空题:11~20小题,每小题4分,共40分。
将答案填写在答题卡相应题号后。
11.4lim(1)x x x→∞+=______. 12.设函数21,0()2,0x x f x a x x ⎧+≤=⎨+>⎩,在0x =处连续,则a =______. 13.曲线22y x =在点(1,2)处的切线方程为y =______.14.设2xy e =,则1'x y ==______.15.函数313y x x =-的单调减少区间为______. 16.211dx x =+⎰______.17.120)x dx =⎰______.18.过点(1,1,2)--且与平面2230x y z -+=垂直的直线方程为______.19.设函数(,)z f x y =可微,00(,)x y 为其极值点,则00(,)x y zx ∂=∂______.20.微分方程'1y x =+的通解为y =______.三、解答题:21~28题,共70分。
2001-2013年河南专升本高数真题及答案
2005年河南省普通高等学校选拔优秀专科生进入本科阶段学习考试一、单项选择题(每小题2分,共计60分) 在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。
不选、错选或多选者,该题无分.1.函数xx y --=5)1ln(的定义域为为 ( )A. 1>xB.5<xC.51<<xD. 51≤<x解:C x x x ⇒<<⇒⎩⎨⎧>->-510501.2.下列函数中,图形关于y 轴对称的是 ( ) A .x x y cos = B. 13++=x x yC. 222x x y --=D. 222xx y -+=解:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数222xx y -+=为偶函数,应选D.3. 当0→x 时,与12-x e 等价的无穷小量是 ( )A. xB.2xC. x 2D. 22x 解: ⇒-x e x ~12~12x e x -,应选B.4.=⎪⎭⎫⎝⎛++∞→121lim n n n ( ) A. e B. 2e C. 3e D. 4e解:2)1(2lim2)1(22121lim 21lim 21lim e n n n n n n n nn n n n n n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++∞→+⋅∞→+∞→∞→,应选B.5.设⎪⎩⎪⎨⎧=≠--=0,0,11)(x a x xxx f 在0=x 处连续,则 常数=a ( ) A. 1 B. -1 C. 21 D. 21-解:21)11(1lim )11(lim 11lim)(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C. 6.设函数)(x f 在点1=x 处可导,且21)1()21(lim 0=--→h f h f h ,则=')1(f ( )A. 1B. 21-C. 41D. 41-解:41)1(21)1(22)1()21(lim 2)1()21(lim 020-='⇒='-=----=--→-→f f h f h f h f h f h h ,应选D.7.由方程yx e xy +=确定的隐函数)(y x 的导数dydx为( )A.)1()1(x y y x --B.)1()1(y x x y --C.)1()1(-+y x x yD.)1()1(-+x y y x 解:对方程y x e xy +=两边微分得)(dy dx e ydx xdy y x +=++,即dy x e dx e y y x y x )()(-=-++, dy x xy dx xy y )()(-=-,所以dy dx )1()1(x y y x --=,应选A. 8.设函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则=)()(x f n ( ) A. 1)]([+n x f n B. 1)]([!+n x f n C. 1)]()[1(++n x f n D. 1)]([)!1(++n x f n解:423)]([3)()(32)()]([2)()(2)(x f x f x f x f x f x f x f x f !='⋅='''⇒='='', ⇒ =)()(x f n 1)]([!+n x f n ,应选B.9.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]1,1[,1)(2--=x x f B.]1,1[,)(-=-x xe x fC.]1,1[,11)(2--=xx f D .]1,1[|,|)(-=x x f 解:由罗尔中值定理条件:连续、可导及端点的函数值相等来确定,只有]1,1[,1)(2--=x x f 满足,应选A.10.设),(),12)(1()(+∞-∞∈+-='x x x x f ,则在)1,21(内,)(x f 单调 ( )A.增加,曲线)(x f y =为凹的B.减少,曲线)(x f y =为凹的C.增加,曲线)(x f y =为凸的D.减少,曲线)(x f y =为凸的解: 在)1,21(内,显然有0)12)(1()(<+-='x x x f ,而014)(>-=''x x f ,故函数)(x f 在)1,21(内单调减少,且曲线)(x f y =为凹的,应选B.11.曲线xe y 1-=( )A. 只有垂直渐近线B. 只有水平渐近线C. 既有垂直渐近线,又有水平渐近线,D. 无水平、垂直渐近线 解:0lim ;11lim 0=⇒∞==⇒=-→±∞→x y y y x x ,应选C.12.设参数方程为⎩⎨⎧==t b y t a x sin cos ,则二阶导数=22dx yd ( )A.t a b 2sinB.t a b32sin - C.t a b 2cos D.tt a b22cos sin -解:dxdt t a t b t a t b dx y d t a t b x y dx dy t x t t ⨯'⎪⎭⎫ ⎝⎛-='⎪⎭⎫ ⎝⎛-=⇒-=''=sin cos sin cos sin cos 22t a bt a t a b 322sin sin 1sin -=-⨯=,应选B. 13.若⎰+=C e dx e x f xx11)(,则=)(x f ( )A. x 1-B. 21x -C. x 1D. 21x解:两边对x 求导 22111)()1()(xx f x e e x f x x -=⇒-⨯=,应选B.14. 若⎰+=C x F dx x f )()( ,则⎰=dx x xf )(sin cos ( )A.C x F +)(sinB.C x F +-)(sinC.C x F +)(cosD.C x F +-)(cos 解:⎰⎰+==C x F x d x f dx x xf )(sin )(sin )(sin )(sin cos ,应选A.15.下列广义积分发散的是 ( )A.⎰+∞+0211dx x B.⎰-10211dx x C.⎰+∞e dx x x ln D.⎰+∞-0dx e x解:2arctan 11002π==+∞++∞⎰x dx x ;2arcsin 1110102π==-⎰x dx x; ∞==+∞∞+⎰eex dx x x 2)(ln 21ln ;10=-=+∞-+∞-⎰xx e dx e ,应选C.16.=⎰-11||dx x x ( )A.0B.32 C.34 D.32- 解:被积函数||x x 在积分区间[-1,1]上是奇函数,应选A. 17.设)(x f 在],[a a -上连续,则定积分⎰-=-aa dx x f )( ( )A.0B.⎰a dx x f 0)(2 C.⎰--a adx x f )( D.⎰-aadx x f )(解:⎰⎰⎰⎰-----===-===-aaaaa aaaut dx x f du u f u d u f dx x f )()()()()(,应选D.18.设)(x f 的一个原函数是x sin ,则='⎰xdx x f sin )( ( )A.C x x +-2sin 2121B.C x x ++-2sin 4121 C.x 2sin 21 D.C x +-2sin 21解: x x f x x f x f x sin )(cos )()()(sin -='⇒=⇒='C x x dx x xdx xdx x f ++-=--=-='⎰⎰⎰2sin 412122cos 1sin sin )(2,应选B. 19.设函数)(x f 在区间],[b a 上连续,则不正确的是 ( )A.⎰ba dx x f )(是)(x f 的一个原函数 B.⎰xadt t f )(是)(x f 的一个原函数C.⎰axdt t f )(是)(x f -的一个原函数 D.)(x f 在],[b a 上可积解: ⎰badx x f )(是常数,它的导数为零,而不是)(x f ,即⎰badx x f )(不是)(x f 的原函数 ,应选A.20.直线22113+=-=-z y x 与平面01=+--z y x 的关系是 ( ) A. 垂直 B.相交但不垂直 C. 直线在平面上 D. 平行 解:n s n s ⊥⇒--=-=)1,1,1{},2,1,1{ ,另一方面点)2,0,3(-不在平面内,所以应为平行关系,应选D..21.函数),(y x f z =在点),(00y x 处的两个偏导数xz∂∂和y z ∂∂存在是它在该点处可微的 ( )A.充分条件B.必要条件C.充要条件D.无关条件 解:两个偏导数存在,不一定可微,但可微一定有偏导数存在,因此为必要条件,应选B.22.设yxz 2ln = ,则=)2,1(dz ( )A.dx x y 2B.dy dx 2121-C.dy dx 21-D.dy dx 21+ 解:dy y dx x dz y x y x z 11ln 2ln 2ln -=⇒-==dy dx dz 21)2,1(-=⇒,应选C. 23.函数1),(22+-+++=y x y xy x y x f 的极小值点是 ( ) A.)1,1(- B.)1,1(- C. )1,1(-- D. )1,1(解:)1,1(),(012012-=⇒⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=++=∂∂y x y x yz y x xz,应选B.24.二次积分⎰⎰202),(x dy y x f dx 写成另一种次序的积分是 ( )A. ⎰⎰402),(y dx y x f dy B. ⎰⎰400),(ydx y x f dy C. ⎰⎰4022),(xdx y x f dy D. ⎰⎰42),(ydx y x f dy解:积分区域}2,40|),{(}0,20|),{(2≤≤≤≤=≤≤≤≤=x y y y x x y x y x D ,应选A.25.设D 是由上半圆周22x ax y -=和x 轴所围成的闭区域,则⎰⎰=σDd y x f ),(()A.⎰⎰πθθθ2020)sin ,cos (a rdr r r f d B.⎰⎰πθθθ2020)sin ,cos (adr r r f dC.⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d D.⎰⎰πθθθθ20cos 20)sin ,cos (a dr r r f d 解:积分区域在极坐标下可表示为:}θcos 20,2πθ0|)θ,{(a r r D ≤≤≤≤=,从而⎰⎰=σDd y x f ),(⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d ,应选C.26.设L 为抛物线2x y =上从)0,0(O 到)1,1(B 的一段弧,=+⎰Ldy x xydx 22( )A. -1B.1C. 2D. -1解:L :,2⎩⎨⎧==xy xx x 从0变到1 , 142221041031332===+=+⎰⎰⎰x dx x dx x dx x dy x xydx L,应选B.27.下列级数中,条件收敛的是 ( )A .∑∞=+-11)1(n nn n B .∑∞=-1321)1(n n nC .∑∞=-121)1(n nn D .∑∞=+-1)1()1(n n n n解:∑∞=+-11)1(n nn n 发散, ∑∞=-121)1(n n n 和∑∞=+-1)1()1(n n n n 绝对收敛,∑∞=-1321)1(n n n是收敛的,但∑∞=1321n n 是32=p 的级数发散的,从而级数∑∞=-1321)1(n n n条件收敛,应选B.28. 下列命题正确的是 ( ) A .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛B .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数)(212n n nv u +∑∞=收敛 C .若正项级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛D .若级数∑∞=1n n n v u 收敛,则级数∑∞=1n n u 与∑∞=1n n v 都收敛解:正项级数∑∞=1n n u 与∑∞=1n n v 收敛⇒ ∑∞=12n nu 与∑∞=12n n v 收敛,而)(2)(222nnn n v u v u +≤+,所以级数21)(n n n v u +∑∞=收敛 ,应选C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学试卷一、选择题 (每小题2 分,共50 分)1.函数()ln(1)f x x =-+的定义域是( )A .[]2,1--B .[]2,1-C .[)2,1-D .()2,1-【答案】C【解析】由1020x x ->⎧⎨+≥⎩可得21x -≤<,故选C .2.312cos limsin 3x xx ππ→-=⎛⎫- ⎪⎝⎭( )A .1B .0CD【答案】D【解析】3312cos 2sin limlim sin cos 33x x x xx x ππππ→→-==⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭D .3.点0x =是函数113131xxy -=+的( )A .连续点B .跳跃间断点C .可去间断点D .第二类间断点【答案】 【解析】11311lim 1131xx x-→--==-+,11031lim 131xx x +→-=+,故选B .4.下列极限存在的是( )A .lim xx e →+∞B .0sin 2lim x xx →C .01lim cosx x+→ D .22lim 3x x x →+∞+-【答案】B 【解析】0sin 2lim2x xx→=,其他三个都不存在,应选B .5.当0x →时,2ln(1)x +是比1cos x -的( ) A .低阶无穷小 B .高阶无穷小C .等价无穷小D .同阶但不等价无穷小【答案】D【解析】0x →时,22ln(1)~x x +,211cos ~2x x -,故选D .6.设函数11(1)sin ,11()1,10arctan ,0x x x f x x x x ⎧++<-⎪+⎪=-≤≤⎨⎪>⎪⎩,则()f x ( )A .在1x =-处连续,在0x =处不连续B .在0x =处连续,在1x =-处不连续C .在1,0x =-处均连续D .在1,0x =-处均不连续【答案】A【解析】1lim ()1x f x -→-=,1lim ()1x f x +→-=,(1)1()f f x -=⇒在1x =-处连续;0lim ()1x f x -→=,0lim ()0x f x +→=,(0)1()f f x =⇒在0x =处不连续,应选A .7.过曲线arctan x y x e =+上的点(0,1)处的法线方程为( )A .210x y -+=B .220x y -+=C .210x y --=D .220x y +-=【答案】D 【解析】211x y e x'=++,02x y ='=,法线的斜率12k =-,法线方程为112y x -=-,即220x y +-=,故选D .8.设函数()f x 在0x =处满足,()(0)3()f x f x x α=-+,且0()lim0x x xα→=,则(0)f '=( ) A .1- B .1 C .3-D .3【解析】000()(0)3()()(0)limlim 3lim 30x x x f x f x x x f x x xαα→→→--+'===-+=--,应选C .9.若函数()(ln )(1)x f x x x =>,则()f x '=( ) A .1(ln )x x - B .1(ln )(ln )ln(ln )x x x x x -+C .(ln )ln(ln )x x xD .(ln )x x x【答案】B【解析】ln(ln )()(ln )x x x f x x e ==,[]11()(ln )ln(ln )(ln )ln(ln )ln x x f x x x x x x x x x ⎡⎤''==+⋅⋅⎢⎥⎣⎦1(ln )(ln )ln(ln )x x x x x -=+,故选B .10.设函数()y y x =由参数方程33cos sin x t y t ⎧=⎨=⎩确定,则224|t d ydx π==( ) A .2- B .1- C.3-D.3【答案】D【解析】223sin cos sin 3cos sin cos dy dy dt t t t dx dx dt t t t ===--,22d y dx =1d dy dx dt dx dt⎛⎫⋅ ⎪⎝⎭2211cos 3cos sin x t t-=⋅- 413cos sin t t =,224|t d y dx π==,故选D .11.下列函数中,在区间[]1,1-上满足罗尔定理条件的是( )A .x y e =B .ln ||y x =C .21y x =-D .21y x=【答案】C【解析】验证罗尔定理得条件,只有21y x =-满足,应选C .12.曲线352y x x =+-的拐点是( )A .0x =B .(0,2)-C .无拐点D .0,2x y ==-【解析】235y x '=+,6y x ''=,令0y ''=,得0x =,当0x >时,0y ''>,当0x <时,0y ''<,故拐点为(0,2)-,应选B .13.曲线1|1|y x =-( ) A .只有水平渐进线B .既有水平渐进线,又有垂直渐近线C .只有垂直渐近线D .既无水平渐进线,又无垂直渐近线【答案】B 【解析】1lim 0|1|x x →∞=-,曲线有水平渐近线0y =;1lim |1|x x →∞=∞-,曲线有垂直渐近线1x =,故选B .14.如果()f x 的一个原函数是ln x x ,那么2()x f x dx ''=⎰( )A .ln x C +B .2xC +C .3ln x x C +D .C x -【答案】D【解析】()(ln )1ln f x x x x '==+,21()f x x''=-,2()x f x dx dx x C ''=-=-+⎰⎰,应选D . 15.243dxx x =-+⎰( )A .13ln 21x C x -+-B .1ln3x C x -+-C .ln(3)ln(1)x x C ---+D .ln(1)ln(3)x x C ---+【答案】A 【解析】211113ln 43(3)(1)23121dx dx x dx C x x x x x x x -⎛⎫==-=+ ⎪-+-----⎝⎭⎰⎰⎰,应选A .16.设14011I dx x =+⎰,则I 的取值范围为( )A .01I ≤≤B .112I ≤≤ C .04I π≤≤D .14I π<<【答案】B【解析】因01x ≤≤,411121x ≤≤+,根据定积分的估值性质,有112I ≤≤,故选B .17.下列广义积分收敛的是( )A .31x dx +∞⎰B .1ln xdx x+∞⎰C .1⎰D .0x e dx +∞-⎰【答案】D【解析】D 项中001x xe dx e +∞--+∞=-=⎰,故收敛.18.331xdx --=⎰( )A .3021x dx -⎰B .1331(1)(1)x dx x dx --+-⎰⎰C .1331(1)(1)x dx x dx ----⎰⎰ D .1331(1)(1)x dx x dx --+-⎰⎰【答案】D【解析】3131333131111(1)(1)xdx xdx xdx x dx x dx ----=-+-=-+-⎰⎰⎰⎰⎰,故选D .19.若()f x 是可导函数,()0f x >,且满足220()sin ()ln 221cos x f t tf x dt t=-+⎰,则()f x =( ) A .ln(1cos )x + B .ln(1cos )x C -++C .ln(1cos )x -+D .ln(1cos )x C ++【答案】A【解析】对220()sin ()ln 221cos x f t t f x dt t =-+⎰两边求导有()sin 2()()21cos f x xf x f x x'=-+,即 sin ()1cos x f x x '=-+,从而sin (1cos )()ln(1cos )1cos 1cos x d x f x dx x C x x+=-==++++⎰⎰.由初始条件(0)ln 2f =,代入得0C =,应选A .20.若函数()f x 满足111()1()2f x x f x dx -=+-⎰,则()f x =( )A .13x -B .12x -C .12x +D .13x +【答案】C【解析】令11()a f x dx -=⎰,则1()12f x x a =+-,从而11111()122a f x dx x a dx a --⎛⎫==+-=- ⎪⎝⎭⎰⎰,得1a =,故1()2f x x =+,应选C .21.若320()eI x f x dx =⎰,则I =( )A .2()e xf x dx ⎰B .0()exf x dx ⎰C .21()2e xf x dx ⎰D .1()2exf x dx ⎰ 【答案】C【解析】32222001()()2ee I xf x dx x f x dx ==⎰⎰,令2t x =,则220011()()22e e I tf t dt xf x dx ==⎰⎰,故选C .22.直线24:591x y zL ++==与平面:4375x y z π-+=的位置关系是( )A .斜交B .垂直C .L 在π内D .L π【答案】D【解析】直线的方向向量(5,9,1)=s ,平面的法向量(4,3,7)=-n ,由0⋅=s n 得⊥s n ,而点(2,4,0)--不在平面内,故平行,应选D .23.220x y →→=( )A .2B .3C .1D .不存在【答案】A【解析】22000001)2x x x y y y →→→→→→===,故选A .24.曲面22z x y =+在点(1,2,5)处的切平面方程为( )A .245x y z +-=B .425x y z +-=C .245x y z +-=D .245x y z -+=【答案】A【解析】令22(,,)F x y z x y z =+-,(1,2,5)2x F =,(1,2,5)4y F =,(1,2,5)1z F =-,得切平面方程为2(1)4(2)(5)0x y z -+---=,即245x y z +-=,故选A .25.设函数33z x y xy =-,则2zy x∂=∂∂( )A .6xyB .2233x y -C .6xy -D .2233y x -【答案】B【解析】323z x xy y ∂=-∂,22233z x y y x∂=-∂∂,应选B .26.如果区域D 被分成两个子区域12,D D ,且1(,)5D f x y dxdy =⎰⎰,2(,)1D f x y dxdy =⎰⎰,则(,)Df x y dxdy =⎰⎰( )A .5B .4C .6D .1【答案】C【解析】根据二重积分的可加性,(,)6Df x y dxdy =⎰⎰,应选C .27.如果L 是摆线sin 1cos x t ty t =-⎧⎨=-⎩上从点(2,0)A π到点(0,0)B 的一段弧,则曲线积分231(3)sin 3xLx y xe dx x y y dy ⎛⎫++-= ⎪⎝⎭⎰( ) A .2(12)1e ππ--B .22(12)1e ππ⎡⎤--⎣⎦C .23(12)1e ππ⎡⎤--⎣⎦D .24(12)1e ππ⎡⎤--⎣⎦【答案】C 【解析】因2P Qx y x ∂∂==∂∂,从而此积分与路径无关,取直线段0x x y =⎧⎨=⎩,x 从2π变成0,则002302221(3)sin 333()3x xx x x L x y xe dx x y y dy xe dx xde xe e πππ⎛⎫++-===- ⎪⎝⎭⎰⎰⎰23(12)1e ππ⎡⎤=--⎣⎦.28.通解为x Ce (C 为任意常数)的微分方程为 ( )A .0y y '+=B .0y y '-=C .1y y '-=D .10y y '-+=【答案】B【解析】x y Ce =,x y Ce '=,从而0y y '-=,故选B .29.微分方程x y y xe -'''+=的特解形式应设为*y = ( )A .()x x ax b e -+B .ax b +C .()x ax b e -+D .2()x x ax b e -+【答案】A【解析】特征方程为20r r +=,特征根为10r =,21r =-,1-是特征方程的单根,应设*y =()x x ax b e -+,应选A .30.下列四个级数中,发散的是( )A .11!n n ∞=∑B .1231000n n n ∞=-∑C .12n n n∞=∑D .211n n ∞=∑【答案】B【解析】231lim 01000500n n n →∞-=≠,故级数1231000n n n∞=-∑发散,应选B .二、填空题 (每小题 2分,共 30分)31.0lim ()x x f x A →=的________条件是0lim ()lim ()x x x x f x f x A -+→→==.【答案】充分必要(或充要) 【解析】显然为充分必要(或充要).32.函数sin y x x =-在区间(0,2)π内单调________,其曲线在区间0,2π⎛⎫⎪⎝⎭内的凸凹性为________的.【答案】增加(或递增),凹【解析】1cos 0y x '=->⇒在(0,2)π内单调增加,sin y x ''=在0,2π⎛⎫⎪⎝⎭内大于零,应为凹的.33.设方程22232x y z a ++=(a 为常数)所确定的隐函数为(,)z f x y =,则zx∂=∂________. 【答案】【解析】222(,,)32F x y z x y z a =++-,则6x F x =,2z F z =,故3x z F z xx F z∂=-=-∂. 34.=________.【答案】2ln(1C -++ 【解析】令t =2dx tdt =,212122ln(1)2ln(121t dt dt t t C C t t ⎛⎫==-=-++=++ ⎪++⎝⎭⎰⎰.35.331cos xdx x ππ-=+⎰________.【答案】0【解析】1cos x y x =+在区间,33ππ⎡⎤-⎢⎥⎣⎦上是奇函数,故3301cos x dx x ππ-=+⎰.36.在空间直角坐标系中以点(0,4,1)A -,(1,3,1)B --,(2,4,0)C -为顶点的ABC ∆面积为________.【解析】(1,1,0)AB =-,(2,0,1)AC =-,110(1,1,2)201AB AC ⨯=-=----i j k,故ABC ∆的面积为1122S AB AC =⨯=37.方程221942x y x ⎧+=⎪⎨⎪=-⎩在直角坐标系下的图形为________.【答案】两条平行直线【解析】椭圆柱面与平面2x =-的交线,为两条平行直线.38.函数33(,)3f x y x y xy =+-的驻点________. 【答案】【解析】由22330330fx y xf y x y∂⎧=-=⎪∂⎪⎨∂⎪=-=⎪∂⎩,可得驻点为(0,0),(1,1).39.若21z x y e -=+(1,0)|zx ∂=∂________. 【答案】0【解析】(1,0)(,0)000|z zz x x x ∂∂=⇒=⇒=∂∂.40.440cos xydx dy yππ=⎰⎰________.【解析】44444000cos cos cos sin y xy y dx dy dy dx ydy yy yπππππ====⎰⎰⎰⎰⎰.41.直角坐标系下二重积分(,)Df x y dxdy ⎰⎰(其中D 为环域2219x y ≤+≤)化为极坐标形式为________.【答案】231(cos ,sin )d f r r rdr πθθθ⎰⎰【解析】231(,)(cos ,sin )Df x y dxdy d f r r rdr πθθθ=⎰⎰⎰⎰.42.以3312x x y C e C xe --=+为通解的二阶常系数线性齐次微分方程为________.【答案】690y y y '''++=【解析】由通解3312x x y C e C xe --=+可知,有二重特征根3-,从而微分方程为690y y y '''++=.43.等比级数()00n n aq a ∞=≠∑,当________时级数收敛;当________时级数发散. 【答案】1q <,1q ≥【解析】级数0n n aq ∞=∑是等比级数,当1q <时,级数收敛,当1q ≥时,级数发散.44.函数21()2f x x x =--展开成x 的幂级数________. 【答案】11011(1)32n n n n x ∞++=-⎡⎤+-⎢⎥⎣⎦∑,11x -<< 【解析】211111111()231231612f x xx x x x x ⎛⎫==-+=-⋅-⋅ ⎪--+-+⎝⎭- 110001111(1)(1)36232n n n n n n n n n n x x x ∞∞∞++===-⎡⎤=---=+-⎢⎥⎣⎦∑∑∑,11x -<<.45.12nn n n ∞=-⎛⎫ ⎪⎝⎭∑是敛散性为________的级数. 【答案】发散 【解析】(2)2222lim lim 10n n n n n e n n -⋅--→∞→∞-⎛⎫⎛⎫=-=≠ ⎪ ⎪⎝⎭⎝⎭,级数发散.三、计算题(每小题5 分,共40 分)46.求252222lim 3x x x x +→∞⎛⎫+ ⎪-⎝⎭. 【答案】52e【解析】222225535552225232222255lim lim 1lim 1333x x x x x x x x x e x x x ++-+⋅⋅-→∞→∞→∞⎛⎫+⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.47.2400lim x x x →⎰. 【答案】【解析】24300lim 2x x x x x →→→===⎰.48.已知lnsin(12)y x =-,求dy dx . 【答案】2cot(12)x -- 【解析】lnsin(12)1cos(12)(2)2cot(12)sin(12)dy d x x x dx dx x -==⋅-⋅-=---.49.计算arctan x xdx ⎰.【答案】 【解析】2221111arctan arctan arctan 12221x xdx xdx x x dx x ⎛⎫==-- ⎪+⎝⎭⎰⎰⎰ 22111arctan (arctan )(arctan arctan )222x x x x C x x x x C =--+=-++.50.求函数cos()x z e x y =+的全微分.【答案】[]cos()sin()sin()x x e x y x y dx e x y dy +-+-+ 【解析】cos()sin()x x z e x y e x y x∂=+-+∂,sin()x z e x y y ∂=-+∂,故 []cos()sin()sin()x x z z dz dx dy e x y x y dx e x y dy x y∂∂=+=+-+-+∂∂.51. 计算2D x d y σ⎰⎰,其中D 为由2y =,y x =,1xy =所围成的区域. 【答案】1724【解析】根据积分区域的特征,应在直角坐标系下计算积分,且积分次序为先积x 后积y ,交点坐标为(2,2),(1,1),1,22⎛⎫ ⎪⎝⎭,故222122221111117224y y Dx x d dy dx y dy y y y y σ⎛⎫==-= ⎪⎝⎭⎰⎰⎰⎰⎰.52.求微分方程sin cos x y y x e -'+=满足初始条件(0)1y =-的特解.【答案】sin (1)x y e x -=-【解析】()cos P x x =,sin ()x Q x e -=,则通解为cos cos sin sin ()xdx xdx x x y e e e dx C e x C ---⎛⎫⎰⎰=⋅+=+ ⎪⎝⎭⎰, 又(0)1y =-,所以1C =-,特解为sin (1)x y e x -=-.53.求级数031nn n x n ∞=+∑的收敛半径与收敛区间(考虑端点). 【答案】11,33⎡⎫-⎪⎢⎣⎭【解析】1131lim lim 323n n n n n na n a n ρ++→∞→∞+==⋅=+,收敛半径113R ρ==. 当13x =时,级数为011n n ∞=+∑,该级数发散;当13x =-时,级数为0(1)1n n n ∞=-+∑,该级数收敛, 故收敛域为11,33⎡⎫-⎪⎢⎣⎭.四、应用题 (每小题7 分,共 14 分)54.过曲线2y x =上一点(1,1)M ,作切线L ,D 是由曲线2y x =,切线L 及x 轴所围成的平面图形.求:(1)平面图形D 的面积;(2)平面图形D 绕x 轴旋转一周所生成的旋转体的体积.【答案】(1)112 (2)30π【解析】(1)曲线2y x =在(1,1)M 处的切线斜率为2,过M 点的切线方程为21y x =-,切线与x 轴的交点为1,02⎛⎫ ⎪⎝⎭,则平面图形D 的面积 123100111111223412A x dx x =-⋅⋅=-=⎰. (2)平面图形D 绕x 轴旋转一周所生成的旋转体的体积为12225100111()1325630V x dx x πππππ=-⋅⋅⋅=⋅-=⎰.55.一块铁皮宽24厘米,把它的两边折上去,做成一个正截面为等腰梯形的槽(图略),要使等腰梯形的面积A 最大,求腰长x 和它对底边的倾斜角α.【答案】【解析】由题意知梯形的上、下底分别为2422cos x x α-+,242(0,0)x x α->>. 故221(2422cos 242)sin 24sin 2sin sin cos 2A x x x x x x x αααααα=-++-⋅=-+, 24sin 4sin 2sin cos A x x xαααα∂=-+∂, 222224cos 2cos (cos sin )A x x x ααααα∂=-+-∂, 令0A x∂=∂,0A α∂=∂,联立解得,在定义域内唯一驻点8x =,3πα=, 故当3πα=,8x cm =时正截面面积A 最大.五、证明题 (6 分)56.证明方程0ln x x e π=-⎰在区间3(,)e e 内仅有一个实根.【解析】令0()ln x f x x e π=-+⎰,显然()f x 在3,e e ⎡⎤⎣⎦上连续,且0()0f e ==⎰,3220()360f e e e π=-+<-<⎰,由零点定理得,在3(,)e e 内至少存在一个ξ,使得()=0f ξ. 又11()f x x e'=-,在3(,)e e 内()<0f x ',所以在内单调减少.综上所述,方程0ln x x e =-⎰在区间3(,)e e 内仅有一个实根.。