人教版数学七年级(下册)第八章教(学)案
人教版七年级数学下第八章二元一次方程教案8.2.2

8.2.2 代入法的应用练习题姓名___________班级__________学号__________分数___________一、填空题1.已知x =2,y =2是方程ax -2y =4的解,则a =________.2.已知方程x -2y =8,用含x 的式子表示y ,则y =_________________,用含y 的式子表示x ,则x =________________3.方程x +y =4有_______个解,有________个正整数解,它们是_______________________.4.方程2x -y =7与x +2y =-4的公共解是________________________.5.若x 、y 互为相反数,且x +3y =4,,3x -2y =_____________.二.用代入法解方程组:6.⎩⎨⎧y =3x -1 ① 2x +4y =24 ② 7.⎩⎨⎧4x -y =5 ① 3(x -1)=2y -3 ②8. 2056118x y x y ⎧+=⎪⎨⎪+=⎩9. 1.50.51235x y x y -=⎧⎨+=⎩三.解答题10.已知:21x y =⎧⎨=-⎩是方程组45ax y b x by a +=⎧⎨-=+⎩的解.求a 、b 的值.11.已知方程组 83312x y x y +=⎧⎨-=⎩ 的解为x a y b =⎧⎨=⎩,求ab 2的值.12.若 42x y =⎧⎨=⎩与 21x y =-⎧⎨=⎩都满足方程b kx y +=.(1)求k 和b 的值; (2)当8=x 时,求y 的值; (3)当3=y 时,求x 的值.13.超市里某种罐头比解渴饮料贵1元,小彬和同学买了3听罐头和2听解渴饮料一共用了16元,你能求出罐头和解渴饮料的单价各是多少元吗?。
人教版七年级数学下册第八章二元一次方程组大单元教学设计

五、作业布置
为了巩固学生对二元一次方程组的学习,教师应布置具有针对性和层次性的作业,让学生在课后能够自主复习和拓展提高。
1.基础作业:
(1)完成课本后的练习题,包括填空题、选择题和解答题,以巩固二元一次方程组的基本概念和解法。
(二)过程与方法
在学习本章的过程中,学生将经历以下过程与方法:
1.通过小组合作、讨论的方式,探究二元一次方程组的解法,培养学生的团队协作能力和问题解决能力。
2.利用代入法、消元法解决实际问题,提高学生运用数学知识解决实际问题的能力。
3.通过绘制图形,观察二元一次方程组的几何意义,培养学生的空间想象能力和直观感知能力。
在讲解过程中,教师注重引导学生观察方程组的变化,解释每一步操作的数学原理。此外,教师还会通过图形展示方程组的几何意义,帮助学生建立直观的认识。
(三)学生小组讨论
在这一环节,教师将学生分成小组,每组分配一个实际问题,让学生合作讨论,将问题转化为二元一次方程组,并尝试使用代入法或消元法求解。
教师巡回指导,观察学生的讨论过程,及时解答学生的疑问,鼓励学生发表自己的观点。小组讨论结束后,每个小组分享解题过程和答案,教师点评并给予反馈。
(一)教学重难点
1.理解并掌握二元一次方程组的定义及其解法(代入法、消元法)。
2.能够将实际问题抽象为二元一次方程组,并运用所学知识解决实际问题。
3.理解二元一次方程组的几何意义,通过图形分析方程组的解。
(二)教学设想
1.教学方法:
(1)采用启发式教学,引导学生通过观察、思考、讨论的方式,主动探究二元一次方程组的解法。
最新人教版七年级数学下册 第八章 《消元——解二元一次方程组》教案

《消元——解二元一次方程组》教案2江西师大附中荣齐辉教学设计说明:本课以贴近学生生活实际的问题为情境,引导学生分别列二元一次方程组和一元一次方程解决问题,通过观察、对比,发现二元一次方程组和一元一次方程的联系,思考如何将二元一次方程组转化为一元一次方程,实现消元,渗透化归的数学思想.通过丰富的例题和问题,使学生熟练掌握二元一次方程组的解法,并能运用二元一次方程组解决一些实际问题,体会方程思想.(1)教材分析二元一次方程组是在《一元一次方程》的基础之上学习的,它是解决含有两个未知数的问题的有力工具,同时,二元一次方程组也是解决后续一些问题的基础,其解法将为解决这些问题提供运算的工具,如用待定系数法求一次函数解析式,在平面直角坐标系中求两条直线的交点等.解二元一次方程组就是要通过代入法和加减法把“二元”化归为“一元”,这也是解三元(多元)一次方程组的基本思路,是通法.(2)学情分析学生的知识技能基础:学生已学过一元一次方程的解法,经历过由具体问题抽象出一元一次方程的过程,具备了学习二元一次方程的基本技能.学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多观察、对比、发现的学习程,具有了一定的发现式学习的经验和数学思考,具备了一定的合作与交流的能力.教学目标1.用代入法、加减法解二元一次方程组.2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.3.会用二元一次方程组解决实际问题.4.在列方程组的建模过程中,强化方程的模型思想,培养学生列方程解决实际问题的意识和能力.教学重点、难点重点:会用代入法和加减法解简单的二元一次方程组,会用二元一次方程组解决简单的实际问题,体会消元思想和方程思想.难点:理解“二元”向“一元”的转化,掌握代入法和加减法解二元一次方程组的一般步骤.课时设计四课时.教学策略本节课主要通过创设问题情境,引导学生观察迁移、采用发现法、探究法、练习法为辅的教学方法.教学过程一、创设问题情境,引入课题问题1 篮球联赛中每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队10场比赛中得到16分,那么这个队胜、负场数应分别是多少?你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:设胜x 场,负y 场.根据题意,得⎩⎨⎧=+=+16210y x y x ,教师引出本节课内容:这是我们在引言中探讨的问题,我们在上节课列出了方程组,并通过列表找公共解的方法得到了这个方程组的解⎩⎨⎧==46y x ,显然这样的方法需要一个个尝试,有些麻烦,不好操作,所以我们这节课就来探究如何解二元一次方程组.教师追问(1):这个实际问题能用一元一次方程求解吗?师生活动:学生回答:设胜x 场,则负)10(x -场.根据题意,得16)10(2=-+x x . 教师追问(2):对比方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个方把二元一次方程组转化为一元一次方程,先求出一个未知数,再求出另一个未知数.教师总结:这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想程.【设计意图】用引言中的问题引入本节课内容,先列二元一次方程组,再列一元一次方程,对比方程和方程组,发现方程组的解法.二、探究新知问题2 对于二元一次方程组10 216 x y x y ⎧+=⎨+=⎩①②你能写出求x 的过程吗? 师生活动:学生回答:由①,得x y -=10.③把③代入②,得16)10(2=-+x x .解得6=x【设计意图】通过解具体的方程明确消元的过程.教师追问:把③代入①可以吗?师生活动:学生把③代入①,观察结果.【设计意图】由于方程③是由方程①得到的,它只能代入方程②,不能代入方程①,让学生实际操作,得到恒等式,更好地认识这一点.问题3 怎样求y 的值?师生活动:学生回答:把6=x 代入③,得4=y .教师追问(1):代入①或②可不可以?哪种方法更简便?师生活动:学生回答:代入③更简便.教师追问(2):你能写出这个方程组的解,并给出问题的答案吗?师生活动:学生回答:这个方程组的解是⎩⎨⎧==46y x ,这个队胜6场,负4场. 【设计意图】让学生考虑求另一个未知数的过程,并思考如何让优化解法.问题4 你能总结出上述解法的基本步骤吗?其中,哪一步是最关键的步骤?师生活动:教师引导学生总结:变、代、求、写,学生回答:“代入”是最关键的步骤,教师总结:这种方法叫做代入消元法,简称代入法.【设计意图】使学生明确代入法解二元一次方程组的基本步骤,并明确关键步骤是“代入”,将二元一次方程组转化为一元一次方程.问题5 是否有办法得到关于y 的一元一次方程?师生活动:学生具体操作.【设计意图】 让学生尝试不同的代入消元方法,并为后面学生选择简单的代入方法作铺垫.三、应用新知例 用代入法解方程组⎩⎨⎧=-=-14833y x y x师生活动:学生写出用代入法解这个方程组的过程,教师巡视,个别点拨.【设计意图】使学生熟悉代入法解二元一次方程组的步骤,巩固新知.四、加深认识练习 用代入法解下列二元一次方程组:(1)⎩⎨⎧=+=+15253t s t s (2)⎩⎨⎧=-=+33651643y x y x 师生活动:学生写出代入法解这些方程组的过程.【设计意图】本题需要先分析方程组的结构特征,再选择适当的解法,通过此练习,使学生熟练掌握用代入法解二元一次方程组.五、学以致用例 根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g ),两种产品的销售数量(按瓶计算)的比为 ,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?师生活动:教师引导学生列出二元一次方程组,学生写出解这个方程组的过程. 教师追问:上述解方程组的过程能用一个框图表示出来吗?师生活动:教师与学生一起尝试用下列框图表示解方程组的过程:【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用代入5:2法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识.并通过框图形式形象地表示代入法解二元一次方程组的过程,使学生加深理解.六、再探新知问题4 前面我们用代入法求出了方程组10 216 x y x y ⎧+=⎨+=⎩①② 的解,这个方程组的两个方程中,y 的系数有什么关系?你能利用这种关系发现新的消元方法吗?师生活动:学生回答:这两个方程中y 的系数相等,②-①可消去未知数y ,得6=x . 把6=x 代入 ①得,4=y所以这个方程组的解为⎩⎨⎧==46y x .教师追问:①-②也能消去未知数y ,求得x 吗?师生活动:学生具体操作,发现求得的解跟上面相同.【设计意图】让学生发现除代入法以外的其它消元方法:通过两个方程相减实现消元.问题5 联系上面的解法,想一想怎样解方程组⎩⎨⎧=-=+.81015,8.2103y x y x 师生活动:学生回答:由于这两个方程中y 的系数相反,将两个方程相加,可消去未知数y ,求得x ,进而求得y .教师总结:当两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.【设计意图】让学生再次发现新的消元方法:通过两方程相加实现消元,并总结出加减消元法.七、应用新知例 用加减法解方程组⎩⎨⎧=-=+33651643y x y x问题6 上述方程组能直接通过加减消元吗?为什么?师生活动:学生回答:不能,因为同一未知数的系数既不相等也不相反.教师追问:那该怎样变形才能实现消元?师生活动:可以在方程两边同时乘适当的数,使同一未知数的系数相等或相反,再通过将两个方程相加或相减,实现消元.【设计意图】让学生掌握加减消元法的基本步骤,加深对加减法的认识.八、巩固提高练习 用加减法解下列方程组:(1)⎩⎨⎧-=-=+12392y x y x (2)⎩⎨⎧=+=+15432525y x y x 【设计意图】让学生熟练掌握加减消元法解二元一次方程组的步骤,巩固提高.九、学以致用例 2台大收割机和5台小收割机工作2小时收割小麦3.6公顷;3台大收割机和2台小收割机工作5小时收割小麦8公顷.1台大收割机和1台小收割机工作1小时各收割小麦多少公顷?【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用加减法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识,同时加深和巩固对加减法解二元一次方程组的认识.十、归纳总结回顾本节课的学习过程,并回答以下问题:(1)代入法和加减法解二元一次方程组有哪些步骤?(2)解二元一次方程组的基本思路是什么?(3)在探究解法的过程中用到了什么思想方法?你还有哪些收获?【设计意图】让学生总结本节课的主要内容,提炼思想方法.十一、布置作业课本习题教学反思1.应用意识贯穿始终:从问题的提出,到最后的练习,多出环节以实际问题为背景,为解决问题的需要而学习,最后回归到用新知识解决实际问题,既解决了为什么要学习二元一次方程组的解法的问题,同时,由于目标明确具体,学生探究时容易把握方向,在一定程度上分解了难点,提高了学生学习的兴趣.2.循序渐进原则的运用:学生对消元思想的理解很难一步到位,所以采用结合具体问题逐步渗透、感悟,然后提炼升华的方式学习,类似地,对二元一次方程组的解法,经历了从特殊到一般,从简单到复杂的循环上升过程,学生对数学思想的理解随之加深.。
七年级数学下第八章教案(新人教版)[

(四) 总结反思,拓展升华
归纳 二元一次方程定义:
二元一次方程组定义:
二元一次方程组的解的定义:
(五) 课堂跟踪反馈
夯实基础
1.方程 2x 3y 5, xy 3, x 3 1,3x y 2z 0,x2 y 6 中是二元一次方程的有( ) A.1 个 B.2 个 C.3 个 y D.4 个
(三) 应用迁移,巩固提高
例 1 在方程 2x 3y 6 中,(1)用含 x 的代数式表示 y ;(2)用含 y 的代数式表示 x 。
[点拨]本题要求学生把二元一次方程化为用意个未知数的代数式表示另一个未知数的形式,为今后的代入 消元打下基础。
解:(1) y 2 x 2 ;(2) x 3 3 y
1
自主探索 学生自学课本,教师适当加以指导,可以用二元一次方程来解决。
在上述问题中,我们可以设出来年感个未知数,列出二元一次方程组,设胜的场数是 x 场,负的场数是
D. 二元一次方程组一定有解
4.已知代数式 x2 bx c ,当 x 1时,它的值是 2;当 x 1时,它的值是 8,则 b、c 的值是
()
A. b 3, c 4 B. b 3, c 4 C. b 2, c 5 D. b 2, c 5
5.给出两个问题:(1)两数之和为 6,求这两个数?(2)两个房间共住 6 人,每个房间各住几人?这两
设有 x 只鸡,有 y 只兔,根据题意得:
x y 35 2x 4y 94
1. 针对学生列出的这两个方程,引入二元一次方程和二元一次方程组
2. 二元一次方程、二元一次方程组的解
探究 满足 x y 35的值有哪些?请填入表中:
x
…
y
…
教师:那么什么是二元一次方程组的解呢? 学生讨论达成共识:二元一次方程组的解必须同时满足方程组中的两个方程。即:既是方程①的解又是 方程②的解. 教师:二元一次方程的两个方程的公共解叫做这个二元一次方程组的解。
七年级数学人教版下册8.2:消元解二元一次方程组优秀教学案例

一、案例背景
本节课是人教版七年级数学下册第八章第二节的内容,主要讲解消元法解二元一次方程组。在之前的章节中,学生已经学习了二元一次方程的概念、线性方程组的解法及其应用。通过本节课的学习,让学生能够掌握消元法解二元一次方程组的方法,提高他们在实际问题中运用数学知识解决问题的能力。
3.课后总结:鼓励学生在课后总结学习收获,巩固知识,提高数学素养。
五、案例亮点
1.生活情境导入:本节课以购物问题为例,引入二元一次方程组的概念,使学生能够直观地感受到数学与实际的联系,提高他们的学习兴趣和积极性。
2.动画演示:通过多媒体动画展示二元一次方程组的解法,使抽象的数学问题形象化,有助于学生理解消元法的原理和步骤。
3.例题演示:选取典型例题,演示消元法解题过程,让学生直观地感受解题方法。
(三)学生小组讨论
1.分组讨论:将学生分成小组,让他们针对给定的方程组进行讨论。
2.交流分享:小组成员之间分享解题思路和方法,互相学习,共同进步。
3.问题解决:小组合作解决讨论过程中遇到的问题,提高他们的团队协作能力。
(四)总结归纳
(四)反思与评价
1.自我反思:让学生在学习过程中不断反思自己的学习方法和解题思路,提高他们的自我认知能力。
2.同伴评价:学生之间相互评价,给出建设性意见,促进共同进步。
3.教师评价:教师对学生的学习过程和成果进行评价,给予肯定和鼓励,激发他们的学习积极性。
四、教学内容与过程
(一)导入新课
1.生活实例:以购物问题为例,介绍二元一次方程组的实际应用,引发学生对数学问题的关注。
2.动画演示:通过多媒体动画展示二元一次方程组及其解法,激发学生的学习兴趣。
初中数学人教版七年级下册第八章《几何图形的初步认识》教案

初中数学人教版七年级下册第八章《几何图形的初步认识》教案教学目标:1. 知道并认识几何图形中的点、线、面的基本概念。
2. 能够通过观察识别不同的几何图形。
3. 掌握几何图形的命名方法。
教学内容:1. 点、线、面的概念与特征。
2. 不同几何图形的名称及特点。
教学重点:掌握点、线、面的基本概念与特征。
教学难点:正确命名几何图形并分辨其特点。
教学准备:教材《数学人教版七年级下册》、黑板、白板、彩色粉笔、几何图形模型、学生练习册。
教学过程:Step 1:导入(5分钟)教师出示一些日常生活中常见的几何图形的图片,如长方形、正方形、圆等,向学生提问:“你们平时见过这些图形吗?这些图形有什么特点呢?”引导学生思考几何图形的基本特点。
Step 2:点、线与面的概念(10分钟)教师向学生介绍点、线和面的概念,可以通过以下方式进行讲解:1. 点:教师用手指指向教室中的某一点,向学生解释:“这是一个点,点是没有大小和形状的,我们用大写字母来表示点。
”2. 线:教师用一只粉笔在黑板上画一条笔直的线,解释:“这是一条线,线是由无数个点连在一起形成的,线没有厚度,只有长度。
”3. 面:教师向学生展示一个长方形的纸片,解释:“这是一个面,它由无数个线围成,面有两个维度,有长和宽。
”Step 3:观察几何图形(15分钟)教师出示几个几何模型,如长方形模型、三角形模型等,要求学生分别用手指指出这些模型中的点、线和面,并用大声读出其名称。
教师可以逐步引导学生观察并进行讨论,激发学生的兴趣和思考。
Step 4:几何图形的命名(20分钟)教师通过例题向学生讲解几何图形的命名方法,例如:1. 长方形:长方形有四个直角,所以可以命名为“直角四边形”,也可以根据长度命名为“长7cm、宽3cm的长方形”。
2. 三角形:根据角的情况,可以分为等边三角形、等腰三角形和一般三角形。
3. 圆:圆是由一个点向四周等距离延伸形成的,可以通过圆心和半径来命名。
人教版七年级下册数学教案第八章

人教版七年级下册数学教案第八章第八章二元一次方程组全章教案教材内容本章主要内容包括:二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,三元一次方程组解法举例,二元一次方程组的应用。
教材首先从一个篮球联赛中的问题入手,归纳出二元一次方程组及解的概念,并估算简单的二元一次方程的解。
接着,以消元思想为基础,依次讨论了解二元一次方程组的常用方法——代入法和消元法。
然后,选择了三个具有一定综合性的问题:“牛饲料问题”“种植计划问题”“成本与产出问题”,将贯穿全章的实际问题提高到一个新的高度。
最后,通过举例介绍了三元一次方程组的解法,使消元的思想得到了充分的体现。
教学目标〔知识与技能〕1、了解二元一次方程组及相关概念,能设两个未知数,并列方程组表示实际问题中的两种相关的等量关系;2、掌握二元一次方程组的代入法和消元法,能根据二元一次方程组的具体形式选择适当的解法;3、了解三元一次方程组的解法;4、学会运用二元一次方程组解决实际问题,进一步提高学生分析问题和解决问题的能力。
〔过程与方法〕1、以含有多个未知数的实际问题为背景,经历“分析数量关糸,设未知数,列方程,解方程和检验结果”,体会方程组是刻画现实世界中含有多个未知数的问题的数学模型。
2、在把二元一次方程组转化为x=a,y=b的形式的过程中,体会“消元”的思想。
〔情感、态度与价值观〕通过探究实际问题,进一步认识利用二元一次方程组解决问题的基本过程,体会数学的应用价值,提高分析问题、解决问题的能力。
重点难点二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,利用二元一次方程组解决实际问题是重点;以方程组为工具分析问题、解决含有多个未知数的问题是难点。
课时分配二元一次方程组 1课时消元——二元一次方程组的解法4课时再探实际问题与二元一次方程组3课时*三元一次方程组解法举例 2课时本章小结 2课时二元一次方程组[教学目标]理解二元一次方程、二元一次方程组及它们解的概念,会检验一对数是不是二元一次方程组的解。
七年级数学下册 第八章 二元一次方程组 8.3 实际问题与二元一次方程组(第1课时)教案 新人教版

8.3 实际问题与二元一次方程组第1课时【教学目标】知识技能目标1.能够找出实际问题中的已知数和未知数,分析它们之间的等量关系,列出方程组,并解决生活中一些实际问题.2.在列方程组的建模过程中,强化方程的模型思想.过程性目标让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型,培养学生数学应用能力.情感态度目标通过列方程组解决实际问题,培养应用数学意识,提高学习数学的趣味性、现实性、科学性.【重点难点】重点:根据简单应用题的题意列出二元一次方程组.难点:将实际情景中的数量关系抽取出来,并用二元一次方程组表示.【教学过程】一、创设情境知识回顾:列二元一次方程组解决实际问题的一般步骤是什么?进一步提问:如何解二元一次方程组的应用问题?解决实际问题的基本思路:二、新知探究探究点1:和差倍分问题例题讲解例1 (教材P99【探究1】)请同学们讨论以下各题:(1)你有什么办法检验李大叔估计的值是否准确?(2)问题中有几个未知数?(3)能写出题目中的等量关系吗?(4)能用等式表示出来吗?引导学生独立思考,培养学生自主学习的能力.让学生自己动手解答问题,检验知识的掌握情况.【方法指导】解答“和、差、倍、分”问题要善于抓关键词,如“谁比谁大、小、多、少,谁是谁的几倍或几分之几.在谁的基础上增加或减少”等,分析题意,准确找出等量关系.探究点2:行程问题例2 1.(教材P101习题8.3 T2变形)一艘轮船顺流航行时,每小时行32 km;逆流航行时,每小时行28 km,则轮船在静水中的速度是每小时行_______km.(轮船在静水中的速度大于水流速度)2.甲乙两人在400 m的环形跑道上练习赛跑,如果两人同时同地反向跑,经过25秒第一次相遇;如果两人同时同地同向跑,经过250秒甲第一次追上乙.则甲、乙两人的平均速度分别是每秒_______m.要点归纳:环形问题的等量关系1.同时同地反向跑:(v甲+v乙)×t相遇=环长.2.同时同地同向跑:(v甲-v乙)×t追上=环长.解决顺逆流(风)行程问题常用的两个等量关系1.往返路程相等,即顺流(风)速度×顺流(风)时间=逆流(风)速度×逆流(风)时间.2.轮船(飞机)本身速度不变,即顺流(风)速度-水(风)速度=逆流(风)速度+水(风)速度.【方法技巧】行程问题中的两个重要相等关系(1)相遇问题:两人各自走的路程之和等于两地间的距离.(2)追及问题:两人同地不同时,同向而行,直至后者追上前者,两人所走路程相等;两人同时不同地,同向而行,直至后者追上前者,两人所走路程差等于两地的距离.例3 (教材P99探究2)问题1:本题研究的是长方形面积的分割问题,你能画出示意图帮助自己理解吗?问题2:长度涉及的数量关系?问题3:产量比与种植面积的比有什么关系?问题4:你能根据数量关系列出方程组,并解决这个问题吗?问题5:你还能设计其他种植方案吗?三、检测反馈1.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是( )A. B.C. D.2.某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1 225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是 ( )A. B.C. D.3.我校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y 组,则列方程组为( )A. B.C. D.4.如图,用12块相同的小长方形瓷砖拼成一个大的长方形,则每个小长方形瓷砖的面积是( )A.175 cm2B.300 cm2C.375 cm2D.336 cm25.某校去年有学生1000名,今年比去年增加5.4%,其中寄宿学生增加了6%,走读学生减少了2%.问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x名,走读学生y名,则可列出方程组为_______.6.一个两位数,个位上的数字比十位上的数字大4,交换位置后,所得的新两位数比原两位数的4倍少9,则原两位数是_______.7.为了保护生态平衡,绿化环境,国家大力鼓励“退耕还林、还草”,其补偿政策如表(一);某农户承包了一片山坡地种树种草,所得到国家的补偿如表(二),问:该农户种树、种草各多少亩?表(一)种树、种草每亩每年补粮补钱情况表表(二)该农户收到乡政府下发的种树种草亩数及年补偿通知单8.甲、乙两人从相距36 km的两地相向而行,如果甲比乙先动身2 h,那么他们在乙动身2.5 h后相遇;如果乙比甲先动身2 h,那么他们在甲动身3 h后相遇,问甲、乙两人每小时各走多少km?四、本课小结这节课学了什么知识?列二元一次方程组解决实际问题的一般步骤(1)审题.(2)设两个未知数,找两个等量关系.(3)根据等量关系列方程,联立方程组.(4)解方程组.(5)检验并作答.五、布置作业课本第101页第1,2,3题六、板书设计七、教学反思在这节课之前的学习中,学生已经掌握了用方程组表示问题中的条件及解方程组的相关知识,而且探究了用方程组解决具有现实意义的实际问题.(比如92页例2、95页例4).这一节安排了两个实际问题,这些问题比前面的问题更接近现实,数量关系相对比较隐蔽,因此这些问题的分析解决难度比以前的问题也要大些.这节课更为关注建立二元一次方程组数学模型的“探索”过程.它不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理优化的思想意识为学生解决实际问题提供了理论上的科学依据.所以设计本节课的重点应该是使学生在探究如何用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用.教学中我应该根据学生的实际,选取学生熟悉的背景,让学生体会数学建模的思想.在教学中应发挥学生自主学习的积极性,引导学生先独立探究,再进行合作交流.如有侵权请联系告知删除,感谢你们的配合!如有侵权请联系告知删除,感谢你们的配合!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.1二元一次方程组德育目标:学习《中学生日常行为规》第24条:生活节俭,不互相攀比,不乱花钱。
教学目标:1.认识二元一次方程和二元一次方程组.2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.教学重点:理解二元一次方程组的解的意义.教学难点:求二元一次方程的正整数解.学情分析:七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差。
能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。
故要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也是常说的要学会备学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果。
教学方法:指导探究,合作交流教学过程:一、问题导入篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?由问题知道,题中包含两个必须同时满足的条件:胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.这两个条件可以用方程x+y=102x+y=16 表示.上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.把两个方程合在一起,写成x+y=10 ①2x+y=16 ②像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.二、探究新知:满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.为此我们用含x的式子表示y,即y=10-x(x可取一些自然数)上表中哪对x、y的值还满足方程②三、二元一次方程组的概念显然,上表中每一对x、y的值都是方程①的解。
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.如果不考虑方程的实际意义,那么x、y还可以取哪些值?这些值是有限的吗?还可以取x=-1,y=11;x=0.5,y=9.5,等等。
所以,二元一次方程的解有无数对。
上表中哪对x、y的值还满足方程②?x=6,y=4 还满足方程②.也就是说,它们是方程①与方程②的公共解,记作二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.四、典型例题:例1若方程x2 m–1 + 5y 2–3n= 7是二元一次方程.求m2+n的值。
分析:由二元一次方程的概念你可以知道什么?解:依题意,得2 m–1=1,2–3n=1.由2 m–1=1,得m=1由2–3n=1得n=1/3∴m 2+n =1+1/3=4/3.五、课堂练习:1、下列各对数值中是二元一次方程x +2y=2的解的是〔 〕A ⎩⎨⎧==02y x B ⎩⎨⎧=-=22y x C ⎩⎨⎧==10y x D ⎩⎨⎧=-=01y x2、教科书第89页练习和习题8.1 第1、2题六、课堂小结1、二元一次方程、二元一次方程组的概念;2、二元一次方程、二元一次方程组的解.七、作业布置:教科书第90页习题8.1 第3、4题板书设计一、问题导入 四、典型例题思考 例1例2 例3二、探究新知 五、课堂练习三、二元一次方程组的概念 六、课堂小结教学反思 :8.2消元——解二元一次方程组(一)德育目标:学习《中学生日常行为规》第26条:生活有规律,按时作息,珍惜时间,合理安排课余生活,坚持锻炼身体教学目标:1、掌握代入法解二元一次方程组;2、经历探索二元一次方程组的解法的过程,初步体会“消元”的基本思想.重点难点:代入消元法解二元一次方程组是重点;理解“消元”的基本思想是难点。
学情分析:七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差,学习方法不恰当。
能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。
故要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也是常说的要学会备学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果。
教学方法:指导探究,合作交流教学过程:一、知识回顾1、什么是二元一次方程及二元一次方程的解?2、什么是二元一次方程组及二元一次方程组的解?二、提出问题,创设情境篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?在上述问题中,我们可以设出两个未知数,列出二元一次方程组. 这个问题能用一元一次方程解决吗?三、讲授新课1、那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?2、提出问题:从上面的学习中体会到代入法的基本思路是什么?主要步骤有哪些呢?归纳:基本思路:“消元”——把“二元”变为“一元”。
主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表现出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。
这种解方程组的方法称为代入消元法,简称代入法。
3、把下列方程写成用含x的式子表示y的形式:(1)2x-y=3(2)3x+y-1=0 (3)5x-3y = x + y (4)-4x+y = -24、例题分析:例1 解方程组:⎩⎨⎧=-=-14833y x y x 分析:根据消元的思想,解方程组要把两个未知数转化为一个未知数,为此,需要用一个未知数表示另一个未知数。
怎样表示呢?转化成的一元一次方程是什么?解:由①得x=y+3③把③代入②,得 3(y +3)-8y =14解得y=-1把y=-1代人③得x=2.∴⎩⎨⎧-==12y x 归纳:上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.解上面的方程组能消去y 吗?试试看例2四、课堂练习:教科书P93练习 第1、2题五、课堂小结问题1、解方程组的基本思路是什么?问题2、解方程组的方法是什么?六、作业布置:教科书P97 习题8.2 第2题板书设计一、知识回顾二、提出问题,创设情境三、讲授新课提出问题→归纳:基本思路→主要步骤→例题1四、课堂练习五、课堂小结六、作业布置教学反思:8.2消元——解二元一次方程组(二)德育目标:学习《中学生日常行为规》第27条:经常与父母交流生活、学习、思想等情况,尊重父母意见和教导。
教学目标:初步学会用二元一次方程组解决简单的实际问题及有关的数学问题。
重点难点:二元一次方程的运用是重点;用二元一次方程组解决简单的实际问题是难点。
学情分析:七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差,学习方法不恰当。
能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。
故要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也是常说的要学会备学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果。
教学方法:指导探究,合作交流教学过程:一、复习导入上节课我们学习了用代入消元法解二元一次方程组,回忆一下: 怎样用代入消元法解二元一次方程组?什么是二元一次方程组的解?今天我们学习用二元一次方程组解决有关的问题。
二、例题例1已知 12-==y x 是方程组54+=-=+a by x b y ax 的解,求a 、b 的值. 分析:根据方程组的解的意义,我们可以知道什么?解:把 12-==y 代入 54+=-=+a by x b y ax ,得21425a b b a -=⎧⎨⨯+=+⎩把①代入②,得8+2a-1=a+5 解得a =-2把a =-2代入①,得b=-5∴25a b =-⎧⎨=-⎩ 例2 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250 g)两种产品的销售数量比(按瓶计算)为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?分析:问题中有哪些未知量?消毒液应该分装的大瓶数和小瓶数。
问题中有哪些等量关系?大瓶数︰小瓶数=2︰5①②大瓶所装消毒液+小瓶所装消毒液=22.5吨设怎样的未知数可以表示上面的两个等量关系?设这些消毒液应分装x 大瓶和y 小瓶,则⎩⎨⎧=+=2250000025050025y x y x 请你用代入消元法解答上面的方程组。
解之得,2000050000x y =⎧⎨=⎩答:这些消毒液应该分装20000大瓶和50000小瓶.三、课堂练习 课本93练习第3、4题。
四、课堂小结列二元一次方程组解决实际问题与列一元一次方程解决实际问题的思想和步骤是相同的,不同的是一个设一个未知数,一个设两个未知数.一般地,同一个问题既可以列一元一次方程来解决,也可以列二元一次方程组来解决,不过,有时设两个未知数列方程组更方便些。
五、作业: 课本98页的第4、6题.板书设计一、复习导入 四、课堂小结二、例题 五、作业:三、课堂练习教学反思:8.2消元——解二元一次方程组(三)德育目标:学习《中学生日常行为规》第28条:外出和到家时,向父母打招呼,未经家长同意,不得在外住宿或留宿他人。
教学目标:掌握加减法解二元一次方程组。
重点难点:用加减法解二元一次方程组是重点;用加减法解相同未知数的系数不成整数倍的二元一次方程组是难点。
学情分析:七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差,学习方法不恰当。
能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。