人教版六年级下册知识点汇总

合集下载

人教版六年级数学下册知识点归纳总结

人教版六年级数学下册知识点归纳总结

第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 2/5……是远远不够的。

所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

若一个数小于0,则称它是一个负数。

负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于0,则称它是一个正数。

正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。

例如:+2,,+45,2/54、0 既不是正数,也不是负数,它是正、负数的分界限负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:6、比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。

负数之间比较大小,数字大的反而小,数字小的反而大1/3>1/6 -1/3<-1/6(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。

通称“打折”。

几折就是十分之几,也就是百分之几十。

例如:八折=8/10=80﹪,六折五=10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。

例如:一成=1/10=10﹪八成五=10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

最新人教版小学六年级语文下册全册知识要点汇总

最新人教版小学六年级语文下册全册知识要点汇总

部编六年级下册知识点汇总第一单元知识小结一、字词盘点1.字(1)难读的字擦(c ā) 戚(q ī) 腻(n ì) 匙(ch í) 脉(m ò)栖(q ī)(2)难写的字眨:部首是“目”,右边是“乏”。

燃:左窄右宽,注意不要少写“然”右上角的点。

腻:左窄右宽,注意右边“贰”两短横在“弋”的下面。

褐:左窄右宽,部首是“衤”,不是“礻”。

盈:上边是“乃”+“又”,下边是“皿”。

(3)多音字正{zh ēn ɡ(正月)zh èn ɡ(正好) 铺{p ù(店铺)p ū(铺盖) 咽{ y àn(咽唾沫)y ān(咽喉)y è(呜咽)脏{z ān ɡ(脏水)z àn ɡ(心脏) 纤{xi ān(纤细)qi àn(纤夫) 脉{m ò(脉脉)m ài(脉搏)撒{s ǎ(播撒)s ā(撒网) 散{s ǎn(松散)s àn(解散)2.词(1)必须掌握的词腊月展览风筝空竹口琴更新鞭炮除夕春联扫除年糕充足店铺开张对联年画通宵间断除非万不得已必定光景截然不同燃放亲戚拜年寺院轿车骆驼元宵张灯结彩一律彩绘广告分外糊涂搅和浓稠可靠猜想粉碎外套解释腊肉(2)近义词气象~景象开张~开业间断~中断娴熟~熟练充足~充分规矩~规则截然不同~迥然不同万象更新~焕然一新万不得已~迫不得已合拢~合并沸腾~欢腾预备~准备搅和~搅拌浓稠~黏稠松劲~松弛反抗~抗拒奇怪~稀奇猜想~估计惊异~惊诧结果~结局承认~认同糊糊涂涂~稀里糊涂有声无力~有气无力日暮~黄昏迢迢~遥远皎皎~洁白终日~成天泣涕~眼泪盈盈~清澈咆哮~怒吼涉水~蹚水吞噬~吞没发誓~起誓雄浑~雄壮布施~施舍鼻祖~始祖神秘~秘密一无所有~身无分文哄堂大笑~哈哈大笑别无所求~一无所求随心所欲~为所欲为师传身授~言传身教(3)反义词间断➝连续热闹➝冷清娴熟➝笨拙充足➝缺乏团圆➝离散美好➝丑陋截然不同➝一模一样合拢➝分散沸腾➝冷却浓稠➝稀疏松劲➝鼓劲反抗➝顺从奇怪➝普通惊异➝镇定承认➝否认糊糊涂涂➝明明白白有声无力➝精神百倍无➝有寒➝暖清➝浊浅➝深湿➝干明➝暗结束➝开始神秘➝平常威严➝和蔼柔顺➝坚硬压抑➝轻松朴实➝华丽敦厚➝狡猾缓慢➝快速一无所有➝富可敌国身无分文➝腰缠万贯别无所求➝贪得无厌随心所欲➝循规蹈矩(4)词语归类①AABB式词语:糊糊涂涂进进出出类似的词语:高高兴兴快快乐乐安安全全整整齐齐安安静静干干净净舒舒服服②ABCB式词语:优哉游哉类似的词语:得过且过人云亦云出尔反尔心服口服将计就计以讹传讹种瓜得瓜③ABAC式词语:各形各色类似的词语:有说有笑称帝称王半饥半饱假仁假义再接再厉一五一十一心一意④描写笑的词语:哄堂大笑类似的词语:笑容可掬贻笑大方谈笑风生千金一笑不苟言笑眉开眼笑啼笑皆非⑤描写随意的词语:随心所欲优哉游哉类似的词语:悠然自得怡然自得无拘无束⑥描写贫穷的词语:一无所有身无分文类似的词语:一贫如洗身无长物不名一钱赤贫如洗家徒四壁⑦量词一件大事一种广告一种感觉一部戏一座桥一阵哄堂大笑⑧动词贴对联贴年画⑨修饰词色如翡翠的泡蒜美好的姿态娴熟的技能各形各色的纸灯甜甜腻腻的感觉叹气似的沸腾二、佳句积累1.比喻句(1)到年底,蒜泡得色如翡翠,醋也有了些辣味,色味双美,使人忍不住要多吃几个饺子。

人教版六年级下册数学知识点归纳

人教版六年级下册数学知识点归纳

人教版六年级下册数学知识点归纳一、负数1. 负数的认识比 0 小的数叫负数,负数前面通常有“-”号。

-5 就表示比 0 还小 5 的数。

2. 正数和负数的意义正数和负数可以表示两种相反意义的量。

像收入 5 元用+5 表示,支出 3 元就用-3 表示。

二、百分数(二)1. 折扣几折就是十分之几,也就是百分之几十。

比如打八折,就是按原价的 80%出售。

2. 成数表示一个数是另一个数的十分之几。

农业收成经常用成数,像“今年小麦增产二成”,就是说今年小麦产量比去年多 20%。

3. 税率应纳税额与各种收入的比率叫税率。

咱得依法纳税,为国家做贡献!4. 利率存入银行的钱叫本金,取款时银行多支付的钱叫利息。

利息与本金的比值叫利率。

三、圆柱与圆锥1. 圆柱圆柱有两个底面和一个侧面,底面是圆,侧面是曲面。

圆柱的表面积 = 侧面积 + 两个底面积。

圆柱的体积 = 底面积×高。

2. 圆锥圆锥只有一个底面,侧面是曲面,展开是个扇形。

圆锥的体积 = 1/3×底面积×高。

四、比例1. 比例的意义表示两个比相等的式子叫比例。

2. 比例的基本性质在比例里,两个内项的积等于两个外项的积。

3. 解比例根据比例的基本性质,求比例中的未知项,叫解比例。

4. 正比例和反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就成正比例关系。

如果这两种量中相对应的两个数的乘积一定,这两种量就成反比例关系。

五、数学广角——鸽巢问题把 n+1 个物体放进 n 个抽屉里,不管怎么放,总有一个抽屉里至少放进 2 个物体。

咋样,这些知识点是不是都还挺有趣的?好好学,数学可好玩啦!。

人教版小学六年级数学下册知识点_数学知识点

人教版小学六年级数学下册知识点_数学知识点

人教版小学六年级数学下册知识点_数学知识点人教版小学六年级数学下册知识点一:比例1.理解比例的意义和基本性质,会解比例。

2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

7.比例的意义:表示两个比相等的式子叫做比例。

如:2:1=6:8.组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

例如:由3:2=6:4可知3×4=2×6;或者由x×1。

5=y×1。

2可知x:y=1.2:1.5。

10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

11.正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

④y=5x,y和x成正比例,因为:y÷x=5(一定)。

六年级下册人教版科学知识点

六年级下册人教版科学知识点

六年级下册人教版科学知识点一、微小世界1. 放大镜- 放大镜是凸透镜,具有中间厚、边缘薄的特点。

它能把物体的图像放大,显现人的肉眼看不清的细微之处。

- 放大镜的放大倍数和镜片的凸度有关,凸度越大,放大倍数越大。

2. 显微镜- 显微镜的发明使人们能够观察到非常小的物体以及物体的精细结构。

- 显微镜由目镜、物镜、载物台、反光镜等部分组成。

- 显微镜的放大倍数是目镜放大倍数与物镜放大倍数的乘积。

- 使用显微镜时,要将标本放在载物台上,用压片夹夹住,标本要正对通光孔的中心,然后从目镜内观察,调节准焦螺旋,直到看清物像为止。

3. 细胞- 细胞是生物生命活动的基本结构和功能单位。

- 洋葱表皮细胞是由细胞壁、细胞膜、细胞质、细胞核等部分组成。

动物细胞一般由细胞膜、细胞质、细胞核等部分组成,动物细胞没有细胞壁。

4. 微生物- 微生物在大自然中分布极广,空气中、水中、泥土里、动植物的体内和体表都有微生物。

- 微生物包括细菌、真菌、病毒等。

- 细菌按形态可分为球菌、杆菌、螺旋菌。

细菌是单细胞生物,它的繁殖方式是分裂繁殖。

- 真菌有酵母菌、霉菌等,酵母菌是单细胞真菌,霉菌是多细胞真菌。

真菌通过产生孢子繁殖后代。

- 病毒没有细胞结构,不能独立生活,必须寄生在其他生物的细胞内,靠自己的遗传物质中的遗传信息,利用细胞内的物质制造新的病毒。

二、物质的变化1. 物质的变化- 物质的变化可以分成物理变化和化学变化两类。

- 物理变化是指没有生成新物质的变化,例如水的三态变化(冰融化成水、水蒸发成水蒸气等)、折纸、铁丝弯曲等。

- 化学变化是指生成了新物质的变化,例如蜡烛燃烧、铁生锈、食物变质等。

化学变化往往伴随着发光、发热、产生气体、改变颜色等现象,但有这些现象的变化不一定都是化学变化。

2. 化学变化伴随的现象- 发光发热:如镁条燃烧时发出耀眼的白光并放出热量。

- 产生气体:如小苏打和白醋混合会产生二氧化碳气体。

- 改变颜色:如铁钉浸入硫酸铜溶液中,铁钉表面会有红色物质附着,溶液颜色变浅。

人教版六年级语文(下册)知识要点

人教版六年级语文(下册)知识要点

小学语文知识点总结——概要一、拼音1、声母、韵母、整体认读、字母。

2、标调规则:看见a母别放过,没有a母找o、e、i、u并列标在后。

3、u上两点省略的规则。

(遇到j q x,摘掉乌纱帽)二、汉字1、基本笔画、笔顺规则、偏旁部首、间架结构。

2、查字典:能够熟练地运用音序查字法和部首查字法。

3、同音字、多音字和形近字。

(能够准确认识小学生阶段所要求掌握的生字词,以及多音字的各个注音和组词,以及形近字的辨别。

)三、词语1、成语、歇后语。

2、量词和“的、地、得”的用法。

能够准确填出数词与名词之间所适合的量词的、地、得用法:①词前面的修饰成分,用“的”字衔接,作名词的定语;②动词前面的修饰成分,用“地”字衔接,作动词的状语;③动词或形容词后面的补充、说明成分,用“得”字连接,作动词或形容词的补语。

“地”后面跟动词,比如大声地唱;“的”后面跟名词,比如我的钢笔;“得”后面跟形容词,比如跑得快。

3、近义词、反义词的词语归类。

能够熟练填出词语的近义词、反义词。

4、词语的仿写。

仿照所给例子,能写出相同形式的词语。

如:AABB式(高高兴兴)、ABB式(绿油油)、ABCC式(神采奕奕)、AABC式(津津有味)、ABAB式(商量商量)5、常用的八种关联词。

四、句子1、扩句、缩句、整理句子顺序。

2、句子中所运用的修辞手法。

(常用修辞手法有:比喻、拟人、反问、设问、反复、排比、夸张、对比。

能准确说出句子中所运用的修辞手法,并简要说出其作用。

)3、四种句式的互换:a陈述句、把字句、被字句;b肯定句与否定句;c陈述句与反问句;d直接叙述与间接叙述的互换。

4、八种病句的类型:a、成份残缺;b、词序颠倒;c、用词不当;d、前后矛盾;e、搭配不当;f、意思重复;g、分类不当;h、指代不明。

5、格言、经典诗句以及小升初必备古诗80首的背诵及默写。

五、标点11种标点符号:句号、逗号、问号、叹号、冒号、引号、顿号、书名号、省略号、破折号、分号。

六年级下册数学(人教版)知识点归纳总结整理

六年级下册数学(人教版)知识点归纳总结整理

人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。

①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。

①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。

如两个完全相同的三角形、梯形可拼成一个平行四边形。

圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。

①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。

(完整版)人教版六年级下册英语知识点总结

(完整版)人教版六年级下册英语知识点总结

六年级下册英语知识点总结第一单元(Unit1 How tall are you?)句子:1、That's the tallest dinosaur in this hall.2、You're older than me.3、How tall are you ?你有多高?4、What size are your shoes ?5、My shoes are size 37.6 、Your feet are bigger than mine .7、How heavy are you ?你有多重?8、It's taller than both of us together .应该掌握的知识点:1、形容词变为比较级的变化规则:(1) 一般情况下,在形容词的词尾直接加那是这个厅里最高的恐龙。

你比我大。

I' m 1.65 metres我身高1.65 米。

你穿多大号的鞋?我穿37 号的鞋。

你的脚比我的大。

I' m 48 kilograms .我体重48公斤。

它比我们俩加在一起还高。

er。

女口: tall —taller short—shorter.⑵以字母e结尾的形容词,在词尾直接加r,如:nice—nicer. late— later(3) 以重读闭音节结尾,且结尾只有一个辅音字母的词,先双写这个辅音字母,再力口er.如: big—bigger thin—thinner fat—fatter(4) 以辅音字母加y 结尾的双音节形容词,先变y 为i , 再加er。

如:easy—easier heavy—heavier funny—funnier.2、部分形容词比较级的不规则变化:good/well—better3、 比较级的标志:tha n 。

弓I 导比较级的特殊疑问词: Which 。

句子结构为:Which+名词+is+形容词比较级。

比较级+and+比较级表示:越来越 ...4、 A 与 B 比较的句子结构: A+be 动词+形容词比较级 +than+B. 否定句句子结 构:A+be 动词+not+形容词比较级+than+B. —般疑问句句子结构:Be 动词+A + 形容词比较级 +than+B ?A 比B 多多少的句子结构:A+be 动词+数字+单位+形容词比较级+than+B 。

小学六年级下册全册知识点

小学六年级下册全册知识点

小学六年级下册全册知识点第一章:数与运算1.1 整数与小数- 整数的概念和表示法- 小数的概念和表示法- 整数和小数的相互转换1.2 加法与减法- 加法的定义和性质- 减法的定义和性质- 加减法的运算法则1.3 乘法与除法- 乘法的定义和性质- 除法的定义和性质- 乘除法的运算法则1.4 运算顺序- 括号的运用- 运算顺序的规定- 复杂运算式的计算第二章:分数与比例2.1 分数的概念与表示- 分数的基本概念- 真分数和假分数的区别- 分数的读法和表示法2.2 分数的加减运算- 分数的加法原则- 分数的减法原则- 分数的加减计算步骤2.3 分数的乘除运算- 分数的乘法原则- 分数的除法原则- 分数的乘除计算步骤2.4 比例的认识与运用- 比例的概念和表示法- 比例与图形的关系- 比例的计算方法第三章:图形与计算3.1 运用倍数和约数- 倍数的概念和计算- 整除与倍数的关系- 约数的概念和判断方法3.2 计算长度、面积和容量- 长度的换算方法- 面积的计算公式- 容量的换算和计算3.3 图形的边和顶点- 图形的基本概念- 点、线、面的定义- 图形的分类与特征3.4 计算图形的周长和面积- 不规则图形的周长计算- 正方形和长方形的面积计算- 三角形和梯形的面积计算第四章:数据与概率4.1 数据的收集与整理- 数据的来源和收集方法- 数据的整理和表达方式- 数据的图表表示4.2 数据的分析与运用- 数据的中位数和众数- 数据的极差和平均数- 数据的运用与预测4.3 概率的认识与计算- 概率的基本概念- 事件的可能性及计算- 基于概率的决策第五章:时间与空间5.1 时间的计算和换算- 时间的单位和换算- 时、分、秒的关系- 时间的加减运算5.2 日历和闰年- 日历的基本组成- 判断闰年的方法- 日期的推算和计算5.3 方位与坐标- 方位词的理解和运用- 坐标的概念和计算- 方位与坐标的关系5.4 空间图形的认识- 点、线、面的空间概念- 立体图形的特征和分类- 空间图形的展开和组合以上是小学六年级下册的全册知识点概述,通过掌握和理解这些知识,可以帮助同学们更好地应对学习中的数学、几何等问题,并提高解决问题的能力。

六年级下册数学(人教版)知识点归纳总结复习资料

六年级下册数学(人教版)知识点归纳总结复习资料

人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。

①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。

①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。

如两个完全相同的三角形、梯形可拼成一个平行四边形。

圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。

①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。

人教版六年级下册英语知识点汇总

人教版六年级下册英语知识点汇总

人教版六年级下册英语知识点汇总一、词汇1. 日常生活与社交•情感与态度词汇:happy, sad, angry, excited, surprised, worried 等。

•社交用语:invite, accept, refuse, apologize, congratulate, thank 等及其相关表达。

•节日与活动:Spring Festival, Mid-Autumn Festival, Christmas, birthday party, sports meeting 等。

2. 学校与学习•学习方法与策略:review, preview, note-taking, brainstorming 等。

•学科相关词汇:geography, history, biology, physics, chemistry(基础词汇)及学科活动。

3. 科技与未来•科技产品:computer, smartphone, internet, robot, AI 等。

•未来设想:space travel, environmental protection, renewable energy 等。

4. 旅行与交通•交通工具:plane, train, bus, subway, ship, bicycle 等。

•旅游景点与活动:museum, zoo, park, beach, hiking, camping 等。

二、语法1. 时态•熟练掌握一般现在时、一般过去时、现在进行时、一般将来时,并初步了解过去进行时和现在完成时的用法。

2. 语态•学习并理解被动语态的基本结构和用法。

3. 非谓语动词•初步接触动词不定式(to do)、动名词(doing)和分词(现在分词doing 和过去分词done)作为非谓语动词的用法。

4. 复合句•学习并列句和主从复合句(如宾语从句、状语从句、定语从句)的基本结构和用法。

三、句型与表达•能够根据语境运用多种句型进行表达,包括疑问句、祈使句、感叹句等。

六年级数学下册(人教版)全册笔记 超详细

六年级数学下册(人教版)全册笔记 超详细

六年级数学下册(人教版)全册笔记超详细第一章有理数
1.1 正数与负数
- 正数:大于0的数,例如1、2、3等
- 负数:小于0的数,例如-1、-2、-3等
- 零:等于0的数
1.2 有理数的比较
- 有理数可以通过大小进行比较,大小两者关系如下:
- 正数 > 零 > 负数
- 绝对值大的数较小
- 绝对值相等时,正数较大
1.3 有理数的四则运算
- 加法:
- 同号相加:保留符号,绝对值相加
- 异号相加:符号取绝对值大的数,绝对值相减
- 减法:
- 减去一个数等于加上这个数的相反数
- 乘法:
- 同号相乘为正,异号相乘为负
- 除法:
- 除以一个非零数等于乘以这个数的倒数
1.4 有理数的应用
- 有理数在日常生活中的应用很广泛,例如温度的正负、海拔的正负等。

第二章几何图形
2.1 直角三角形
- 直角三角形有一个角度为90度的直角,其他两个角度之和为90度。

- 直角三角形的两条直角边可以通过勾股定理计算斜边的长度。

2.2 平行四边形
- 平行四边形的对边是平行线段,对角线相等且平分。

2.3 等边三角形
- 等边三角形三条边的边长相等。

第三章数据的整理与描述
3.1 表格的制作和填写
- 制作表格时,要保证表格清晰易读,标题明确。

3.2 概率与统计
- 概率是指某个事件在相同条件下重复进行多次试验时发生的
次数的频率。

- 统计是对收集到的数据进行整理和描述,包括频数、频率、中位数等。

以上是六年级数学下册(人教版)全册的超详细笔记,希望对您有帮助!。

人教版 语文六年级下册 全册知识点总结

人教版  语文六年级下册  全册知识点总结

第一单元考点梳理考点一:字音1.易混的多音字zhēng(正月)mài(山脉)hōng(哄堂大笑)yān(咽喉)正zhèng(正在)脉mò(脉脉)哄hòng(起哄)咽yàn(狼吞虎咽)yè(哽咽)2.易读错的字蜜饯.(jiàn)掺.和(chān)唾.沫(tuò)翡.翠(fěi)札札.(zhá)栖.息(qī)吞噬.(shì)一钹.(bó)僧.人(sēng)黄焖.鸡(mèn)擢.素手(zhuó)弄机杼.(zhù)考点二:词语听写陈醋饺子擦洗眨眼通宵元旦搅拌燃放亲戚小贩摆摊轿车骆驼腊月熬粥细腻栗子汤匙章节灌溉浓稠嘟囔褐色染缸脏水脉脉筷子汉宫朴素轻盈王侯乌鸦栖息水浒传咽唾沫考点三:词语积累1.意思相同的词语表示“都是、全是”的意思;一律、清一色、通通表示“第一、获胜”的意思:勇夺第一、喜获金牌、摘得桂冠2.四字词语万不得已截然不同万象更新日夜不绝悬灯结彩哄堂大笑一无所有能歌善舞各形各色行善积德随心所欲优哉游哉身无分文开山鼻祖两面三刀青面獠牙别无所求师传身授考点四:背诵、默写背诵古诗三首:《迢迢牵牛星》《十五夜望月》《寒食》考点五:课文理解1.《北京的春节》的作者是(老舍)。

文章以(时间)为顺序,细致地描写了老北京春节的一系列(风俗),重点写了(腊八、腊月二十三、除夕、正月初一、正月十五)这几天,反映出老北京人(热爱生活、追求美好生活)的心愿。

2.《腊八粥》是作家(沈从文)的作品,讲述了腊八那天八儿等不及要吃粥的(嘴馋)、对粥的(猜想)以及看到粥的(惊异),写出了一家人其乐融融的亲情,表现出作者(对普通百姓生活的热爱和对家庭亲情的眷恋)。

3.《寒食》一诗表面上看只是描绘了一幅(寒食节京城内富有浓郁情味的风俗画),实际上是对当时权势显赫、作威作福的宦官进行了深刻的(讽刺)。

人教版六年级科学下册必背知识点

人教版六年级科学下册必背知识点

人教版六年级科学下册必背知识点【人教版六年级科学下册必背知识点】一、动物世界1. 动物的分类:脊椎动物和无脊椎动物2. 脊椎动物的分类:鱼类、两栖类、爬行类、鸟类、哺乳类3. 动物的生活方式:食性、运动方式、生活习性4. 动物的繁殖方式:卵生、胎生、卵胎生二、植物奥秘1. 植物的特点:具有细胞壁、进行光合作用、能消耗二氧化碳、产生氧气2. 植物的分类:种子植物和蕨类植物3. 种子植物的分类:裸子植物和被子植物4. 植物的繁殖方式:有性生殖和无性生殖三、周围环境1. 自然界的重要元素:水、空气、土壤和阳光2. 土壤的组成:矿粒、有机物质、水分、空气3. 大气层的组成:地壳、水、气候和生物4. 天气现象:晴、雨、雪、雾、雷电四、身体的奥秘1. 人体的器官:头部、躯干、四肢2. 骨骼的作用:支持身体、保护内脏、运动活动、储存矿物质3. 呼吸系统的作用:提供氧气、排出二氧化碳4. 循环系统的作用:输送营养物质和氧气、排除废物和二氧化碳五、物质变化的探究1. 物质的三种状态:固体、液体、气体2. 物质的变化:物理变化和化学变化3. 物质的组成:元素和化合物4. 分离混合物的方法:过滤、蒸发、沉淀、浮选六、能量的转化1. 能量的来源:太阳能、化石燃料、风能、水能2. 能量的转化:光能转化为热能、化学能转化为热能、机械能转化为电能3. 能源的利用与保护:合理使用能源、开发清洁能源、节约能源七、星辰大海1. 太阳系的组成:太阳、行星、卫星、小行星、彗星2. 星座与星官:大熊座、北极星、三角座3. 地球的自转和公转:影响地球的天气、季节变化4. 月亮的周期:新月、上弦月、满月、下弦月以上为人教版六年级科学下册必背知识点,希望对你的学习有所帮助。

6下语文知识点人教版六年级语文下册全册知识点归纳

6下语文知识点人教版六年级语文下册全册知识点归纳

人教版六年级语文下册全册知识点归纳第一单元主题是“人生感悟”。

五篇课文从不同的角度阐明了人生的哲理。

《文言文两则》表达了学习应该专心致志和看待事物应该有不同角度的道理;《匆匆》表达了作者对时光飞逝的惋惜和无奈,渗透着珍惜时间的意识;《桃花心木》借物喻人,说明人的成长应该经受考验,学会独立自主。

《顶碗少年》蕴含着“失败乃成功之母”的哲理。

《手指》阐明“团结就是力量”的道理。

第一课《文言文两则》1、背诵课文,默写。

2、知识点:《学弈》选自《孟子.告子》,《学弈》这个故事,说明了学习应专心致志,不可三心二意的道理;《两小儿辩日》选自《列子.汤问》,这个故事体现了两小儿善于观察,说话有理有据以及孔子实事求是的态度,同时告诉我们看待事物可以有不同的角度和学无止境的道理。

3、注释(1)字、词:弈:下棋。

通国:全国。

诲:教导。

惟弈秋之为听:只听弈秋(的教导)。

鸿鹄:天鹅。

援:引,拉。

俱:一起。

弗:不。

矣:了。

为:因为。

其:他的,指后一个人。

重点文中几个“之”的意思辩斗:辩论,争论。

以:认为。

去:离。

日中:正午。

及:到。

沧沧凉凉:形容清凉的感觉。

沧沧:寒冷的意思。

探汤:把手伸向热水里。

意思是天气很热。

汤:热水。

决:判断。

孰:谁。

汝:你。

(2)句子:为是其智弗若与?曰:非然也。

(译)难道是因为他的智力不如别人好吗?我说:不是这样的。

我以日始出时去人近,而日中时远也。

(译)我认为太阳刚出来的时候离人近一些,中午的时候离人远一些。

孰为汝多知乎?(译)谁说你的知识渊博呢?(3)译文:《学弈》弈秋是全国的下棋高手。

他教导两个学生下棋,其中一个学生非常专心,只听弈秋的教导;另一个学生虽然也在听弈秋讲课,心里却一直想着天上有天鹅要飞过来,想要拉弓引箭把它射下来。

虽然他俩在一块儿学习,但是后一个学生不如前一个学得好。

难道是因为他的智力不如别人好吗?我说:不是这样的。

《两小儿辩日》有一天,孔子到东方游学,看到两个小孩为什么事情争辩不已,便问是什么原因。

(完整版)人教版六年级英语下册知识点梳理

(完整版)人教版六年级英语下册知识点梳理

六年级英语下册知识点梳理Unit 1 How tall are you?一、单元内容简析:本单元内容的中心话题是询问人或事物的年龄、身高、重量以及长度并作比较。

内容涉及恐龙、猴子以及鲸类的比较,学生之间在年龄、身高和体重方面的比较。

、单元词、句、语法等方面的知识重点:三、本单元难点:1、数字的读法,含有“厘米、千克”单位的读法。

如百以上164:one hundred and sixty-four, 学生可能读的时候百后不知加“ and',还有千的读法:thousand小数的读法等。

2、形容词比较级的用法与变化形式,哪些要双写,哪些要把y变i成再加er到底在什么情况下变比较级要加上more。

3、代词的用法,特别是名词性物主代词的用法。

四、易考点与易错点:1、词语类:①四会词语在听力部分听写或笔试部分按照汉意写词语。

②按要求写词语:变比较级funny,heavy,big,thin;long 的名词,foot,tooth 复数,heavy(heavier)的反义词light (er)③very修饰原级,much修饰比较级。

例如:He is very tall. He is much taller than you.2、语法、句型类:① How引导的不同特殊疑问句:How be sb.?(问某人状况),How tall/heavy/old be sb./sth? (询问身高、体重、年龄)How Iong/big/large be---?(问多长、多大)How many/much (问数量、价格)。

②比较级的运用,一定要是相同内容或类别才可以进行比较,这是学生最易出错和混淆娥地方。

例如:Mike 'legs are Ion ger than _____ (Joh n),如果学生翻译会直接填写Joh n,但是一分析就不难发现应该和John的腿作比较的,所以应该是John's。

再比如My hair isIon ger than ____ (she).如果不仔细分析大多数学生都会错填成:she,her但是填hers才是正确的。

六年级人教版下册数学知识点总结归纳

六年级人教版下册数学知识点总结归纳

六年级人教版下册数学知识点总结归纳第一单元负数1、负数:任何正数前加上负号就是一个负数。

在数轴线上,负数都在0的左侧,所有的负数都比自然数小。

负数用负号“-”标记,如-2,-5.33,-45,-0.6等。

2、正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于零(>0),则称它是一个正数。

正数的前面可以加上正号“+”来表示。

正数有无数个,其中有正整数,正分数和正小数。

3、0既不是正数,也不是负数,它是正、负数的分界数。

正数都大于0,负数都小于0,正数大于一切负数。

应用举例:16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃.如果2000表示存入2000元,那么-500表示支出了500元。

向东走3m记作+3,向西4m记作-4。

4、在直线上表示数:(1)正数、0和负数可以用直线上的点表示出来。

直线上的每一个点都与一个数相对应,任何一个数都可以用直线上的点来表示。

(2)用有正数和负数的直线可以表示距离和相反的方向。

题型:1、将以下数字按要求分类1.25、、-7、3、3.011……、-5、0、、-0.03正数负数自然数非正数2、写数下列数相对的负数形式0.33……、3、如果﹢20%表示增加20%,那么﹣20%表示什么?4、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。

5、在数轴上表示下列个数1.75--450-3.2第二单元百分数(二)1、折扣:几折就是十分之几,也就是百分之几十例如:八五折表示现价是原价的85%原价×折扣=现价现价÷折扣=原价现价÷原价=折扣2、成数:表示一个数是另一个数的十分之几或百分之几十,通称“几成”例如:二成就是(十分之二),改写成百分数是20%。

3、税率:应纳税额=各种收入×税率各种收入=应纳税额÷税率4、利率:存入银行的钱叫做本金。

取款时银行多支付的钱叫做利息。

人教版六年级数学下册总复习知识点汇总清单

人教版六年级数学下册总复习知识点汇总清单

一、数的认识1.数的分类数2.数的意义(1)整数:像-3、-2、-1、0、1、2、3……这样的数统称为整数。

整数的个数是无限的.........,.没有最小的整数.......,.也没有最大.....的整数。

....(2)自然数:用来表示物体个数的1、2、3、4……叫做自然数。

一个物体也没有,用0表示,0.也是自然数。

自然数的..........个数是无限的......,.最小的自然数是.......0.,.没有最大的自然数。

自然...........数是整数的一部分........,.正整数和....0.都是自然数。

......(3)分数:把单位“....1.”平均分成若干份........,.表示这样的一份或........者几份的数叫做分数.........,.表示这样一份的数就是这个分数的分................数单位。

....一个分数的分母是几,它的分数单位就是几分之一,分子是几,它就有几个这样的分数单位。

提示:按不同的标准划分,数的分类也会不同。

例如:按正、负数分,数分为正数、0、负数;按整数与分数分,数分为整数、分数(小数)等。

提示:0表示一个物体也没有;0是正、负数的分界点;0表示起点(如0刻度);计数时,0起占位作用。

注意:带分数只有化成假分数后,它的分子才能表示这个带分数的分数单位的个数。

分数,再约分;分数化成小数,用分子除以分母;小数化成百分数,把小数的小数点向右移动两位,并在后面加上百分号;百分数化成小数,把百分号去掉,并把小数点向左移动两位;分数化成百分数,先把分数改写成小数,再把小数改写成百分数;百分数化成分数,先把百分数改写成分母是100的分数,再化简。

9.判断一个分数能否化成有限小数的方法先看这个分数是不是最简分数,不是最简分数的要化成最简分数;再看最简分数的分母,如果分母中只有质因数2或5,这个分数就能化成有限小数;如果分母中含有2和5以外的其他质因数,就不能化成有限小数。

人教版小学数学六年级下册总复习知识点(整理版)

人教版小学数学六年级下册总复习知识点(整理版)

人教版小学数学六年级总复习知识点目录【常用的数量关系】1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数2、1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几倍数÷倍数=1倍数3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度4、单价×数量=总价;总价÷单价=数量;总价÷数量=单价5、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;6、加数+加数=和;和-一个加数=另一个加数7、被减数-减数=差;被减数-差=减数;差+减数=被减数8、因数×因数=积;积÷一个因数=另一个因数9、被除数÷除数=商;被除数÷商=除数;商×除数=被除数【小学数学图形计算公式】1、正方形(C:周长, S:面积, a:边长)周长=边长×4;C=4a面积=边长×边长;S=a×a2、正方体(V:体积, a:棱长)表面积=棱长×棱长×6;S表=a×a×6体积=棱长×棱长×棱长;V= a×a×a3、长方形(C:周长, S:面积, a:边长, b:宽)周长=(长+宽)×2;C=2(a+b)面积=长×宽;S=a×b4、长方体(V:体积, S:面积, a:长, b:宽, h:高)(1)表面积=(长×宽+长×高+宽×高)×2;S=2(ab+ah+bh)(2)体积=长×宽×高;V=abh5、三角形(S:面积, a:底, h:高)面积=底×高÷2 ;S=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高6、平行四边形(S:面积, a:底, h:高)面积=底×高;S=ah7、梯形(S:面积, a:上底, b:下底, h:高)面积=(上底+下底)×高÷2;S=(a+b)×h÷28、圆形(S:面积, C:周长,π:圆周率, d:直径, r:半径)(1)周长=π×直径π=2×π×半径;C=πd=2πr(2)面积=π×半径×半径;S= πr29、圆柱体(V:体积, S:底面积, C:底面周长, h:高, r:底面半径)(1)侧面积=底面周长×高=Ch=πdh=2πrh(2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(V:体积, S:底面积, h:高, r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式:已知两数的和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题.(和+差)÷2=大数;(和-差)÷2=小数13、和倍问题的公式:已知两个数的和与两个数的倍数关系,求两个数各是多少的应用题,我们通常叫做和倍问题.和÷(倍数-1)= 小数;小数×倍数=大数(或者:和-小数=大数)14、差倍问题的公式:差倍问题即已知两数之差和两数之间的倍数关系,求出两数.差÷(倍数-1)= 小数;小数×倍数=大数(或者:小数+差=大数)15、相遇问题:相遇路程=速度和×相遇时间;相遇时间=相遇路程速度和;速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量;溶液的重量×浓度=溶质的重量;溶质的重量÷溶液的重量×100%=浓度;溶质的重量÷浓度=溶液的重量17、利润与折扣问题:利润=售出价-成本;利润率=利润÷成本×100%;利息=本金×利率×时间;涨跌金额=本金×涨跌百分比;税后利息=本金×利率×时间×(1-利息税)【常用单位换算】(一)长度单位换算1千米=1000米;1米=10分米;1分米=10厘米;1米=100厘米;1厘米=10毫米(二)面积单位换算:1平方千米=100公顷;1公顷=10000平方米;1平方米=100平方分米;1平方分米=100平方厘米;1平方厘米=100平方毫米(三)体积(容积)单位换算:1立方米=1000立方分米;1立方分米=1000立方厘米;1立方分米=1升;1立方厘米=1毫升;1立方米=1000升(四)重量单位换算:1吨=1000千克;1千克=1000克;1千克=1公斤(五)人民币单位换算:1元=10角;1角=10分;1元=100分(六)时间单位换算:1世纪=100年;1年=12月;【大月(31天)有:1、3、5、7、8、10、12月】;【小月(30天)有:4、6、9、11月】【平年:2月有28天;全年有365天】;【闰年:2月有29天;全年有366天】1日=24小时;1时=60分=3600秒;1分=60秒;【基本概念】第一章数和数的运算一、概念(一)整数1.自然数、负数和整数(1)、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数.一个物体也没有,用0表示.0也是自然数.1是自然数的基本单位,任何一个自然数都是由若干个1组成.0是最小的自然数,没有最大的自然数.(2)、负数:在正数前面加上“-”的数叫做负数,“-”叫做负号.正整数(1、2、3、4、……)(3)整数零(0既不是正数,也不是负数)负整数(-1、-2、-3、-4……)2、零的作用(1)表示数位.读写数时,某个单位上一个单位也没有,就用0表示.(2)占位作用.(3)作为界限.如“零上温度与零下温度的界限”.3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位.每相邻两个计数单位之间的进率都是10.这样的计数法叫做十进制计数法.4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位.5、数的整除:整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就说a能被b 整除,或者说b能整除a .(1)如果数a能被数b(b ≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).倍数和约数是相互依存的. 如:因为35能被7整除,所以35是7的倍数,7是35的约数. (2)一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身.例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10.(3)一个数的倍数的个数是无限的,其中最小的倍数是它本身.如:3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数.(4)个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除.. (5)个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除..(6)一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除.(7)一个数各位数上的和能被9整除,这个数就能被9整除.(8)能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除.(9)一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除.例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除.(10)一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除.例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除.(11)能被2整除的数叫做偶数.不能被2整除的数叫做奇数.0也是偶数.自然数按能否被2 整除的特征可分为奇数和偶数.(12)一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数).100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97.(13)一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.例如4、6、8、9、12都是合数.(14)1不是质数也不是合数,自然数除了1外,不是质数就是合数.如果把自然数按其约数的个数的不同分类,可分为质数、合数和1.(15)每个合数都可以写成几个质数相乘的形式.其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数.(16)把一个合数用质因数相乘的形式表示出来,叫做分解质因数. 例如:把28分解质因数(17)几个数公有的约数,叫做这几个数的公约数.其中最大的一个,叫做这几个数的最大公约数.例如:12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18.其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数.(18)公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:①1和任何自然数互质. ②相邻的两个自然数互质. ③两个不同的质数互质.④当合数不是质数的倍数时,这个合数和这个质数互质.⑤两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质.⑥如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数.⑦如果两个数是互质数,它们的最大公约数就是1.(19)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如:2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 ……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数..①如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数.②如果两个数是互质数,那么这两个数的积就是它们的最小公倍数.③几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的.(二)小数1 、小数的意义(1)把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示.(2)一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……(3)一个小数由整数部分、小数部分和小数点部分组成.数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分.(4)在小数里,每相邻两个计数单位之间的进率都是10.小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10.2、小数的分类(1)纯小数:整数部分是零的小数,叫做纯小数.例如:0.25 、0.368 都是纯小数.(2)带小数:整数部分不是零的小数,叫做带小数. 例如:3.25 、5.26 都是带小数. (3)有限小数:小数部分的数位是有限的小数,叫做有限小数.例如:41.7 、25.3 、0.23 都是有限小数.(4)无限小数:小数部分的数位是无限的小数,叫做无限小数.例如:4.33 …… 3.1415926 ……(5)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数. 例如:π(6)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数. 例如:3.555 ……0.0333 ……12.109109 ……(7)一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节.例如:3.99 ……的循环节是“9 ”, 0.5454 ……的循环节是“54 ”.(8)纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数.例如:3.111 ……0.5656 ……(9)混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数.例如:3.1222 ……0.03333 ……(10)写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点.如果循环节只有一个数字,就只在它的上面点一个点.例如:3.777 ……简写作:3.7(•) ;0.5302302 ……简写作:0.53(•)02(•) . (三)分数1、分数的意义(1)把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数.(2)在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份.(3)把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位.2、分数的分类真分数:分子比分母小的分数叫做真分数.真分数小于1.假分数:分子比分母大或者分子和分母相等的分数,叫做假分数.假分数大于或等于1.带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数.3、约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分.分子分母是互质数的分数,叫做最简分数.把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.(四)百分数:表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比.百分数通常用"%"来表示.百分号是表示百分数的符号.二、方法(一)数的读法和写法1、整数的读法:从高位到低位,一级一级地读.读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字.每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零.2、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0.3、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字.4、小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字.5、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读.6、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写.7、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读.8、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示.(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数.有时还可以根据需要,省略这个数某一位后面的数,写成近似数.1、准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数.改写后的数是原数的准确数. 例如把1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿.2、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示. 例如:1302490015 省略亿后面的尾数是13 亿.3、四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1.例如:省略345900 万后面的尾数约是35 万.省略4725097420 亿后面的尾数约是47 亿.4、大小比较(1)比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大. (2)比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……(3)比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大.分数的分母和分子都不相同的,先通分,再比较两个数的大小.(三)数的互化1、小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分.2、分数化成小数:用分母去除分子.能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数.3、一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数.4、小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号.5、百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.6、分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.7、百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数.(四)数的整除1、把一个合数分解质因数,通常用短除法.先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式.2、求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数.3、求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数.4、成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质.(五)约分和通分(1)约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止.(2)通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数.三、性质和规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变.(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变.(三)小数点位置的移动引起小数大小的变化1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……3、小数点向左移或者向右移位数不够时,要用“0"补足位.(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变. (五)分数与除法的关系1、被除数÷除数=2、因为零不能作除数,所以分数的分母不能为零.3、被除数相当于分子,除数相当于分母.四、运算的意义(一)整数四则运算1、整数加法:把两个数合并成一个数的运算叫做加法.在加法里,相加的数叫做加数,加得的数叫做和.加数是部分数,和是总数.加数+加数=和一个加数=和-另一个加数2、整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法.在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差.被减数是总数,减数和差分别是部分数.加法和减法互为逆运算.3、整数乘法:求几个相同加数的和的简便运算叫做乘法.在乘法里,相同的加数和相同加数的个数都叫做因数.相同加数的和叫做积.在乘法里,0和任何数相乘都得0;1和任何数相乘都的任何数.一个因数×一个因数=积;一个因数=积÷另一个因数4、整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法.在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商.乘法和除法互为逆运算.在除法里,0不能做除数.(因为0和任何数相乘都得0,所以任何一个数除以0,均得不一个确定的商. )被除数÷除数=商除数=被除数÷商被除数=商×除数(二)小数四则运算1、小数加法:小数加法的意义与整数加法的意义相同.是把两个数合并成一个数的运算.2、小数减法:小数减法的意义与整数减法的意义相同.已知两个加数的和与其中的一个加数,求另一个加数的运算.3、小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少.4、小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算.5、乘方: 求几个相同因数的积的运算叫做乘方.例如3 ×3 =32(三)分数四则运算1、分数加法:分数加法的意义与整数加法的意义相同. 是把两个数合并成一个数的运算.2、分数减法:分数减法的意义与整数减法的意义相同.已知两个加数的和与其中的一个加数,求另一个加数的运算.3、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算.4、乘积是1的两个数叫做互为倒数.5、分数除法:分数除法的意义与整数除法的意义相同.就是已知两个因数的积与其中一个因数,求另一个因数的运算.(四)运算定律1、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a .2、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) .3、乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a.4、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) .5、乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c .6、减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) .(五)运算法则1、整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一.2、整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减.3、整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来.4、整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面.如果哪一位上不够商1,要补“0”占位.每次除得的余数要小于除数.5、小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足.6、除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除.7、除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算.8、同分母分数加减法计算方法:同分母分数相加减,只把分子相加减,分母不变.9、异分母分数加减法计算方法:先通分,然后按照同分母分数加减法的的法则进行计算.10、带分数加减法的计算方法:整数部分和分数部分分别相加减,再把所得的数合并起来.11、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母.12、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数.(六)运算顺序1、小数四则运算的运算顺序和整数四则运算顺序相同.2、分数四则运算的运算顺序和整数四则运算顺序相同.3、没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法.4、有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的.5、第一级运算:加法和减法叫做第一级运算.6、第二级运算:乘法和除法叫做第二级运算.五、应用(一)整数和小数的应用1、简单应用题(1)简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题.(2)解题步骤:A、审题理解题意:了解应用题的内容,知道应用题的条件和问题.读题时,不丢字不添字边读边思考,弄明白题中每句话的意思.也可以复述条件和问题,帮助理解题意.B、选择算法和列式计算:这是解答应用题的中心工作.从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称.C、检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意.如果发现错误,马上改正.2 复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题.(2)含有三个已知条件的两步计算的应用题.求比两个数的和多(少)几个数的应用题.比较两数差与倍数关系的应用题.(3)含有两个已知条件的两步计算的应用题.已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差).已知两数之和与其中一个数,求两个数相差多少(或倍数关系).(4)解答连乘连除应用题.(5)解答三步计算的应用题.(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数.(7) 解答加法应用题:a.求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少.b.求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少.(8)解答减法应用题:a.求剩余的应用题:从已知数中去掉一部分,求剩下的部分.b.求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少.c.求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少.(9)解答乘法应用题:a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数.b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少.(10)解答除法应用题:a.把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少.b.求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份.c.求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几。

新人教版六年级数学下册知识点归纳

新人教版六年级数学下册知识点归纳

新人教版六年级数学下册知识点归纳一.负数1.负数的由来:为了表示相反意义的两个量(如盈利亏损.收入支出……).光有学过的0 1 3.4 2/5 ……是远远不够的·所以出现了负数.以盈利为正.亏损为负;以收入为正.支出为负2.负数:小于0的数叫负数(不包括0).数轴上0左边的数叫做负数·若一个数小于0.则称它是一个负数·负数有无数个.其中有(负整数.负分数和负小数)负数的写法:数字前面加负号“-”号. 不可以省略例如:-2.-5.33.-45.-253.正数:大于0的数叫正数(不包括0).数轴上0右边的数叫做正数若一个数大于0.则称它是一个正数·正数有无数个.其中有(正整数.正分数和正小数)正数的写法:数字前面可以加正号“+”号.也可以省略不写·例如:+2.5.33.+45.254. 0 既不是正数.也不是负数.它是正.负数的分界限负数都小于0.正数都大于0.负数都比正数小.正数都比负数大5.数轴:规定了原点.正方向和单位长度的直线叫数轴·所有的数都可以用数轴上的点来表示·也可以用数轴来比较两个数的大小·数轴的三要素:原点.单位长度.正方向负数 0 正数左边<右边6.比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小.数字大的就大.数字小的就小·负数之间比较大小.数字大的反而小.数字小的反而大 1/3 >1/6 -1/3 <-1/6二. 百分数(二)(一).折扣和成数1.折扣:用于商品.现价是原价的百分之几.叫做折扣·通称“打折”·几折就是十分之几.也就是百分之几十·例如八折=8/10 =80﹪.六折五=6.5/10 =65/100 =65﹪解决打折的问题.关键是先将打的折数转化为百分数或分数.然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2.成数:几成就是十分之几.也就是百分之几十·例如一成=1/10 =10﹪.八成五=8.5/10 =85/100 =8 0﹪解决成数的问题.关键是先将成数转化为百分数或分数.然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二).税率和利率1.税率(1)纳税:纳税是根据国家税法的有关规定.按照一定的比率把集体或个人收入的一部分缴纳给国家·(2)纳税的意义:税收是国家财政收入的主要来源之一·国家用收来的税款发展经济.科技.教育.文化和国防安全等事业·(3)应纳税额:缴纳的税款叫做应纳税额·(4)税率:应纳税额与各种收入的比率叫做税率·(5)应纳税额的计算方法:应纳税额=总收入×税率收入额=应纳税额÷税率2.利率(1)存款分为活期.整存整取和零存整取等方法·(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社.储蓄起来.这样不仅可以支援国家建设.也使得个人用钱更加安全和有计划.还可以增加一些收入·(3)本金:存入银行的钱叫做本金·(4)利息:取款时银行多支付的钱叫做利息·(5)利率:利息与本金的比值叫做利率·(6)利息的计算公式:利息=本金×利率×时间利率=利息÷时间÷本金×100%(7)注意:如要上利息税(国债和教育储藏的利息不纳税).则:税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)税后利息=本金×利率×时间×(1-利息税率) 购物策略:估计费用:根据实际的问题.选择合理的估算策略.进行估算·购物策略:根据实际需要.对常见的几种优惠策略加以分析和比较.并能够最终选择最为优惠的方案学后反思:做事情运用策略的好处三.圆柱和圆锥一.圆柱1.圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的·圆柱也可以由长方形卷曲而得到·(两种方式:1.以长方形的长为底面周长.宽为高;2.以长方形的宽为底面周长.长为高·其中.第一种方式得到的圆柱体体积较大·)2.圆柱的高是两个底面之间的距离.一个圆柱有无数条高.他们的数值是相等的3.圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆·(2)侧面的特征:圆柱的侧面是一个曲面·(3)高的特征:圆柱有无数条高4.圆柱的切割:①横切:切面是圆.表面积增加2倍底面积.即S 增=2πr²②竖切(过直径):切面是长方形(如果h=2R.切面为正方形).该长方形的长是圆柱的高.宽是圆柱的底面直径.表面积增加两个长方形的面积.即S增=4rh5.圆柱的侧面展开图:①沿着高展开.展开图形是长方形.如果h=2πr.展开图形为正方形②不沿着高展开.展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6.圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高. 求圆柱的侧面积.表面积.体积.底面周长②已知圆柱的底面周长和高.求圆柱的侧面积.表面积.体积.底面积③已知圆柱的底面周长和体积.求圆柱的侧面积.表面积.高.底面积④已知圆柱的底面面积和高.求圆柱的侧面积.表面积.体积⑤已知圆柱的侧面积和高. 求圆柱的底面半径.表面积.体积.底面积以上几种常见题型的解题方法.通常是求出圆柱的底面半径和高.再根据圆柱的相关计算公式进行计算无盖水桶的表面积 =侧面积+一个底面积油桶的表面积 =侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩.排水管.漆柱.通风管.压路机.卫生纸中轴.薯片盒包装侧面积+一个底面积:玻璃杯.水桶.笔筒.帽子.游泳池侧面积+两个底面积:油桶.米桶.罐桶类二.圆锥1.圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的圆锥也可以由扇形卷曲而得到2.圆锥的高是两个顶点与底面之间的距离.与圆柱不同.圆锥只有一条高3.圆锥的特征:(1)底面的特征:圆锥的底面一个圆·(2)侧面的特征:圆锥的侧面是一个曲面·(3)高的特征:圆锥有一条高·4.圆柱的切割:横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形.该等腰三角形的高是圆锥的高.底是圆锥的底面直径.面积增加两个等腰三角形的面积. 即S增=2rh5.圆锥的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr体积:V锥=1/3 πr²h考试常见题型:①已知圆锥的底面积和高.求体积.底面周长②已知圆锥的底面周长和高.求圆锥的体积.底面积③已知圆锥的底面周长和体积.求圆锥的高.底面积以上几种常见题型的解题方法.通常是求出圆锥的底面半径和高.再根据圆柱的相关计算公式进行计算三.圆柱和圆锥的关系1.圆柱与圆锥等底等高.圆柱的体积是圆锥的3倍·2.圆柱与圆锥等底等体积.圆锥的高是圆柱的3倍·3.圆柱与圆锥等高等体积.圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍·4.圆柱与圆锥等底等高 .体积相差2/3 Sh题型总结直接利用公式:分析清楚求的的是表面积.侧面积.底面积.体积分析清楚半径变化导致底面周长.侧面积.底面积.体积的变化分析清楚两个圆柱(或两个圆锥)半径.底面积.底面周长.侧面积.表面积.体积之比圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体.长方体与圆柱圆锥之间)横截面的问题浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积.等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体.正方体⑤等体积转换问题:一个圆柱融化后做成圆锥.或圆柱中的溶液倒入圆锥.都是体积不变的问题.注意不要乘以1/3四.典型题:1.一个圆柱的侧面展开是一个正方形.它的高是底面直径的π倍. 即h=C=πd,它的侧面积是S侧=h²2.圆柱的底面半径扩大2倍.高不变.表面积扩大2倍.体积扩大4倍·3.圆柱的底面半径扩大2倍.高也扩大2倍.表面积扩大4倍.体积扩大8倍·4.圆柱的底面半径扩大3倍.高缩小3倍.表面积不变.体积扩大3倍·5.一个圆柱和它等底等高的圆锥体积之和是48立方厘米.这个圆柱的体积是()立方厘米.圆锥的体积是()立方厘米圆锥和它等底等高的圆柱体积之比是1 :3.圆柱占1份.圆锥占3份.一共4份.题目中说了4份的和一共是48立方厘米·圆锥占了4份中的1份.圆柱占了4份中的3份 V锥:48÷4=12(立方厘米)或 48×1/4 =12(立方厘米)V柱:48÷4=12(立方厘米) 12×3=36(立方厘米) 或 48×3/4 =36(立方厘米)6.一个圆柱和它等底等高的圆锥体积之差是24立方分米.这个圆柱的体积是()立方分米.圆锥的体积是()立方分米·圆锥和它等底等高的圆柱体积之比是1 :3.圆柱占1份.圆锥占3份.1份和3份相差了2份.题目中说了相差24立方分米.2份就是24立方分米圆锥占了2份中的1份.圆柱占了2份中的3份V锥:24÷2=12(立方分米) 或24×1/2 =12(立方分米)V柱:24÷2=12(立方分米) 12×3=36(立方分米) 或 24×3/2 =36(立方分米)7.一个圆柱和一个圆锥.体积相等.底面积也相等.圆柱的高是2厘米.圆锥的高是()厘米· V柱=V锥 V柱=V锥S柱底h柱= 1/3 S锥底h锥 S柱底h柱= 1/3 S锥底h锥h柱= 1/3 h锥 S柱底= 1/3 S锥底2= 1/3 h锥 4 = 1/3 S锥底h锥= 2÷1/3 S锥底= 4÷1/3h锥=6 S锥底=128.一个圆柱和一个圆锥体积相等.高也相等.圆柱的底面积是4平方分米.圆锥的底面积是()平方分米·9.一个圆锥和一个圆柱的底面积相等.体积的比是1:6·如果圆锥的高是3.6厘米.圆柱的高是()厘米.如果圆柱的高是3.6厘米.圆锥的高是()厘米·10.一个圆柱体.把它的高截短3厘米.它的底面积减少94.2平方厘米.这个圆柱的体积减少了()立方厘米·πr²C=S侧÷h r=C÷π÷2V=πr²h=94.2÷3 =31.4÷3.14÷2 =3.14×5×3=31.4(厘米) =5(厘米) =235.5(立方厘米)四.比例1.比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号.读作“比”·比号前面的数叫做比的前项.比号后面的数叫做比的后项·比的前项除以后项所得的商.叫做比值·(3)同除法比较.比的前项相当于被除数.后项相当于除数.比值相当于商·(4)比值通常用分数表示.也可以用小数表示.有时也可能是整数·(5)比的后项不能是零·(6)根据分数与除法的关系.可知比的前项相当于分子.后项相当于分母.比值相当于分数值·2.比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外).比值不变.这叫做比的基本性质·3.求比值和化简比:求比值的方法:用比的前项除以后项.它的结果是一个数值可以是整数.也可以是小数或分数·根据比的基本性质可以把比化成最简单的整数比·它的结果必须是一个最简比.即前.后项是互质的数·4.按比例分配:在农业生产和日常生活中.常常需要把一个数量按照一定的比来进行分配·这种分配的方法通常叫做按比例分配·方法:首先求出各部分占总量的几分之几.然后求出总数的几分之几是多少·5.比例的意义:表示两个比相等的式子叫做比例·组成比例的四个数.叫做比例的项·两端的两项叫做外项.中间的两项叫做内项·6.比例的基本性质:在比例里.两个外项的积等于两个两个内项的积·这叫做比例的基本性质·7.比和比例的区别(1)比表示两个量相除的关系.它有两项(即前.后项);比例表示两个比相等的式子.它有四项(即两个内项和两个外项)·(2)比有基本性质.它是化简比的依据;比例也有基本性质.它是解比例的依据·8.成正比例的量:两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的比值(也就是商)一定.这两种量就叫做成正比例的量.他们的关系叫做正比例关系·用字母表示y/x =k(一定)9.成反比例的量:两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的积一定.这两种量就叫做成反比例的量.他们的关系叫做反比例关系·用字母表示x ×y=k(一定)10.判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定.如果商一定.就成正比例;如果积一定.就成反比例·11.比例尺:一幅图的图上距离和实际距离的比.叫做这幅图的比例尺·12.比例尺的分类(1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺13.图上距离:实际距离=比例尺或图上距离/实际距离 =比例尺实际距离×比例尺=图上距离图上距离÷比例尺=实际距离14.应用比例尺画图的步骤:(1)写出图的名称. (2)确定比例尺;(3)根据比例尺求出图上距离;(4)画图(画出单位长度)(5)标出实际距离.写清地点名称(6)标出比例尺15.图形的放大与缩小:形状相同.大小不同·16.用比例解决问题:根据问题中的不变量找出两种相关联的量.并正确判断这两种相关联的量成什么比例关系.并根据正.反比例关系式列出相应的方程并求解·17.常见的数量关系式:(成正比例或成反比例)单价×数量=总价单产量×数量=总产量速度×时间=路程工效×工作时间=工作总量总价/单价 =数量总产量/单产量 =数量路程/速度 =时间工作总量/工作效率=工作时间总价/数量 =单价总产量/数量 =单产量路程/时间 =速度工作总量/工作时间=工作效率18.已知图上距离和实际距离可以求比例尺·已知比例尺和图上距离可以求实际距离·已知比例尺和实际距离可以求图上距离·计算时图距和实距单位必须统一·19.播种的总公顷数一定.每天播种的公顷数和要用的天数是不是成反比例?答:每天播种的公顷数×天数=播种的总公顷数已知播种的总公顷数一定.就是每天播种的公顷数和要用的天数的积是一定的.所以每天播种的公顷数和要用的天数成反比例·20.判断下面各题的两个量是不是成比例.如果成比例.成什么比例?(1)订阅《中国少年报》的份数和钱数·因为钱数/订阅《中国少年报》的份数 = 每份的钱数(一定)所以.订阅《中国少年报》的份数和钱数成正比例·(2)三角形的底一定.它的面积和高·因为三角形的面积/高 =1/2 (一定)所以.它的面积和高成正比例·(3)图上距离一定.实际距离和比例尺·因为.实际距离×比例尺=图上距离(一定)所以.实际距离和比例尺成反比例·(4)一条绳子的长度一定.剪去的部分和剩下的部分·因为.剪去的部分和剩下的部分不存在比值或积一定的关系. 所以.剪去的部分和剩下的部分不成比例·(5)圆的面积和它的半径不成正比例.因为圆的面积和它的半径的比值不一定.所以圆的面积和它的半径不成正比例·自行车里的数学:前齿轮转数×前齿轮齿数=后齿轮转数×后齿轮齿数蹬一圈走的路程=车轮周长×(蹬一圈.后轮转动的圈数)蹬一圈走的路程=车轮周长×(前齿轮齿数:后齿轮齿数)48:28≈1.71 48:24=2 48:20=2.4 48:18≈2.67 48:16=3 48:14≈3.4340:28≈1.4340:24≈1.67 40:20=2 40:18≈2.22 40:16=2.5 40:14≈2.86前.后齿轮齿数相差大的.比值就大.这种组合走的就远.因而车速快.但骑车人较费力前.后齿轮齿数相差小的.比值就小.这种组合走的就近.因而车速慢.但骑车人较省力自行车跑的快慢与两个条件有关:1.前后齿轮齿数的比值·2.车轮的大小(合理)五数学广角—鸽巢问题1.鸽巣原理是一个重要而又基本的组合原理, 在解决数学问题时有非常重要的作用①什么是鸽巣原理, 先从一个简单的例子入手, 把3个苹果放在2个盒子里, 共有四种不同的放法, 如下表放法盒子1盒子2130221312403无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果”·这个结论是在“任意放法”的情况下, 得出的一个“必然结果”·类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子如果有6封信, 任意投入5个信箱里, 那么一定有一个信箱至少有2封信我们把这些例子中的“苹果”.“鸽子”.“信”看作一种物体.把“盒子”.“鸽笼”.“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式②利用公式进行解题:物体个数÷鸽巣个数=商……余数至少个数=商+12.摸2个同色球计算方法·①要保证摸出两个同色的球.摸出的球的数量至少要比颜色数多1·物体数=颜色数×(至少数-1)+1②极端思想:用最不利的摸法先摸出两个不同颜色的球.再无论摸出一个什么颜色的球.都能保证一定有两个球是同色的·③公式:两种颜色:2+1=3(个)三种颜色:3+1=4(个)四种颜色:4+1=5(个)常见乘法计算(敏感数字):25×4=100 125×8=1000加法交换律简算例子加法结合律简算例子乘法交换律简算例子乘法结合律简算例子 0.87 5+2/3 +1/8 23 +14 +0.8 0.4×33×52 23×0.375×16/3=7/8 +2/3 +1/8 =2/3 +1/4 +4/5 =2/5 ×33×5/2 =23×3/8 ×16/3=7/8 +1/8 +2/3 =2/3 +(1/4 +4/5 ) =2/5 ×2/5 ×33 =23 ×(3/8 ×16/3 )=1+2/3 =2/3 +1 =1×3 =23×2含加法交换律与结合律含乘法交换律与结合律数字换减法式数字换加法式0.875+2/3 +1/8 +1/3 0.375×29/7 ×16/3 ×7/29 35×5/36 101×9/10=7/8 +2/3 +1/8 +1/3 =3/8 ×29/7 ×16/3 ×7/29 = (36-1) ×5/36 = (100+1) ×9/10=7/8 +1/8 + 2/3 +1/3 =3/8 ×16/3 ×29/7 ×7/29 =36×536 -1×536 =100×9/10 +1×9/10= (7/8 +1/8 )+ (2/3 +1/3 ) = (3/8 ×16/3 )×(29/7 ×7/29 ) =5-5/36 =1+9/10=1+1 =2×1乘法分配律提取式乘法分配律提取式乘法分配律(添项) 乘法分配律(添项)101×0.9-9/10 ×1 95.5÷1.6-15.5÷1.6 101×0.9-9/10 52×5/8 +29×5/8 -0.625=101×9/10 -9/10 ×1 =(95.5-15.5)÷1.6 =101×9/10 -9/10 =52×5/8 +29×5/8 -5/8=101×9/10 -1×9/10 =80÷1.6 =101×910 -1×910 =52×58 +29×58 -1×5/8=(101-1) ×910 =800÷16 =(101-1) ×9/10 =(52+29-1)×5/8=100×9/10 =100×9/10 =80×5/8减法的性质简算例子减法的性质简算例子减法的性质简算例子数字换乘法式18-58 -0.375 134 -716 -0.75 1225 -(7/16 +0.4) 0.56×125=18-58 -38 =134 -716 -34 =1225 -(716 +2/5 ) =0.7×0.8×125=18-(58 +38 ) =134 -34 -716 =1225 -25 -7/16 =0.7×(0.8×125)=18-1 =1-7/16 =12-7/16 =0.7×100除法的性质简算例子除法的性质简算例子除法的性质简算例子数字换乘法式3200÷2.5÷0.4 2700÷2.5÷2.7 5900÷(2.5×5.9) 33333×33333=3200÷(2.5×0.4) =2700÷2.7÷2.5 =5900÷5.9÷2.5 =11111×3×33333=3200÷1 =1000÷2.5 =1000÷2.5 =11111×99999=11111×(100000-1)同级运算中.第一个数不能动.后面的数可以带着符号搬家1+2/3 +7/16 -2/3 250÷0.8×0.4 123 -716 +13 29×0.25÷0.29=1+2/3 -2/3 +7/16 =250×0.4÷0.8 =1+2/3 +1/3 -7 / 16 =29÷0.29×0.25=1+716 =100÷0.8 =2-7/16 =100×0.25解方程方法一:消项(如果消+3.方程两边就同时-3 ;如果消×3.方程两边就同时÷3) 1:把方程里的“括号”全部去掉.两种去括号的方法任选其一2:如果两边都有几X , 要先消去其中一边的几X (如果有“-几X”.就把“-几X”消去.如果没有“-几X”.就把较小的X消去掉)3:消去“-几”.消去“÷”4:把X这边的数字全部消掉.先消“+ -”再消“÷”最后消“×” (注意:无论解到哪一步.数字+几X 都要写成几X+数字)解方程方法二:移项(+3移到另一边就变成-3.×3移到另一边就变成÷3)1:把方程里的“括号”全部去掉.两种去括号的方法任选其一2:如果两边都有几X ,就把其中一边的几X 移到另一边 (如果有“-几X”.就把“-几X”移到另一边·如果没有“-几X”.就把较小的X移到另一边)3:把“-几X”移到另一边.把“÷X”移到另一边”4:把X这边的数字全部移到另一边.先移“+ -”再移“÷”最后移“×” (注意:无论解到哪一步.数字+几X 都要写成几X+数字)长度单位换算km m dm cm mm1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米面积单位换算 km² m² dm² cm² mm²1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算 L mL m³ dm³ cm³1立方米=1000立方分米 1立方分米=1000立方厘米 1升=1000毫升 1立方米=1000升1立方分米=1升 1立方厘米=1毫升质量单位换算 t kɡɡ1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分时间单位换算 h min s1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分 1分=60秒 1时=3600秒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版六年级下册知识点汇总1、《文言文两则》《学弈》选自《孟子·告子》。

故事说明了学习应专心致志,不可三心二意的道理。

《两小儿辩日》选自《列子·汤问》。

故事体现了两小儿善于观察、说话有理有据和孔子实事求是的态度。

课后第3 题:①为是其智弗若与?曰:非然也。

答:难道是因为他的智力不如别人好吗?说:不是这样的。

②我以日始出时去人近,而日中时远也。

答:我认为太阳刚出来的时候离人近一些,而中午的时候离人远一些。

③孰为汝多知乎?答:谁说你的知识渊博呢?2、《匆匆》本文是现代著名作家朱自清写的一篇散文。

本文围绕“匆匆”展开叙述,先写日子一去不复返的特点;再写自己八千多个日子来去匆匆和稍纵即逝,作者思绪万千,由景及人,叹息不已。

最后,作者发出内心的感叹。

表达了作者对时光流逝的无奈和惋惜。

课后第2 题:“像针尖上一滴水滴在大海里,我的日子滴在时间的流里,没有声音,也没有影子。

”答:作者把自己过去的八千多日子比喻成针尖上的水滴,把时间的流比喻成大海。

日记显得多么的渺小,消逝得那么快,无声无息,无影无踪。

表现出作者十分无奈的愁绪。

3、《桃花心木》这是我国台湾著名作家林清玄的一篇散文。

作者借树苗的生长,来比喻人的成长,写一个种树人让“树木自己学会在土地里找水源”的育苗方法,说明了在艰苦环境中经受生活考验、克服依赖性对人成长的重要意义。

课后第2 题:①不只是树,人也是一样,在不确定中生活的人,能比较经得起生活的考验,会锻炼出一颗独立自主的心。

答:“不确定”是指生活中不可预料的一些坎坷、曲折、磨难。

生活中的“不确定”,比如生病、父母下岗、遇到自然灾难等。

②种树的人不再来了,桃花心木也不会枯萎了。

答:因为种树人不定期、不定量地给树浇水,就是让树木适应环境,把很少的养分转化成巨大的能量,学会自己在土地里找水源,深深扎根,茁壮成长。

所以种树人不再来了,桃花心木也不会枯萎了。

6、《北京的春节》本人作者——著名语言大师老舍先生,给我们描绘了一幅幅北京春节的民风民俗画卷,展示了中国节日习俗的温馨和美好,表达了自己对传统文化的认同和喜爱。

文章以时间为经线,以人们的活动为纬线结构全文。

作者先介绍北京的春节从腊月初旬开始了:人们熬腊八粥、泡腊八蒜、购买年货、过小年……做好过春节的充分准备。

紧接着,详细描述过春节的三次高潮:除夕夜家家灯火通宵,鞭炮声日夜不绝,吃团圆饭、守岁;初一男人们外出拜年,女人们在家接待客人,小孩逛庙会;十五观花灯、放鞭炮、吃元宵。

最后写正月十九春节结束。

10、《十六年前的回忆》本文通过李大钊被捕前到被捕后的回忆,展示了革命先烈忠于革命事业的伟大精神和面对敌人坚贞不屈的高贵品质,表达了作者对父亲的敬仰与深切的怀念。

除开头外,文章是按被捕前、被捕时、法庭上、被害后的顺序来叙述的。

被捕前写父亲烧掉文件和书籍,工友阎振三被抓,反映出形势的险恶与处境的危险;被捕时写了敌人的心虚、残暴与父亲的处变不惊;法庭上描写了李大钊的镇定、沉着;被害后写了全家的无比悲痛。

重点句子的理解:①父亲是很慈祥的,从来没骂过我们,更没有打过我们。

我总爱向父亲问许多幼稚可笑的问题。

他不论多忙,对我的问题总是很感兴趣,总是耐心地讲给我听。

这一次不知道为什么,父亲竟这样含糊地回答我。

答:因为当时的局势十分严重,不是同孩子谈心的时候,而且像防止革命的书籍和文件落到敌人手里这样的事情,也不是几句话能说清楚的。

这里写出了李大钊同志对待亲人慈爱和善与对待工作认真严肃两个方面的统一。

②“不是常对你说吗?我是不能轻易离开北京的。

你要知道现在是什么时候,这里的工作多么重要。

我哪能离开呢?”答:他完全明白形势的险恶、处境的危险,但决不离开自己的工作岗位。

这表现了他对革命高度负责的精神。

③在法庭上,我们跟父亲见了面。

父亲仍旧穿着它那件灰布旧棉袍,可是没戴眼镜。

我看到了他那乱蓬蓬的长头发下面的平静而慈祥的脸。

答:从这句话可以看出父亲虽受敌人的折磨,但依旧沉着、慈祥。

“没戴眼镜”“乱蓬蓬的长头发”说明敌人对李大钊施了重刑,“平静”说明李大钊经历残酷的折磨后依旧坚强,“慈祥”充分体现了李大钊对亲人的爱。

课后第3 题:课文最后三个自然段与开头的关系是首尾呼应。

这样可以使读者对事情的来龙去脉了解得更清楚,得到的印象和感受也就更加深刻,更突出了作者对父亲深切的怀念。

12、《为人民服务》这是毛泽东主席于1944 年9 月8 日在张思德同志追悼会上所作的演讲。

文章开头就鲜明地提出了中国共产党及其领导的八路军、新四军的宗旨——完全、彻底地为人民服务;然后结合当前的实际,从三个方面说明怎样才能完全、彻底地为人民服务;一是树立“为人民利益而死,就比泰山还重”的生死观;二是正确对待批评,为人民的利益坚持好的、改正错的;三是搞好团结、克服困难、提高勇气、互相爱护,使整个人民团结起来。

人固有一死,或重于泰山,或轻于鸿毛。

固:本来。

或:有的。

于:表示比较。

课后第3 题:因为我们是为人民服务的,所以,我们如果有缺点,就不怕别人批评指出。

不管是什么人,谁向我们指出都行。

只要你说得对,我们就改正。

你说的办法对人民有好处,我们就照你的办。

答:这段话共有四句话。

第一句是讲我们要欢迎批评,第二句话是讲我们欢迎任何人的批评,第三句话是讲我们接受任何人的只要是正确的批评。

第四句话是讲你说的办法对人民有好处,我们就照你的办。

句与句之间联系紧密,意思层层递进。

14、《卖火柴的小女孩》这是丹麦作家安徒生的一篇童话,讲述了一个卖火柴的小女孩大年夜冻死在街头的故事。

作者开头描写了小女孩的处境:大年夜的街头又冷又黑,天下着雪,小女孩还在街头卖火柴。

接着,写了小女孩为了暖和自己,五次擦然火柴,在火柴的亮光中看到的种种幻象——暖和的火炉,喷香的烤鹅,美丽的圣诞树,慈祥的奶奶,直至跟奶奶一起飞走。

最后讲小女孩冻死在街头。

课后第3 题:①飞到那没有寒冷,没有饥饿,也没有痛苦的地方去了。

答:这句话的意思是:小女孩离开了人世,在美妙的幻象中死去了。

小女孩在这个世界上,只有寒冷,只有饥饿,只有痛苦。

②她曾经多么幸福,跟着她奶奶一起走向新年的幸福中去。

答:前一个“幸福”的意思是:小女孩临死前是在美好的幻象中度过的,是幸福的;后一个“幸福”的意思是:小女孩死了就没有寒冷、饥饿和痛苦了,就彻底幸福了。

15、《凡卡》这篇课文通过凡卡给爷爷写信这件事,反映了沙皇统治下俄国社会中穷苦儿童的悲惨命运,揭露了当时社会制度的黑暗。

文章是按写信的过程记叙的。

开始叙述圣诞节前夜凡卡趁老板、老板娘和伙计们去教堂做礼拜的机会,偷偷地给爷爷写信;接着,凡卡在信中向爷爷倾诉自己难以忍受的悲惨的学徒生活,再三哀求爷爷带他离开这儿,回到乡下去,并回忆了乡下生活的两个情景(一是爷爷守夜的情景,一是过圣诞节的情景);最后写凡卡把写好的信塞进邮筒里,在甜蜜的梦中看见爷爷正在念他的信。

这篇课文是由作者的叙述、凡卡写信的内容和写信过程中凡卡的回忆三部分内容穿插而成的。

在表达式采用了对比、反衬、暗示的表达方法。

18、《跨越百年的美丽》这是一篇赞美居里夫人的文章,以“美丽”为主线,表明了居里夫人的美丽不在于容貌,而在于心灵和人格。

她为人类作出了伟大的贡献,实现了自己的人生价值。

作者采用倒叙的手法,一开始描写了居里夫人的在法国科学院做学术报告的场面,将居里夫人美丽的形象和伟大的成就凸现在读者面前。

接下去的两个自然段具体描写了居里夫人为了探索“其他物质有没有放射性”而进行的艰苦的研究,直到发现了镭,这是课文的重点部分,充分表现了居里夫人坚定执著、为科学献身的科学精神。

最后两个自然段写了居里夫人在名利面前的态度和做法,表现了居里夫人淡泊名利的高贵人格和全身心投身科学的忘我精神。

最后引用爱因斯坦的话肯定居里夫人的人格。

课题中的“美丽”不仅是居里夫人的美丽容貌,更是她所体现的坚定执著、为科学献身的科学精神和淡泊名利的高贵人格。

课后第2 题:①这种可贵的性格和高远的追求,使玛丽·居里几乎在完成这项伟大自然发现的同时,也完成了对人生意义的发现。

答:“这种可贵的性格和高远的追求”是指居里夫人有“坚定、刚毅,有远大、执著的追求”,“这项伟大的发现”是指居里夫人发现了放射性金属元素镭,“人生意义的发现”是指居里夫人明白了人生的价值并不在于年轻美貌、金钱名利,而在于为科学作出贡献,为人类作出贡献。

②她从一个漂亮的小姑娘,一个端庄坚毅的女学者,变成科学教科书里的新名词“放射线”,变成物理学的一个新的计量单位“居里”,变成一条条科学定律,她变成了科学史上一块永远的里程碑。

答:这个句子采用了“从……变成……”的句式,这种“变”不是一般的变成,而是一种人生价值的提升,生命境界的飞跃,四个“变成”概括了居里夫人奋斗的一生以及不朽的功绩。

20、《真理诞生于一百个问号之后》课文的题目是“真理诞生于一百个问号之后”,也是课文的主要观点,“真理诞生于一百个问号之后”的含义是:只要善于观察,不断发问,不断解决疑问,锲而不舍地追根求源,就能在现实生活中发现真理。

课后第 2 题:答:第一个事例是谢皮罗教授从洗澡水的漩涡中发现问题,通过反复的实验和研究,发现水的漩涡的旋转方向和地球自转有关。

第二个事例是英国著名化学家波义耳偶然发现盐酸会使紫罗兰花瓣变红,继而进行了许多实验,终于发明了酸碱试纸。

第三个事例是一位奥地利医生从儿子做梦时眼珠转动这个现象,经过反复观察和分析,推断出凡睡者眼珠转动时都表示在做梦的普遍规律。

补充事例:牛顿看到苹果落到地上,发现了万有引力定律。

鲁班上山手被草叶割伤,发明了锯。

课后第3 题:①最后把“?”拉直变成“!”,找到了真理。

答:“?”是发现的问题,是不断的追问;“!”是通过探索,解决了疑问,发现了真理,这个句子把一个抽象的道理,用直观形象的方法进行表述,给人留下了深刻的印象。

②只要你见微知著,善于发问并不断探索,那么,当你解答了若干个问号之后,就能发现真理。

答:“见微知著”的意思是:能从平常的现象中发现问题。

这句话重申文章开头提出的观点,与开头互相照应。

日积月累第一单元1、人非生而知之者,孰能无惑?《师说》2、一鼓作气,再而衰,三而竭。

《左传》3、甘瓜苦蒂,天下物无全美。

《墨子》4、种树者必培其根,种德者必养其心《传习录》5、操千曲而后晓声,观千剑而后识器。

《文心雕龙》第三单元囚歌(叶挺)为人进出的门紧锁着,为狗爬出的洞敞开着,一个声音高叫着:爬出来吧,给你自由!我渴望自由,但我深深地知道——人的身躯怎能从狗洞子里爬出!我希望有一天,地下的烈火,将我连这活棺材一齐烧掉,我应该在烈火与热血中得到永生!第四单元1、正直是道德之本。

——(埃及)迈哈福兹《平民史诗》2、眼泪无法洗去痛苦。

——(冰岛)拉克司内斯《冰岛之钟》3、最伟大的见解是最朴实的。

相关文档
最新文档