真空泵选型与计算

合集下载

真空泵选型与计算

真空泵选型与计算

在真空泵选型前,我们一定弄清楚几个基础概念:理论上是指容积里面不含有任何的物质。

(现实中是不存在真正的真空的)通常把容器内气压低于正常大气压(101325 Pa)的都称之为真空状态。

表示处于真空状态下的气体稀簿程度,通常用压力值来表示。

实际应用中,真空度通常有绝对真空和相对真空两种说法。

从真空表所读得的数值称真空度。

真空度数值是表示出系统压强实际数值低于大气压强的数值,从表上表示出来的数值又称为表压强,业界也称为极限相对压强,即:真空度=大气压强-绝对压强(大气压强一般取101325Pa,水环式真空泵极限绝对压强3300Pa;旋片式真空泵极限绝对压强约10Pa)绝对真空&相对真空极限相对压强相对压强即所测内部压强比“大气压”低多少压强。

表示出系统压强实际数值低于大气压强的数值。

由于容器内部空气被抽,因此内部的压强始终低于容器外部压强。

所以当用相对压强或者表压强表示的时候,数值前面须带负号,表示容器内部压强比外部压强低。

极限绝对压强绝对压强即所测内部压强比”理论真空(理论真空压强值为0Pa)”高多少压强。

它所比较的对象为理论状态的绝对真空压强值。

由于工艺所限,我们无论如何都不能将内部压强抽到绝对真空0Pa这个数值,因此,真空泵所抽的真空值比理论真空值要高。

所以当用绝对真空表示时,数值前面无负号。

例如,设备的真空度标为0.098MPa,实际上是-0.098MPa抽气量抽气量是真空泵抽速的一个衡量因素。

一般单位用L/S和m³/h来表示。

是弥补漏气率的参数。

不难理解,理论下抽一个相同体积的容器,为什么抽气量大的真空泵很容易抽到我们所需的真空度,而抽气量小的真空泵很慢甚至无法抽到我们想要的真空度?因为管路或者容器始终不可能做到绝对不漏气,而抽气量大的弥补了漏气所带来的真空度下降的因素,所以,大气量的很容易抽到理想真空度值。

这里建议,在计算出理论抽气量的情况下,我们尽量选择高一级的抽气量的真空泵。

真空泵选型原则及相关计算公式

真空泵选型原则及相关计算公式

真空泵选型原则及相关计算公式真空泵是一种将气体抽出封闭容器内部形成真空的设备,广泛应用于化工、医药、电子、航天等领域。

在选型过程中,需要考虑以下几个原则:1.最大抽气速度:真空泵的最大抽气速度应能满足设备的工艺要求。

抽气速度的计算公式为:S=(Q2-Q1)/(P2-P1),其中S为抽气速度,Q为流量,P为压力。

2.极限压力:真空泵的极限压力应低于设备所需的真空度。

极限压力的计算公式为:P=(P1V1)/V2,其中P为极限压力,V为容器的体积。

3.工作条件:选择真空泵时需要考虑工作介质的性质以及工作温度等条件。

4.功率和能耗:选用真空泵时要考虑其相应的功率和能耗,以保证在节能的前提下满足工艺需求。

5.维护和保养:真空泵的维护和保养成本也需要考虑在内。

除了以上原则外,还需要考虑一些具体的技术参数,如转速、排气量、冷却方式等。

常见的真空泵类型有:1.机械泵:主要分为旋片式、涡轮式和离心式机械泵。

旋片式机械泵具有体积小、结构简单、价格低廉等优点;涡轮式机械泵适用于高真空条件下的抽气工作;离心式机械泵适用于较大流量和比较低真空度的条件。

2.分子泵:分子泵是真空泵中的高真空泵,其工作原理是通过高速旋转的叶轮把分子和原子推向出口方向。

分子泵适用于高真空和超高真空条件下的抽气工作。

3.扩散泵:扩散泵利用分子在热扩散作用下的运动来抽气。

扩散泵适用于中等真空和高真空条件下的抽气工作。

4.涡旋泵:涡旋泵是一种基于离心力原理工作的真空泵。

涡旋泵适用于高真空和超高真空条件下的抽气工作。

根据不同的工艺要求和实际情况,选型时需要综合考虑各个方面的因素,权衡各个参数和条件,选择最适合的真空泵。

真空泵的选型计算

真空泵的选型计算

第一部分:选用真空泵时需要注意事项1、真空泵的工作压强应该满足真空设备的极限真空及工作压强要求。

如:真空镀膜要求1×10-5mmHg的真空度,选用的真空泵的真空度至少要5×10-6mmHg。

通常选择泵的真空度要高于真空设备真空度半个到一个数量级。

2、正确地选择真空泵的工作点。

每种泵都有一定的工作压强范围,如:扩散泵为10-3~10-7mmHg,在这样宽压强范围内,泵的抽速随压强而变化,其稳定的工作压强范围为5×10-4~5×10-6mmHg。

因而,泵的工作点应该选在这个范围之内,而不能让它在10-8mmHg下长期工作。

又如钛升华泵可以在10-2mmHg下工作,但其工作压强应小于1×10-5mmHg为好。

3、真空泵在其工作压强下,应能排走真空设备工艺过程中产生的全部气体量。

4、正确地组合真空泵。

由于真空泵有选择性抽气,因而,有时选用一种泵不能满足抽气要求,需要几种泵组合起来,互相补充才能满足抽气要求。

如钛升华泵对氢有很高的抽速,但不能抽氦,而三极型溅射离子泵,(或二极型非对称阴极溅射离子泵)对氩有一定的抽速,两者组合起来,便会使真空装置得到较好的真空度。

另外,有的真空泵不能在大气压下工作,需要预真空;有的真空泵出口压强低于大气压,需要前级泵,故都需要把泵组合起来使用。

5、真空设备对油污染的要求。

若设备严格要求无油时,应该选各种无油泵,如:水环泵、分子筛吸附泵、溅射离子泵、低温泵等。

如果要求不严格,可以选择有油泵,加上一些防油污染措施,如加冷阱、障板、挡油阱等,也能达到清洁真空要求。

6、了解被抽气体成分,气体中含不含可凝蒸气,有无颗粒灰尘,有无腐蚀性等。

选择真空泵时,需要知道气体成分,针对被抽气体选择相应的泵。

如果气体中含有蒸气、颗粒、及腐蚀性气体,应该考虑在泵的进气口管路上安装辅助设备,如冷凝器、除尘器等。

7、真空泵排出来的油蒸气对环境的影响如何。

真空泵选型及抽气量计算方法

真空泵选型及抽气量计算方法

在选型前,我们必须弄清楚关于真空泵的几个基础概念。

弄清楚这几个基础概念后,真空泵的选型便是得心应手。

1、真空度:处于真空状态下的气体稀簿程度,通常用真空度表示。

从真空表所读得的数值称真空度。

真空度数值是表示出系统压强实际数值低于大气压强的数值,从表上表示出来的数值又称为表压强,业界也称为极限相对压强,即:真空度=大气压强-绝对压强(大气压强一般取101325Pa,水环式真空泵极限绝对压强3300Pa;旋片式真空泵极限绝对压强约10Pa)2、相对压强:相对压强即所测内部压强比“大气压”低多少压强。

表示出系统压强实际数值低于大气压强的数值。

由于容器内部空气被抽,因此,内部的压强始终低于容器外部压强。

所以当用相对压强或者表压强表示的时候,数值前面必须带负号,表示容器内部压强比外部压强低。

3、绝对压强:绝对压强即所测内部压强比“理论真空(理论真空压强值为0Pa)”高多少压强。

它所比较的对象为理论状态的绝对真空压强值。

由于工艺所限,我们无论如何都不能将内部压强抽到绝对真空0Pa这个数值,因此,真空泵所抽的真空值比理论真空值要高。

所以当用绝对真空表示时,数值前面无负号。

4、抽气量:抽气量是真空泵抽速的一个衡量因素。

一般单位用L/S和m3/h来表示。

是弥补漏气率的参数。

不难理解,理论下抽一个相同体积的容器,为什么抽气量大的真空泵很容易抽到我们所需的真空度,而抽气量小的真空泵很慢甚至无法抽到我们想要的真空度?因为管路或者容器始终不可能做到绝对不漏气,而抽气量大的弥补了漏气所带来的真空度下降的因素,所以,大气量的很容易抽到理想真空度值。

这里建议,在计算出理论抽气量的情况下,我们尽量选择高一级的抽气量的真空泵。

抽气量具体计算公式以下会介绍。

清楚了真空度、绝对压强、相对压强这几个真空泵的基础参数后,我们就可以进入真空泵的正式选型。

要正确选型,必须要满足以下几个条件:1、工艺要求达到的真空度真空泵的工作压力应该满足工艺工作压力要求,选型时真空度要高于真空设备真空度的半个到一个数量级。

真空泵的选型及常用计算公式

真空泵的选型及常用计算公式

真空泵的选型及常用计算公式-CAL-FENGHAI.-(YICAI)-Company One1真空泵选型真空泵的作用就是从真空室中抽除气体分子,降低真空室内的气体压力,使之达到要求的真空度。

概括地讲从大气到极高真空有一个很大的范围,至今为止还没有一种真空系统能覆盖这个范围。

因此,为达到不同产品的工艺指标、工作效率和设备工作寿命要求、不同的真空区段需要选择不同的真空系统配置。

为达到最佳配置,选择真空系统时,应考虑下述各点:确定工作真空范围: ----首先必须检查确定每一种工艺要求的真空度。

因为每一种工艺都有其适应的真空度范围,必须认真研究确定之。

确定极限真空度----在确定了工艺要求的真空度的基础上检查真空泵系统的极限真空度,因为系统的极限真空度决定了系统的最佳工作真空度。

一般来讲,系统的极限真空度比系统的工作真空度低20%,比前级泵的极限真空度低50%。

被抽气体种类与抽气量检查确定工艺要求的抽气种类与抽气量。

因为如果被抽气体种类与泵内液体发生反应,泵系统将被污染。

同时必须考虑确定合适的排气时间与抽气过程中产生的气体量。

真空容积检查确定达到要求的真空度所需要的时间、真空管道的流阻与泄漏。

考虑达到要求真空度后在一定工艺要求条件下维持真空需要的抽气速率。

主真空泵的选择计算S=tLog(P1/P2)其中:S为真空泵抽气速率(L/s)V为真空室容积(L)t为达到要求真空度所需时间(s)P1为初始真空度(Torr)P2为要求真空度(Torr)例如:V=500Lt=30sP1=760TorrP2=50Torr则: S=t Log(P1/P2)=30xLog(760/50)=s当然上式只是理论计算结果,还有若干变量因素未考虑进去,如管道流阻、泄漏、过滤器的流阻、被抽气体温度等。

实际上还应当将安全系数考虑在内。

目前工业中应用最多的是水环式真空泵和旋片式真空泵等一般的要求是:1、真空度、真空容积、主要介质、温度、主要容积类设备。

真空泵选型及抽气量计算方法

真空泵选型及抽气量计算方法

在选型前,我们必须弄清楚关于真空泵的几个基础概念。

弄清楚这几个基础概念后,真空泵的选型便是得心应手。

1、真空度:处于真空状态下的气体稀簿程度,通常用真空度表示。

从真空表所读得的数值称真空度。

真空度数值是表示出系统压强实际数值低于大气压强的数值,从表上表示出来的数值又称为表压强,业界也称为极限相对压强,即:真空度=大气压强-绝对压强(大气压强一般取101325Pa,水环式真空泵极限绝对压强3300Pa;旋片式真空泵极限绝对压强约10Pa)2、相对压强:相对压强即所测内部压强比“大气压”低多少压强。

表示出系统压强实际数值低于大气压强的数值。

由于容器内部空气被抽,因此,内部的压强始终低于容器外部压强。

所以当用相对压强或者表压强表示的时候,数值前面必须带负号,表示容器内部压强比外部压强低。

3、绝对压强:绝对压强即所测内部压强比“理论真空(理论真空压强值为0Pa)”高多少压强。

它所比较的对象为理论状态的绝对真空压强值。

由于工艺所限,我们无论如何都不能将内部压强抽到绝对真空0Pa这个数值,因此,真空泵所抽的真空值比理论真空值要高。

所以当用绝对真空表示时,数值前面无负号。

4、抽气量:抽气量是真空泵抽速的一个衡量因素。

一般单位用L/S和m3/h来表示。

是弥补漏气率的参数。

不难理解,理论下抽一个相同体积的容器,为什么抽气量大的真空泵很容易抽到我们所需的真空度,而抽气量小的真空泵很慢甚至无法抽到我们想要的真空度?因为管路或者容器始终不可能做到绝对不漏气,而抽气量大的弥补了漏气所带来的真空度下降的因素,所以,大气量的很容易抽到理想真空度值。

这里建议,在计算出理论抽气量的情况下,我们尽量选择高一级的抽气量的真空泵。

抽气量具体计算公式以下会介绍。

清楚了真空度、绝对压强、相对压强这几个真空泵的基础参数后,我们就可以进入真空泵的正式选型。

要正确选型,必须要满足以下几个条件:1、工艺要求达到的真空度真空泵的工作压力应该满足工艺工作压力要求,选型时真空度要高于真空设备真空度的半个到一个数量级。

真空泵的选型及数据计算

真空泵的选型及数据计算

真空泵的选型及数据计算一、选型在选择真空泵时,需要考虑以下几个关键因素:1.所需真空度:根据实际工艺要求和使用场景确定所需真空度范围,可以选择不同类型的真空泵,如机械泵、分子泵等。

2.泵速:根据系统泄漏率和抽取速率确定所需泵速,以保证达到所需真空度的时间。

3.泵的可靠性和维护要求:考虑泵的可靠性、使用寿命和维护保养成本,选择适合的泵。

4.工作环境和介质特性:考虑泵的材质和密封性能,以适应工作环境和介质特性。

总的来说,选型真空泵时需要综合考虑所需真空度、泵速、可靠性和维护要求,以及工作环境和介质特性。

二、数据计算在选型真空泵之前,需要进行一些数据计算,以确定所需真空泵的参数。

1.系统泄漏率计算系统泄漏率是指系统在真空状态下单位时间内泄漏的气体量。

可以通过以下公式计算系统泄漏率:其中,气体流速为单位时间内进入系统的气体量,单位为毫升/分钟;温度为系统的温度,单位为摄氏度。

得到的系统泄漏率单位为毫升/分钟。

2.抽取速率计算抽取速率是指真空泵单位时间内抽取的气体量,可以通过以下公式计算抽取速率:抽取速率=泵速×(1-系统泄漏率)其中,泵速为真空泵的泵速,单位为毫升/分钟。

3.进气量计算进气量是指进入真空泵的总气体量,可以通过以下公式计算进气量:进气量=抽取速率×抽取时间其中,抽取时间为达到所需真空度所需的时间,单位为分钟。

根据以上数据计算,可以得到所需真空泵的合适参数,如泵速、抽取速率和进气量。

根据这些参数,可以选择合适的真空泵。

总结在选型真空泵时,需要综合考虑所需真空度、泵速、可靠性和维护要求,以及工作环境和介质特性。

在进行选型之前,需要进行数据计算,如系统泄漏率、抽取速率和进气量的计算。

通过这些计算,可以确定所需真空泵的参数,并选择合适的真空泵。

真空泵的选型及常用计算公式

真空泵的选型及常用计算公式

真空泵的选型及常用计算公式Revised as of 23 November 2020真空泵选型真空泵的作用就是从真空室中抽除气体分子,降低真空室内的气体压力,使之达到要求的真空度。

概括地讲从大气到极高真空有一个很大的范围,至今为止还没有一种真空系统能覆盖这个范围。

因此,为达到不同产品的工艺指标、工作效率和设备工作寿命要求、不同的真空区段需要选择不同的真空系统配置。

为达到最佳配置,选择真空系统时,应考虑下述各点:确定工作真空范围: ----首先必须检查确定每一种工艺要求的真空度。

因为每一种工艺都有其适应的真空度范围,必须认真研究确定之。

确定极限真空度----在确定了工艺要求的真空度的基础上检查真空泵系统的极限真空度,因为系统的极限真空度决定了系统的最佳工作真空度。

一般来讲,系统的极限真空度比系统的工作真空度低20%,比前级泵的极限真空度低50%。

被抽气体种类与抽气量检查确定工艺要求的抽气种类与抽气量。

因为如果被抽气体种类与泵内液体发生反应,泵系统将被污染。

同时必须考虑确定合适的排气时间与抽气过程中产生的气体量。

真空容积检查确定达到要求的真空度所需要的时间、真空管道的流阻与泄漏。

考虑达到要求真空度后在一定工艺要求条件下维持真空需要的抽气速率。

主真空泵的选择计算S=tLog(P1/P2)其中:S为真空泵抽气速率(L/s)V为真空室容积(L)t为达到要求真空度所需时间(s)P1为初始真空度(Torr)P2为要求真空度(Torr)例如:V=500Lt=30sP1=760TorrP2=50Torr则: S=t Log(P1/P2)=30xLog(760/50)=s当然上式只是理论计算结果,还有若干变量因素未考虑进去,如管道流阻、泄漏、过滤器的流阻、被抽气体温度等。

实际上还应当将安全系数考虑在内。

目前工业中应用最多的是水环式真空泵和旋片式真空泵等一般的要求是:1、真空度、真空容积、主要介质、温度、主要容积类设备。

真空泵的选型及常用计算公式

真空泵的选型及常用计算公式

真空泵选型真空泵的作用就是从真空室中抽除气体分子,降低真空室的气体压力,使之达到要求的真空度。

概括地讲从大气到极高真空有一个很大的围,至今为止还没有一种真空系统能覆盖这个围。

因此,为达到不同产品的工艺指标、工作效率和设备工作寿命要求、不同的真空区段需要选择不同的真空系统配置。

为达到最佳配置,选择真空系统时,应考虑下述各点:确定工作真空围: ----首先必须检查确定每一种工艺要求的真空度。

因为每一种工艺都有其适应的真空度围,必须认真研究确定之。

确定极限真空度----在确定了工艺要求的真空度的基础上检查真空泵系统的极限真空度,因为系统的极限真空度决定了系统的最佳工作真空度。

一般来讲,系统的极限真空度比系统的工作真空度低20%,比前级泵的极限真空度低50%。

被抽气体种类与抽气量检查确定工艺要求的抽气种类与抽气量。

因为如果被抽气体种类与泵液体发生反应,泵系统将被污染。

同时必须考虑确定合适的排气时间与抽气过程中产生的气体量。

真空容积检查确定达到要求的真空度所需要的时间、真空管道的流阻与泄漏。

考虑达到要求真空度后在一定工艺要求条件下维持真空需要的抽气速率。

主真空泵的选择计算S=2.303V/tLog(P1/P2)其中:S为真空泵抽气速率(L/s)V为真空室容积(L)t为达到要求真空度所需时间(s)P1为初始真空度(Torr)P2为要求真空度(Torr)例如:V=500Lt=30sP1=760TorrP2=50Torr则: S=2.303V/t Log(P1/P2)=2.303x500/30xLog(760/50)=35.4L/s当然上式只是理论计算结果,还有若干变量因素未考虑进去,如管道流阻、泄漏、过滤器的流阻、被抽气体温度等。

实际上还应当将安全系数考虑在。

目前工业中应用最多的是水环式真空泵和旋片式真空泵等一般的要:1、真空度、真空容积、主要介质、温度、主要容积类设备。

2、真空流入介质及流量、压力、温度、规律。

真空泵的选型及常用计算公式

真空泵的选型及常用计算公式

真空泵选型真空泵的作用就是从真空室中抽除气体分子,降低真空室内的气体压力,使之达到要求的真空度。

概括地讲从大气到极高真空有一个很大的范围,至今为止还没有一种真空系统能覆盖这个范围。

因此,为达到不同产品的工艺指标、工作效率和设备工作寿命要求、不同的真空区段需要选择不同的真空系统配置。

为达到最佳配置,选择真空系统时,应考虑下述各点:确定工作真空范围: ----首先必须检查确定每一种工艺要求的真空度。

因为每一种工艺都有其适应的真空度范围,必须认真研究确定之。

确定极限真空度----在确定了工艺要求的真空度的基础上检查真空泵系统的极限真空度,因为系统的极限真空度决定了系统的最佳工作真空度。

一般来讲,系统的极限真空度比系统的工作真空度低20%,比前级泵的极限真空度低50%。

被抽气体种类与抽气量检查确定工艺要求的抽气种类与抽气量。

因为如果被抽气体种类与泵内液体发生反应,泵系统将被污染。

同时必须考虑确定合适的排气时间与抽气过程中产生的气体量。

真空容积检查确定达到要求的真空度所需要的时间、真空管道的流阻与泄漏。

考虑达到要求真空度后在一定工艺要求条件下维持真空需要的抽气速率。

主真空泵的选择计算S=2.303V/tLog(P1/P2)其中:S为真空泵抽气速率(L/s)V为真空室容积(L)t为达到要求真空度所需时间(s)P1为初始真空度(Torr)P2为要求真空度(Torr)例如:V=500Lt=30sP1=760TorrP2=50Torr则: S=2.303V/t Log(P1/P2)=2.303x500/30xLog(760/50)=35.4L/s当然上式只是理论计算结果,还有若干变量因素未考虑进去,如管道流阻、泄漏、过滤器的流阻、被抽气体温度等。

实际上还应当将安全系数考虑在内。

目前工业中应用最多的是水环式真空泵和旋片式真空泵等一般的要求是:1、真空度、真空容积、主要介质、温度、主要容积类设备。

2、真空流入介质及流量、压力、温度、规律。

真空泵选型原则及相关计算公式

真空泵选型原则及相关计算公式

真空泵选型原则及相关计算公式在选择类型之前,我们必须弄清楚真空泵的一些基本概念。

真空度:真空下气体的稀薄度,通常用真空度表示。

从真空计读取的值称为真空度。

真空度是指系统压力的实际值低于大气压力,从表中表示的值也称为表压力,行业中也称为极限相对压力,即:真空=大气压力-绝对压力(大气压力一般为101325Pa,水环真空泵极限绝对压力为3300Pa;旋叶真空泵最大绝对压力约为10Pa)极限相对压力: 相对压力是指测得的内部压力比“大气压力”低多少。

说明系统实际压力值小于大气压力。

当容器内的空气被泵送时,容器内的压力总是低于容器外的压力。

因此,当用相对压力或表压表示时,该值的前面必须加一个负号,表示容器内部压力小于外部压力。

极限绝对压力:绝对压力是指测得的内部压力高于“理论真空(理论真空压力为0Pa)”的压力。

比较了理论状态下的绝对真空压力值。

由于工艺限制,我们在任何情况下都不能将内部压力泵到绝对真空值0Pa。

因此,真空泵抽吸的真空值高于理论真空值。

因此,当在绝对真空中表示时,值前面没有负号。

抽气量:抽气量是衡量真空泵抽速的一个指标。

L/S和m为一般单位³/ h,是补偿漏风率的参数。

不难理解,从理论上讲,在抽同样体积的容器时,为什么抽气量大的真空泵很容易抽出我们需要的真空,而抽气量小的真空泵却很慢甚至不能抽出我们想要的真空?由于管道或容器永远不可能达到绝对气密性,而大量抽气又弥补了漏气造成真空度下降的因素,很容易将空气抽到理想的真空度。

这里建议在计算理论抽气量时尽量选择抽气量较高的真空泵。

具体抽气量计算公式如下。

知道真空度、绝对压力、相对压力等基本参数后,就可以进入真空泵的正式选型。

1. 工艺所需的真空度真空泵的工作压力应满足工艺工作压力的要求,真空度应比真空设备的真空度高半个至一个数量级。

(如真空工艺要求真空度为100pa(绝对压力),所选真空泵的真空度应至少为50pa-10pa)。

一般情况下,如果要求绝对压力高于3300Pa,首选水环真空泵作为真空装置。

真空泵的选型及数据计算

真空泵的选型及数据计算

第一部分:选用真空泵时需要注意事项:1、真空泵的工作压强应该满足真空设备的极限真空及工作压强要求。

如:真空镀膜要求1×10-5mmHg的真空度,选用的真空泵的真空度至少要5×10-6mmHg。

通常选择泵的真空度要高于真空设备真空度半个到一个数量级。

2、正确地选择真空泵的工作点。

每种泵都有一定的工作压强范围,如:扩散泵为10-3~10-7mmHg,在这样宽压强范围内,泵的抽速随压强而变化,其稳定的工作压强范围为5×10-4~5×10-6mmHg。

因而,泵的工作点应该选在这个范围之内,而不能让它在10-8mmHg下长期工作。

又如钛升华泵可以在10-2mmHg下工作,但其工作压强应小于1×10-5mmHg为好。

3、真空泵在其工作压强下,应能排走真空设备工艺过程中产生的全部气体量。

4、正确地组合真空泵。

由于真空泵有选择性抽气,因而,有时选用一种泵不能满足抽气要求,需要几种泵组合起来,互相补充才能满足抽气要求。

如钛升华泵对氢有很高的抽速,但不能抽氦,而三极型溅射离子泵,(或二极型非对称阴极溅射离子泵)对氩有一定的抽速,两者组合起来,便会使真空装置得到较好的真空度。

另外,有的真空泵不能在大气压下工作,需要预真空;有的真空泵出口压强低于大气压,需要前级泵,故都需要把泵组合起来使用。

5、真空设备对油污染的要求。

若设备严格要求无油时,应该选各种无油泵,如:水环泵、分子筛吸附泵、溅射离子泵、低温泵等。

如果要求不严格,可以选择有油泵,加上一些防油污染措施,如加冷阱、障板、挡油阱等,也能达到清洁真空要求。

6、了解被抽气体成分,气体中含不含可凝蒸气,有无颗粒灰尘,有无腐蚀性等。

选择真空泵时,需要知道气体成分,针对被抽气体选择相应的泵。

如果气体中含有蒸气、颗粒、及腐蚀性气体,应该考虑在泵的进气口管路上安装辅助设备,如冷凝器、除尘器等。

7、真空泵排出来的油蒸气对环境的影响如何。

真空泵的选型计算

真空泵的选型计算

真空泵的选型计算第一部分:选用真空泵时需要注意事项1、真空泵的工作压强应该满足真空设备的极限真空及工作压强要求。

如:真空镀膜要求1x iO-5mmHg的真空度,选用的真空泵的真空度至少要5X10-6mmHg。

通常选择泵的真空度要高于真空设备真空度半个到一个数量级。

2、正确地选择真空泵的工作点。

每种泵都有一定的工作压强范围,如:扩散泵为10-3~10-7mmHg,在这样宽压强范围内,泵的抽速随压强而变化,其稳定的工作压强范围为5X10-4~5X10-6mmHg。

因而,泵的工作点应该选在这个范围之内,而不能让它在10-8mmHg下长期工作。

又如钛升华泵可以在10-2mmHg下工作,但其工作压强应小于1X0-5mmHg为好。

3、真空泵在其工作压强下,应能排走真空设备工艺过程中产生的全部气体量。

4、正确地组合真空泵。

由于真空泵有选择性抽气,因而,有时选用一种泵不能满足抽气要求,需要几种泵组合起来,互相补充才能满足抽气要求。

如钛升华泵对氢有很高的抽速,但不能抽氦,而三极型溅射离子泵,(或二极型非对称阴极溅射离子泵)对氩有一定的抽速,两者组合起来,便会使真空装置得到较好的真空度。

另外,有的真空泵不能在大气压下工作,需要预真空;有的真空泵出口压强低于大气压,需要前级泵,故都需要把泵组合起来使用。

5、真空设备对油污染的要求。

若设备严格要求无油时,应该选各种无油泵,如:水环泵、分子筛吸附泵、溅射离子泵、低温泵等。

如果要求不严格,可以选择有油泵,加上一些防油污染措施,如加冷阱、障板、挡油阱等,也能达到清洁真空要求。

6、了解被抽气体成分,气体中含不含可凝蒸气,有无颗粒灰尘,有无腐蚀性等。

选择真空泵时,需要知道气体成分,针对被抽气体选择相应的泵。

如果气体中含有蒸气、颗粒、及腐蚀性气体,应该考虑在泵的进气口管路上安装辅助设备,如冷凝器、除尘器等。

7、真空泵排出来的油蒸气对环境的影响如何。

如果环境不允许有污染,可以选无油真空泵,或者把油蒸气排到室外。

真空泵的选型及常用计算公式汇总

真空泵的选型及常用计算公式汇总

真空泵的选型及常用计算公式汇总真空泵是一种用于排除或稀释气体,从而产生真空环境的设备。

根据不同的工作原理和应用要求,有多种类型的真空泵可供选择。

在选择真空泵时,需要考虑以下几个因素:1.抽气速度:真空泵的抽气速度是指单位时间内泵排除的气体体积。

根据需要排除的气体量和所需真空度,可以选择相应抽气速度的真空泵。

抽气速度的计算公式为:Q=S*V/t,其中Q为抽气速度,S为泵的截面面积,V为气体体积,t为时间。

2.最终真空度:最终真空度是真空泵能够达到的最低气压。

根据不同的需求,可以选择相应真空度的真空泵。

3.工作压力范围:真空泵的工作压力范围是指能够正常工作的最低和最高气压。

根据实际工作需求,选择符合要求的工作压力范围的真空泵。

4.耐腐蚀性能:根据实际工作环境中的气体成分和性质,选择具有一定耐腐蚀性的真空泵。

常见的真空泵类型包括:1.机械泵:机械泵是一种通过机械运动排除气体的真空泵,常见的有旋片泵和游动叶片泵。

机械泵的抽气速度较大,适用于高真空度和大气体体积的排除。

2.根引泵:根引泵是一种通过气体动交换和泵排除气体的真空泵。

它具有较高的抽气速度和较低的最终真空度,但对气体的腐蚀性较敏感。

3.涡旋泵:涡旋泵是一种通过其扇叶旋转形成气体流动并排除气体的真空泵。

它具有较高的抽气速度和较低的最终真空度,适用于中高真空度的应用。

4.分子泵:分子泵是一种通过分子速度较大的气体通入减压室的真空泵,通过被排除气体的分子流动形成真空。

分子泵具有非常高的抽气速度和极低的最终真空度,适用于超高真空环境。

在使用真空泵进行抽气时,可以根据下列公式进行一些常见的计算:1.泵速计算公式:泵速的单位通常为升/秒或立方米/小时。

泵速的计算公式为:Q=pA/RT,其中Q为泵速,p为气体压力,A为包围泵的截面面积,R为气体常数,T为气体的温度。

2.泄漏速度计算公式:泄漏速度是指通过真空系统一定时间内泄漏到系统内部的气体体积。

泄漏速度的计算公式为:V=Q*t,其中V为泄漏速度,Q为泵速,t为时间。

真空泵的选型及常用计算公式

真空泵的选型及常用计算公式

真空泵的选型及常用计算公式-CAL-FENGHAI.-(YICAI)-Company One1真空泵选型真空泵的作用就是从真空室中抽除气体分子,降低真空室内的气体压力,使之达到要求的真空度。

概括地讲从大气到极高真空有一个很大的范围,至今为止还没有一种真空系统能覆盖这个范围。

因此,为达到不同产品的工艺指标、工作效率和设备工作寿命要求、不同的真空区段需要选择不同的真空系统配置。

为达到最佳配置,选择真空系统时,应考虑下述各点:确定工作真空范围: ----首先必须检查确定每一种工艺要求的真空度。

因为每一种工艺都有其适应的真空度范围,必须认真研究确定之。

确定极限真空度----在确定了工艺要求的真空度的基础上检查真空泵系统的极限真空度,因为系统的极限真空度决定了系统的最佳工作真空度。

一般来讲,系统的极限真空度比系统的工作真空度低20%,比前级泵的极限真空度低50%。

被抽气体种类与抽气量检查确定工艺要求的抽气种类与抽气量。

因为如果被抽气体种类与泵内液体发生反应,泵系统将被污染。

同时必须考虑确定合适的排气时间与抽气过程中产生的气体量。

真空容积检查确定达到要求的真空度所需要的时间、真空管道的流阻与泄漏。

考虑达到要求真空度后在一定工艺要求条件下维持真空需要的抽气速率。

主真空泵的选择计算S=tLog(P1/P2)其中:S为真空泵抽气速率(L/s)V为真空室容积(L)t为达到要求真空度所需时间(s)P1为初始真空度(Torr)P2为要求真空度(Torr)例如:V=500Lt=30sP1=760TorrP2=50Torr则: S=t Log(P1/P2)=30xLog(760/50)=s当然上式只是理论计算结果,还有若干变量因素未考虑进去,如管道流阻、泄漏、过滤器的流阻、被抽气体温度等。

实际上还应当将安全系数考虑在内。

目前工业中应用最多的是水环式真空泵和旋片式真空泵等一般的要求是:1、真空度、真空容积、主要介质、温度、主要容积类设备。

真空泵的选型及常用计算公式

真空泵的选型及常用计算公式

.真空泵选型真空泵的作用就是从真空室中抽除气体分子,降低真空室内的气体压力,使之达到要求的真空度。

概括地讲从大气到极高真空有一个很大的范围,至今为止还没有一种真空系统能覆盖这个范围。

因此,为达到不同产品的工艺指标、工作效率和设备工作寿命要求、不同的真空区段需要选择不同的真空系统配置。

为达到最佳配置,选择真空系统时,应考虑下述各点:确定工作真空范围: ----首先必须检查确定每一种工艺要求的真空度。

因为每一种工艺都有其适应的真空度范围,必须认真研究确定之。

确定极限真空度----在确定了工艺要求的真空度的基础上检查真空泵系统的极限真空度,因为系统的极限真空度决定了系统的最佳工作真空度。

一般来讲,系统的极限真空度比系统的工作真空度低20%,比前级泵的极限真空度低50%。

被抽气体种类与抽气量检查确定工艺要求的抽气种类与抽气量。

因为如果被抽气体种类与泵内液体发生反应,泵系统将被污染。

同时必须考虑确定合适的排气时间与抽气过程中产生的气体量。

真空容积检查确定达到要求的真空度所需要的时间、真空管道的流阻与泄漏。

考虑达到要求真空度后在一定工艺要求条件下维持真空需要的抽气速率。

主真空泵的选择计算S=2.303V/tLog(P1/P2)其中:S为真空泵抽气速率(L/s)V为真空室容积(L)t为达到要求真空度所需时间(s);..P1为初始真空度(Torr)P2为要求真空度(Torr)例如:V=500Lt=30sP1=760TorrP2=50Torr则: S=2.303V/t Log(P1/P2)=2.303x500/30xLog(760/50)=35.4L/s当然上式只是理论计算结果,还有若干变量因素未考虑进去,如管道流阻、泄漏、过滤器的流阻、被抽气体温度等。

实际上还应当将安全系数考虑在内。

目前工业中应用最多的是水环式真空泵和旋片式真空泵等一般的要求是:1、真空度、真空容积、主要介质、温度、主要容积类设备。

2、真空流入介质及流量、压力、温度、规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在真空泵选型前,我们一定弄清楚几个基础概念:
真空理论上是指容积里面不含有任何的物质。

(现实中是不存在真正的真空的)通常把容器内气压低于正常大气压(101325 Pa)的都称之为真空状态。

真空度表示处于真空状态下的气体稀簿程度,通常用压力值来表示。

实际应用中,真空度通常有绝对真空和相对真空两种说法。

从真空表所读得的数值称真空度。

真空度数值是表示出系统压强实际数值低于大气压强的数值,从表上表示出来的数值又称为表压强,业界也称为极限相对压强,即:真空度=大气压强-绝对压强(大气压强一般取101325Pa,水环式真空泵极限绝对压强3300Pa;旋片式真空泵极限绝对压强约10Pa)
绝对真空&相对真空
极限相对压强相对压强即所测内部压强比“大气压”低多少压强。

表示出系统压强实际数值低于大气压强的数值。

由于容器内部空气被抽,因此内部的压强始终低于容器外部压强。

所以当用相对压强或者表压强表示的时候,数值前面须带负号,表示容器内部压强比外部压强低。

极限绝对压强绝对压强即所测内部压强比”理论真空(理论真空压强值为0Pa)”高多少压强。

它所比较的对象为理论状态的绝对真空压强值。

由于工艺所限,我们无论如何都不能将内部压强抽到绝对真空0Pa这个数值,因此,真空泵所抽的真空值比理论真空值要高。

所以当用绝对真空表示时,数值前面无负号。

例如,设备的真空度标为0.098MPa,实际上是-0.098MPa
抽气量抽气量是真空泵抽速的一个衡量因素。

一般单位用L/S和m³/h来表示。

是弥补漏气率的参数。

不难理解,理论下抽一个相同体积的容器,为什么抽气量大的真空泵很容易抽到我们所需的真空度,而抽气量小的真空泵很慢甚至无法抽到我们想要的真空度?因为管路或者容器始终不可能做到绝对不漏气,而抽气量大的弥补了漏气所带来的真空度下降的因素,所以,大气量的很容易抽到理想真空度值。

这里建议,在计算出理论抽气量的情况下,我们尽量选择高一级的抽气量的真空泵。

抽气量具体计算公式以下会介绍。

他们Pa, KPa, MPa, mbar, bar, mmH2O, Psi之间的换算方式如下表:
下面进入真空泵的选型。

1、工艺要求达到的真空度
真空泵的工作压力应该满足工艺工作压力要求,选型时真空度要高于真空设备真空度的半个到一个数量级。

(如:真空工艺要求100pa(绝对压力)的真空度,选用真空泵的真空度至少要50pa-10pa)。

一般如果要求绝对压强高于3300Pa则优先选择水环式真空泵作为真空装置,如果绝对压强要求低于3300Pa,则不能选择水环式真空泵,选择旋片式真空泵或更高真空级别的真空泵作为真空获得装置。

2、工艺要求的抽气量(抽气速率)
真空泵要求抽气速率(即要求真空泵在其工作压力下,排出气体、液体,固体的能力),一般
单位:m3/h,L/S,m3/min。

具体计算方法可以参考下面公式自行计算选型。

当然,真空泵的选型是一个综合过程,涉及到相关经验等因素。

S=(V/t)×ln(P1/P2)
其中:S为真空泵抽气速率(L/s)
V为真空室容积(L)
t为达到要求真空度所需时间(s)
P1为初始压强(Pa)
P2为要求压强(Pa)
3、判定被抽物体的成分
第一、被抽物体是气体、液体还是颗粒,如果被抽气体中含有水汽或少量颗粒性和粉尘等杂质,慎选旋片式真空泵,如果真空度要求较高,则应加过滤装置加以过滤方能使用旋片式真空泵做真空获得设备。

第二、要知道被抽物体是否有腐蚀(酸性还是碱性,PH值是多少?),若含有酸碱腐蚀或有机腐蚀等因素的气体,应过滤或中和处理才能选旋片式真空泵。

第三、被抽物体是否对橡胶或油品有污染?针对不同的被抽介质要选用相应的真空设备,如果气体中含有大量蒸气、颗粒、及腐蚀性气体,应该考虑在泵的进气口管路上安装相应的辅助设备,如冷凝器,过滤器等(具体联系我们相应技术工程人员)。

第四、真空泵的噪音,振动,美观的对工厂是否有影响。

第五、俗话说,便宜没好货。

购买真空泵和真空设备时,还应优先考虑设备的质量、运输及其维修和保养费用等。

真空泵的抽速和真空机组的配置:
不同的真空系统要求的真空度不同。

因此往往必须由一套真空机组来完成,即由工作在不同
压力范围的真空泵串接起来。

高真空一侧的真空泵能达到系统要求的真空度,而低真空一侧的真空泵是直排大气的。

显然最简单的真空机组就是一台直排大气的真空泵。

但高真空系统一般需要三级机组,中真空一般需要二级机组。

一台高真空泵和一台低真空泵难于组成有效的高真空机组。

这有几方面的原因。

流量的连续性就是其中之一。

高真空泵都有前级耐压的限制,即前级高于某一压力,泵就不能正常工作。

而当前级泵达到这一临界压力时,往往抽速会减小,这样前级泵的排气流量可能会小于主泵的排气流量,这种流量的不一致破坏了流量连续性的要求,必然会引起真空机组不能正常工作。

但如在高低真空泵之间再连接一台中真空泵,便可起到承上启下的作用,流量连续,而且各泵皆可工作在最佳状态。

罗茨泵能工作在中真空范围,是最适合的,故又称罗茨增压泵,由于其压缩比不高正好可连接几Pa至几百Pa的范围。

当三级高真空机组进入较高的真空度时,由于主泵的排气流量明显减少,此时仅靠一台较小的前级泵便可维持抽气的连续性,在实际运用中这是经常采用的方法,这样可减少机组的能耗。

高真空机组往往需要三级机组的另一个原因归结于高真空泵的吸入压力的限制。

泵都有起始工作压强,传统的高真空泵都在几Pa的范围。

因此,前级泵须预抽到这一压力主泵才能开始工作。

但直排大气的前级泵抽至这一压力往往需要较长的时间,因为随着压力降低,泵的抽速在减小,特别是对于周期性抽气的真空机组,对达到工作真空度的时间是有要求的,预抽时间越长进入工作真空度的时间也越长,故增加一台中真空泵与前级低真空泵配合,可在较短的时间达到主泵可以工作的压力,这样可以使系统尽快地进入工作压力,保证了设备的使用效率。

罗茨泵和油增压泵都可以作为中真空泵,分子增压泵有极高的压缩比,这除了使它能获得清洁真空外还具有优异的高真空性能,同时在中真空范围也有超强的抽气能力。

这就使分子增压泵成为目前唯一兼有中高真空性能的真空泵,所以只需要与低真空泵配合便能组成性能堪比三级机组的高真空机组。

具体地讲由于分子增压泵耐压高,所以可使前级泵易于处于高流量状态;而分
子增压泵吸入压力高,减缓了前级泵的预抽负担。

分子增压泵可以在100-50Pa工作,前级泵从大气到这一压力,基本遵从每经过时间压力降低一个数量级的规律,因此,机组可以具有很高的抽气效率。

简化高真空机组,取消罗茨泵是分子增压泵的又一个优势。

对于较大型的高真空应用设备,也可适当加强前级泵的预抽能力,进一步缩短抽气时间,由于预抽时间与整个排气过程相比很短,所以前级泵的使用时间也很短,因此可以兼作多套设备的预抽作用,而这往往是非常现实的。

这就使规模化应用的真空机组得到大大的简化。

在某些中真空应用中,需要进入10-1Pa范围,这对罗茨泵的二级机组往往难于实现,而使用二级罗茨泵串接的三级机组可使真空度提高一个数量级而进入10-1Pa,所以中真空应用也常用三级机组。

由于分子增压泵在10-1Pa可以满抽速,所以亦可以在三级中真空机组中取代两级罗茨泵。

一般地讲长时间工作在中真空的低端压力范围的罗茨泵,分子增压泵可以完全取代。

而长时间工作在中真空高端压力范围的罗茨泵相对而言应该较少,因为这一压力范围前级泵往往还具有强劲的抽速。

相关文档
最新文档