SG3525斩控式单相交流调压电路设计要点

合集下载

201001修改的采用脉宽调制器SG3525控制的新型单相交流调压电路

201001修改的采用脉宽调制器SG3525控制的新型单相交流调压电路

基于全控型器件控制的新型单相交流调压电路湖南工程学院刘星平摘要:本文介绍了SG3525的应用特点,分析了由脉宽调制器SG3525产生脉宽调制波的形成过程,以及由SG3525控制的单相交流调压的实现原理。

关键词:脉宽调制器脉宽调制波单相交流调压1.前言脉宽调制器SG3525是一种性能优良,功能齐全,通用性强的单片集成PWM控制器,由于它简单可靠及使用方便灵活,大大减化了脉宽调制器的设计及调试。

本电路是利用SG3525产生的PWM波作为功率场效应管的驱动信号,由功率场效应管通过斩波的方式实现的单相交流调压电路。

2.本电路的组成如图1所示,本电路采用全控型器件作为自开关器件,利用集成脉宽调制器SG3525产生的脉宽调制信号作为驱动信号。

斩控式交流调压电路输入的是正弦交流电压。

在交流电源u i的正半周,用V1进行斩波控制,用V3给负载电流提供续流通道;在u i的负半周,用V2进行斩波控制,用V4给负载电流提供续流通道。

设斩波器件V1、V2的导通时间为t on,开关周期为T,则导通比为α=t on/T,和直流斩波电路一样,图1 单相交流调压主电路图通过对α的调节可以调节输出电压U0。

控制电路如图2所示,主要由同步变压器T与运算放大器A1及A2,专用脉宽调制芯A1TA2图2 脉宽控制电路图片SG3525及外围电路,脉冲控制及隔离输出等部分组成。

同步变压器T与运算放大器A1及A2构成同步检测环节。

输入交流电压为220V,经过同步变压器T后,分别形成两路互为倒相的方波,宽度为180°,分别对应正弦波的正半周和负半周,由SG3525进行调制后,经过隔离及驱动电路,分别驱动两路功率场效应管。

3.脉宽调制器SG3525PWM波的形成原理脉寛调制信号由专用集成芯片SG3525产生,有关SG3525的内部结构,功能,工作原理与使用方法等说明如下:如图3所示,虚线框内为SG3525的内部结构图, 它主要由以下部分组成。

斩控式交流调压课程设计概要

斩控式交流调压课程设计概要

第1章概述在工业生产及日用电气设备中,有不少交流供电的设备采用控制交流电压来调节设备的工作状态,如加热炉的温度、电源亮度、小型交流电机的转速等。

这样就需要设计一种交流调压电路来控制,其基本原理是把两个晶闸管反并联后串联在交流电路中,通过对晶闸管的控制就可以控制交流电力。

在每一个周波内通过对晶闸管开通相位的控制,可以方便地调节输出电压的有效值,这种电路称为交流调压电路。

用在电热控制、交流电动机速度控制、灯光控制和交流稳压器等场合。

采用晶闸管作为开关元件的典型单相交流调压电路如图1所示。

常用通断控制或相位控制方法来调节输出电压。

交流调压电路也广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软起动,也用于异步电动机调速。

在供用电系统中,这种电路还常用于对无功功率的连续调节。

此外,在高压小电流或低压大电流中,也常采用交流调压电路调节变压器一次电压。

如采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联,同时,低电压大电流直流电源需要很多晶闸管并联。

这都是十分不合理的。

采用交流调压电路在变压器一次侧调压,其电压电流值都不太大也不太小,在变压器二次侧只要用二极管整流就可以了。

这样的电路体积小、成本低、易于设计制造。

交流调压是指把一种交流电变成另一种同频率,不同电压交流电的变换。

按所变换的相数不同交流调压电路可分为单相交流调压电路和三相交流调压电路。

前者是后者的基础。

与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。

第2章设计总体思路2.1 系统总体方案确定交流调压的控制方式有三种:①整周波通断控制;②相位控制;③斩波控制。

整周波控制调压——适用于负载热时间常数较大的电热控制系统。

晶闸管导通时间与关断时间之比,使交流开关在某几个周波连续导通,某几个周波连续关断,如此反复循环地运行,其输出电压的波形如图2所示。

改变导通的周波数和控制周期的周波数之比即可改变输出电压。

采用自关断器件的单相交流调压电路研究

采用自关断器件的单相交流调压电路研究

采用自关断器件的单相交流调压电路研究一.实验目的1.掌握采用自关断器件的单相交流调压电路的工作原理、特点、波形分析与使用场合。

2.熟悉PWM专用集成电路SG3525的组成、功能、工作原理与使用方法。

二.实验内容1.PWM专用集成电路SG3525性能测试2.控制电路相序与驱动波形测试3.带与不带电感时负载与mos管两端电压波形测试4.在不同占空比条件下,负载端电压、负载端谐波与输入电流的位移因数测试。

三.实验系统组成及工作原理随着自关断器件的迅速发展,采用晶闸管移相控制的交流调压设备,已逐渐被采用自关断器件(GTR、MOSFET、IGBT等)的交流斩波调压所代替,与移相控制相比,斩波调压具有下列优点:(1)谐波幅值小,且最低次谐波频率高,故可采用小容量滤波元件;(2)功率因数高,经滤波后,功率因数接近于1。

(3)对其他用电设备的干扰小。

因此,斩波调压是一种很有发展前途的调压方法,可用于马达调速、调温、调光等设备。

本实验系统以调光为例,进行斩波调压研究。

斩波调压的主回路由MOSFET及其反并联的二极管组成双向全控电子斩波开关。

当MOS 管分别由脉宽调制信号控制其通断时,则负载电阻R L上的电压波形如图2—4b所示(输出端不带滤波环节时),显然,负载上的电压有效值随脉宽信号的占空比而变,当输出端带有滤波环节时的负载端电压波形如图2—4c所示。

脉宽调制信号由专用集成芯片SG3525产生,有关SG3525的内部结构、功能、工作原理与使(b)图2-4(c) U(t)U(t)U(t)用方法等可参阅双闭环可逆直流脉宽调速系统实验。

控制系统中由变压器T、比较器和或非门等组成同步控制电路以确保交流电源的2端为正时,MOS管VT1导通;而当交流电源的1端为正时,MOS管VT2导通。

四.实验设备和仪器1.NMCL-22实验挂箱2.万用表3.双踪示波器五.实验方法1.SG3525性能测试先按下开关S1。

(1)锯齿波周期与幅值测量(分开关S2、S3、S4合上与断开多种情况)。

斩控式单相交流调压电路

斩控式单相交流调压电路

设计内容与设计要求一.设计内容:1.电路功能:1)用斩控方式实现交流调压,功率因数高,谐波小,输出波形好。

2)电路由主电路与控制电路组成,主电路主要环节:主电力电子开关与续流管。

控制电路主要环节:脉宽调制PWM电路、电压电流检测单元、驱动电路、检测与故障保护电路。

3)主电路电力电子开关器件采用GTR、IGBT或MOSFET。

4)系统具有完善的保护2. 系统总体方案确定3. 主电路设计与分析1)确定主电路方案2)主电路元器件的计算及选型3)主电路保护环节设计4. 控制电路设计与分析1)检测电路设计2)功能单元电路设计3)触发电路设计4)控制电路参数确定二.设计要求:1.用SG3525产生脉冲。

2.设计思路清晰,给出整体设计框图;3.单元电路设计,给出具体设计思路和电路;4.分析所有单元电路与总电路的工作原理,并给出必要的波形分析。

5.绘制总电路图6.写出设计报告;主要设计条件1.设计依据主要参数1)输入输出电压:单相(AC)220(1+15%)、0~150V(AC)2)最大输出电流:5A3)功率因数:≥0.72. 可提供实验与仿真条件说明书格式1.课程设计封面;2.任务书;3.说明书目录;4.设计总体思路,基本原理和框图(总电路图);5.单元电路设计(各单元电路图);6.故障分析与电路改进、实验及仿真等。

7.总结与体会;8.附录(完整的总电路图);9.参考文献;10、课程设计成绩评分表进度安排第一周星期一:课题内容介绍和查找资料;星期二:总体电路方案确定星期三:主电路设计星期四:控制电路设计星期五:控制电路设计;第二周星期一: 控制电路设计星期二:电路原理及波形分析、实验调试及仿真等星期四~五:写设计报告,打印相关图纸;星期五下午:答辩及资料整理目录第1章概述 (1)1.1 单相交流调压........................ 错误!未定义书签。

1.2 交流调压在生活生产中的应用.......... 错误!未定义书签。

SG3525工作原理以及输出电路驱动电路

SG3525工作原理以及输出电路驱动电路

SG3525工作原理以及输出电路驱动电路SG3525内部包含一个误差放大器、一个PWM比较器、一个控制逻辑单元和多个驱动电路。

误差放大器用于将参考电压(通常通过一个电位器调节)与反馈电压进行比较,并产生误差信号。

PWM比较器通过与误差放大器相关联的控制逻辑单元来产生脉宽调制信号。

驱动电路用于将脉宽调制信号转换为驱动信号,并控制开关管的开关状态。

当输入电压超过参考电压时,误差放大器会产生一个正偏差信号,反之则产生负偏差信号。

这个偏差信号经过PWM比较器和控制逻辑单元的处理后,产生一个脉宽比例。

脉宽比例表示开关管导通和截止的时间比例,通过调节脉宽比例,可以控制开关管的导通和截止时间,进而控制输出电压。

SG3525的输出电路通常由开关管、滤波电容和负载组成。

驱动电路的输出信号直接控制开关管的导通和截止。

当开关管导通时,输入电压通过开关管和滤波电容传递到负载,负载接收到电压。

当开关管截止时,输入电压无法通过开关管传递到负载,负载不接收电压。

总结起来,SG3525的工作原理是通过脉宽调制控制开关管的导通和截止,从而调节输出电压。

输出电路由开关管、滤波电容和负载组成,驱动电路由晶体管组成,控制开关管的开关状态。

这种工作原理和输出电路驱动电路的设计使得SG3525广泛应用于直流电源、逆变器、电机驱动等领域。

实验四 单相斩控式交流调压电路实验

实验四  单相斩控式交流调压电路实验

实验四单相斩控式交流调压电路实验一、实验目的(1) 熟悉斩控式交流调压电路的工作原理。

(2) 了解斩控式交流调压控制集成芯片的使用方法与输出波形。

二、实验线路及原理斩控式交流调压主电路原理如图3.4 所示。

图3.4 斩控式交流调压主电路原理图一般采用全控型器件作为开关器件,其基本原理和直流斩波电路类似,只是直流斩波电路的输入是直流电压,而斩控式交流调压电路输入的是正弦交流电压。

在交流电源ui 的正半周,用V1进行斩波控制,用V3给负载电流提供续流通道;在ui的负半周,用V2进行斩波控制,用V4给负载电流提供续流通道。

设斩波器件V1、V2的导通时间为ton,开关周期为T,则导通比为α=ton/T,和直流斩波。

电路一样,通过对α的调节可以调节输出电压U图3.5 给出了电阻负载时负载电压U0和电源电流i1(也就是负载电源)的波形。

可以看出电源电流的基波分量是与电源电压同相位的。

即位移因数为1。

电源电流不含低次谐波,只含和开关周期T有关的高次谐波,这些高次谐波用很小的滤波器即可滤除,这时电路的功率因数接近于1。

图3.5 电阻负载斩控式交流调压电路波形斩控式交流调压控制电路方框图如图3.6 所示,PWM 占空比产生电路使用美国Silicon General公司生产的专门PWM集成芯片SG3525,其内部电路结构及各引脚功能查阅相关资料。

的正半周,V1进行斩波控制,用V3给负载电流提供续流通道,在交流电源uiV4关断;在u的负半周,V2进行斩波控制,V3关断,用V4给负载电流提供续流通i道。

控制信号与主电路的电源必须保持同步。

图3.6 斩控式交流调压控制电路方框图三、实验内容(1) 控制电路波形观察。

(2) 交流调压性能测试。

四、实验方法由于主电路的电源必须与控制信号保持同步,因此主电路的电源不需要外部接入。

但是为了能同时观察两路控制信号之间的相位关系,主电路的开关K 是串接在电源开关之后的。

在观察控制信号时将开关打在断状态。

基于SG3525斩控式单相交流调压电路1

基于SG3525斩控式单相交流调压电路1

目录第1章概述 (2)1.1 课题来源 (2)1.2 解决方法 (2)1.3 优势 (3)第2章总体方案及基本原理 (4)2.1 基本原理 (4)2.2总体方案 (4)第3章主电路的设计 (6)3.1 主电路的总体设计 (6)3.2主电路保护设计 (8)3.3 主电路参数计算和元器件的选择 (9)3.3.1开关管IGBT的选择 (9)3.3.2续流二极管的选择 (9)3.3.3具体参数计算 (10)第4章控制及驱动电路设计 (11)4.1主控制芯片的详细说明 (11)4.1.1芯片的选择 (11)4.1.2芯片的详细介绍 (11)4.1.3 芯片的工作原理 (13)4.2 驱动电路设计 (14)第5章保护电路及设计 (16)5.1 过零检测及续流触发电路 (16)5.2 输出限流电路 (17)5.3输入过压电路 (17)5.4 结果分析 (18)第6章设计总结与体会 (21)附录A 总电路图 (22)附录B 参考文献 (23)第1章概述1.1 课题来源单相交流电源的应用是非常广泛的。

比如在农村、轻工业、家用电器等小功率传动领域以及电力机车供电系统。

对于单相交流电源,调压和稳压是最为普遍的要求。

目前能够实现这一要求的调压器有下面三种:1)磁饱和式调压器该调压器通过控制主电路中电感的饱和程度,以改变电抗值以及其上的电压,实现对输出电压的调节。

这种调压器具有一定的动态性能,但输出电压的调节范围小,体积和重量较大。

2)机械式调压器机械式调压器由电动机带动碳刷实现输出电压的调节。

这种调压器输出波形较好,但体积、重量大,动态性能差。

3)电子式调压器这种调压器采用电力电子器件实现。

目前有晶闸管调压器和逆变式调压器两种。

晶闸管调压器采用的是相控方式,因此其输出波形差;逆变式调压器采用的是斩波控制方式,其输出波形和动态响应较好。

从上面可知,逆变式电子调压器具有最好的性能。

逆变式电子调压器的结构不仅具有调压、稳压的能力,而且还可以实现频率的变换。

单相斩控式交流调压电路课程设计

单相斩控式交流调压电路课程设计

课程设计报告书课程名称:《电力电子应用技术》课题名称:单相斩控式交流调压电路设计系部名称:自动控制系2012年06月20日目录1、引言 (2)2、课程设计的目的 (3)3设计工作原理 (3)4 系统工作原理 (4)5、斩控式交流调压控制电路波形图 (5)6、调试中观察到得现象及原因 (6)7、心得体会 (6)附录 (7)1、引言以电力为对象的电子技术称为电力电子技术,它是一门利用各种电力电子件,对电能进行电压、电流、频率和波形等方面的控制和变换的学科。

电力电子技术包括电力电子器件、电路和控制三个部分,是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。

电流有直流(DC)和交流(AC)两大类。

前者有电压幅值和极性的不同,后者除电压幅值和极性外,还有频率和相位的差别。

实际应用中,常常需要在两种电能之间,或对同种电能的一个或多个参数(如电压,电流,频率和功率因数等)进行变变换器共有四种类型:交流-直流(AC-DC)变换:将交流电转换为直流电。

直流-交流(DC-AC)变换:将直流电转换为交流电。

这是与整流相反的变换,也称为逆变。

当输出接电网时,称之为有源逆变;当输出接负载时,称之为无源逆变。

交-交(AC-AC)变换,将交流电能的参数(幅值或频率)加以变换。

其中:改变交流电压有效值称为交流调压;将工频交流电直接转换成其他频率的交流电,称为交-交变频。

直流-直流(DC-DC)变换,将恒定直流变成断续脉冲输出,以改变其平均值。

在有电力电子器件以前,电能转换是依靠旋转机组来实现的。

与这些旋转式的交流机组比较,利用电力电子器件组成的静止的电能变换器,具有体积小、重量轻、无机械噪声和磨损、效率高、易于控制、响应快及使用方便等优点。

1957年第一只晶闸管—也称可控硅(SCR)问世后,因此,自20世纪60年代开始进入了晶闸管时代。

70年代以后,出现了通和断或开和关都能控制的全控型电力电子器件(亦称自关断型器件),如:门极可关断晶闸管(GTO)、双极型功率晶体管(BJT/ GTR)、功率场效应晶体管(P-MOSFET)、绝缘栅双极型晶体管(IGBT)等。

单相斩控式交流调压电源设计

单相斩控式交流调压电源设计

单相斩控式交流调压电源设计单相斩控式交流调压电源(Phase Controlled AC Voltage Regulator)是一种常见的调压电源设计,它利用斩波控制技术来实现对交流电压的调节。

本文将详细介绍单相斩控式交流调压电源的设计原理、工作原理、控制策略以及相关的优缺点。

一、设计原理单相斩控式交流调压电源的设计原理基于斩波控制技术,即通过调节电路中的开关器件的导通和关断时间来实现对交流电压的调节。

由于交流电压的周期性变化,通过合适的控制方法,可以在每个周期内实现对电压的精确调节。

二、工作原理1.检测输入电压:通过电压传感器检测输入电压,并将信号输入到控制电路中,以便进行后续控制。

2.斩波控制:利用斩波控制技术,控制开关器件的导通和关断时间,以实现对电流的控制。

斩波控制技术通常使用脉宽调制(PWM)技术,通过改变脉冲宽度来控制输出电压的大小。

3.输出控制:将斩波控制生成的脉冲信号输入到功率开关器件上,通过开关器件的导通和关断来控制输出电压的大小。

三、控制策略1.开环控制:开环控制是最简单的控制策略,主要通过提前计算好斩波控制信号的脉冲宽度,直接通过开关器件来控制输出电压。

这种控制策略计算简单,但对于输入电压的变化较为敏感。

2.闭环控制:闭环控制是一种反馈控制策略,通过对输出电压进行检测,并将检测到的信号与目标电压进行比较,通过改变斩波控制信号的脉冲宽度来实现输出电压的稳定控制。

3.混合控制:混合控制是开环控制和闭环控制的结合,既能满足简单计算的要求,又能提供输出电压的稳定性。

该策略常用于对输入电压变化较大,而输出电压要求稳定的情况下。

四、优缺点1.输出电压稳定性高,能够实现精确的电压调节。

2.可靠性高,具有较大的抗干扰能力。

3.控制简单,成本低。

1.输出电压变化范围受限,通常只能实现有限的调节范围。

2.对于输入电压波动较大的情况,需要采取合适的控制策略来保证输出电压的稳定性。

3.对开关器件的要求较高,需要使用高质量的开关器件来保证工作的稳定性和可靠性。

SG3525 资料应用电路

SG3525 资料应用电路

SG3525 资料时间:2008-09-22 来源: 作者:nan’sir 点击:2910 字体大小:【大中小】电压调节芯片SG3525 具体的内部结构如图1 所示。

其中,脚16 为SG3525 的基准电压源输出,精度可以达到(5.1±1%)V,采用了温度补偿,而且设有过流保护电路。

脚5,脚6,脚7 内有一个双门限比较器,内电容充放电电路,加上外接的电阻电容电路共同构成SG3525 的振荡器。

振荡器还设有外同步输入端(脚3)。

脚1 及脚2 分别为芯片内误差放大器的反相输入端、同相输入端。

该放大器是一个两级差分放大器,直流开环增益为70dB 左右。

根据系统的动态、静态特性要求,在误差放大器的输出脚9 和脚1 之间一般要添加适当的反馈补偿网络。

图1 3525 内部引脚和框图1.各部分功能:a 基准电压源: 基准电压源是一个三端稳压电路,其输入电压V CC可在(8~35)V 内变化,通常采用+15V,其输出电压V ST=5.1V,精度±1%,采用温度补偿,作为芯片内部电路的电源,也可为芯片外围电路提供标准电源,向外输出电流可达400mA,没有过流保护电路。

b 振荡电路:由一个双门限电压均从基准电源取得,其高门限电压V H=3.9 V,低门限电压V L=0.9,内部横流源向CT 充电,其端压V C线性上升,构成锯齿波的上升沿,当V C=V H时比较器动作,充电过程结束,上升时间t1 为:t1= 0.67R T C T比较器动作时使放电电路接通,C T放电,V C下降并形成锯齿波的下降沿,当V C=V L时比较器动作,放电过程结束,完成一个工作循环,下降时间间t2 为:t2=1.3R D C T注意:此时间即为死区时间锯齿波的基本周期T 为:T=t1+t2=(0.67R T+1.3R D)C T因为R D《R T => t2 《t1由上可见锯齿波的上升沿远长于下降沿,因此上升沿作为工作沿,下降沿作为回扫沿。

斩控式单相交流调压电路

斩控式单相交流调压电路

斩控式单相交流调压电路Revised on November 25, 2020目录第1章概述.................................................单相交流调压..............................................交流调压在生活生产中的应用................................课题总体概述 (1)第2章设计总体思路 (2)基本工作原理 (2)总体方案确定 (3)第3章主电路设计与分析 (4)主要技术条件及要求 (4)主电路计算及元器件参数选型 (4)主电路结构设计 (5)主电路保护设计 (6)第4章单元控制电路设计 (7)主控制芯片的详细说明及介绍 (7)芯片的详细介绍 (7)芯片的工作原理 (8)驱动电路设计 (9)过零检测及续流触发电路 (10)控制保护电路设计 (11)第5章总结与体会 (12)第6章附录.................................................. 附录A 参考文件.. (14)第1章概述单相交流调压对单相交流电的进行调节的电路。

用在电热控制、交流电动机速度控制、灯光控制和交流稳压器等场合。

与调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。

交流调压在生活生产中的应用交流调压电路广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软起动,也用于异步电动机调速。

在电力系统中,这种电路还常用于对无功功率的连续调节。

此外,在高电压小电流或低电压大电流直流电源中,也常用交流高压电路调节变压器一次电压。

因此交流调压电路广泛存在于农村、轻工业、家用电器等小功率传动领域以及电力机车供电系统。

课题总体概述用斩控方式实现交流调压,功率因数高,谐波小,输出波形好。

电路由主电路与控制电路组成,主电路主要环节:主电力电子开关与续流管。

单相交流调压电路的设计

单相交流调压电路的设计

单相交流调压电路的设计单相交流调压电路是一种用于将交流电转换为可控的直流电的电路。

它通常被应用在一些需要稳定的直流电源的场合,如电子设备、通信设备等。

本文将介绍单相交流调压电路的设计原理和步骤,并且具体以整流电路、滤波电路和稳压电路为例进行讲解。

首先,我们需要了解一些关键的基础知识。

在交流电中,电压的大小和方向会随时间的推移而不断变化,通常表示为正弦波形状。

而直流电则是电压和电流一直保持不变的。

单相交流调压电路的任务就是将输入的交流电转换成稳定的直流电,其中关键的步骤包括整流、滤波和稳压。

整流器是单相交流调压电路的第一步。

它通过将交流电中的部分波形进行剪切,只保留正半周或负半周的波形。

最常见的整流电路是单相半波整流电路和单相全波整流电路。

在单相半波整流电路中,只有交流电的正半周波形被保留下来,而负半周波形则被消除。

而在单相全波整流电路中,整个正弦波形都被保留下来。

接下来是滤波电路的设计。

滤波电路用于将整流后的电流进行平滑,以去除剩余的交流成分,得到更稳定的直流电。

滤波电路通常由电容器和电感组成。

电容器将电流平滑化,而电感则可帮助去除电压中的高频成分。

不同滤波电路的特点和应用需求有所不同,常用的滤波电路有LC滤波电路和LCL滤波电路。

最后一步是稳压电路的设计。

稳压电路用于保持输出电压在一个设定的范围内,即使输入电压和负载的变化。

常用的稳压电路包括电压稳定器和开关稳压电路。

电压稳定器是通过调整输出电压中的电流来实现的,开关稳压电路则是通过快速开关电流来调整电压并保持其稳定。

在进行单相交流调压电路的设计时,需要根据实际的应用需求来选择合适的整流电路、滤波电路和稳压电路。

在设计过程中,还需要考虑到输入电压的范围、负载变化、输出电压的稳定性等因素。

此外,还需要进行电路参数的计算和分析,以确保电路可以正常工作。

总结起来,单相交流调压电路的设计包括整流、滤波和稳压三个关键步骤。

通过合理选择和设计这些电路,可以将交流电转换为稳定的直流电,并满足特定应用的需求。

SG3525斩控式单相交流调压电路设计要点

SG3525斩控式单相交流调压电路设计要点

目录第1章概述-------------------------------------------------------------------------------------------- 21.1 课题设计目的及意义 -------------------------------------------------------------------- 21.2 优势-------------------------------------------------------------------------------------------- 3 第2章设计总体思路 ------------------------------------------------------------------------------- 42.1 系统总体方案确定------------------------------------------------------------------------- 42.2 交流斩波调压的基本原理---------------------------------------------------------------- 8 第3章主电路设计与分析------------------------------------------------------------------------- 93.1主要技术条件及要求----------------------------------------------------------------------- 93.2 开关器件的选择 ---------------------------------------------------------------------------- 93.2.1开关管IGBT的选择--------------------------------------------------------------- 93.2.2续流二极管的选择 ---------------------------------------------------------------- 93.2.3具体参数计算--------------------------------------------------------------------- 103.3 主电路结构设计 ---------------------------------------------------------------------------113.5 主电路保护设计 -------------------------------------------------------------------------- 12 第4章控制及驱动电路设计-------------------------------------------------------------------- 144.1主控制芯片的详细说明 ----------------------------------------------------------------- 144.1.1芯片的选择------------------------------------------------------------------------ 144.1.2芯片的详细介绍 ----------------------------------------------------------------- 144.1.3 芯片的工作原理----------------------------------------------------------------- 164.2 驱动电路设计 ----------------------------------------------------------------------------- 17 第5章保护电路及设计---------------------------------------------------------------------------- 195.1 过零检测及续流触发电路-------------------------------------------------------------- 195.2 输出限流电路---------------------------------------------------------------------------- 205.3输入过压电路 ------------------------------------------------------------------------------ 205.4 结果分析 ----------------------------------------------------------------------------------- 21 第6章总结与体会---------------------------------------------------------------------------------- 24 附录----------------------------------------------------------------------------------------------------- 25 参考文献------------------------------------------------------------------------------------------------ 26第1章概述1.1 课题设计目的及意义单相交流电源的应用是非常广泛的。

单相交流调压电路设计

单相交流调压电路设计

单相交流调压电路设计稳压二极管电路是最简单和常见的单相交流调压电路。

它由稳压二极管、电阻和电容组成。

稳压二极管是一种特殊的二极管,具有稳定的电压特性。

通过选择适当的稳压二极管,可以实现不同的输出电压。

稳压二极管将高压输入电压降低到稳定的输出电压,并且在电压波动时能够保持输出电压不变。

电阻和电容则用于过滤输入电压的噪声和脉动。

变压器调压电路是另一种常见的单相交流调压电路。

它由变压器、开关元件、控制电路和滤波电路组成。

变压器通过改变输入电压的变比来调节输出电压。

开关元件根据控制电路的信号周期性地开关,通过改变开关时间比例来控制输出电压的大小。

滤波电路用于过滤电压中的脉动和噪声,以获得稳定的输出电压。

电子管调压电路是一种通过调节电子管工作状态来控制输出电压的调压电路。

它通常由电子管、电源电路和控制电路组成。

电子管通过调整灯丝电流、阳极电压或阴极电流等参数,改变电子管内部的工作状态,从而实现输出电压的调节。

控制电路用于检测输出电压,并根据需要调节电子管的工作状态。

电子管调压电路具有调节范围广、反应速度快等优点,适用于对输出电压要求较高的应用场合。

单相交流调压电路的设计需要考虑多个因素,包括负载要求、电源电压范围、输出电压精度、稳定性要求等。

在设计过程中,需要根据具体的需求选择合适的调压电路,并合理选择元器件,进行电路分析和仿真,确保电路的稳定性和可靠性。

同时,还需要进行电路的标定和校准,以确保输出电压的准确性和稳定性。

在实际应用中,单相交流调压电路广泛应用于电子设备、仪器仪表、通信设备等领域。

它可以提供稳定可靠的电源,为这些设备的正常运行提供保障。

同时,它还可以提供精确控制的电源,满足不同设备对电压的要求,提高设备的性能和可靠性。

总之,单相交流调压电路是一种重要的电气设备,用于将交流电压进行调节,以满足特定的需求。

它通过选择适当的调压电路和合理设计电路参数,可以实现稳定可靠的输出电压。

在实际应用中,需要根据具体需求选择合适的调压电路,并对电路进行分析和仿真,以确保电路的稳定性和可靠性。

斩控式单相交流调压电路设计综述

斩控式单相交流调压电路设计综述

湖南工程学院应用技术学院课程设计任务书课程名称:电力电子技术题目:斩控式单相交流调压电源设计专业班级:电气118学生姓名:学号:指导老师:刘星平蔡斌军李祥来等审批:谢卫才任务书下达日期2014年5 月12日设计完成日期2014年5月23 日目录第1章概述 (1)1.1 交流调压在生活中的应用 (1)1.2 关于单向调压器 (1)1.3 关于本课题 (2)第2章设计总体思路 (3)2.1 系统总体方案确定 (3)2.2 交流斩波调压的基本原理 (7)第3章主电路设计与分析 (8)3.1 主要技术条件及要求 (8)3.2 开关器件的选择 (8)3.3 主电路计算及元器件参数选型 (8)3.4 主电路结构设计及分析 (9)第4章主控制芯片的详细说明 (10)4.1 芯片的选择 (10)4.1 芯片的详细介绍 (10)4.1芯片的工作原理 (11)第5章实验调试 (13)第6章总结与体验 (19)附录A 参考文件及评分表第1章概述1.1交流调压在生活中的应用交流调压电路广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软起动,也用于异步电动机调速。

在电力系统中,这种电路还常用于对无功功率的连续调节。

此外,在高电压小电流或低电压大电流直流电源中,也常用交流高压电路调节变压器一次电压。

因此交流调压电路广泛存在于农村、轻工业、家用电器等小功率传动领域以及电力机车供电系统。

1.2关于单相调压器对于单相交流电源,调压和稳压是最为普遍的要求。

目前能够实现这一要求的调压器有下面三种:磁饱和式调压器该调压器通过控制主电路中电感的饱和程度,以改变电抗值以及其上的电压,实现对输出电压的调节。

这种调压器具有一定的动态性能,但输出电压的调节范围小,体积和重量较大。

机械式调压器机械式调压器由电动机带动碳刷实现输出电压的调节。

这种调压器输出波形较好,但体积、重量大,动态性能差。

电子式调压器这种调压器采用电力电子器件实现。

目前有晶闸管调压器和逆变式调压器两种。

SG3525工作原理与应用技巧

SG3525工作原理与应用技巧

1.1PWM控制芯片SG3525功能简介随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用,为此美国硅通用半导体公司(Silicon General)推出SG3525。

SG3525是用于驱动N沟道功率MOSFET。

其产品一推出就受到广泛好评。

SG3525系列PWM 控制器分军品、工业品、民品三个等级。

下面我们对SG3525特点、引脚功能、电气参数、工作原理以及典型应用进行介绍。

SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。

在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。

由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。

1.1.1 SG3525引脚功能及特点简介其内部结构和原理框图如下:图11.Inv.input(引脚1):误差放大器反向输入端。

在闭环系统中,该引脚接反馈信号。

在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。

2.Noninv.input(引脚2):误差放大器同向输入端。

在闭环系统和开环系统中,该端接给定信号。

根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。

3.Sync(引脚3):振荡器外接同步信号输入端。

该端接外部同步脉冲信号可实现与外电路同步。

4.OSC.Output(引脚4):振荡器输出端。

5.CT(引脚5):振荡器定时电容接入端。

6.RT(引脚6):振荡器定时电阻接入端。

7.Discharge(引脚7):振荡器放电端。

该端与引脚5之间外接一只放电电阻,构成放电回路。

8.Soft-Start(引脚8):软启动电容接入端。

该端通常接一只5 的软启动电容。

pensation(引脚9):PWM比较器补偿信号输入端。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第1章概述-------------------------------------------------------------------------------------------- 21.1 课题设计目的及意义 -------------------------------------------------------------------- 21.2 优势-------------------------------------------------------------------------------------------- 3 第2章设计总体思路 ------------------------------------------------------------------------------- 42.1 系统总体方案确定------------------------------------------------------------------------- 42.2 交流斩波调压的基本原理---------------------------------------------------------------- 8 第3章主电路设计与分析------------------------------------------------------------------------- 93.1主要技术条件及要求----------------------------------------------------------------------- 93.2 开关器件的选择 ---------------------------------------------------------------------------- 93.2.1开关管IGBT的选择--------------------------------------------------------------- 93.2.2续流二极管的选择 ---------------------------------------------------------------- 93.2.3具体参数计算--------------------------------------------------------------------- 103.3 主电路结构设计 ---------------------------------------------------------------------------113.5 主电路保护设计 -------------------------------------------------------------------------- 12 第4章控制及驱动电路设计-------------------------------------------------------------------- 144.1主控制芯片的详细说明 ----------------------------------------------------------------- 144.1.1芯片的选择------------------------------------------------------------------------ 144.1.2芯片的详细介绍 ----------------------------------------------------------------- 144.1.3 芯片的工作原理----------------------------------------------------------------- 164.2 驱动电路设计 ----------------------------------------------------------------------------- 17 第5章保护电路及设计---------------------------------------------------------------------------- 195.1 过零检测及续流触发电路-------------------------------------------------------------- 195.2 输出限流电路---------------------------------------------------------------------------- 205.3输入过压电路 ------------------------------------------------------------------------------ 205.4 结果分析 ----------------------------------------------------------------------------------- 21 第6章总结与体会---------------------------------------------------------------------------------- 24 附录----------------------------------------------------------------------------------------------------- 25 参考文献------------------------------------------------------------------------------------------------ 26第1章概述1.1 课题设计目的及意义单相交流电源的应用是非常广泛的。

比如在农村、轻工业、家用电器等小功率传动领域以及电力机车供电系统。

对于单相交流电源,调压和稳压是最为普遍的要求。

目前能够实现这一要求的调压器有下面三种:1)磁饱和式调压器该调压器通过控制主电路中电感的饱和程度,以改变电抗值以及其上的电压,实现对输出电压的调节。

这种调压器具有一定的动态性能,但输出电压的调节范围小,体积和重量较大。

2)机械式调压器机械式调压器由电动机带动碳刷实现输出电压的调节。

这种调压器输出波形较好,但体积、重量大,动态性能差。

3)电子式调压器这种调压器采用电力电子器件实现。

目前有晶闸管凋压器和逆变式调压器两种。

晶闸管调压器采用的是相控方式,因此其输出波形差;逆变式调压器采用的是斩波控制方式,其输出波形和动态响应较好。

在工业生产及日用电气设备中,有不少交流供电的设备采用控制交流电压来调节设备的工作状态,如加热炉的温度、电源亮度、小型交流电机的转速等。

这样就需要设计一种交流调压电路来控制,其基本原理是把两个晶闸管反并联后串联在交流电路中,通过对晶闸管的控制就可以控制交流电力。

在每一个周波内通过对晶闸管开通相位的控制,可以方便地调节输出电压的有效值,这种电路称为交流调压电路。

用在电热控制、交流电动机速度控制、灯光控制和交流稳压器等场合。

采用晶闸管作为开关元件的典型单相交流调压电路如图1所示。

常用通断控制或相位控制方法来调节输出电压。

交流调压电路也广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软起动,也用于异步电动机调速。

在供用电系统中,这种电路还常用于对无功功率的连续调节。

此外,在高压小电流或低压大电流中,也常采用交流调压电路调节变压器一次电压。

如采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联,同时,低电压大电流直流电源需要很多晶闸管并联。

这都是十分不合理的。

采用交流调压电路在变压器一次侧调压,其电压电流值都不太大也不太小,在变压器二次侧只要用二极管整流就可以了。

这样的电路体积小、成本低、易于设计制造。

1.2 优势交流调压是指把一种交流电变成另一种同频率,不同电压交流电的变换。

按所变换的相数不同交流调压电路可分为单相交流调压电路和三相交流调压电路。

前者是后者的基础。

与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。

第2章设计总体思路2.1 系统总体方案确定交流调压的控制方式有三种:1磁饱和式调压器;2机械式调压器;3电子式调压器。

整周波控制调压——适用于负载热时间常数较大的电热控制系统。

电子式调压器这种调压器采用电力电子器件实现。

目前有晶闸管凋压器和逆变式调压器两种。

晶闸管调压器采用的是相控方式,因此其输出波形差;逆变式调压器采用的是斩波控制方式,其输出波形和动态响应较好。

晶闸管导通时间与关断时间之比,使交流开关在某几个周波连续导通,某几个周波连续关断,如此反复循环地运行,其输出电压的波形如图2所示。

改变导通的周波数和控制周期的周波数之比即可改变输出电压。

为了提高输出电压的分辨率,必须增加控制周期的周波数。

为了减少对周围通信设备的干扰,晶闸管在电源电压过零时开始导通。

在负载容量很大时,开关的通断将引起对电网的冲击,产生由控制周期决定的分数次谐波,这些分数次谐波引起电网电压闪变。

这是其缺陷。

相位控制调压——利用控制触发滞后角α的方法,控制输出电压。

晶闸管承受正向电压开始到触发点之间的电角度称为触发滞后角α。

在有效移相范围内改变触发滞后角,即能改变输出电压。

有效移相范围随负载功率因数不同而不同,电阻性负载最大,纯感性负载最小。

图3是阻性负载时相控方式的交流调压电路的输出电压波形。

相控交流调压电路输出电压包含较多的谐波分量,当负载是电动机时,会使电动机产生脉动转矩和附加谐波损耗。

另外它还会引起电源电压畸变。

为减少对电源和负载的谐波影响,可在电源侧和负载侧分别加滤波网络。

斩波控制调压——使开关在一个电源周期中多次通断,将输入电压切成几个小段,用改变小段的宽度或开关通断的周期来调节输出电压。

斩控调压电路输出电压的质量较高,对电源的影响也较小。

图4是斩波控制的交流调压电路的输出电压波形。

在斩波控制的交流调压电路中,为了在感性负载下提供续流通路,除了串联的双向开关S1外,还须与负载并联一只双向开关S2。

当开关 S1导通,S 2关断时,输出电压等于输入电压;开关S1关断,S2导通时,输出电压为零。

控制开关导通时间与关断时间之比即能控制交流调压器的输出电压。

开关 S1、S2动作的频率称斩波频率。

斩波频率越高,输出电压中的谐波电压频率越高,滤波较容易。

相关文档
最新文档