发电机氢系统介绍

合集下载

发电机氢气系统(水氢氢)

发电机氢气系统(水氢氢)

11
完整编辑ppt
除湿装置
氢气去湿装置采用冷凝式,基本工作原理是 使进入去湿装置内的氢气冷却至-10℃以下,氢 气中的部分水蒸汽将在干燥器内凝结成霜,然后 定时自动(停用)化霜,霜溶化成的水流进集水 箱(筒)中,达到一定量之后发出信号,由人工 手动排水。使发电机内氢气含水分逐渐减少。冷 凝式氢气去湿装置的制冷原元件是压缩机。经过 冷却脱水的氢气回送至发电机之前重新加温至 18℃左右,加温设备也设置在去湿装置内。氢气 的循环仍然依靠发电机内风扇两端的压差,去湿 装置本身的气阻力约1k1P2 a(100mm水柱),故完整氢编辑ppt
缺点:
1、需要一套复杂的气体置换系统 2、氢气的渗透力强,对密封要求高 3、氢气与空气(氧气)混合到一定比例(4~74%)时,遇火将发生爆 炸,威胁发电机的安全运行
返回
35
完整编辑ppt
露点
露点温度是指空气在水汽含量和气压都
不改变的条件下,冷却到饱和时的温度。
形象地说,就是空气中的水蒸气变为露珠
时候的温度叫露点温度。露点温度本是个
16
完整编辑ppt
17
完整编辑ppt
纯度分析仪
气体纯度分析仪是用以测量机内氢气 和二氧化碳纯度的分析器,使用前还须进 行2h(小时)通电预热,其反馈的数据和 信号才准确。
18
完整编辑ppt
氢气湿度仪
在发电机氢气干燥装置的入口和出口 各装有一台氢气温湿度仪,以便在线监测 发电机内氢气的湿度状况。
7、气体置换期间,干燥装置进出口管路上的 氢气湿度仪必须切除。
8、置换期间,应检查发电机密封油系统运行 正常,油气压差维持在0.056MPa左右。
9、气体置换期间,现场严禁吸烟或者动火工 作,排氢气时,速度2应3 缓慢,排污口附近完整编辑ppt

发电机氢冷系统介绍

发电机氢冷系统介绍

发电机充氢操作步骤及注意事项(1)
• 氢气系统投入的条件 1. 充氢前确认发电机本体检修工作全部结束,汽机房内停止
一切动火工作。 2. 充氢现场必须清理干净,无易燃物件并严禁烟火,围好安
全隔离带并挂上警告牌。 3. 现场消防设备足够并完好。 4. 发电机泄漏试验合格。 5. 发电机密封油系统正常运行。 6. 发电机检漏装置投入。 7. 现场、CRT有关信号显示正常,报警准确,各表计良好并
• 4、液体检漏器(液位信号器):
• 液体检漏器是指装在发电机壳和主出线盒下面的 浮子控制开关,它可指示出发电机内可能存在的冷却 器泄漏或冷凝成的液体以及由于调整不当而进入机内 的密封油,在机壳的底部,每端机壳端环上设有开口, 将收集起的液体排到液体检漏器。每个检漏器装有一 根回气管通到机壳,使得来自发电机机壳的排水管不 能通大气;回气管和水管都装有截止阀,另外,为了 能排除积聚的液体,检漏器底部还装有排放阀。
左右。

在水冷定子中,应注意防止二氧化碳与水接触,因为
水中溶有二氧化碳将急剧增加定子线圈冷却水的导电率。
氢气的置换流程(3)
• 4 发电机充氢
• 氢冷发电机在正常运行时,氢气纯度应在95%或以 上。在发电机静止或盘车情况下,从发电机的顶部汇 流管充氢,氢气经供氢装置进入机壳内顶部的汇流管 向下驱赶CO2。当从底部原CO2母管和气体不易流动的 死区取样检验,氢气纯度高于96%,氧含量低于2% 时,停止排气,并升压到工作氢压。升压速度不可太 快,以免引起静电。

发电机氢冷系统设备介绍(1)
• 1、供气装置(气体控制站):

氢气供气装置提供必须的阀门,压力表,调节器和其
它设备将氢气送进发电机,它还提供用以自动调节机内氢

发电机氢气系统

发电机氢气系统

邹县四期1#机工厂型式试验数据
定子线圈报警温度 定子线圈跳闸温度 (出水) (出水) ℃ ℃ ℃ ℃ ℃ ℃ ℃ ℃ ℃ ℃ ℃
设计值
78 82 99 100 125 ≤120 130 150 ≤130 130 48
试验值
保证值
额定负荷时转子线圈运行温度(冷氢) 最大负荷时转子线圈运行温度(冷氢) 转子线圈报警温度 额定负荷时定子铁芯运行温度 最大负荷时定子铁芯运行温度 定子铁芯报警温度 额定负荷时定子端部结构件温度 最大负荷时定子端部结构件温度 发电机进口风温
t/h ℃ ℃ μs/cm MPa(g) ℃ ℃ t/h MPa(g) MPa(g) m3 m3/24h
68
122 48 67 ≤0.5 0.31 4(2×2) 39 45 860 0.52 0.54 143 ≤12 143 6.1 ≤12 48
1、系统组成

氢冷系统主要由氢气汇流排(供氢系统)、二 氧化碳汇流排(供二氧化碳系统)、二氧化碳 蒸发器(加热器)、氢气控制装置、氢气干燥 器(氢气去湿装置)、循环风机、发电机绝缘 过热监测装置(发电机工况监测装置)、发电 机漏液检测装置和发电机漏氢检测装置(气体 巡回检测仪)组成
发电机产生的热量通过氢气耗散,氢气的散热 能力相当于空气的8倍。为了获得更加有效的 冷却效果,发电机中的氢气是加压的 氢气来自中央制氢站,通过软管与汇流排连接。 减压阀将氢压减至所需压力,然后送到氢气控 制装置再减压至发电机所需的压力(0.5MPa)
2) 二氧化碳汇流排

为了防止氢气和空气混合成爆炸性的气体,在 向发电机充入氢气之前,必须要用二氧化碳将 发电机内的空气置换干净。同理,在发电机停 机排氢后,也要用二氧化碳将发电机内的氢气 置换干净

发电机氢系统介绍

发电机氢系统介绍

发电部培训专题1发电机氢气系统简介说明:1.1发电机由于存在着损耗的原因,会导致发电机本体及线圈发热,如果不及时将这些热量及时释放掉,将会导致发电机绝缘老化,影响发电机使用寿命,甚至引发其它恶性的电气事故的发生。

因此大、小发电机都有自己的一套冷却装置。

1.2大型发电机是一种高电压、大电流的电气设备,因此对于它的冷却方式的选择,是确保发电机安全运行的一项重要手段,发电机根据容量等技术参数选择不同的冷却方式,如空冷、氢冷、水氢氢、双水内冷等。

在这些方式中,双水内冷冷却效果是最好的,但由于双水内冷存在着连接部件漏水这一难以解决的问题,在我国80年代投产的多台引进的捷克机组中多次发生此类事故,所以目前我国发电机至今仍多采用的是氢气冷却这种方式,我厂发电机用的是水-氢-氢冷却方式。

1.3之所以目前多采用氢气冷却的原因是氢气有着以下优点:a.氢气比重比较小,相对于其它气体来说它的阻力损耗比较小。

b.氢气是不助燃的气体。

c.氢气比热较其它气体来说大一些。

d.氢气化学价比较稳定。

1.4但用氢气冷却这种方式也存在很大的缺点:a.它是可燃物,使的生产危险点控制更加严格。

b.它需要专用的密封装置,增加了系统的复杂性。

2主要技术参数2.1发电机内额定运行参数:a.氢气压力:0.414MPa.b.氢气温度:不大于46℃c.氢气纯度:大于98%d.氢气耗量:小于13~19立方米/天e.氢气含氧量:小于2%f.氢气含水量:不大于25克/立方米2.2对供给发电机的氢气要求a.供氢气压力不高于3.2MPa.(g)b.供氢气纯度不低于99.5%c.氢气露点温度.≤–21℃2.3置换时的损耗值:3氢气系统设备的组成、功能及原理简介:3.1氢气干燥器装置:a.氢气干燥器是用来除去发电机内氢气中的水份而设的;当发电机中的氢气含水量过高将会对发电机造成多方面的不良影响,我厂在发电机外设置专用的氢气干燥器,它的进氢管路接至转子风扇的高压侧,它的回氢管路接至风扇的低压侧,从而使机内部分氢气不断地流进干燥器内得到干燥。

发电机氢冷系统介绍

发电机氢冷系统介绍

引言概述:发电机氢冷系统是一种常见的发电机冷却技术,通过使用氢气来冷却发电机内部的线圈,以提高发电机的效率和可靠性。

本文将介绍发电机氢冷系统的工作原理、组成结构以及优势。

正文内容:一、工作原理1.1氢气冷却的原理氢气具有很高的热导率和低的密度,使其成为一种理想的冷却介质。

当氢气进入发电机内部的线圈时,它会带走线圈产生的热量,使线圈保持在合适的温度范围内,避免过热导致断电和损坏。

1.2冷却系统的工作原理发电机氢冷系统主要由氢气供应系统、冷却系统和循环系统组成。

氢气在供应系统中被压缩和过滤,然后通过冷却系统进入发电机内部。

冷却系统通过散热器将热量排出,然后再将冷却过的氢气重新循环到发电机内部,形成一个闭环循环。

二、组成结构2.1氢气供应系统氢气供应系统包括氢气储气罐、压缩机和过滤系统。

储气罐用于储存氢气,压缩机将氢气压缩到适当的压力,过滤系统则用于除去杂质和水分。

2.2冷却系统冷却系统包括冷却器和散热器。

冷却器是用于将氢气冷却的装置,通常采用氢气与液体或气体之间的热交换原理。

散热器是用于将冷却后的氢气中的热量转移到周围环境中的设备。

2.3循环系统循环系统主要是用于将冷却过的氢气重新循环到发电机内部。

它包括循环管道、泵和阀门等设备,以确保氢气能够顺畅地流动,并且氢气的压力和温度保持在合适的范围内。

三、优势3.1高热导率和低密度氢气具有比空气更高的热导率和更低的密度,能够更有效地带走发电机产生的热量,并且减少发电机的整体重量。

3.2良好的散热性能由于发电机氢冷系统中的氢气能够快速冷却发电机内部的线圈,因此可以显著提高发电机的散热性能,降低温升。

3.3高可靠性和安全性氢气是一种非常稳定和可靠的冷却介质,它不会产生腐蚀和污染问题,并且能够有效地防止发电机内部的线圈过热和烧毁。

3.4节能环保相对于传统的水冷或风冷系统,发电机氢冷系统能够更好地节约能源和资源,同时还能减少对环境的影响。

3.5适用于高功率发电机由于氢气具有优良的散热性能和热导率,因此适用于高功率发电机的冷却需求,能够保持发电机的高效运行。

发电机氢冷系统介绍(一)

发电机氢冷系统介绍(一)

发电机氢冷系统介绍(一)引言概述:发电机氢冷系统是一种采用氢气冷却的高效能发电技术。

它在大型发电厂的应用中展现了出色的性能和可靠性。

本文将介绍发电机氢冷系统的工作原理,组成部分,以及其在发电厂中的应用情况。

正文:1. 工作原理- 发电机氢冷系统的工作原理是利用氢气的高导热性能将热量从发电机的绕组和核心中散发出去。

这样可以有效地降低发电机的工作温度,提高发电效率。

- 氢气冷却系统采用密闭循环方式,通过氢气在高压和低压中的流动,将发电机产生的热量带走,然后通过冷却装置散热。

2. 组成部分- 发电机氢冷系统主要由氢气冷却器、氢气加压设备、氢气循环泵、氢气管路等组成。

- 氢气冷却器是发电机氢冷系统中最重要的组成部分,负责将发电机产生的热量传递给氢气,并通过冷却装置散热。

- 氢气加压设备用于将氢气加压至所需的工作压力,以确保氢气能够流动并带走发电机产生的热量。

- 氢气循环泵负责将氢气从冷却器中抽出,经过冷却后再重新注入到发电机中循环。

3. 应用情况- 发电机氢冷系统广泛应用于大型发电厂中,特别是核电厂和燃煤电厂。

其高效能和可靠性使其成为这些发电厂的首选技术之一。

- 发电机氢冷系统能够大大提高发电机的运行效率,减少能源的浪费,降低对环境的影响。

- 由于氢气的独特性质,发电机氢冷系统还具有良好的热响应性能,可以快速适应负载变化,保持发电机的稳定运行。

4. 小点1- 发电机氢冷系统的氢气需定期检测和更换,确保其质量和压力符合要求。

- 为了确保发电机氢冷系统的安全可靠运行,还需要安装氢气泄漏报警装置,并进行定期维护和检修。

5. 小点2- 发电机氢冷系统还需要与主控室的监控系统进行联动,以实时监测氢气的压力和温度等参数,确保系统运行的稳定性。

- 发电机氢冷系统在运行过程中还需要进行故障诊断和预防维护,及时发现并解决潜在问题,以保证发电机的正常运行。

总结:发电机氢冷系统是一种高效能的发电技术,通过利用氢气的高导热性能提高发电机的工作效率。

发电机氢气系统(水氢氢) PPT

发电机氢气系统(水氢氢) PPT

三、氢气系统气体置换
2、氢气去湿装置单机运行 如A去湿装置作为运行去湿装置,应关闭B去湿装置的电源开关,并
将B去湿装置的前一级阀门关闭,则B去湿装置退出运行。按A去湿装置 “单机”和“化霜投入”按钮,再按“启动”按钮,A去湿装置做单机 自循环运行去湿。
返回
油水探测报警器
如果发电机内部漏进水或油,油水将流入报 警器内。报警器内设置有一个浮子,浮子上端载 有永久磁钢,报警器上部设有磁性开关。当报警 器内油水积聚液位上升时,浮子随之上升,永久 磁钢随之吸合,磁性开关接通报警装置,运行人 员接到报警信号后,即可手动操作报警器底部的 排污阀进行排污。相同的油水探测报警器氢气系 统中设置有四个。
发电机氢气系统(水氢氢)
主要内容
一、氢气系统概述 二、系统设备介绍 三、氢气置换 四、氢气系统的运行维护和注意事项 五、系统异常和事故处理
一、氢气系统概述
发电机氢气系统的功能是用于冷却发电 机的定子铁芯和转子。氢气置换采用二氧 化碳作为中间置换介质。发电机氢冷系统 采用闭式氢气循环系统,热氢通过发电机 的氢气冷却器由冷却水冷却。
纯度分析仪
气体纯度分析仪是用以测量机内氢气 和二氧化碳纯度的分析器,使用前还须进 行2h(小时)通电预热,其反馈的数据和 信号才准确。
氢气湿度仪
本系统在发电机的四角上布置了四 组冷却器,停运一组冷却器,机组 最高可带80%额定负荷。冷却介质 为开式水,回水母管上设一调门, 通过水量的调节可控制合适的冷氢 气温度在40-46℃。
为什么要使用氢气作为冷却介质,有什么优缺点?
氢气系统的原理
氢气系统的主要技术参数
额定氢压:0.3MPa(表压,下同) 氢气纯度:>96% (容积比) 氢气露点:-5~-25℃ 发电机及氢气管路充氢容积:71m3 发电机及氢气管路系统漏氢量 ≤ 充氢容氢气系统设备介绍

发电机氢气系统及设备描述

发电机氢气系统及设备描述

发电机氢气系统及设备描述一、氢气系统的工作原理发电机内空气和氢气不允许直接置换,以免形成具有爆炸浓度的混合气体。

通常应采用CO2气体作为中间介质实现机内空气和氢气的置换。

本氢气控制系统设置专用管路、CO2控制排、置换控制阀和气体置换盘用以实现机内气体间接置换。

发电机内氢气不可避免地会混合在密封油中,并随着密封油回油被带出发电机,有时还可能出现其它泄漏点。

因此机内氢压总是呈下降趋势,氢压下降可能引起机内温度上升,故机内氢压必须保持在规定范围之内,本控制系统在氢气的控制排中设置有两套氢气减压器。

用以实现机内氢气压力的自动调节。

氢气中的含水量过高对发电机将造成多方面的影响,通常均在机外设置专用的氢气干燥器,它的进氢管路接至转子风扇的高压侧,它的回氢管路接至风扇的低压侧,从而使机内部分氢气不断的流进干燥器得到干燥。

发电机内氢气纯度必须维持在98%左右,氢气纯度低,一是影响冷却效果,二是增加通风损耗。

氢气纯度低于报警值90%是不能继续正常运行的,至少不能满负荷运行。

当发电机内氢气纯度低时,可通过本氢气控制系统进行排污补氢。

采用真空净油型密封油系统的发电机,由于供给的密封油经过真空净化处理,所含空气和水分甚微,所以机内氢气纯度可以保持在较高的水平。

只有在真空净油设备故障的情况下,才会使机内氢气纯度下降较快。

发电机内氢气纯度、压力、温度是必须进行经常性监视的运行参数,机内是否出现油水也是应当定期监视的。

氢气系统中针对各运行参数设置有不同的专用表计,用以现场监视,超限时发出报警信号。

二、转子与铁芯的冷却通道转子的冷却采用气隙取气斜流式通风结构。

在转子表面槽楔上开有进气口和排气口,转子绕组上也开有通风孔,组装固化后组成斜流式通风路径。

气体沿转子表面通过一组斜槽吸入斜流通道进入槽底,在槽底径向转弯,然后通过另一组斜流通道返回气隙。

详见右图和下图。

它是利用布置在两端的两个风扇使氢气获取压力,随转子转动而进出冷却通道。

发电机氢气系统

发电机氢气系统

添加标题
氢气作为运输介质用于将核能发电 的电能输送到电网
氢气作为燃料提高 发电效率
氢气作为冷却剂提 高发电稳定性
氢气作为储能介质 提高发电灵活性
氢气作为环保燃料 减少温室气体排放
水力发电厂使用发电机氢气系统作为备用电源 发电机氢气系统在水力发电厂中用于调节电网频率 发电机氢气系统在水力发电厂中用于紧急情况下的电源供应 发电机氢气系统在水力发电厂中用于提高电力系统的稳定性和可靠性
氢气燃烧效率高可提高发电 效率
氢气燃烧后产生的废气少可减 少对环境的污染提高发电效率
氢气燃烧后产生的噪音小可 提高发电效率
氢气燃烧后只产生水无其他有 害物质排放
氢气燃烧效率高能源利用率高
氢气来源广泛可再生能源如太 阳能、风能等均可制氢
氢气系统运行过程中无噪音对 环境影响小
氢气具有高导热性可以快速散热降低设备温度 氢气具有高扩散性可以快速扩散降低设备压力 氢气具有高稳定性可以减少设备磨损延长设备寿命 氢气具有高安全性可以降低设备故障率提高设备可靠性
添加标题
添加标题
添加标题
添加标题
氢气调节器:控制氢气流量保持稳 定
氢气安全阀:防止氢气压力过高确 保安全
氢气来源:电解水、天然气重整、甲醇 重整等
氢气储存:高压气瓶、液氢罐等
氢气净化:脱水、脱硫、脱碳等 氢气压力调节:减压阀、增压泵等
氢气输送:管道输送、液氢输送等
氢气流量控制:流量计、电磁阀等
氢气在发电机中燃烧产生电能
氢气循环过程中需要保持氢气的纯 度和压力稳定
添加标题

添加标题
添加标题
添加标题
氢气燃烧后的产物是水通过冷却系 统冷却后重新进入发电机
氢气循环系统需要定期维护和检查 确保安全运行

发电机氢气系统介绍

发电机氢气系统介绍
氢气系统特征
• 大容量水氢氢冷汽轮发电机,为冷却定子铁芯和转子绕组,要求建立一 套专门的供气系统。这种系统应能保证给发电机补氢和补漏气,自动地 监视和保持电机内的额定压力、规定的纯度以及冷却器端的氢温。各种 不同型号的汽轮发电机,供气系统基本上相同,其主要特征如下:
• 1、氢气由中央制氢站或储氢罐提供。 • 2、输氢管道上设置有自动氢压调节阀保持机内为额定氢压。当机内氢气
• 大容量氢冷发电机内要求保持高纯度的氧气,其主要目的是提高发电的效率,从经济 方面考虑。因为氢气混入空气或纯度下降时,混合气体的密度随氢气纯度的下降而增 大,使发电机的通风摩擦损耗也随着氢气纯度的下降而上升。一台运行氢压为 0.5MPa、容量为907MW的氢冷发电机,其氢气纯度从98%降到95%时,摩擦相和 通风损耗大约增加32%,即相当于损失685kW。一般情况下,当机壳内的氢气压力 不变时,氢气纯度每降低l%,其通风摩擦损耗约增加11%。我国发电机运行规程又规 定:“当氢气纯度降低到92%或者气体系统中的氧气超过2%时,必须立即进行排 污”,这说明运行的氧气纯度在92%~95%之间时,除对效率有所影响外,并无严重 危害。当然,长期运行在这个氢气纯度范围是不经济的。所以又规定了一个必须立即 排污的下限。
氢气系统参数
• 氢系统氢气纯度、压力、湿度、除设有防爆型就地指示和报警装 置外,还设置输出到远方指示及报警输出接点。
• 氢气直接冷却的冷氢温度不超过46℃。氢冷却器冷却水进水温度 不超过38℃。发电机气体控制系统用来保证实现发电机内气体转 换,维持机内氢气压力、纯度、温湿度的特定要求,以确保发电 机安全满发运行。
• 发电机运行中的纯度下降的主要原因,油箱的补充油中混入空气。氢气纯度低,其中的有害杂质 主要是水分和空气的氧。在干燥的氢气中,含氧量的多少也可反映氢气的纯度。故有 的发电机氢气系统中,通过对含氧量的监视来监视氢气的纯度,一般要求氢气中的含 氧量低于2%。对于大容量发电机,由于氢气纯度要求更高,故要求其氢气中的含氧量 更低,小于l%。

发电机氢气系统简介

发电机氢气系统简介
注:由于吹扫时较轻 的空气从发电机下方 3、在氢控制柜上:设置为“Purge(CO2 in AIR)”模式 进入,所以吹扫时CO2 4、按幻灯片20调整氢气控制屏隔离阀,系统状态如23页所示 将与空气混合,在吹扫 时空气用量较大 5、让取样气体通过传感器,面板上“H2 IN CO2”灯亮
9.停用密封油系统 置换完毕,可进行检 修或保养工作!
置换操作 准备工作:



熟悉用于气体纯度监控氢气控制柜的使用方法。 确保有足够的可用CO2来吹扫空气,危急时有足够 的CO2吹扫出氢气(PI2944>0.3MPa)。 确保二氧化碳进入管道上的气阀安装正确到位。 氢气控制柜相关表计已经进行较准,可投入使用。 确认氢气干燥系统已经投入运行 确认转子处于停止状态或盘车状态 检查Mark VI机组发电机H2和CO2系统无报警存在
流 量 及 阀 门 控 制 表
置换操作 CO2→空气:
1、打开吹扫取样管线隔离阀 HV2957、HV2983 5、确认供氢隔离阀HV-2936关闭 7、确认两三通阀在垂直位置
4、让取样气体通过传感器,面板上“AIRin CO2)” 2、在氢控制柜上:设置为“Purge(Air IN CO2”灯亮 3、按幻灯片20调整氢气控制屏隔离阀,系统状态如23页所示 模式
注:投入密封油系统防止CO2通过轴 6、缓慢打开主排气阀HV-2954 端大量流出,在密封油系统运行初期, 发电机内压力太少,难以保证充分排 10、开启CO2供气阀,进行置换 8、通过PI-2944确认CO2在供应正常 油,浮子阀应走旁路。直到压力足够 进再关闭旁路阀 注:置换期间,发电机的的气压应维 护在0.14-0.35kg/cm2(2-5psig),在 置换后期,发电机内气压会有较大变 注:这将阻止CO2进入过滤器干 9、密封油系统投入运行 化,需要调节HV-2954 的开度对气压 燥器,如果CO2进入过滤器干燥 进行控制, 器,在发电机充H2正常运行时的 第一天内CO2将缓缓流出,这将 导致首日气体分析仪读数不准确。

发电机氢冷系统介绍课件

发电机氢冷系统介绍课件

通风系统
通风设计
合理设计通风路径,确保氢气和 冷却水在发电机内外的流动顺畅。
通风量控制
根据发电机的运行状态和散热需求, 调节通风量。
防爆措施
采取措施防止氢气泄漏引起的爆炸 事故,如安装防爆门、通风口设置 阻火器等。
监测与报警系统
温度监测
报警装置
实时监测发电机的温度,确保其在安 全范围内运行。
当监测到异常情况时,及时发出报警 信号,提醒操作人员采取相应措施。
• 发电机氢冷系统概述 • 发电机氢冷系统的组成 • 发电机氢冷系统的操作与维护 • 发电机氢冷系统的安全与环保 • 发电机氢冷系统的改进与发展趋势
CHAPTER
定义与功能
定义
发电机氢冷系统是一种用于冷却 发电机的技术,通过使用氢气作 为冷却介质来实现发电机的有效 散热。
功能
其主要功能是确保发电机在运行 过程中温度保持在正常范围内, 防止过热对发电机造成损坏,同 时提高发电机的效率和可靠性。
紧急处理 发现氢气泄漏时,应迅速启动紧急处理程序,关 闭相关阀门、启动排风系统、疏散人员等,防止 泄漏扩大。
人员培训 对操作人员进行专门培训,提高他们对氢气泄漏 的识别和处理能力,确保在紧急情况下能够迅速、 准确地采取应对措施。
CHAPTER
技术改进与创新
高效冷却技术
采用新型冷却材料和设计,提高氢冷系统的冷却效率,降低发电 机运行温度。
温室气体和有害气体的排放应进行严格控制。
废热利用
02
充分利用发电机产生的废热,提高能源利用效率,减少对环境
的影响。
ቤተ መጻሕፍቲ ባይዱ
噪声控制
03
采取有效的噪声控制措施,如安装消音器、隔声罩等,降低发

发电机氢气系统..

发电机氢气系统..

5)发电机漏液检测装置

发电机漏液检测装置用以检测发电机水冷定子 线圈或氢气冷却器因泄漏而积累在发电机底部 的液体,同时也用以检测渗漏到发电机内的密 封油或轴承油
6)发电机绝缘过热监测装置


发电机绝缘过热监测装置用以监测发电机内部绝缘材料是 否有过热现象,以便在早期及时采取必要的措施,防止酿 成大事故。 工作原理: 在发电机正常工作时,流经装置的干净气体导致装置 产生一定的微电流,此电流经处理后,在装置上显示出来。 当发电机内绝缘有过热现象时,绝缘材料因过热而挥发出 过热粒子,这些粒子随氢气进入到监测装置后,将引起装 置的电流减少。当电流减少到一定程度时,装置经自检确 认装置本身无误后将发出报警信号,提示发电机内绝缘部 件有过热现象。
工作原理: 仪器由特殊设计的风机,压差交送器及压差计组成,实际则是风机产生的压差,但由 于此压差值与气体的密度有关,而气体密度又直接与气体的成分成比例,故只要测出风机 压差就等于测出了气体密度,实际上两只压差计是直接按密度和纯度标注的。


纯度要求: 氢气是易燃易爆性气体。在密闭容器中,当氢气与空气混合,氢的含量为4%~ 75%,即形成易爆炸的混合气体。我国发电机运行规程规定:“一般要求发电机内氢 气纯度保持在96%以上。低于此值时,应进行排污” 大容量氢冷发电机内要求保持高纯度的氧气,其主要目的是提高发电的效率,从 经济方面考虑。因为氢气混入空气或纯度下降时,混合气体的密度随氢气纯度的下降 而增大,使发电机的通风摩擦损耗也随着氢气纯度的下降而上升。据美国GE公司介绍, 一台运行氢压为0.5MPa、容量为907MW的氢冷发电机,其氢气纯度从98%降到95% 时,摩擦相和通风损耗大约增加32%,即相当于损失685kW。一般情况下,当机壳内 的氢气压力不变时,氢气纯度每降低l%,其通风摩擦损耗约增加11%。

发电机氢气系统

发电机氢气系统

2021年3月18日
内蒙古能源发电科右中发电有限公司
7
六、发电机氢冷系统监视与检查
1. 汽轮机冲转前,发电机内需充满纯度合格的氢气。 2. 发电机补氢前确认氢站供氢纯度大于99.5%,露点温度小于-25℃,含氧量不超过0.5%。 3. 夏季补氢时,为防湿度过大,补前应先对补氢母管排污5min。 4. 机组并网前确认氢压不低于350kPa,发电机正常运行时机内氢压保持在420~450kPa之间,氢 压高于450kPa或低于420kPa,将发出氢压高、低报警。氢压过高时可开启排气阀排除部分氢气, 氢压低于420kPa时要及时补氢。 5. 机组正常运行时,冷氢温度38~45℃,出口风温不高于65℃。机组停止后,随氢温下降,及时 关闭氢气冷却器调门和调门前后电动门,以防发电机过冷。
2021年3月18日
内蒙古能源发电科右中发电有限公司
4
四、电机气体置换及注意事项
1. 发电机气体置换标准。
所需气体种类
被置换出发电 需要气体容 机的气体种类 积
合格标准
估计所用时 间
氮气
空气
350m3
发电机内含氧量小于 3%
7h
氢气
氮气
发电机内氢气纯度大于
350m3 96%,且含氧量低于
7h
1.2%
升高,开启浮球阀旁路门控制浮球阀箱旁路观察窗始终有可见油位。当发电机内压力 升高,关小浮球阀旁路门控制浮球阀箱旁路观察窗始终有可见油位。 5. 在测量混合气体的含量时必须连续三次测量合格。 6. 使用氮气做为中间介质进行气体置换时,充氢前先用氮气置换发电机内的空气,待机 内氧气含量低于3%,再充入氢气置换氮气,待机内氢气含量高于96%时置换完毕;排氢 时,向发电机内充入氮气,待机内氢气含量低于3%置换完毕,当发电机内有检修工作 时,应由检修人员先将发电机充分通风后方可进入发电机内工作。氢气系统及相关设 备隔离检修或措施恢复时都要按照上述要求进行置换并确认合格。 7. 不得在室内排放氢气。 8. 操作氢气系统阀门一定要缓慢进行,防止氢气与阀门、管道剧烈摩擦而产生火花。 9. 置换过程中发电机本体及系统各死角排污门应定期排气。 10. 取样时,排氢管路和不易流动的死区都要取样。

发电机氢气系统介绍

发电机氢气系统介绍

采用氢气冷却优点: (1)运行经验表明,发电机通风损耗得大小取决于冷却介
质得质量,质量越轻,损耗越小,氢气在气体中密度最小,有利 于降低损耗;
(2)另外氢气得传热系数就是空气得5倍,换热能力好; (3)氢气得绝缘性能好,控制技术相对较为成熟。 采用氢气冷却缺点: 最大得缺点就是一旦于空气混合后在一定比例内(4%~ 74%)具有强烈得爆炸特性,所以发电机外壳都设计成防爆型, 气体置换采用CO2作为中间介质。
气体置换准备和要求:
1、 气密性试验合格(向发电机内充入0、45MPa得清洁干燥空气 ,24小时内气体泄漏量小于10Nm3/d为合格)。
2、 发电机本体上、下部应布置供灭火用得CO2灭火器,在发电 机本体上、下部周围挂“氢气运行,严禁烟火”标示牌,在发电机周 围10m内无烟火及电焊作业。
3、合格得CO2瓶不少于60瓶,以满足气体置换使用,CO2含量按容 积计不低于98%。
29)发电机氢压升至0、08~0、1 Mpa,投入密封油差压调 节阀,缓慢关闭差压调节阀旁路门,监视油氢差压在50Kpa左右。 (如交流密封油泵未投运,启动一台交流密封油泵,调整泵出口 压力0、8 Mpa。)
30)当发电机内部氢气压力达到0、45Mpa,充氢升压完毕。 31)解列氢气至发电机系统。关闭CO2至发电机系统截门22。 32)发电机内压力:MPa,发电机氢气纯度:%。置换完毕。
密封油系统 简图
定子冷却水控制系统概述
发电机定子冷却水系统得主要作用就是:向发电机定子线圈不间断得 供水,使定子线圈得到冷却,使定子线圈温度保持在允许范围内。 监视进出水温、水压、流量和水得导电率等参数。系统还设有自 动水温调节器,以调节定子线圈进水温度,使之保持基本稳定,另外 ,系统还设置了离子交换器,用以提高和保持冷却水得水质。

发电机氢冷系统介绍(二)

发电机氢冷系统介绍(二)

发电机氢冷系统介绍(二)引言:发电机氢冷系统是一种高效、可靠的发电机冷却技术,它通过运用氢气作为冷却介质,在发电过程中实现对发电机的高效冷却。

本文将介绍发电机氢冷系统的原理和工作方式,并详细讨论其在能源领域的应用。

正文1. 原理及工作方式a) 氢气的导热性能:氢气具有非常高的导热性能,远远超过空气和水。

这使得发电机氢冷系统能够高效地将热量从发电机传递到冷却系统中。

b) 氢气的化学稳定性:氢气不会引起腐蚀或氧化,这使得氢冷系统能够保持发电机内部的稳定和可靠性。

c) 工作方式:发电机氢冷系统包括氢气供应系统、冷却系统和排气系统。

氢气通过进气管道进入发电机,并通过冷却系统吸收热量,然后排出冷却剂。

2. 应用领域a) 火力发电站:发电机氢冷系统广泛应用于火力发电站中,可以有效降低发电机的温度,提高发电机的效率和寿命。

b) 核电站:在核电站中,发电机氢冷系统是必不可少的,它可以在核反应堆事故发生时起到冷却和保护的作用。

c) 风力发电站:氢冷系统也可以应用于风力发电站中,提高风力发电机组的效率和可靠性。

d) 水力发电站:通过发电机氢冷系统,水力发电站可以有效冷却发电机,提高发电效率。

e) 运输领域:发电机氢冷系统也逐渐应用于船舶、飞机等运输领域,以提高动力设备的冷却效果和性能。

3. 氢冷系统的优势a) 高效冷却:相较于传统的空气冷却和水冷却系统,发电机氢冷系统能够以更高的效率将热量带走,提高发电机的工作效率。

b) 低噪音:由于氢气的导热性能和化学性质,发电机氢冷系统能够保持发电机的低噪音运行。

c) 环保:使用氢气作为冷却介质时,不会产生温室气体和其他有害物质,符合环保要求。

d) 可靠性高:氢气的化学稳定性和导热性能使发电机氢冷系统具有高可靠性,能够长时间稳定运行。

4. 维护和安全性a) 维护工作:发电机氢冷系统需要定期维护,包括氢气供应系统的检查和冷却系统的清洗,以确保系统的正常运行。

b) 安全性:氢气是易燃易爆的,在使用发电机氢冷系统时需要严格按照安全操作规程,确保系统安全可靠。

《发电机氢气系统》课件

《发电机氢气系统》课件

系统实现的过程
氢气发电系统的设计需要考虑氢气 的供应、储存、输送和发电等环节, 需要根据具体情况制定相应的方案。
氢气发电系统的实现需要进行各类 设备的安装和调试工作,确保系统 能够安全、稳定地运行。
系统调试与检测
系统的调试需要进行多个方面的测 试,以确保氢气运输、储存和发电 的各个环节都能够正常运行。
氢气发电
1
氢气发电原理ห้องสมุดไป่ตู้
氢气在发电机内的反应会产生电流,从而带动发电机的运转。
2
氢气发电的优势和局限性
氢气发电具有环保、高效、静音等优势,但也存在氢气产生、储存和输送等方面 的局限性。
3
实践中的氢气发电案例
氢气发电已经在不同地方得到了广泛的应用,包括供电、应急电源等方面。
氢气发电系统的设计与实现
系统设计的要求
氢气储存
氢气储存需求
储存氢气需要考虑安全性、储 存成本和使用灵活性等因素, 不同的应用场景需要选择不同 的储存方式。
常用的氢气储存方式
气态、液态和固态氢气储存等 不同方式都有其特点和适用范 围,需要根据具体情况选择。
选择合适的储存方式
选择合适的氢气储存方式需要 考虑氢气产生量、储存时间、 运输和使用环境等多种因素。
总结
1
氢气发电系统的优缺点
氢气发电系统具有环保、高效、灵活等优点,
发展趋势展望
2
但还需要应对氢气生产、储存和输送等方面 的局限性。
氢气技术将继续发展和创新,氢气发电将会
得到更加广泛的应用,推动可持续发展和清
洁能源的发展。
3
总结与展望
本课程介绍了氢气发电技术的原理、应用和 发展趋势,相信对大家了解氢气发电和未来 发展的趋势有所帮助。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发电部培训专题(发电机氢系统简介修改版)*本介绍参照了技术协议部分内容1发电机氢气系统简介说明:1.1发电机由于存在着损耗的原因,会导致发电机本体及线圈发热,如果不及时将这些热量及时释放掉,将会导致发电机绝缘老化,影响发电机使用寿命,甚至引发其它恶性的电气事故的发生。

因此大、小发电机都有自己的一套冷却装置。

1.2大型发电机是一种高电压、大电流的电气设备,因此对于它的冷却方式的选择,是确保发电机安全运行的一项重要手段,发电机根据容量等技术参数选择不同的冷却方式,如空冷、氢冷、水氢氢、双水内冷等。

在这些方式中,双水内冷冷却效果是最好的,但由于双水内冷存在着连接部件漏水这一难以解决的问题,在我国80年代投产的多台引进的捷克机组中多次发生此类事故,所以目前我国发电机至今仍多采用的是氢气冷却这种方式,我厂发电机用的是水-氢-氢冷却方式。

1.3之所以目前多采用氢气冷却的原因是氢气有着以下优点:a.氢气比重比较小,相对于其它气体来说它的阻力损耗比较小。

b.氢气是不助燃的气体。

c.氢气比热较其它气体来说大一些。

d.氢气化学价比较稳定。

1.4但用氢气冷却这种方式也存在很大的缺点:a.它是可燃物,使的生产危险点控制更加严格。

b.它需要专用的密封装置,增加了系统的复杂性。

2主要技术参数2.1发电机内额定运行参数:a.氢气压力:0.414MPa.b.氢气温度:不大于46℃c.氢气纯度:大于98%d.氢气耗量:小于13~19立方米/天e.氢气含氧量:小于2%f.氢气含水量:不大于25克/立方米2.2对供给发电机的氢气要求a.供氢气压力不高于3.2MPa.(g)b.供氢气纯度不低于99.5%c.氢气露点温度.≤–21℃2.3置换时的损耗值:备注序号内容单位数值1 发电机充氢容积立方米1172 驱赶机内空气时耗用二氧化碳立方米300 CO2纯度98%以上3 驱赶机内二氧化碳时耗用的氢气立方米3004 机内氢压升至额定值用氢量立方米3753氢气系统设备的组成、功能及原理简介:3.1氢气干燥器装置:a.氢气干燥器是用来除去发电机内氢气中的水份而设的;当发电机中的氢气含水量过高将会对发电机造成多方面的不良影响,我厂在发电机外设置专用的氢气干燥器,它的进氢管路接至转子风扇的高压侧,它的回氢管路接至风扇的低压侧,从而使机内部分氢气不断地流进干燥器内得到干燥。

b.我厂氢气去湿装置采用冷凝式(即分子筛式),其基本原理是:将进入去湿装置内的氢气冷却到-10℃左右,氢气中的部份水蒸汽将在干燥器内凝结成霜,然后定时自动(停用)化霜,霜溶化成的水流进集水箱(筒)中,达到一定量之后发出信号,由人工手动排水。

经过冷却脱水的氢气在送回发电机之前被加热到18℃左右,加温设备也设置在去湿装置内,经过这一处理过程,从而使发电机内氢气中含水份逐步减少。

3.2氢气循环风机:氢气循环风机用于冷凝式氢气去湿装置系统中,在发电机停机或盘车状态下,开启循环风机,以确保氢气至湿装置的正常循环。

3.3氢气泄露报警器:氢气泄露报警是为了报告何处有氢气泄露情况而设置的,它在定冷水、氢冷水、发电机A、B、C三相分相母线等部位都设有氢气浓度高检测报警元件。

3.4油水探测报警器:油水探测报警器:当发电机内部漏进油或水,油水将流入报警器内。

报警器内设置有一只浮子,浮子上端载有永久磁铁,在报警器上部设有磁性开关。

当报警器内油水积聚液位上升时,浮子随之上升,当达到一定值时永久磁铁吸合,磁性开关接通报警装置,运行人员接到报警信号后,即要进行手动操作报警器底部的排污阀进行排污,并要及时调整密封油压和检查油、水的来源。

3.5置换控制阀:置换控制阀是几只阀门的集中组合、装配而成。

发电机正常运行时,这几只阀门必须全部关闭,只有发电机需要进行气体置换时,才由人工手动操作这几只阀门,按照发电机内气体置换要求进行操作。

3.5.1氢气控制排:氢气控制排:有控制地向发电机内供给氢气。

氢气来自氢气瓶中。

本氢气控制排设置两个氢气进口、两只氢气过滤器、两只氢气减压器。

氢气进口压力最大允许值为 3.2MPa,供给发电机的氢气均需先将压力限制在3.2MPa以下,然后用双母管引入接至氢气控制排,然后经减压器调至所需压力送入发电机。

(气体置换期间减压器出口压力可整定为0.5MPa,正常运行期间则整定为0.414MPa)。

下边将其所属部件进行说明:a.减压器:我厂采用的是YQQ-II型氢气减压器。

它由两级组成:第一级将高压氢气降压至2.5MPa以下,第二级再降至所需压力。

减压器进口压力一般不能低于0.6MPa,出口压力(手动操作顶丝)人为给定,自动保持。

b.安全阀:氢气控制排上装有一只角型安全阀,安全阀调整定压力为0.45~0.48MPa时动作开启,压力回落至0.42MPa时回座并关严。

(安全门的校整时间为6个月)。

c.气体过滤器:氢气控制排以及CO2控制排上装有气体过滤器。

以防止杂物进入发电机内部。

d.压力开关和压力表:氢气控制排上还设置有压力监视表计,其中压力控制器用于供氢压力偏低时发报警信号,普通型压力表用来监测减压器进、出口的氢气压力。

3.5.2CO2 控制排:a.CO2 控制排:CO2 控制排是在发电机需要进行气体置换时投入使用,以控制CO2 气体进入发电机内的压力在所需值(通常情况下,在整个置换过程中发电机内气压保持在0.02~0.03MPa之间)。

b.CO2 控制排设置有一套减压器、安全阀、气体阀门组等部件,这些部件的结构、型式与氢气控制排上的相应部套件相同。

CO2 气体通常由瓶装供给。

瓶装CO2 一般呈液态且压力很高,必须经过特别另行设置的汇流排释放气化,降压至1.6MPa以下,再用管路引至CO2控制排经过过滤器、减压器调至所需压力,然后供给发电机。

CO2 汇流排一般应有五至十个瓶位。

液态CO2 从气瓶中释放气化,必然大量吸热,致使管路及其减压器等冻结,释放速度因而受到限制。

多设置瓶位,可以轮流释放、解冻。

另外还可采用水淋办法解冻,但此方法必须另接供水管,且开设排水沟。

采取这两种办法的目的均是为了缩短气体置换所需时间。

3.5.3气体置换盘:气体置换盘:气体置换盘用以分析发电机壳内气体置换过程排出气体中CO2或H2的气体含量,从而确定气体置换是否合乎要求,使用前还须进行 2h(小时)的通电预热。

3.6氢纯度检测装置:氢纯度检测装置:用以测量机内氢气纯度的分析器(量程80~100%氢气)的装置。

当氢气纯度低于92%将会发氢气纯度过低信号。

4氢气系统的日常维护及注意事项:1)发电机内氢气压力不得过低,以确保发电机各部件温升不超限。

2)氢气压力不得过高,防止通风损耗增大,同时会造成漏氢量增加,影响机组的安全运行。

3)发电机内氢气纯度必须维持在98%左右,氢气纯度低,一是影响冷却效果,二是将增大发电机运行的不安全系数。

氢气纯度低于报警值(90%)是不能继续正常运行的,至少不能满负荷运行,并要求进行发电机排污,以使氢气纯度达到要求。

4)氢气水分不得过大,否则会造成发电机绝缘下降等不良后果。

5)氢气纯度检测装置进、出口上安装着两个排污阀,要定期进行排污,防止影响纯度检测装置的灵敏及准确度。

6)定期检测油水探测器内是否有油、水等物质。

7)定期对干燥装置进行放水。

8)在氢气系统周围严禁有动火工作,如果必须进行动火工作,则应该严格执行一级动火票。

9)在发电机发生漏氢时,必须进行查漏,寻找漏点,禁止一切周边动火工作,并且要设置隔离带。

10)氢气系统操作时应该使用专用的铜质器具,及穿着防产生静电的服装。

11)发电机任何情况下氢气压力必须大于大气压力。

12)在发电机冷氢温度低于25度以下时必须节流氢冷水流量防止发电机发生结露现象。

13)回油扩大槽的排烟风机必须保持良好的运行。

14)当一组氢冷器解列时机组能带额定负荷的80%连续运行。

15)当5%以下氢冷水管堵塞时机组可带满负荷连续运行。

5关于发电机的气体置换介绍:5.1.1氢气的置换分为两种,即抽真空法、中间置换法。

目前基本已采用的是中间置换法。

中间置换法的中间介质为二氧化碳气体。

我厂氢气控制系统设置有专用补氢控制排、二氧化碳控制排、置换控制阀和气体置换盘及相关检测纯度的表计。

5.1.2发电机置换分为:空气向氢气置换及氢气向空气置换两种。

1)空气向氢气置换的方法为:先用二氧化碳(CO2)驱赶发电机内的空气,待机内二氧化碳含量超过85%以上后,即可引入氢气驱赶发电机内的二氧化碳,这一过程保持发电机内气压在0.02~0.03MPa之间。

2)氢气向空气置换方法:先将机内氢压降至0.02~0.03MPa之间,再用二氧化碳驱赶发电机内的氢气,待二氧化碳含量超过95%以后,即可引入压缩空气驱赶二氧化碳,直至二氧化碳含量少于5%以后,才可终止向发电机内送压缩空气,这一过程也应保持机内气压在0.02~0.03MPa之间。

6气体置换作业时几点注意事项:1)密封油系统必须保证供油的可靠性,且油/气压差维持在0.056MPa左右。

2)发电机转子处于静止状态。

(盘车状态也可进行气体置换,但耗气量将大幅增加)。

3)密封油系统中的扩大槽在气体置换过程中应定期手动排气。

排气时打开排气阀,每次连续5min(分钟)左右。

4)置换过程中使用的每种气体含量接近要求值之前应当排一次气。

操作人员在排气完毕后,应确认排气阀门已关严之后才能离开。

5)氢气置换时必须注意浮子油箱油位及发电机油水检测器油位。

严防发电机内进油和跑氢事故的发生。

6)气体置换时必须注意充、排氢的速度。

7)置换时必须注意调整好密封油压,防止发电机内部进油。

8)排污完毕后操作人员应关严这些阀门方可离开。

9)氢气置换时严禁周围有动火工作。

10)充二氧化碳瓶时,必须作好管系的防冻措施。

11)气体置换之前,应对气体置换盘中的分析仪表进行校验,仪表指示的CO2和H2纯度值应与化验结果相对照,误差不超过1%。

12)气体置换期间,系统装设的氢气湿度仪必须切除。

因为该仪器的传感器不能接触CO2气体,否则传感器将不能正常工作。

2005年10月10日星期一。

相关文档
最新文档