13秋第三次月考七年级数学试题(含答案)
人教版七年级下册数学第三次月考试题及答案
人教版七年级下册数学第三次月考试卷一、单选题1.在﹣3,0,π)A.0 B.﹣3 C.πD2.若x是9的算术平方根,则x是()A.3 B.-3 C.9 D.81 3.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.x y > 334.下列计算不正确的是()A=±2 B9C0.4 D 65.方程1ax yx by+=⎧⎨+=⎩的解是11xy=⎧⎨=-⎩,则a,b为( )A.1ab=⎧⎨=⎩B.1ab=⎧⎨=⎩C.11ab=⎧⎨=⎩D.ab=⎧⎨=⎩6.在数轴上表示不等式组21xx>-⎧⎨≤⎩的解集,其中正确的是()A.B.C.D.7.下列语句中,是假命题的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.互补的两个角是邻补角D.垂线段最短8.实数a,b在数轴上的位置如图所示,则下列各式表示正确的是()A.b﹣a<0 B.1﹣a<0 C.b﹣1>0 D.﹣1﹣b<09.如图直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为( )A.115°B.125°C.155°D.165°10.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”,小刚却说:“只要把你的13给我,我就有10颗”,如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出方程组正确的是()A.210330x yx y+=⎧⎨+=⎩B.210310x yx y+=⎧⎨+=⎩C.220310x yx y+=⎧⎨+=⎩D.220330x yx y+=⎧⎨+=⎩二、填空题112的相反数是____________,绝对值是_________________.12.87.19.(不用计算器)13.将方程2x+3y=6写成用含x的代数式表示y,则y=________.14.不等式3x﹣5≤1的正整数解是_______.15.在一本书上写着方程组21x pyx y+=⎧⎨+=⎩的解是0.5xy=⎧⎨=⎩,其中,y的值被墨渍盖住了,不过,我们可解得出p=___________.16.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.17.一个立方体的体积是64m3,若把这个立方体体积扩大1000倍,则棱长为______.三、解答题183|.19.解方程组4421x y x y -=⎧⎨+=-⎩.20.如图,经过平移,四边形ABCD 的顶点A 移到点A′,作出平移后的四边形.21.求不等式组34361232x x x x -⎧>-⎪⎪⎨+⎪+<⎪⎩的整数解.22.已知2a b +(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C=∠EFG ,∠CED=∠GHD (1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由; (3)若∠EHF=100°,∠D=30°,求∠AEM 的度数.24.某电器超市销售每台进价分别200元,170元的A ,B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A,B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台;(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.25.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a-3b|+(a+b-4)²=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.参考答案1.D【分析】从四个数中先找出无理数,再根据实数大小比较的法则进行比较即可得出答案.【详解】∵﹣3,0是有理数,∴无理数有π∴故选:D.【点睛】本题考查实数大小的比较,解题的关键是掌握实数大小比较的基本方法.2.A【详解】试题解析:∵32=9,,故选A.3.B【详解】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.4.A【分析】根据平方根和立方根的求解方法对原式各项计算得到结果,即可作出判断.【详解】A、原式=2,错误;B、原式=|﹣9|=9,正确;C、原式=0.4,正确;D、原式=﹣6,正确.故选:A.【点睛】本题考查平方根和立方根,解题的关键是掌握平方根和立方根的计算法则. 5.B【解析】由题意得:1011ab-=⎧⎨-=⎩,解得:1ab=⎧⎨=⎩,故选B.6.A【分析】先根据题意得出不等式组的解集,再在数轴上表示出来即可.【详解】由题意不等式组的解集为;﹣2<x≤1,在数轴上表示为:.故选:A.【点睛】本题考查解一元一次不等式组和在数轴上表示解集,熟练掌握解不等式组的方法是解此题的关键.7.C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A、所有的实数都可用数轴上的点表示,正确是真命题,B、等角的补角相等,正确是真命题,C、互补的两个角不一定是邻补角,错误是假命题,D、垂线段最短,正确是真命题,故选:C.【点睛】此题主要考查命题的真假,涉及到补角和垂线段的知识,难度一般.8.A【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得b<a<0,再根据有理数的加减法法则可得答案.【详解】解:由题意,可得b<a<0,则b﹣a<0,1﹣a>0,b﹣1<0,﹣1﹣b与0无法比较,表示正确的是A;故选:A.【点睛】本题考查实数与数轴,关键是掌握在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.也考查了有理数的加减法法则.9.A【分析】如图,过点D作c∥a.由平行线的性质进行解题.【详解】如图,过点D作c∥a.则∠1=∠CDB=25°.又a ∥b ,DE ⊥b , ∴b ∥c ,DE ⊥c , ∴∠2=∠CDB+90°=115°. 故选A . 【点睛】本题考查了平行线的性质.能正确作出辅助线是解决此题的关键. 10.D 【详解】试题解析:根据把小刚的珠子的一半给小龙,小龙就有10颗珠子,可表示为102xy +=, 化简得220x y +=;根据把小龙的13给小刚,小刚就有10颗,可表示为103y x +=,化简得3x+y=30. 列方程组为220330.x y x y +=⎧⎨+=⎩ 故选D.11.2 2【详解】2的相反数是-2)=2,根据绝对值的2的绝对值是22.故答案为22. 考点:相反数;绝对值. 12.4.487 【详解】试题分析:被开方数的小数点每移动两位,其算术平方根的小数点移动一位..87,.487 考点:算术平方根 13.6−2x 3(或2−23x )【分析】将x 看做已知数求出y 即可. 【详解】解:方程2x+3y=6, 解得:y=6−2x 3=2−23x . 故答案为6−2x 3(或2−23x )14.2或1 【分析】解出不等式3x ﹣5≤1的解集,即可得到不等式3x ﹣5≤1的正整数解. 【详解】 解:3x ﹣5≤1 3x≤6 x≤2,∴不等式3x ﹣5≤1的正整数解是2或1, 故答案为:2或1. 【点睛】本题考查解一元一次不等式和正整数的定义,解题的关键是掌握解一元一次不等式. 15.3 【详解】解:将x=0.5代入第二个方程可得:0.5+y=1,则y=0.5,将x=0.5和y=0.5代入第一个方程可得:0.5+0.5p=2,解得:p=3. 故答案为:3. 16.65 【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可. 【详解】解:如图,由题意可知, AB ∥CD , ∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.17.40m【分析】根据体积扩大1000倍,可得立方体的体积,根据开方运算,可得答案.【详解】解:64×1000=64000m3,40,故答案为:40m.【点睛】本题考查立方根,解题的关键是先求体积再开方.18.2【分析】根据立方根和平方根的定义以及去绝对值法则,对式子化简即可得到答案.【详解】3|=2+0﹣3+3=2.【点睛】本题主要考查了立方根和二次根式的化简以及去绝对值法则,熟练掌握各知识点是解题的关键.19.7617-6xy⎧=⎪⎪⎨⎪=⎪⎩.【分析】方程组利用代入消元法求出解即可.【详解】解:4421x yx y-=⎧⎨+=-⎩①②,由①得:x=y+4,代入②得:4y+16+2y=﹣1,解得:y=﹣176,将y=﹣176代入①得:x=76,则方程组的解为7617-6xy⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题主要考查方程组的解法,解题的关键是掌握代入消元法的应用.20.见解析.【分析】根据题意分别作BB′、CC′、DD′与AA′平行且相等,即可得到B、C、D的对应点,顺次连接即可.【详解】解:如图:四边形A′B′C′D′即为所求.【点睛】本题考查的是平移变换作图.注意掌握作平移图形时,找关键点的对应点也是关键的一步.21.不等式组的所有整数解为3,4.【分析】根据题意先求出不等式的解集,再求出不等式组的解集,即可得出答案.【详解】 解:34361232x x x x -⎧>-⎪⎪⎨+⎪+<⎪⎩①②, ∵解不等式①得:x <92, 解不等式②得:x >52, ∴不等式组的解集为52<x <92, ∴不等式组的所有整数解为3,4.【点睛】本题考查解一元一次不等式以及解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.22.(1)23a b -的平方根为4±;(2)3x =±.【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:02a b =+由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩ 解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x=x=±.解得3【点睛】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【详解】分析:(1)根据同位角相等两直线平行,可证CE∥GF;(2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;(3)根据对顶角相等可求∠DHG,根据三角形外角的性质可求∠CGF,根据平行线的性质可得∠C,∠AEC,再根据平角的定义可求∠AEM的度数.本题解析:(1)证明:∵∠CED=∠GHD,∴CE∥GF(2)答:∠AED+∠D=180°理由:∵CE∥GF,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE∥GF,∴∠C=180°﹣130°=50°∵AB∥CD,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°.点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.24.(1)A、B两种型号电风扇的销售单价分别为250元,210元;(2)A型号电风扇最多能采购10台;(3)在(2)的条件下,超市不能实现利润为1400元的目标,理由见解析【分析】(1)设A种型号的电风扇的销售单价为x元,B种型号的电风扇的销售单价为y元,根据总价=单价×数量结合近两周的销售情况统计表,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设A种型号的电风扇采购a台,则B种型号的电风扇采购(30-a)台,根据进货总价=进货单价×进货数量结合超市准备用不多于5400元的金额采购两种型号的电风扇共30台,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论;(3)先求出超市销售完这30台电风扇实现利润为1400元时的A种型号电风扇采购台数a,再结合(2)的取值范围判断即可.【详解】(1)设A、B两种型号的电风扇销售单价分别为x元、y元.⎧⎨⎩3518004103100x yx y+=+=解得:250210xy=⎧⎨=⎩答:A、B两种型号电风扇的销售单价分别为250元,210元.(2)设采购A种型号电风扇a台.200a+170(30-a)≤5400 解得:a≤10答:A型号电风扇最多能采购10台.(3)依题意解(250-200)a+(210-170)(30-a)=1400解得:a=20 ∵a≤10∴在(2)的条件下,超市不能实现利润为1400元的目标.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一元一次不等式组的应用,解题的关键:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式.25.(1)a=3,b=1;(2)A灯转动10秒或85秒时,两灯的光束互相平行;(3)∠BAC与∠BCD的数量关系不发生变化,2∠BAC=3∠BCD.【分析】(1)根据非负数的性质列方程组求解即可;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况:①在灯A射线到达AN之前;②在灯A射线到达AN之后,分别列出方程求解即可;(3)设A灯转动时间为t秒,则∠CAN=180°−3t,∠BAC=∠BAN−∠CAN=3t−135°,过点C作CF∥PQ,则CF∥PQ∥MN,得出∠BCA=∠CBD+∠CAN=180°−2t,∠BCD=∠ACD−∠BCA=2t−90°,即可得出结果.【详解】解:(1)∵|a-3b|+(a+b-4)²=0,∴3040a ba b-=⎧⎨+-=⎩,解得:31ab=⎧⎨=⎩,故a=3,b=1;(2)设A灯转动t秒,两灯的光束互相平行,①在灯A射线到达AN之前,由题意得:3t=(20+t)×1,解得:t=10,②在灯A射线到达AN之后,由题意得:3t−180°=180°−(20+t)×1,解得:t=85,综上所述,A灯转动10秒或85秒时,两灯的光束互相平行;(3)∠BAC与∠BCD的数量关系不发生变化,2∠BAC=3∠BCD;理由:设A灯转动时间为t秒,则∠CAN=180°−3t,∴∠BAC=∠BAN−∠CAN=45°−(180°−3t)=3t−135°,∵PQ∥MN,如图2,过点C作CF∥PQ,则CF∥PQ∥MN,∴∠BCF=∠CBD,∠ACF=∠CAN,∴∠BCA=∠BCF+∠ACF=∠CBD+∠CAN=t+180°−3t=180°−2t,∵CD⊥AC,∴∠ACD=90°,∴∠BCD=∠ACD−∠BCA=90°−(180°−2t)=2t−90°,∴2∠BAC=3∠BCD.【点睛】本题考查了非负数的性质、解二元一次方程组、平行线的性质等知识,熟练掌握平行线的性质是解题的关键.。
七年级下学期数学第三次月考试题卷(含答案)
七年级下学期数学第三次月考试题卷满分:150分 考试用时:120分钟范围:第五章《相交线与平行线》~第八章《二元一次方程组》 班级 姓名 得分一、选择题(本大题共12小题,每小题4分,共48.0分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目答案标号涂黑、涂满)1. 如图,直线a ,b 相交于点O ,如果∠1+∠2=60°,那么∠3是( )A. 150°B. 120°C. 60°D. 30°2. 实数a ,b 在数轴上对应的点的位置如图所示,下列结论正确的是( )A. a >bB. −a <bC. a >−bD. −a >b3. 在平面直角坐标系中,点M(−1,3),先向右平移2个单位,再向下平移4个单位,得到的点的坐标为( )A. (−3,−1)B. (−3,7)C. (1,−1)D. (1,7)4. 我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x 只,兔有y 只,则根据题意,下列方程组中正确的是( )A. {x +y =352x +4y =94B. {x +y =354x +2y =94C. {2x +y =35x +4y =94D. {x +4y =352x +y =945. 下列各式中是二元一次方程的是( ) A. 3x 2−2y =7 B. 2x +y =5 C. 1x +2=3y D. x −3=4y 26. 在平面直角坐标系中,点A(1,0),B(3,2),将线段AB 平移后得到线段CD ,若点A的对应点C(2,−1),则点B 的对应点D 的坐标为( )A. (4,1)B. (5,3)C. (5,1)D. (2,0)7. 9的平方根是( )A. 3B. ±3C. −3D. 98. 如图,经过直线a 外一点O 的4条直线中,与直线a 相交的直线至少有( )A. 4条B. 3条C. 2条D. 1条9. 下列说法正确的个数有( )①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④若a//b ,b//c ,则a//c .A. 1个B. 2个C. 3个D. 4个10. 已知√a −1+|b +2|=0,则√(a +b)2的值为( )A. 0B. 2019C. −1D. 111. 课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(−2,0)表示,小军的位置用(0,1)表示,那么你的位置可以表示成( )A. (2,3)B. (4,5)C. (3,2)D. (2,1)12. 甲、乙两位同学在解关于x 、y 的方程组{2x +ay =1bx −y =2时,甲同学看错a 得到方程组的解为{x =3y =4,乙同学看错b 得到方程组的解为{x =2y =−3,则x +y 的值为( )A. 0B. 14C. 34D. 54二、填空题(本大题共4小题,共16.0分)13. 打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元.打折之后,买500件A 商品和500件B 商品用了9600元,比不打折少花 元。
最新人教版七年级数学上册第三次月考试题及参考答案
人教版七年级数学上册第三次月考试题一、选择题:(每题2分,共20分)下列各小题均有四个答案,其中只有一个正确的.1.下列各数中,比﹣1小的数是()A.﹣2 B.﹣0.5 C.0 D.12.下列各式中,属于一元一次方程的是()A.B.C.2y﹣1=3y﹣32D.x2+x=13.已知单项式﹣3a m﹣1b6与ab2n是同类项,则m+n的值是()A.0 B .3 C.4 D.54.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③利用圆规可以比较两条线段的大小;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是()A.①④B.②③C.①②④D.①③④5.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A.﹣1 B.﹣2 C.﹣3 D.﹣66.如图,OA的方向是北偏东15°,OC的方向是北偏西40°,若∠AOC=∠AOB,则OB的方向是()A.北偏东70°B.东偏北25°C.北偏东50°D.东偏北15°7.下列等式变形正确的是()A.由a=b,得5+a=5﹣bB.如果3a=6b﹣1,那么a=2b﹣1C.由x=y,得D.如果2x=3y,那么8.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106C.518﹣x=2(106+x)D.518+x=2(106﹣x)9.如图,下列判断正确的是()A.a的绝对值大于b的绝对值B.a的绝对值小于b的绝对值C.a的相反数大于b的相反数D.a的相反数小于b的相反数10.设一列数a1,a2,a3,…,a2015,…中任意三个相邻的数之和都是20,已知a2=2x,a18=9+x,a65=6﹣x,那么a2020的值是()A.2 B.3 C.4 D.5二.填空题(每题3分,共24分)11.2019年女排世界杯共12支队伍参赛.东道主日本11场比赛中输5场记为﹣5,那么夺得本届世界杯冠军的中国女排11战全胜可记为.12.若∠β=110°,则它的补角是,它的补角的余角是.13.一个实数的两个平方根分别是a+3和2a﹣9,则这个实数是.14.用四舍五入法得到的近似数14.0精确到位,它表示原数大于或等于,而小于.15.用度、分、秒表示:(35)°=;用度表示:38°24′=.16.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)※(c,d)=ac﹣bd.例如:(1,2)※(3,4)=1×3﹣2×4=﹣5.若有理数对(2x,﹣3)※(1,x+1)=8,则x=.17.已知多项式ax5+bx3+cx+9,当x=﹣1时,多项式的值为17.则该多项式当x=1时的值是.18.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,则a、n和m之间的关系为m=.三.解答题(共6小题,56分)19.(12分)(1)(2)(3)解方程:5(x﹣1)﹣3=2﹣2x 20.(8分)已知代数式(3a2﹣ab+2b2)﹣(a2﹣5ab+b2)﹣2(a2+2ab+b2).(1)试说明这个代数式的值与a的取值无关;(2)若b=﹣2,求这个代数式的值.21.(8分)如图,已知平面内有A,B,C,D四点,请按要求完成下列问题.(1)连接AB,作射线CD,交AB于点E,射线EF平分∠CEB;(2)在(1)的条件下,若∠AEC=100°,求∠CEF的补角的度数.22.(8分)如图,已知∠AOB=90°,∠COD=90°,OE为∠BOD的平分线,∠BOE=17°18′,求∠AOC的度数.23.(10分)某工厂第一车间有x人,第二车间比第一车间人数的少30人,从第二车间调出y人到第一车间,那么:(1)调动后,第一车间的人数为人;第二车间的人数为人.(用x,y的代数式表示);(2)求调动后,第一车间的人数比第二车间的人数多几人(用x,y的代数式表示)?(3)如果第一车间从第二车间调入的人数,是原来调入的10倍,则第一车间人数将达到360人,求实际调动后,(2)题中的具体人数.24.(10分)阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为|a﹣b|.根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与﹣4两点之间的距离是.(2)数轴上有理数x与有理数8所对应两点之间的距离用绝对值符号可以表示为.(3)代数式|x+6|可以表示数轴上有理数x与有理数所对应的两点之间的距离;若|x+6|=5,则x=.(4)求代数式|x+1010|+|x+504|+|x﹣1009|的最小值.。
人教版数学七年级上册第三次月考数学试题及答案
人教版数学七年级上册第三次月考数学试卷测试时间:90分钟 试卷总分:120分 题号 总分 分数一、选择(每小题3分,共30分)1. 下列各数中,大于-2小于2的负数是 ( )A .-3B .-2C .-1D .02. 用一平面截一个正方体,不能得到的截面形状是 ( )A.直角三角形B.等边三角形C.长方形D.六边形3.从多边形一条边上的一点(不是顶点)出发,分别连接这个点和其余各个顶点得到8个三角形,则这个多边形的边数为 ( )A .7B .8C .9D .104.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A .240元B .250元C .280元D .300元5、如果方程6x+3a=22与方程3x+5=11的解相同,那么a=( )A. 103B. 310C. -103D.- 310 6.小强用8块棱长为3 cm 的小正方体,搭建了一个如图所示的积木,下列说法中不正确的是( )A .从左面看这个积木时,看到的图形面积是27 cm 2B .从正面看这个积木时,看到的图形面积是54 cm 2C .从上面看这个积木时,看到的图形面积是45 cm 2D .分别从正面、左面、上面看这个积木时,看到的图形面积都是72 cm 27、下列变形中,正确的是()A 、若ac=bc ,那么a=b 。
B 、若c b c a =,那么a=bC 、a =b ,那么a=b 。
D 、若a 2=b 2那么a=b8.下列语句正确的是 ( )A .线段AB 是点A 与点B 的距离 B .过n 边形的每一个顶点有(n -3)条对角线C .各边相等的多边形是正多边形D .两点之间的所有连线中,直线最短9、将方程131212=---x x 去分母,得到62236=---x x ,错在( ) A 、最简公分母找错 B 、去分母时,漏乘3项C 、去分母时,分子部分没有加括号D 、去分母时,各项所乘的数不同10. 我市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是 ( )A. 5(x+21-1)=6(x -l)B. 5(x+21)=6(x -l)C. 5(x+21-1)=6xD. 5(x+21)=6x二、填空(每小题3分,共30分)11. 如图,已知线段AB =16 cm ,点M 在AB 上,AM ∶BM =1∶3,P ,Q 分别为AM ,AB 的中点,则PQ 的长为_____________.12. 如图,将一副直角三角板叠在一起,使直角顶点重合于点O , 则∠AOB+∠DOC =________.13.当x =______时,28x +的值等于-14的倒数14. 9时45分时,时钟的时针与分针的夹角是 __________ .15.若1m 2)20m x --+=( 是一元一次方程,则m =__________16.将一个圆分成四个扇形,它们的圆心角的度数比为2∶4∶5∶7,则最大扇形的圆心角是____.17.有一块棱长为0.6米的正方体钢坯,想将他锻造成横截面是0.009平方米的长方体钢材,锻成的钢的高是_______米18.一个人从A 点出发向北偏东60°的方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC 的度数是_________.19.在同一平面上,一条直线把一个平面分成222112=++(个)部分;两条直线把一个平面最多分成422222=++(个)部分;三条直线把一个平面最多分成722332=++(个)部分,那么,8条直线把一个平面最多分成________个部分.20. 如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n(n 是大于0的整数)个图形需要黑色棋子的个数是__________.三、解答题(本大题共60分)21.计算或化简(每小题4分,共16分)计算(1)⎪⎭⎫ ⎝⎛+-⨯-125612124; (2) ()221131410.544-+÷⨯--⨯-;化简(1)3x 2-3(13x 2-2x +1)+4; (2) 2222(3)[23(52)]xy x x xy x xy -+----22.(10分)解方程:(1) 44(3)2(9)x x --=- (2)335252--=--x x x23.(7分)已知代数式22262351x ax y bx x y +-+-+--的值与字母x 的取值无关,求3232112334a b a b --+的值?24(9分)如图 ,O 为直线AB 上一点,∠AOC =50°,OD 平分∠AOC,∠DOE =90°(1)请你数一数, 图中有_______个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.列一元一次方程解应用题25.(10)某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:不超过2000本时,每本收印刷费1.5元;超过2000本超过部分每本收印刷费0.25元,若该校印制证书x本.(1)若x 不超过2000时,甲厂的收费为元,乙厂的收费为元;(2)若x 超过2000时,甲厂的收费为元,乙厂的收费为元(3)当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?(4)请问印刷多少本证书时,甲乙两厂收费相同?26(8分) 某天上午9时,李明,王华两人从A 、B 两地同时出发,相向而行,上午10时 两 人 相距55千米,两人继续前进,到上午12时,两人又相距55千米,已知李明每 小时比王华多走2千米,问:(1)李明、王华两人的速度分别是多少?(2)A 、B 两地的距离是多少千米?答案一、 选择题:1-5: CACAB 6-10: DBBCA二、 填空题:11、6 cm 12、180度 13、-6 14、22.5度 15、216、140度 17、24 18、45度 19、37 20、()2n n +三、解答题21、计算(1)-18 (2)-9.25 化简(1)2261x x ++(2)2106xy x -22、(1)-1(2)-3423、(1)-1.25 ,24、9 155度25(1)0.5x+1000 ; 1.5x (2)0.5x+1000;0.25x+2500 (3)甲5000 乙4500 乙省500(4)1000或 600026 (1) 李明:28.5km/h 26.5km/h(2) 110km考试中答题策略和几个答题窍门对于中学生来说,最终都要参加升学考试,而考试的遗憾莫过于实有的水平未能充分发挥出来,致使十几年的辛劳毁于两小时的“经验”不足。
人教版七年级上册数学第三次月考试卷
人教版七年级上册数学第三次月考试题评卷人得分一、单选题1.下面各数是负数的是()A .0B .﹣2013C .2013-D .120132.一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A .0.1008×106B .1.008×106C .1.008×105D .10.08×1043.下列方程中,是一元一次方程的是()A .243x x -=B .35-=xy C .312-=x x D .21x y +=4.下列各式中,与2a 是同类项的是()A .3aB .2abC .−32D .a 2b5.下列运算正确的是()A .3a²-2a²=a²B .3a²-2a²=1C .3a²-a²=3D .3a²-a²=2a6.某种速冻水饺的储藏温度是182C C -± ,四个冷藏室的温度如下,不适合储藏此种水饺是()A .17C- B .22C- C .18C- D .19C- 7.在数轴上表示-1的点与表示3的点之间的距离是()A .4B .-4C .2D .-28.一个数的平方等于16,则这个数是()A .+4B .-4C .±4D .±89.若|m|=2,|n|=3,且在数轴上表示m 的点与表示n 的点分居原点的两侧,则下列哪个值可能是m +n 的结果()A .5B .-5C .-3D .110.若2c a b-=3,则代数式22523c a b a b c ----的值是()A .43B .223C .5D .4评卷人得分二、填空题11.﹣8的相反数是_____,﹣6的绝对值是_____.12.单项式22-3x y的系数是___________,次数是_________.13.若3x2y m-1与-x n y3是同类项,则m-n的值是______.14.写出一个只含有字母x,y的二次三项式___.15.如图是王明家的楼梯示意图,其水平距离(即AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a-b)米,则王明家楼梯的竖直高度(即BC的长度)为________米.16.数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在该数轴上随意画出一条长为2016cm的线段AB,则线段AB盖住的整点有____________个.评卷人得分三、解答题17.计算题(1)-8.5+243-1.5-263.(2)(12-14-16)×12.18.化简(1)12st-3st+6.(2)3(-ab+2a)-(3a-b)+3ab19.解一元一次方程(1)2x+2=3x-1.(2)1-12x=3-16x.20.先化简,再求值:7a2b+(-4a2b+5ab2)-2(2a2b-3ab2),其中(a-2)2+|b+12|=0.21.小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.22.在数轴上表示下列各数:0,-4,212,-2,|-5|,-(-1),并用“<”号连接.23.观察下来等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a,十位数字为b,且2≤a+b≤9,则用含a,b 的式子表示这类“数字对称等式”的规律是_______.24.已知数轴上三点M,Q,N对应的数分别为-2,0,4,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是______;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是7?若存在,请求出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P 到点M、点N的距离相等?参考答案1.B【解析】试题分析:根据正数和负数的定义分别进行解答:A、0既不是正数,也不是负数,故本选项错误;B、﹣2013是负数,故本选项正确;C、|﹣2013|=2013,是正数,故本选项错误;D、12013是正数,故本选项错误.故选B.2.C【解析】试题分析:100800=1.008×105.故选C.考点:科学记数法—表示较大的数.3.C【解析】【分析】根据一元一次方程的定义逐个判断即可.【详解】A、是一元二次方程,不是一元一次方程,故本选项不符合题意;B、是二元二次方程,不是一元一次方程,故本选项不符合题意;C、是一元一次方程,故本选项符合题意;D、是二元一次方程,不是一元一次方程,故本选项不符合题意;故选:C.【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的次数是一次的整式方程,叫一元一次方程.4.A【解析】同类项是所含的字母相同,并且相同字母的指数也相同的项.因此,2a中的字母是a,a的指数为1,A、3a中的字母是a,a的指数为1,故A选项正确;B、2ab中字母为a、b,故B选项错误;C、中字母a的指数为2,故C选项错误;D、字母与字母指数都不同,故D选项错误.故选A.5.A【解析】【分析】根据合并同类项的法则,结合选项计算进行选则.【详解】解:A、3a2-2a2=a2,原式计算正确,故本选项正确;B、3a2-2a2=a2,原式计算错误,故本选项错误;C、3a2-a2=2a2,原式计算错误,故本选项错误;D、3a2-a2=2a2,原式计算错误,故本选项错误.故选:A.【点睛】本题考查了合并同类项,解题的关键是掌握合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.6.B【解析】【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.【详解】解:-18-2=-20℃,-18+2=-16℃,温度范围:-20℃至-16℃,故选:B.【点睛】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度.7.A【解析】【分析】可借助数轴直接得结论,亦可用右边点表示的数减去左边点表示的数得结论【详解】解:表示-1的点与表示3的点间距离为:3-(-1)=4.故选:A.【点睛】本题考查了数轴上两点间的距离,数轴上两点间的距离=右边点表示的数-左边点表示的数.8.C【解析】∵(±4)2=16,∴所以一个数的平方等于16,则这个数是±4.故选C.【方法点睛】此题考查了平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.9.D【解析】【分析】根据绝对值的意义确定m、n的值,然后根据在数轴上表示m和n的点位于原点的两侧分类讨论即可确定正确的选项.【详解】解:∵|m|=2,|n|=3,∴m=±2,n=±3,∵在数轴上表示m的点与表示n的点分居原点的两侧,∴m=2时n=-3,m+n=2-3=-1;m=-2时n=-3,m+n=-2+3=1;故选D.【点睛】本题考查了数轴和绝对值的知识,解题的关键是能够根据绝对值的意义确定m的取值并能够分类讨论.绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.10.D【解析】【分析】将2c a b -代入原式得原式152333=⨯--,进一步计算可得.【详解】解:当2ca b-=3时,原式152333=⨯--=6-2=4,故选D .【点睛】本题主要考查代数式求值,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.11.8,6.【解析】【分析】首先根据相反数的含义和求法,可得-8的相反数是8;然后根据负有理数的绝对值是它的相反数,可得-6的绝对值是6.【详解】解:-8的相反数是8,-6的绝对值是6.故答案为:8,6.【点睛】(1)此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数-a ;③当a 是零时,a 的绝对值是零.(2)此题还考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“-”.12.23-3【解析】【分析】根据单项式次数与系数的定义分析得出即可.【详解】解:单项式223x y-的系数是:23-,次数是:213+=;故答案为23-,3.【点睛】此题主要考查了单项式的次数与系数,熟练掌握相关的定义是解题关键.13.2【解析】【分析】根据同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,得出m,n的值,进而解答即可.【详解】解:因为3x2y m-1与-x n y3是同类项,可得:n=2,m-1=3,解得:n=2,m=4,所以m-n=4-2=2,故答案为:2.【点睛】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先求得m和n的值,从而求出它们的和.14.2x y(答案不唯一)【解析】【分析】根据要求,多项式必须是3项,而且含有x,y,且最高次项的次数是2.【详解】依题意可得,只含有字母x,y的二次三项式可以是x2+2xy+1等.故答案为x2+2xy+1【点睛】本题考核知识点:多项式.解题关键点:理解多项式次数和项数. 15.(a﹣2b)【解析】试题分析:根据平移可得蚂蚁所爬的距离=AB+BC,即3a-b=2a+b+BC.考点:代数式的减法计算16.2016或2017个【解析】2016厘米,从整数点开始,有2017个点,不从整数开始可以盖2016个.所以填2016或2017个.17.(1)-12;(2)1.【解析】【分析】(1)利用加法的交换律和结合律,依据加法法则计算可得;(2)运用乘法分配律计算可得.【详解】(1)原式=-8.5-1.5+224633⎛⎫-⎪⎝⎭=-10-2=-12;(2)原式=6-3-2=1【点睛】本题考查加法的交换律(两个加数交换位置,和不变),加法结合律(先把前两个数相加,或先把后两个数相加,和不变)和乘法分配律(两个数的和,乘以一个数,可以拆开来算,积不变),熟练掌握是解题的关键.18.(1)﹣52st+6;(2)3a+b.【解析】【分析】(1)根据合并同类项的法则计算可得;(2)去括号,再合并同类项即可得.【详解】(1)12st﹣3st+6=(12﹣3)st+6=﹣52st+6;(2)原式=﹣3ab+6a﹣3a+b+3ab=3a+b.【点睛】此题考查整式的加减,掌握去括号法则和合并同类项的方法是解决问题的关键.(1)整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.(2)去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.19.(1)x=3;(2)x=﹣6.【解析】【分析】解方程的一般步骤为去分母,去括号,移项,合并同类项,系数化为1,根据一般步骤进行解题即可.【详解】解:(1)移项,得3x﹣2x=3,合并同类项,得x=3;(2)移项,得﹣12x+16x=3﹣1,合并同类项,得﹣13x=2,系数化1,得x=﹣6.【点睛】本题考查了一元一次方程的求解,属于简单题,熟悉解题步骤是解题关键.20.71 2.【解析】【分析】利用非负数的性质求出a、b的值,再根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案.【详解】7a2b+(﹣4a2b+5ab2)﹣2(2a2b﹣3ab2)=7a2b﹣4a2b+5ab2﹣4a2b+6ab2=﹣a2b+11ab2.∵(a﹣2)2+|b+12|=0.(a﹣2)2≥0,|b+12|≥0,∴a=2,b=﹣1 2,∴原式=﹣22×(﹣12)+11×2×(﹣12)2=71 2【点睛】本题考查了整式的化简求值,去括号是解题关键,括号前是正数去括号不变号,括号前是负数去括号要变号.21.小明1月份的跳远成绩是3.9m,每个月增加的距离是0.2m.【解析】试题分析:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.设小明1月份的跳远成绩为xm,则5月份﹣2月份=3(2月份﹣1月份),据此列出方程并解答.试题解析:设小明1月份的跳远成绩为xm,则根据题意得:4.7﹣4.1=3(4.1﹣x),解得x=3.9.则每个月的增加距离是4.1﹣3.9=0.2(m).答:小明1月份的跳远成绩是3.9m,每个月增加的距离是0.2m.考点:一元一次方程的应用22.在数轴上表示下列各数如图所示见解析,﹣4<﹣2<0<﹣(﹣1)<212<|﹣5|.【解析】【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.【详解】在数轴上表示下列各数如图所示.﹣4<﹣2<0<﹣(﹣1)<212<|﹣5|.【点睛】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.23.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【解析】【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.【详解】解:(1)∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,(2)左边的两位数是10b+a,三位数是100a+10(a+b)+b;右边的两位数是10a+b,三位数是100b+10(a+b)+a;“数字对称等式”为:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].故答案为275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.24.(1)1;(2)-2.5或4.5;(3)2.【解析】【分析】(1)根据点P到点M,点N的距离相等,可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(2)根据两点间的距离公式结合点P到点M,点N的距离之和是7,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)设运动时间为t分钟,则点P表示的数为-3t,点M表示的数为-t-2,点N表示的数为-4t+4,根据两点间的距离公式结合点P到点M,点N的距离相等,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.【详解】解:(1)根据题意得:|x-4|=|x-(-2)|,解得:x=1.故答案为1.(2)根据题意得:|x-4|+|x-(-2)|=7,解得:x1=-2.5,x2=4.5.∴数轴上存在点P,使点P到点M,点N的距离之和是7,x的值为-2.5或4.5.(3)设运动时间为t分钟,则点P表示的数为-3t,点M表示的数为-t-2,点N表示的数为-4t+4,根据题意得:|-3t-(-t-2)|=|-3t-(-4t+4)|,∴-3t-(-t-2)=-3t-(-4t+4)或-3t-(-t-2)=3t+(-4t+4),解得:t1=2,t2=-2(舍去).答:2分钟时点P到点M,点N的距离相等.【点睛】本题考查了一元一次方程的应用以及数轴,找准等量关系,正确列出一元一次方程是解题的关键.。
人教版七年级下册数学第三次月考试题试卷及答案
人教版七年级下册数学第三次月考试卷一、单选题1.的相反数是()A B.22-C.D.﹣2 2.以下命题是假命题的是()A.对顶角相等B.经过直线外一点,有且只有一条直线与这条直线平行C.两直线被第三条直线所截,内错角相等D.邻补角是互补的角3.在下列式子中,正确的是()A2B=﹣0.6C.13D±6 4.下列图形中,由AB∥CD,能得到∠1=∠2的是A.B.C.D.5.解为12xy=⎧⎨=⎩的方程组是()A.135x yx y-=⎧⎨+=⎩B.135x yx y-=-⎧⎨+=-⎩C.331x yx y-=⎧⎨-=⎩D.2335x yx y-=-⎧⎨+=⎩6.如图,点E在BC的延长线上,则下列两个角是同位角的是()A.∠BAC和∠ACD B.∠D和∠BAD C.∠ACB和∠ACD D.∠B和∠DCE 7.已知a>b,下列不等式中,不正确的是()A.a+4>b+4B.a﹣8>b﹣8C.5a>5b D.﹣6a>﹣6b8.如图,AB⊥AC,AD⊥BC,垂足为D,AB=3,AC=4,AD=125,BD=95,则点B到直线AD的距离为()A.95B.125C.3D.49.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.10033100x yx y+=⎧⎨+=⎩B.1003100x yx y+=⎧⎨+=⎩C.100131003x yx y+=⎧⎪⎨+=⎪⎩D.1003100x yx y+=⎧⎨+=⎩10.如图,已知AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠1=48°,则∠2的度数是()A.64°B.65°C.66°D.67°二、填空题11.16的算术平方根是.12.如图,一个合格的弯形管道,经两次拐弯后保持平行(即AB ∥DC ).如果∠C =60°,那么∠B 的度数是_____度.13.把命题“对顶角相等”改写成“如果⋯那么⋯”的形式:_____.14.如图,点A,B,C,D,E 在直线l 上,点P 在直线l 外,PC ⊥l 于点C ,在线段PA,PB,PC,PD,PE 中,最短的一条线段是_____,理由是___15.已知∠α与∠β互补,且∠α与∠β的差是80°,则∠α=_____,∠β=_____.16.如图,AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =40°,则下列结论:①∠BOE =70°;②OF 平分∠BOD ;③∠POE =∠BOF ;④∠POB =2∠DOF .其中正确结论有_____填序号)三、解答题17+18.解不等式2(41)58x x --,并把它的解集在数轴上表示出来.19.解方程组3 3 5. x yx y-=⎧⎨+=⎩,20.解不等式组4(1)78253x xxx+≤-⎧⎪-⎨-<⎪⎩21.已知:如图所示,AB∥CD,BC∥DE.求证:∠B+∠D=180°证明:∵AB∥CD∴∠B=∠()∵BC∥DE,∴∠C+∠D=180°()∴∠B+∠D=180°()22.如图,点P是直线AB外一点,按下列语句画出图形:(1)过点P作PC⊥AB,垂足为C;(2)过点P作PD∥AB.观察你所作的图形,猜想CP与PD的位置关系,并说明理由. 23.如图,已知AC⊥BC,∠DAB=70°,AC平分∠DAB,∠DCA=35°.(1)直线AB与DC平行吗?请说明理由.(2)求∠B的度数.24.某山是某市民周末休闲爬山的好去处,但总有些市民随手丢垃圾的情况出现.为了美化环境,提高市民的环保意识,某外国语学校某附属学校青年志愿者协会组织50人的青年志愿者团队,在周末前往临某森林公园捡垃圾.已知平均每分钟男生可以捡3件垃圾,女生可以捡2件垃圾,且该团队平均每分钟可以捡130件垃圾.请问该团队的男生和女生各多少人?25.如图所示,已知CFE BDC180,DEF B︒∠+∠=∠=∠,试判断AED∠与ACB∠的大小关系,并说明理由.26.某市某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A,B两种产品共50件,生产A,B两种产品与所需原料情况如下表所示:原料甲种原料(千克)乙种原料(千克)型号A产品(每件)93B产品(每件)410(1)该工厂生产A,B两种产品有哪几种方案?(2)如果该工厂生产一件A产品可获利80元,生产一件B产品可获利120元,那么该工厂应该怎样安排生产可获得最大利润?参考答案1.A【解析】试题分析:.故选A.考点:实数的性质.2.C【解析】分析:对四个选项逐一判断后即可得到答案.详解:A.对顶角相等,正确,是真命题;B.经过直线外一点有且只有一条直线与已知直线平行,正确,是真命题;C.两直线平行,内错角相等,错误,是假命题;D.邻补角是互补的角,正确,是真命题;故选C.点睛:考查命题与定理,判断为真的命题就是真命题,判断为假的命题就是假命题. 3.A【解析】【分析】根据各个选项可以计算出正确的结果,从而可以解答本题.【详解】,故选项A正确;∵,故选项B错误;13,故选项C错误;6,故选项D错误;故选A.【点睛】本题考查算术平方根,解题的关键是明确算术平方根的计算方法.4.B【解析】【详解】分析:根据平行线的性质应用排除法求解:A、∵AB∥CD,∴∠1+∠2=180°.故本选项错误.B、如图,∵AB∥CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C、∵AB∥CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本选项错误.D、当梯形ABDC是等腰梯形时才有,∠1=∠2.故本选项错误.故选B.5.D【解析】【分析】根据方程组的解的定义,只要检验12xy=⎧⎨=⎩是否是选项中方程的解即可.【详解】A、把12xy=⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12xy=⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B、把12xy=⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误;C、把12xy=⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误;D、把12xy=⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12xy=⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确.故选D.【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.6.D【解析】分析:利用同位角、内错角及同旁内角的定义分别判断后即可确定正确的选项.详解:A.∠BAC和∠ACD是内错角.B.∠D和∠BAD是同旁内角.C.∠ACB和∠ACD不属于同位角,内错角,同旁内角的任何一种.D.∠B和∠DCE是同位角.故选D.点睛:考查同位角的概念,熟记同位角的概念是解题的关键.7.D【解析】【分析】根据不等式的性质逐一判断,判断出不正确的不等式是哪个即可.【详解】解:∵a>b,∴a+4>b+4,∴选项A正确;∵a>b,∴a−8>b−8,∴选项B正确;∵a>b,∴5a>5b,∴选项C正确;∵a>b,∴−6a<−6b,∴选项D不正确.故选D.【点睛】本题主要考查了不等式的性质,要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.8.A【解析】【分析】根据直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离求解即可.【详解】∵AD⊥BC,∴点B到直线AD的距离为线段BD的长.∵BD=9 5,∴点B到直线AD的距离为9 5 .故选A.【点睛】本题考查了点到直线的距离,熟练掌握点到直线距离的概念是解答本题的关键.9.C【解析】【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【详解】解:设大马有x匹,小马有y匹,由题意得:100131003x yx y+=⎧⎪⎨+=⎪⎩,故选C.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.10.C【解析】【分析】根据平行线的性质和角平分线的定义求解.【详解】∵AB ∥CD ,∴∠BEF =180°﹣∠1=180°﹣48°=132°,∵EG 平分∠BEF ,∴∠BEG =132°÷2=66°,∴∠2=∠BEG =66°.故选C .【点睛】此题主要考查平行线的性质:两直线平行,同旁内角互补;两直线平行,内错角相等,以及角平分线的定义.11.4【解析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为412.130°【解析】试题分析:根据平行线的性质即可求得结论.∵AB ∥DC ,∴∠B=180°-∠C=108°.考点:本题考查的是平行线的性质点评:解答本题的关键是熟练掌握平行线的性质:两直线平行,同旁内角互补.13.如果两个角是对顶角,那么它们相等.【解析】【分析】先把命题分解为题设和条件,再改写成“如果⋯那么⋯”的形式,即可.【详解】题设为:对顶角,结论为:相等,故写成“如果⋯那么⋯”的形式是:如果两个角是对顶角,那么它们相等.故答案为:如果两个角是对顶角,那么它们相等.【点睛】本题主要考查把命题改写成“如果⋯那么⋯”的形式,理解命题的题设和结论是解题的关键.14.PC ;垂线段最短.【解析】【分析】点到直线的距离是指该点到直线的垂线段的长,根据定义即可选出答案.【详解】根据点到直线的距离的定义得出线段PC 的长是点P 到直线l 的距离,从直线外一点到这条直线所作的垂线段最短.故答案是:PC ;垂线段最短.【点睛】本题考查了对点到直线的距离的应用,注意:点到直线的距离是指该点到直线的垂线段的长.15.130°50°【解析】分析:根据题意,结合补角的概念,易得18080αβαβ∠+∠=︒∠-∠=︒,,联立方程解可得答案.详解:根据题意,易得:18080αβαβ∠+∠=︒∠-∠=︒,,解可得130,50αβ∠=∠= ;故答案为:130,50.点睛:考查互补的定义,如果两个角的和为180, 则这两个角互为补角.16.①②③【解析】【详解】解:∵AB ∥CD ,∴∠ABO =∠BOD =40°,∴∠BOC =180°﹣40°=140°.∵OE 平分∠BOC ,∴∠BOE =12×140°=70°;所以①正确;∵OF ⊥OE ,∴∠EOF =90°,∴∠BOF =90°﹣70°=20°,∴∠BOF =12∠BOD ,所以②正确;∵OP ⊥CD ,∴∠COP =90°,∴∠POE =90°﹣∠EOC =20°,∴∠POE =∠BOF ;所以③正确;∴∠POB =70°﹣∠POE =50°,而∠DOF =20°,所以④错误.故答案为①②③.【点睛】本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等.17.4.【解析】【分析】分别根据算术平方根和立方根的意义进行求解,然后再进行加减运算即可.【详解】-+,=4-3+3=4.【点睛】本题主要考查了实数的混合运算,熟练掌握算术平方根和立方根的意义是解此题的关键.18.2x ≥-.【解析】分析:根据一元一次不等式的解法,去括号,移项,合并同类项,系数化为1即可.详解:去括号,得8x 2-≥5x 8-.移项,得8x 5x -≥82-+.合并,得3x ≥6-.系数化为1,得x 2≥-.不等式的解集在数轴上表示如下:点睛:本题考查了一元一次不等式的解法,在数轴上表示不等式的解集,>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.19.2,-1.x y =⎧⎨=⎩【解析】分析:方程组利用加减消元法求出解即可.详解:3,3 5.x y x y -=⎧⎨+=⎩①②①+②,得4x 8=.解得x 2=.把x 2=代入①中,得2y 3-=.解得y -1=.∴原方程组的解是2,-1.x y =⎧⎨=⎩点睛:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.4≤x<132.【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集,然后确定解集中的整数值即可.【详解】4(1)78253x x x x +≤-⎧⎪⎨--<⎪⎩①②解①得:x≥4,解②得:x<132,则不等式组的解集是4≤x<132.【点睛】本题考查的是求一元一次不等式组的解集,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.21.见解析【解析】【分析】先由AB ∥CD 推出∠B=∠C ,再由BC ∥DE 推出∠C+∠D=180°,通过等量代换推出∠B+∠D=180°.【详解】证明:∵AB∥CD∴∠B=∠∠C(两直线平行,内错角相等)∵BC∥DE,∴∠C+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠D=180°(等量代换)【点睛】此题考查的知识点是平行线的性质,解题的关键是由平行线的性质及等量代换得出答案.22.(1)见解析;(2)见解析.【解析】【分析】(1)直接利用过直线外一点作已知直线的垂线作法得出答案;(2)利用平行线的判定方法以及结合作一角等于已知角进而得出答案.【详解】(1)如图所示:点C即为所求;(2)如图所示:PD即为所求;则CP与PD互相垂直.理由:∵AB∥PD,PC⊥AB,∴PC⊥PD.【点睛】此题主要考查了复杂作图,正确掌握基本作图方法是解题关键.23.(1)平行(2)55°【解析】分析:()1根据内错角相等,两直线平行判定即可.()2根据角平分线的定义求出CAB ∠,再根据直角三角形两锐角互余求解即可;详解:(1)平行,∵AC 平分∠DAB ∴11=703522CAB BAC DAB ∠=∠∠=⨯︒=︒,∵35DCA ∠=︒,∴35,BAC DCA ∠=∠=︒∴AB ∥CD.(2),AC BC ⊥ ,∵90ACB ∠= ,∴90903555B CAB ∠=-∠=-= ;点睛:考查角平分线的性质,平行线的判定,三角形的内角和,熟记定理与概念是解题的关键.24.男生有30人,女生有20人.【解析】【分析】根据题干中的2个数量关系,①男女共50人,②平均每分钟男生可以捡3件垃圾,女生可以捡2件垃圾,且该团队平均每分钟可以捡130件垃圾,设男生为x 人,女生为y 人,列出二元一次方程组即可求解.【详解】解:设该团队男生有x 人,女生有y 人,根据题意得:5032130x y x y +=⎧⎨+=⎩,解得:3020 xy=⎧⎨=⎩.答:该团队男生有30人,女生有20人.【点睛】本题考查二元一次方程组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出方程组关系式即可求解.25.AED ACB∠=∠.【解析】【分析】首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【详解】解:∠AED=∠ACB.理由:如图,分别标记∠1,∠2,∠3,∠4.∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE ∥BC (同位角相等,两直线平行).∴∠AED=∠ACB (两直线平行,同位角相等).【点睛】本题重点考查平行线的性质和判定,难度适中.26.(1)见解析;(2)见解析.【解析】【分析】(1)根据题意可知A 、B 两件产品产量总数为50件,设该工厂生产A 产品x 件,则生产B 产品(50-x)件.根据甲、乙两种原料量和每件产品消耗原料量可列出关于x 的一元一次不等式组,即可解出x 的取值范围,因为x 是整数,所以可得到x 的所有可能取值,即可求解所有方案.(2)分别计算所有方案可获利润,并比较所获得的利润,即可求解最大利润下的生产安排.【详解】解:(1)设工厂可安排生产x 件A 产品,则生产(50﹣x )件B 产品由题意得:()()945036031050290x x x x ⎧+-≤⎪⎨+-≤⎪⎩,解得:30≤x≤32的整数.∴有三种生产方案:①A30件,B20件;②A31件,B19件;③A32件,B18件;(2)方案(一)A ,30件,B ,20件时,20×120+30×80=4800(元).方案(二)A ,31件,B ,19件时,19×120+31×80=4760(元).方案(三)A ,32件,B ,18件时,18×120+32×80=4720(元).故方案(一)A,30件,B,20件利润最大【点睛】本题主要考查一元一次不等式组的应用.第21页。
七年级下学期数学第三次月考试卷及答案
七年级下学期数学第三次月考试卷一、选择题(共10小题,每小题3分,共30分)1.下列汽车标志中可以看作是由某图案平移得到的是()A B C D2.∠1、∠2是邻补角的为()A B C D3.下列方程组中是二元一次方程组的是()A.⎩⎨⎧=+=+1487764zxyxB.⎪⎪⎩⎪⎪⎨⎧=-=+211342yxyx C.⎩⎨⎧=+=321yxxyD.⎪⎪⎩⎪⎪⎨⎧=+=+422652yxyx4.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上.若∠ADE=125°,则∠DBC的度数为()A.55°B.65°C.75°D.125°4题图 6题图 8题图5.若⎩⎨⎧-==12yx是关于x、y的二元一次方程ax+by-5=0的一组解,则2a-b-2的值为()A.-3 B.3 C.-7 D.76.如图,下列条件中不能判断AB∥CD的是()A.∠1+∠3=180°B.∠1=∠2 C.∠1+∠2=180° D.∠1=∠47.下列命题是真命题的是()A.互补的角是邻补角B.内错角相等C.过一点,有且只有一条直线与这条直线平行D.在同一平面内,已知直线a⊥b,直线b⊥c,则直线a∥c8.将一张长方形纸条ABCD沿EF折叠后点B、A分别落在B′、A′位置上,FB′与AD的交点为G.若∠DGF=100°,则∠FEG的度数为()A.40°B.45°C.50°D.55°9.我国民间流传着这样一道题:只闻隔壁人分银,不知多少银和人;每人7两多7两,每人半斤少半斤.设有x 人、y 两银(古代1斤等于16两),则所列方程组正确的是( )A .⎩⎨⎧=+=-y x y x 8877B .⎩⎨⎧=-=-y x y x 8877C .⎩⎨⎧=+=+y x y x 8877D .⎩⎨⎧=-=+y x y x 8877 10.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人二、填空题(本大题共5个小题,每小题4分,共20分)11.如图,把小河里的水引到田地C 处,作CD 垂直于河岸,沿CD 挖水沟,则水沟最短,其理论依据是___________________________12.如图,AD ∥BC ,∠C =30°,∠2=2∠1,则∠2的度数是____________13.如图,将周长为14的三角形ABC 向右平移1个单位后得到三角形DEF ,则四边形ABFD 的周长等于___________11题图 12题图 13题图14.在同一平面内,两条直线的位置关系只有两种 , .15. 设m是的整数部分,n是的小数部分,则2m ﹣n= .三、解答题(一)(本大题共5个小题,每小题6分,共30分)16.解二元一次方程组:⎩⎨⎧-=--=+ ②y x ①y x 5231217.解三元一次方程组:⎪⎩⎪⎨⎧=-+=+-=+-③z y x ②z y x ①z y x 132723343218.填空,并在后面的括号中填理由:如图,已知∠B +∠E =∠BCE ,求证:AB ∥DE证明:如图,过点C 作CF ∥AB∴∠B =∠_______( )∵∠B +∠E =∠BCE即∠B +∠E =∠1+∠2∴∠E =∠_______∴_______∥_______( )∵AB ∥CF ,____________(已证)∴_______∥_______( )19.若关于x 、y 的方程组⎩⎨⎧--=++=-4525223k y x k y x 的解x 、y 互为相反数,求k 的值20.如图,DE ∥BC ,CD 是∠ACB 的平分线,∠ACB=60°,求∠EDC 的度数.四、解答题(二)(本大题共5个小题,每小题8分,共40分)21..已知 A D ⊥BC ,FG ⊥BC ,垂足分别为 D 、G ,且∠1=∠2.求证:∠BDE=∠C22.如图,直线AB ,CD 相交于点O ,∠DOE ︰∠BOE =3︰1,OF 平分∠AOD ,∠AOC =∠AOF -30°,求∠EOF ;23.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?24.如图所示,已知∠1+∠2=180°,∠B=∠3,DE和BC平行吗?如果平行,请说明理由.25.如图1,E点在BC上,∠A=∠D,∠ACB+∠BED=180°(1) 求证:AB∥CD(2) 如图2,BG平分∠ABE,与∠CDE的邻补角∠EDF的平分线交于H点.若∠E比∠H大60°,求∠E七年级下学期数学第三次月考参考答案一、选择题(共10小题,每小题3分,共30分)二、填空题(共5小题,每小题3分,共15分) 11.垂线段最短12.100° 13.16 14. 平行,相交 15.6-5三、解答题(共5题,共35分)16.解:由①×2得4X+2Y+-2 ③③+②得X=-1把X=-1代入得Y=1所以原方程组的解为⎩⎨⎧=-=11y x 17解:③×2-①得7Y-10Z=-1④③×3-②得8Y-10Z=-4⑤⑤-④得Y=-3把Y =-3代入④ 得Z=-2把Y=-3 Z=-2代入③ 得X=1所以原方程组的解⎪⎩⎪⎨⎧-=-==231z y x18.解:1,两直线平行,内错角相等2DE 、CF 、内错角相等,两直线平行DE ∥CFAB 、DE 、平行于同一条直线的两条直线平行19.解:根据题意得因为X 、Y 互为相反数,所以X=-Y方程可变为⎩⎨⎧--=+=-43525k y k y解得⎩⎨⎧-==35y k所以K 的值为520.解: ∵DE ∥BC∴∠EDC=∠DCB∵CD 是∠ACB 的平分线∴∠DCB=∠ACD=1/2∠ACB∵∠ACB=60°∴∠EDC=∠DCB=30°21.解:22.解:∵OF 平分∠AOD∴∠AOF=∠DOF=1/2∠AOD∵∠AOD+∠AOC=180∠AOC=∠AOF-30∴∠AOF=∠DOF=70∵∠DOE:∠BOE=3:1∠AOC=∠DOB∴∠DOE=30∴∠EOF=∠DOF +∠DOE=70+30=10023.解:设A 饮料生产了X 瓶,B 饮料生产了Y 瓶。
人教版数学七年级下册第三次月考试卷含答案
人教版数学七年级下册第三次月考试题一、单选题(每小题3分,共36分)1.4的算术平方根是()A.-2B.2C.±2D.22.二元一次方程5a-11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解3.下列式子正确的是()A.a2>0B.a2≥0C.(a+1)2>1D.(a﹣1)2>1 4.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可以画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.2个B.3个C.4个D.5个5.下列实数中是无理数的是()A.0.38B.πC D.2276.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC7.如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A .80°B .85°C .90°D .95°8.下列语句:①同一平面上,三条直线只有两个交点,则三条直线中必有两条直线互相平行;②如果两条平行线被第三条直线所截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A .①、②是真命题B .②、③是真命题C .①、③是真命题D .以上结论皆错9.线段MN 是由线段EF 经过平移得到的,若点E(﹣1,3)的对应点M(2,5),则点F(﹣3,﹣2)的对应点N 的坐标是()A .(﹣1,0)B .(﹣6,0)C .(0,﹣4)D .(0,0)10.当a<0时,-a 的平方根是()A .aB a -C .aD .-a 11.若﹣2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n 的值是()A .2B .0C .﹣1D .112.不等式组12x a x <+⎧⎨>-⎩有3个整数解,则a 的取值范围是()A .1<a≤2B .0<a≤1C .0≤a<1D .1≤a<2二、填空题13.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1),将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为_________.14.关于x 的某个不等式组的解集在数轴上表示为如图,则不等式组的解集为______.15.如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是_____.16.若()1231a a x y --+=是关于x 、y 的二元一次方程,则a=____.17.某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.18.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y +1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n.若点P1的坐标为(2,0),则点P2017的坐标为____________.三、解答题19120.解方程组:35215x yx y-=⎧⎨-+=⎩.21.解不等式组21023 23xx x+>⎧⎪-+⎨≥⎪⎩.22.如图,直线AB、CD相交于点O,OE平分∠BOC,∠COF=90°,(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.23.如图,已知∠1=∠2,∠3+∠4=180°.求证:AB∥EF24.某花卉种植基地欲购进甲、乙两种君子兰进行培育.若购进甲种2株,乙种3株,则共需成本l700元;若购进甲种3株,乙种l 株.则共需成本l500元.(1)求甲、乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购入甲、乙两种君子兰,若购入乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?25.已知,在平面直角坐标系中,点A,B 的坐标分别是(a,0),(b,0)420a b ++-=.(1)求a,b 的值;(2)在y 车由上是否存在点C ,使三角形ABC 的面积是12?若存在,求出点C 的坐标;若不存在,请说明理由.(3)已知点P 是y 车由正半轴上一点,且到x 车由的距离为3,若点P 沿x 轴负半轴方向以每秒1个单位长度平移至点Q ,当运动时间t 为多少秒时,四边形ABPQ 的面积S 为15个平方单位写出此时点Q 的坐标.参考答案1.B【解析】试题分析:因22=4,根据算术平方根的定义即可得4的算术平方根是2.故答案选B.考点:算术平方根的定义.2.B【解析】【详解】解:二元一次方程5a-11b=21中a,b都没有限制故a,b可任意实数,只要方程成立即可,故原成有无数解,故选B3.B【解析】试题分析:根据偶次方具有非负性解答即可.解:a2≥0,A错误;B正确;(a+1)2≥0,C错误;(a﹣1)2≥0,D错误.故选B.考点:非负数的性质:偶次方.4.C【解析】①一条直线有无数条垂线,故①错误;②不相等的两个角一定不是对顶角,故②正确;③在同一平面内,两条不相交的直线叫做平行线,故③错误;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等或互补,故④错误;⑤不在同一直线上的四个点可画4或6条直线,故⑤错误;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,故⑥正确.所以错误的有4个,故选C.5.B【解析】根据无理数的三种形式,结合选项找出无理数的选项.解:A、0.38是有理数,故本选项错误;B、π是无理数,故本选项正确;C、=2,是有理数,故本选项错误;D、227是有理数,故本选项错误.故选B.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.6.C【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.故选C.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.8.A【解析】三条直线只有两个交点,则其中两条直线互相平行,所以①正确;如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直,所以②正确;过直线外一点有且只有一条直线与已知直线平行,所以③错误。
人教版2022-2023学年七年级数学上册第三次月考测试题(附答案)
2022-2023学年七年级数学上册第三次月考测试题(附答案)一、选择题(共30分)1.﹣5的绝对值是()A.B.5C.﹣5D.﹣2.在﹣,﹣,0,,0.2中,最小的是()A.﹣B.﹣C.0D.3.下列方程为一元一次方程的是()A.y=3B.x+2y=3C.x2=﹣2x D.+y=24.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到5100000册.把5100000用科学记数法表示为()A.0.51×108B.5.1×106C.5.1×107D.51×1065.如图所示,下列判断正确的是()A.a+b>0B.a+b<0C.ab>0D.|b|<|a|6.已知代数式6x﹣12与4+2x的值互为相反数,那么x的值等于()A.﹣2B.﹣1C.1D.27.如果2x3n y m+4与﹣3y2n x9是同类项,那么m、n的值分别为()A.m=﹣2,n=3B.m=2,n=3C.m=﹣3,n=2D.m=3,n=2 8.下面计算正确的是()A.3x2﹣x2=3B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+ba=09.下列解方程去分母正确的是()A.由﹣1=,得2x﹣1=3﹣3xB.由﹣=﹣1,得2(x﹣2)﹣3x﹣2=﹣4C.由=﹣﹣y,得3y+3=2y﹣3y﹣1﹣6yD.由﹣1=,得12x﹣15=5y+2010.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+2y2,阴影部分即为被墨迹弄污的部分,那么被墨汁遮住的项应是()A.﹣xy﹣y2B.7xy﹣4y2C.7xy D.﹣xy+y2二、填空题(共18分)11.计算(﹣81)÷×÷(﹣4)结果为.12.若|1+y|+(x﹣1)2=0,则(xy)2021=.13.已知a2+2a=10,则代数式2a2+4a﹣1的值为.14.有一个两位数,十位上的数字为a,个位上的数字比十位上的数字大5,用代数式表示这个两位数是,并当a=4时,这个两位数是.15.一家商店某种裤子按成本价提高50%后标价,又以八折以后出卖,结果每条裤子获利10元,则是这条裤子的成本是.16.观察一列单项式:3x2,﹣5x3,7x,﹣9x2,11x3,﹣13x,15x2,﹣17x3,19x,……,则第2020个单项式是.三、解答题(共计72分)17.若(2a﹣1)2+|2a+b|=0,且|c﹣1|=2,求a2(b+c)的值.18.有理数运算题:①﹣23÷8﹣×(﹣2)2②(﹣1)2020﹣(0.5﹣1)××[3﹣(﹣3)2]19.解方程题:①﹣=1②﹣1=2+20.化简求值题:(1)2x2﹣[x2+2(x2﹣3x﹣1)﹣(x2﹣1﹣2x],其中x=;(2)﹣a﹣2(a﹣b2)﹣3(a+b2),其中a=﹣2,b=2021.21.探索规律题:将连续的偶数2,4,6,8,…排成如下表:(1)若将十字框上下左右移动,可框住五个数,设中间的数为x,用代数式表示十字框中的五个数的和.(2)若将十字框上下左右移动,可框住五个数的和能等于2020吗?如能,写出这五位数,如不能,说明理由.22.方程应用题:某车间有技工85人,生产甲、乙两种零件,平均每人每天能生产甲种零件16个或乙种零件10个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?23.方程应用题今年疫情过后,一商店在某一时间以每件80元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?24.方程应用题:某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2000元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利250元,销售一台C种电视机可获利300元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?参考答案一、选择题(共30分)1.解:﹣5的绝对值是5,故选:B.2.解:∵,∴,即在﹣,﹣,0,,0.2中,最小的是.故选:A.3.解:A、方程y=3符合一元一次方程的定义,故本选项符合题意;B、方程x+2y=3含有两个未知数,不是一元一次方程,故本选项不符合题意;C、方程x2=﹣2x中未知数的最高次数是2,不是一元一次方程,故本选项不合题意;D、+y=2是分式方程,故本选项不符合题意.故选:A.4.解:5100000=5.1×106,故选:B.5.解:由图可知,b<0,a>0|.A、∵b<0,a>0,且|a|<|b|,根据有理数的加法法则,得出a+b<0,错误;B、正确;C、∵b<0,a>0,∴ab<0,错误;D、根据绝对值的定义,得出|a|<|b|,错误.故选:B.6.解:根据题意,得:6x﹣12+4+2x=0,移项,得:6x+2x=12﹣4,合并同类项,得:8x=8,系数化为1,得:x=1.故选:C.7.解:∵2x3n y m+4与﹣3y2n x9是同类项,∴,解得.故选:B.8.解:A、3x2﹣x2=2x2≠3,故A错误;B、3a2与2a3不可相加,故B错误;C、3与x不可相加,故C错误;D、﹣0.25ab+ba=0,故D正确.故选:D.9.解:A.由﹣1=,得x﹣3=1﹣x,故选项A不符合题意;B.由﹣=﹣1,得2(x﹣2)﹣(3x﹣2)=﹣4,故选项B不符合题意;C.由=﹣﹣y,得3y+3=2y﹣3y+1﹣6y,故选项C不符合题意;D.由﹣1=,得12x﹣15=5x+20,故选项D符合题意.故选:D.10.解:∵(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+3xy﹣y2+x2﹣4xy+y2=﹣x2﹣xy+y2;∴阴影部分=﹣x2﹣xy+y2﹣(﹣x2+2y2)=﹣x2﹣xy+y2+x2﹣2y2=﹣xy﹣y2;故答案为:D.二、填空题(共18分)11.解:(﹣81)÷×÷(﹣4)=(﹣81)×××(﹣)=4.故答案为:4.12.解:∵|1+y|+(x﹣1)2=0,而|1+y|≥0,(x﹣1)2≥0,∴1+y=0,x﹣1=0,解得x=1,y=﹣1,∴(xy)2021=﹣1.故答案为:﹣1.13.解:原式=2(a2+2a)﹣1,把a2+2a=10代入,得原式=2×10﹣1=19,故答案为:19.14.解:十位上的数字为a,个位上的数字比十位上的数字大5,则个位数是a+5,则这个数是10a+(a+5)=11a+5.当a=4时,个位上的数是9,则这个数是49.故答案为11a+5;49.15.解:设这种裤子的成本是x元,由题意得:(1+50%)x×80%﹣x=10,解得:x=50,故答案为:50元.16.解:系数依次为3,﹣5,7,﹣9,11,…,(﹣1)n+12n+1,x的指数依次是2,3,1,2,3,1,可见三个单项式一个循环,故可得第2020个单项式的系数为(﹣1)2020+1×2×2020+1=﹣4041,2020÷3=673……1,则第2020个单项式的次数为:1,则第2020个单项式是﹣4041x.故答案为:﹣4041x.三、解答题(共计72分)17.解:∵(2a﹣1)2+|2a+b|=0,(2a﹣1)2≥0,|2a+b|≥0,∴2a﹣1=0,2a+b=0,∴a=,b=﹣1,∵|c﹣1|=2,∴c﹣1=±2,∴c=3或﹣1,当a=,b=﹣1,c=3时,a2(b+c)==,当a=,b=﹣1,c=﹣1时,a2(b+c)==.综上所述,a2(b+c)的值为或.18.解:①﹣23÷8﹣×(﹣2)2=﹣8÷8﹣×4=﹣1﹣1=﹣2;②(﹣1)2020﹣(0.5﹣1)××[3﹣(﹣3)2]=1+××(3﹣9)=1+××(﹣6)=1﹣1=0.19.解:①﹣=1,3(5x+1)﹣2(2x﹣1)=6,去括号,得15x+3﹣4x+2=6,移项,得15x﹣4x=6﹣3﹣2,合并同类项,得11x=1,系数化成1,得x=;②﹣1=2+,去分母,得2(x+1)﹣4=8+(2﹣x),去括号,得2x+2﹣4=8+2﹣x,移项,得2x+x=8+2﹣2+4,合并同类项,得3x=12,系数化成1,得x=4.20.解:(1)2x2﹣[x2+2(x2﹣3x﹣1)﹣(x2﹣1﹣2x]=2x2﹣(x2+2x2﹣6x﹣2﹣x2+1+2x)=2x2﹣x2﹣2x2+6x+2+x2﹣1﹣2x=4x+1,当x=时,原式=4×+1=2+1=3;(2)﹣a﹣2(a﹣b2)﹣3(a+b2)=﹣a﹣2a+b2﹣a﹣b2=﹣4a,当a=﹣2,b=2021时,原式=﹣4×(﹣2)=8.21.解:(1)十字框中的五个数的和:x+(x﹣10)+(x+10)+(x﹣2)(x+2)=5x;(2)由题意得:5x=2020,解得a=404,故框住的5个数是402、406、404、394、414.22.解:设分配x人生产甲种零件,则分配(85﹣x)人生产乙种零件,根据题意得=,解得x=25,∴85﹣25=60(人),答:应分配25人生产甲种零件,60人生产乙种零件.23.解:设盈利的一件的进价为x元,亏损的一件的进价为y元,根据题意得x+25%x=80,y﹣25%y=80,解得x=64,y=,80×2<64+,且80×2﹣(64+)=﹣(元),答:卖这两件衣服总的是亏损,亏损了元.24.解:(1)设购进A种电视机x台,C种电视机y台,若同时购进A种、B种电视机,则1500x+2000(50﹣x)=90000,解得x=20,所以50﹣20=30(台);若同时购进A种、C种电视机,则1500x+2500(50﹣x)=90000,解得x=35,所以50﹣35=15(台);若同时购进B种、C种电视机,则2000x+2500(50﹣x)=90000,解得x=70,不符合题意,舍去,答:有两种方案:方案一:购进A种电视机20台,B种电视机30台;方案二:购进A 种电视机35台,C种电视机15台.(2)选择方案一可获利:150×20+250×30=10500(元);选择方案二可获利:150×35+300×15=9750(元),10500元>9750元,答:选择方案一,即购进购进A种电视机20台,B种电视机30台.。
七年级下第三次月考数学试卷(有答案)
七年级下第三次月考数学试卷(有答案) 七年级下第三次月考数学试卷(附答案)一、选择题(每小题3分,共计30分)1.若a>b,则下列不等式一定成立的是()A.a-b<0 B.a-b>0 C.1-a<1-b D.-1+a<-1+b2.给出下列四个命题,其中真命题的个数为()①坐标平面内的点可以用有序数对来表示;②若a>0,b不大于0,则P(-a,b)在第三象限内;③在x轴上的点,其纵坐标都为0;④当m≠0时,点P(m²,-m)在第四象限内。
A.1 B.2 C.3 D.43.如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,则图中与∠AGE相等的角()A.2个 B.3个 C.4个 D.5个4.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<-1 B.a<1 C.a>-1 D.a>15.立方根等于它本身的有()A.-1,0,1 B.-1,1 C.0,-1,1 D.16.某旅行社某天有空房10间,当天接待了一个旅行团,当每个房间只住3人时,有一个房间住宿情况是不满也不空。
若旅行团的人数为偶数,求旅行团共有多少人()A.27 B.28 C.29 D.307.点到直线的距离是指这点到这条直线的()A.垂线段 B.垂线 C.垂线的长度 D.垂线段的长度8.XXX用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么XXX最多能买笔的数目为()A.14 B.13 C.12 D.119.某校七(2)班42名同学为“希望工程”捐款,共捐款320元,捐款情况如下表:捐款数(元) | 6 | 8 |人数 | x | y |表格中捐款6元和8元的人数不小心被墨水污染已看不清楚。
若设捐款6元的有x名同学,捐款8元的有y名同学,根据题意,可得方程组6x+8y=320x+y=42A.B.C.D.10.点M(a,a-1)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、认真填一填(每题3分,共24分)11.√2的平方根为2/√2=√2.12.关于x的不等式2x-a≤-3的解集如图所示,则a的值是3.13.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于80°。
七年级数学第三次月考试题及答案
→第一次捏合第二次捏合第三次捏合→→七年级数学第三次月考试题及答案一、填空题(每题3分;共30分) 1、安宁市2008年初中在校总人数约为8700人;则该人数可用科学记数法表示为 人。
2.已知b a m225-和437ab n -是同类项;则n m +的值是3、代数式73xyπ-的系数是_________;次数是_________; 4、若x=2是关于x 的方程2x+3k -1=0的解;则k=5、写出一个满足下列条件的一元一次方程:①某个未知数的系数是-2; ②方程的解是5;这样的方程是 。
6.若关于x 的方程372x x a -=+的解与方程437x +=的解相同;则a 的值为_______。
7、数a 、b 在数轴上的位置如图所示;化简a b a --=b 0 a8、今年母亲30岁;儿子2岁;_____年后;母亲年龄是儿子年龄的5倍。
9、你喜欢吃拉面吗?拉面馆的师傅用一根很粗的面条;把两头捏合在一起拉伸;再捏合;再拉伸;反复几次;就把这根很粗的面条拉成许多细的面条;如图所示;这样捏合 到第 次后;就可以拉出128根细面条。
10、用火柴棍象如图这样搭三角形:你能找出规律猜想出下列两个问题吗?(1)搭7个需要 根火柴棍; (2)搭 n 个三角形需要 _________ 根火柴棍。
二、选择题(每题3分;共30分)1.运用等式性质进行的变形;正确的是( )A. 如果a =b ;那么a +c =b -cB. 如果a 2=3a ;那么a =3C. 如果a=b ;那么a b c c =D. 如果a bc c=;那么a =b2.已知(m -3)x |m|-2=18是关于x 的一元一次方程; 则( ) A. m=2 B. m=-3 C. m=±3 D. m=13、日历上;小明的生日那天的上下、左右的日期和为36;则他的生日是( )A.7号 B.8号 C. 9号 D. 10号。
4、下列方程的变形正确的个数有( )⑴由3+x = 5;得x = 5+3 ⑵由7x = -4;得x=-74 ⑶由21y = 0得y = 2 ⑷由3 = x -2得 x = -2-3 A .1个 B .2个 C .3个 D .4个5、甲、已两地相距50千米;小明、小刚分别以6千米/时、4千米/时从甲乙两地同时出发;小明领一只小狗以10千米/时奔向小刚;碰到小刚后奔向小明;碰到小明后奔向小刚、、、一直到两人相遇;小狗共跑了多少路程?A 、25千米B 、30千米C 、35千米D 、50千米6、有一个商店把某件商品按进价加20%作为定价;可是总卖不出去;后来老板按定价降价20%以96元出售;很快就卖掉了.则这次生意的赢亏情况为( )A .亏4元 B.亏24元 C.赚6元 D.不亏不赚. 7、一列长150米的火车;以每秒15米的速度通过600米的隧道;从火车进入隧道口算起;这列火车完全通过隧道所需时间是 ( )A .60秒B .30秒C .40秒D .50秒 8、对于多项式7323-+--x x x ;下列说法正确的是A 、最高次项是3x -B 、二次项系数是3C 、是五次四项式D 、常数项是7 9、一个两位数的个位数字与十位数字都是x ;如果将个位数字与十位数字分别加2和1;所得的新数比原数大12;则可列的方程是 ( ) A .1232=+x B .123210=++xC .12)2()1(10)10(=+-+-+x x x xD .1210)2()1(10++=+++x x x x10、一项工程甲单独做要40天完成;乙单独做需要50天完成;甲先单独做4天;然后甲乙两人合作x 完成这项工程;则可以列的方程是( )A .15040404=++xB .15040404=⨯+xC .150404=+xD .15040404=++x x 三、解答题(共60分)1、(4分)计算[]42)3(18)2(2÷⨯--+-2、(5分)解方程1253(21)y y -=+3、(5分)解方程21511 36x x+--=4、(6分),,,a b c d为有理数;现规定一种新运算:acbd=ad bc-;那么当2(1)x-45=18时;求x的值是多少?5、(8分) 某校将3400元奖学金按两种奖项奖给25名学生;其中一等奖每人200元;二等奖每人120元;问获得一等奖的学生有多少人?6、(10分)一项工作;由1人做要40小时完成;现计划由2人先做4小时;剩下的工作要在8小时完成;问还需增加几人?(假定每个人的工作效率都相同)7. (10分)某车间有技工85人;平均每天每人可加工甲种部件16个或乙种部件10个;2个甲种部件和3个乙种部件配一套;问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?8、(12分)有一些相同的房间需要粉刷墙面。
2012-2013学年度上期第三次月考考试卷七年级数学
第1页/(共4页) 第2页/(共4页)2012-2013学年度上期第三次月考考试卷 七年级数学注意事项:1、本试卷分为A 、B 两卷。
A 卷100分,B 卷50分,全卷总分150分。
考试时间120分钟。
2、若使用答题卡,在答题前,考生务必将自己的姓名、考号、考试科目涂写在答题卡相应位置上,并用黑色签字笔将试卷密封线内的项目填写清楚。
在答A 卷I 题时,当每小题选出答案后,用2B 铅笔将答题卡上对应的答案标号涂黑;其余试题用黑色签字笔直接写在答题卡相应位置上。
3、若不使用答题卡,在答题前,考生务必用黑色签字笔将试卷密封线内的项目填写清楚;答题时用黑色签字笔直接写在试卷的相应位置上。
A 卷(共100分)一 、选择题(每小题3分,共30分)1、在32-、4--、)100(--、23-、2)1(-、020-、0中正数的个数为( )。
A 1个B 2个C 3个D 4个2、下列方程变形正确的是( )A.由3(x -1)-5(x -2)=0,得2x =-7B.由x +1=2x -3,得x -2x =―1―3C.由2x -31=1,得3x -2=1 D.由2x =3,得x =323、有理数 a 、b 满足)0(01120≠=+b b a ,则2ba 是 ( )。
A 正数B 负数C 非正数D 非负数 4、一个多项式减去222x y -等于222x y -,则这个多项式是A .222x y -+ B .222x y - C .222x y - D .222x y -+5、小华在某月的月历中圈出几个数,算出这三个数的和是36,那么这个数阵的形式可能是( )A .B .C .D .6、下列生活、生产现象中,其中可用“两点之间,线段最短”来解释的现象有( )①用两颗钉子就可以把木条固定在墙上;②植树时,只要栽下两棵树,就可以把同一行树栽在同一直线上;③从A 到B 架设电线,总是尽可能沿线段AB 架设;④把弯曲的公路改直,就能缩短路程.A .①②B .①③C .②④D .③④7、若01<<-x ,则x1x x 2、、从小到大排列,正确的是( )Ax1<x <2x B 2x <x <x1 C x <x1<2x Dx1<2x <x8、已知2x y 和-313mnxy 是同类项,则29517m mn --的值是 ( )A -1B -2C -3D -4 9、把方程0.10.20.710.30.4xx ---=的分母化为整数的方程是( )A .0.10.20.7134x x ---=B .12710134x x---=C .127134x x ---=D .127101034x x ---=10、文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,第一台盈利0020,另—台亏本020,则本次出售中,商场 ( )A 不赚不赔B 赚160元C 赚80先D 赔80元二、填空题(每小题4分,共16分)11、47.43°=_______度______分______秒。
七年级(下)学期 第三次月考检测数学试题含答案
七年级(下)学期 第三次月考检测数学试题含答案一、选择题1.如图,周长为34的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为 ( )A .280B .140C .70D .196 2.方程()()218235m nm x n y ---++=是二元一次方程,则( ) A .23m n =⎧⎨=⎩ B .23m n =-⎧⎨=-⎩ C .23m n =⎧⎨=-⎩ D .23m n =-⎧⎨=⎩3.已知方程组211x y x y +=⎧⎨-=-⎩,则x +2y 的值为( ) A .2 B .1C .-2D .3 4.若实数x ,y 满足()229310-++++=x y x y ,则2y x 等于( )A .1B .-16C .16D .-15.二元一次方程组2213x y a x y +=⎧⎪⎨+=⎪⎩的解也是方程36x y -=-的解,则a 等于( ) A .-3B .13-C .3D .13 6.若45x y =-⎧⎨=-⎩是方程27x ky +=的解,则k 是( ). A .3 B .5 C .-3 D .以上都不对7.端午节前夕,某超市用1680元购进A ,B 两种商品共60,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是( )A .6036241680x y x y +=⎧⎨+=⎩B .6024361680x y x y +=⎧⎨+=⎩C .3624601680x y x y +=⎧⎨+=⎩D .2436601680x y x y +=⎧⎨+=⎩8.如图,一个粒子在第一象限和x ,y 轴的正半轴上运动,在第一秒内, 它从原点运动到(0,1),接着它按图所示在x 轴、y 轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…,且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为( )A.(4,44) B.(5,44) C. (44,4) D. (44,5)9.《孙子算经》是中国古代著名的数学著作.在书中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译成白话文:“现有一根木头,不知道它的长短.用整条绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木头的长度为x尺,绳子的长度为y尺.则可列出方程组为()A.4.512x yyx-=⎧⎪⎨-=⎪⎩B.4.512y xyy-=⎧⎪⎨-=⎪⎩C.4.512y xyx-=⎧⎪⎨-=⎪⎩D.4.512x yyy-=⎧⎪⎨-=⎪⎩10.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是()(用a的代数式表示)A.﹣a B.a C.12a D.﹣12a二、填空题11.商场购进A、B、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C的标价为80元,为了促销,商场举行优惠活动:如果同时购买A、B 商品各两件,就免费获赠三件C商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..12.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满.13.若m35223x y m x y m+--+-199199x y x y=---+m=________.14.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件.15.蜂蜜具有消食、润肺、安神、美颜之功效,是天然的健康保健佳品.秋天即将来临时,雪宝山土特产公司抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,该公司得到的总利润率为_____.16.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重x斤,燕每只重y斤,则可列方程组为________________17.若3x-5y-z=8,请用含x,y的代数式表示z,则z=________.18.国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调査表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少8人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有_______人. 19.两位同学在解方程组时,甲同学正确地解出,乙同学因把c写错而解得,则a=_____,b=_____,c=_____.20.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm,小红所搭的“小树”的高度为22 cm,设每块A型积木的高为x cm,每块B型积木的高为y cm,则x=__________,y=__________.三、解答题21.对于数轴上的点A,给出如下定义:点A在数轴上移动,沿负方向移动a个单位长度(a是正数)后所在位置点表示的数是x,沿正方向移动2a个单位长度(a是正数)后所在位置点表示的数是y,x与y这两个数叫做“点A的a关联数”,记作G(A,a)={x,y},其中x y.例如:原点O表示0,原点O的1关联数是G(0,1)={-1,+2}(1)若点A表示-3,a=3,直接写出点A的3关联数.(2)①若点A表示-1,G(A,a)={-5,y},求y的值.②若G(A,a)={-2,7},求a的值和点A表示的数.(3)已知G(A,3)={x,y},G(B,2)={m,n},若点A、点B从原点同时同向出发,且点A的速度是点B速度的3倍.当|y-m|=6时,直接写出点A表示的数.22.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x yx y-=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为;(2)如何解方程组()()()()3523135237m nm n⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以求出原方程组的解为;(3)由此请你解决下列问题:若关于m,n的方程组722am bnm bn+=⎧⎨-=-⎩与351m nam bn+=⎧⎨-=-⎩有相同的解,求a、b的值.23.阅读以下内容:已知有理数m,n满足m+n=3,且3274232m n km n+=-⎧⎨+=-⎩求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组3274232m n km n+=-⎧⎨+=-⎩,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组3232m nm n+=⎧⎨+=-⎩,再求k的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组()()11821a x byb x ay⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.24.平面直角坐标系中,A(a,0),B(0,b),a,b满足2(25)220a b a b++++-=,将线段AB平移得到CD,A,B的对应点分别为C,D,其中点C在y轴负半轴上.(1)求A,B两点的坐标;(2)如图1,连AD交BC于点E,若点E在y轴正半轴上,求BE OEOC-的值;(3)如图2,点F ,G 分别在CD ,BD 的延长线上,连结FG ,∠BAC 的角平分线与∠DFG 的角平分线交于点H ,求∠G 与∠H 之间的数量关系.25.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由;(3)求C ∠的度数。
部编人教版七年级数学上册第三次月考答案
部编人教版七年级数学上册第三次月考答案一、选择题1.D2.D3.D4.C5.C6.B7.D8.B9.C 10.C二、填空题11.x =1 12.-5 13.72 14.1500 15.53- 16..113 三解答题19(1)原式=﹣4+5=1;(2)原式=6a 2+8b ﹣18a 2﹣15b=﹣12a 2﹣7b ;(3)去括号得:4﹣6+3x=5x ,移项得:3x ﹣5x=﹣4+6,合并同类项得:﹣2x=2,系数化为1得:x=﹣1.(4)去分母得:2(2x ﹣1)=3(x +2)+6,去括号得:4x ﹣2=3x +6+6,移项得4x ﹣3x=6+6+2,系数化为1得:x=14.20、3(x 2-2x -1)-4(3x -2)+2(x -1) 其中x=﹣3解:原式=3x 2-6x-3-12x+8+2x-2=3x 2-(6x+12x-2x)+(-3+8-2)=3x 2-16x+3当x=﹣3时 原式=3×(-3)2-16×(-3)+3=721 解(1)A-2B=(2)依题意,a=-1,b=2.A-2B=1722解:设用x 张铁皮制作盒身,则用(108﹣x )张铁皮制作盒底,可以正好制成配套罐头盒,根据题意得:2×16x=40(108﹣x ),解得:x=60,∴108﹣x=48.ab a 82-答:用60张铁皮制作盒身,用48张铁皮制作盒底,可以正好制成配套罐头盒.23.解:(1)(2)-⊙1132(23)122=-⨯-+- 4=-.(2)答案不唯一,例如:m n ⊕=(1)m n +24、解:(1) “天山通”用户:250.2x + “神州行”用户:0.4x(2)250.2x +=0.4x 解之得:125x =分钟(3)“天山通”用户80分钟收费:25.2250.28041x +=+⨯=元 “神州行”用户80分钟收费: 0.48032⨯=元∴一个月通话约80分钟,选择“神州行”用户移动通讯方式合算一些。
2013年秋七年级数学第三次月考试卷
2013年秋七年级数学第三次月考试卷一、选择题(每小题3分,共24分)1、下列务对数中,数值相等的是( )A 、2332和 B 、222和-(-2) C 、-(-2)和2- D 、223223和()2.湛江是个美丽的海滨城市,三面环海,海岸线长达1556000米,数据1556000用 科学记数法表示为( )A .515.5610⨯B 、61.55610⨯C .80.155610⨯D . 71.55610⨯ 3、下列语句:①一个数的绝对值一定是正数;②-a 一定是一个负数;③没有绝对值 为-3的数;④若a=a ,则a 是一个正数;⑤离原点左边越远的数就越小;正确的有( )个。
A . 0B . 3C . 2D . 44、已知3-=-b a ,2=+d c , 则)()(d a c b --+的值为 ( )A . 1B . 5C . -5D . -15、解方程1-,去分母,得( )A 、x x 331=--B 、x x 336=--C 、x x 336=+-D 、x x 331=+-. 6.已知整式622+-x x 的值为9,则6422+-x x 的值为( )A .18B .12C .9D .77、佳佳n 年前1岁,今年他爸爸的年龄是他的2倍,他爷爷今年的年龄正好是他与他爸爸年龄的和,他爷爷今年的岁数是( )A 、33n +B 、32n +C 、31n + D.3n8、一项工程甲单独做要40天完成,乙单独做要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( ) A. 44014050x +=+ B. 44014050x+=⨯ C. 440150x+= D. 44014050x x ++=二、填空题(每小题3分,共24分)9.在数轴上,若A 点表示数x ,点B 表示数-5,A 、B 两点之间的距离为7,则x =_______.10、已知x ,y 互为相反数,a 与b 互为倒数,n =2。
人教版七年级上册数学第三次月考试卷
人教版七年级上册数学第三次月考试题评卷人得分一、单选题1.下列各组数中,互为相反数的是()A .﹣2与|﹣2|B .﹣2与﹣|﹣2|C .﹣2与﹣12D .2与|﹣2|2.若a =﹣2×32,b =(﹣2×3)2,c =﹣(2×3)2,则下列大小关系中正确的是()A .a >b >cB .b >c >aC .b >a >cD .c >a >b3.下列语句中,错误的是()A .数字0也是单项式B .单项式x 的系数和次数都是1C .23x y -是二次单项式D .273x y-的系数是73-,次数是3次4.a 是一个三位数,b 是一个两位数,若把b 放在a 的左边,组成一个五位数,则这个五位数为()A .baB .b+aC .100b+aD .1000b+a5.若2a a a -=,则实数a 在数轴上的对应点一定在()A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧6.下列结论中错误的有()①若a b =,则33ac bc -=-;②若ax ay =,则x y =;③若a cb b=,则a c =;④若0.3250.2x -=,则32052x -=A .0个B .1个C .2个D .3个评卷人得分二、填空题7.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约350000000人,这个数据用科学记数法表示为_______________________.8.已知关于x 的方程2x+a ﹣5=0的解是x=2,则a 的值为.9.若|a|=5,|b|=1,且a ﹣b <0,则a+b 的值等于______.10.小刚学习了有理数运算法则后,编了一个计算程序,当他输入任意一个有理数时,显示屏上出现的结果总等于所输入的有理数的平方与1的和,当他第一次输入1-,然后又将所得的结果再次输入后,显示屏上出现的结果应是_____.11.当x =3时,代数式px 3+qx+3的值是2019,则当x =﹣3时,代数式px 3+qx ﹣3的值为_____.12.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).评卷人得分三、解答题13.计算:(1)()()2241110.5233⎡⎤---⨯⨯--⎣⎦(2)()332122316293⎛⎫--⨯-+- ⎪⎝⎭14.解方程()43203x x --=15.解方程:192726x x --=16.化先简,再求值:()22462421x y xy xy x y ⎡⎤--+--⎣⎦,其中12x =-,4y =.17.已知()22403x x y +++=+,试求多项式223x y xy +-+的值.18.我们定义一种新的运算“※”:对于任意四个有理数x ,y ,a ,b ,可以组成两个有理数对(),x y 与(),a b ,并且规定:()(),,x y a b ax by =-※.例如:()()1,23,431425=⨯-⨯=-※.根据上述规定解决下列问题:(1)计算:()()32,32,--=※;(2)若有理数对()()2,12,315x x -+-=※,则x =;(3)若有理数对()()21,3,72x k x k k --+=+※成立,则解得x 是整数,求整数k 的值19.已知a 、b 、c 在数轴上对应的位置如图所示,化简23a c b a b c---+-20.一辆出租车从A 地出发,在一条东西走向的街道上往返行驶,每次行驶的路程(记向东为正)记录如下(6<x <14,单位:km ):(1)说出这辆出租车每次行驶的方向;(2)这辆出租车一共行驶了多少路程?(3)这辆出租车第四次行驶后距离A 地多少千米?在A 地的什么方向?21.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2.5表示的点与数表示的点重合;(2)若﹣1表示的点与5表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A 、B 两点之间的距离为9(A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少?22.我们都知道无限不循环小数是无理数,而无限循环小数是可以化成分数的,例如0.333....(3为循环节)是可以化成分数的,方法如下:令0.333...a =①则10 3.333...a =②②-①得:103a a -=,即93a =,解得13a =请你阅读上面材料完成下列问题:(1).0.7化成分数是.(2)..0.23化成分数是.(3)请你将3.326化成分数(写出过程)23.如图,点A在数轴上表示的数是﹣6,点B表示的数是+10,P,Q两点同时分别以1个单位/秒和2个单位/秒的速度从A,B两点出发,沿数轴做匀速运动,设运动时间为t(秒).(1)线段AB的长度为个单位;(2)如果点P向右运动,点Q向左运动,求:①当t为何值时,P与点Q相遇?②当t为何值时,PQ=12AB?(3)如果点P,点Q同时向左运动,是否存在这样的时间t使得P,Q两点到A点距离相等?若存在,求出t的值,若不存在,请说明理由.参考答案1.A【解析】【分析】直接利用相反数的定义以及绝对值的性质化简进而得出答案.【详解】解:A 、﹣2与|﹣2|=2,互为相反数,故此选项正确;B 、﹣2与﹣|﹣2|=﹣2,两数相等,故此选项错误;C 、﹣2与﹣12,两数相加不为零,故此选项错误;D 、2与|﹣2|=2,两数相等,故此选项错误;故选:A .【点睛】此题主要考查相反数的定义,解题的关键是熟知有理数的运算及相反数的定义.2.C 【解析】【分析】分别计算出各数,再根据有理数比较大小的法则进行比较即可.【详解】解:∵a =﹣2×32=﹣2×9=﹣18,b =(﹣2×3)2=36,c =﹣(2×3)2=﹣36,又∵36>﹣18>﹣36,∴b >a >c .故选:C .【点睛】此题主要考查有理数的大小比较,解题的关键是熟知有理数的运算.3.C 【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【详解】解:A 、数字0也是单项式是正确的,不符合题意;B 、单项式x 的系数与次数都是1是正确的,不符合题意;C.23x y -是三次单项式,故错误;D.273x y-的系数是73-,次数是3次,故正确,不符合题意.【点睛】本题考查了单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意单项式的系数包括前面的符号.4.D【解析】【分析】把b放在a的左边,相当于把b扩大了1000倍,a的大小不变,相加即可.【详解】解:∵把b放在a的左边,∴b扩大了1000倍.∴这个五位数是1000b+a.故选D.【点睛】本题考查列代数式的知识,得到新数中的a,b与原数中的a,b的关系是解决本题的关键5.B【解析】【分析】根据非正数的绝对值是它的相反数,可得答案.【详解】解:由a-|a|=2a,得|a|=-a,故a是负数或0,∴实数a在数轴上的对应点在原点或原点左侧故选:B.【点睛】本题考查了实数与数轴,利用了非负数的绝对值,非正数与数轴的关系:非正数位于原点及原点的左边.6.B【解析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立,即可解决.【详解】解:(1)正确;(2)错误,当a=0时,x与y不一定相等;(3)正确;(4)分子分母同乘10,分数成立,等式后面不需乘10,故正确.综上可得(2)错误,故选:B.【点睛】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.7.3.5×108.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将350000000用科学记数法表示为:3.5×108.故答案为:3.5×108.【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.1.【解析】试题分析:解:把x=2代入方程,得:4+a﹣5=0,解得:a=1.故答案是:1.考点:一元一次方程的解.9.-4和-6【解析】【分析】根据题意,利用绝对值的代数意义确定出a与b的值,即可求出a+b的值.【详解】∵|a|=5,|b|=1,且a−b<0,∴a=−5,b=1,此时a+b=−4;a=−5,b=−1,此时a+b=−6,故答案为-4和-6:.10.5【解析】【分析】根据计算程序,将-1代入计算得到结果,将结果代入计算即可得到输出结果.【详解】解:根据题意得:(-1)2+1=1+1=2,则输出结果为22+1=4+1=5.故答案为:5.【点睛】本题考查了实数运算,熟练掌握运算法则是解本题的关键.11.﹣2019【解析】【分析】将x=3代入px3+qx+3=2019得出33p+3q=2016,再将x=﹣3代入px3+qx﹣3计算可得.【详解】解:当x=3时,p×33+3q+3=2019,则33p+3q=2016,当x=﹣3时,px3+qx﹣3=-33p ﹣3q ﹣3=﹣(33p+3q )﹣3=﹣2016﹣3=﹣2019,故答案为:﹣2019.【点睛】此题主要考查代数式求值,解题的关键是熟知整体法的运用.12.ab 【解析】【详解】设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得,12122{2x x a x x b+=-=解得,122{4a b x a b x +=-=②的大正方形中未被小正方形覆盖部分的面积=(2a b +)2-4×(4a b -)2=ab .故答案为ab.13.(1)﹣512;(2)259108【解析】【分析】(1)先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【详解】解:(1)()()2241110.5233⎡⎤---⨯⨯--⎣⎦=﹣1﹣(12)2×13×(2﹣9)=﹣1﹣14×13×(﹣7)=﹣1+712=﹣512;(2)()332122316293⎛⎫--⨯-+- ⎪⎝⎭=9﹣278×29﹣6+827=9﹣34﹣6+827=259108.【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.14.9x =【解析】【分析】去括号,移项,然后系数化为1求解即可.【详解】解:原式整理得4+3603x x -=∴763x =∴9x =故答案为:9x =.【点睛】本题主要考查了解一元一次方程,熟练掌握解方程的步骤与方法是解题的关键.15.【解析】【详解】解:去分母得:去括号得:移项得:合并得:化系数为1得:16.25+23x y xy +,4【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:原式=()224-2-41=x y xy x y ---25+23x y xy +把其中12x =-,4y =代入得2115-4+2-43=422⎛⎫⎛⎫⨯⨯⨯⨯+ ⎪ ⎪⎝⎭⎝⎭故答案为:25+23x y xy +,4【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.17.6【解析】【分析】根据非负数的性质求出x 与y ,然后代入223x y xy +-+求解即可.【详解】解:∵()22403x x y +++=+∴24=03=0x x y +++⎧⎨⎩解得21x y =-⎧⎨=-⎩∴()()()()22223=-2+-1--2-1+3=6x y xy +-+⨯【点睛】本题主要考查了非负数的性质与多项式的运算,熟练掌握非负数的性质求出x 与y 的值是解题的关键.18.(1)0;(2)8-5;(3)-5,-2,-1,或2【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义计算即可求出x 的值;(3)原式利用题中的新定义计算,求出整数k 的值即可.【详解】解:(1)根据题意得:原式=3×2-(-2)×(-3)=0;(2)根据题意化简得:()()()22315x x +⨯---=,移项合并得:58x -=,解得:x=8-5;(3)∵()()21,3,72x k x k k --+=+※,且x 是整数,∴(2x-1)k-(-3)(x+k )=7+2k ,∴(2k+3)x=7,∴x=723k +,∵k 是整数,∴2k+3=±1或±7∴k=-5,-2,-1,或2.故答案为:(1)0;(2)8-5;(3)-5,-2,-1,或2【点睛】本题考查了解一元一次方程与实数的运算,解方程去分母时注意各项都乘以各分母的最小公倍数.19.-2a b c -+【解析】【分析】先进行绝对值的化简,然后去括号合并同类项求解.【详解】解:由图可得,b <c <0<a ,则原式23=a c a b c b =---+-()()-2a b c -+.故答案为:-2a b c -+.【点睛】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.20.(1)第一次是向东,第二次是向西,第三次是向东,第四次是向西;(2)这辆出租车一共行驶了(92x ﹣17)km 的路程;(3)这辆出租车第四次行驶后距离A 地(7﹣12x )km ,在A 地的东面【解析】【分析】(1)以A 为原点,根据数的符号即可判断车的行驶方向;(2)将四次行驶路程的绝对值相加即可;(3)将四次行驶路程(包括方向)相加,根据结果判断出租车的位置.【详解】解:(1)第一次是向东,第二次是向西,第三次是向东,第四次是向西;(2)|x|+|﹣12x|+|x ﹣5|+|2(6﹣x )|=92x ﹣17.答:这辆出租车一共行驶了(92x ﹣17)km 的路程;(3)x+(﹣12x )+(x ﹣5)+2(6﹣x )=7﹣12x ,∵x >6且x <14,∴7﹣12x >0,∴这辆出租车第四次行驶后距离A 地(7﹣12x )km ,在A 地的东面.【点睛】此题主要考查列代数式,解题的关键是根据题意找到数量关系进行求解.21.(1)2.5;(2)①﹣1;②A、B两点表示的数分别为﹣2.5和6.5【解析】【分析】(1)根据原点O是对称中心,对称的两点互为相反数,即可解决问题.(2)①5表示的点与数﹣1表示的点重合.②求出对称中心表示的数,再根据AB=9,即可解决问题.【详解】解:(1)若1表示的点与﹣1表示的点重合,则﹣2.5表示的点与数2.5表示的点重合.故答案为2.5.(2)①5表示的点与数﹣1表示的点重合,故答案为﹣1.②由题意对称中心表示的数为2,∵AB=9,∴A、B两点表示的数分别为﹣2.5和6.5.【点睛】此题主要考查数轴的应用,解题的关键是熟知数轴所对应的数.22.(1)79;(2)2399;(3)3293990【解析】【分析】(1)令.0.7=b,方程两边都乘以10,转化为10b-b=7,,求出其解即可.(2)令c=..0.23,则方程两边都乘以100,转化为100c-c=23,求出其解即可.(3)令d=3.326 ,则10d=33.26 ①,1000d=3326.26 ②,②-①得:1000d-10d=3293,所以990d=3292.【详解】解:(1)令b=.0.7①则10b=.7.7②②-①得10b-b=7,即9b=7,解得:b=7 9;(2)令c=..0.23①则100c-c=..23.23②②-①得100c-c=23,即99c=23,解得:c=23 99;(3)令d=3.326则10d=33.26 ①,1000d=3326.26 ②,②-①得:1000d-10d=3293即990d=3293∴d=3293 990故答案为:(1)79;(2)2399;(3)3293990.【点睛】本题考查了无限循环小数化为分数,解答本题的关键是读懂题目所给的信息,按照题目中的运算方法求解.23.(1)16;(2)①当t的值为163秒时,P与点Q相遇;②当t的值为83或8秒时,PQ=12AB;(3)存在这样的时间t使得P,Q两点到A点距离相等,t的值为163或16秒【解析】【分析】(1)根据点A,B表示的数,可求出线段AB的长;(2)当运动时间为t秒时,点P表示的数为t﹣6,点Q表示的数为﹣2t+10.①根据点P与点Q相遇,可得出关于t的一元一次方程,解之即可得出结论;②根据PQ=12AB,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)当运动时间为t秒时,点P表示的数为﹣t﹣6,点Q表示的数为﹣2t+10,根据PA=QA,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.【详解】解:(1)∵点A在数轴上表示的数是﹣6,点B表示的数是+10,∴AB=|﹣6﹣10|=16.故答案为:16.(2)当运动时间为t秒时,点P表示的数为t﹣6,点Q表示的数为﹣2t+10.①∵点P与点Q相遇,∴t﹣6=﹣2t+10,解得:t=16 3.答:当t的值为163秒时,P与点Q相遇.②∵PQ=12AB,∴|t﹣6﹣(﹣2t+10)|=12×16,即16﹣3t=8或3t﹣16=8,解得:t=83或t=8.答:当t的值为83或8秒时,PQ=12AB.(3)当运动时间为t秒时,点P表示的数为﹣t﹣6,点Q表示的数为﹣2t+10.∵PA=QA,∴|﹣t﹣6﹣(﹣6)|=|﹣2t+10﹣(﹣6)|,即t=16﹣2t或t=2t﹣16,解得:t=163或t=16.答:存在这样的时间t使得P,Q两点到A点距离相等,t的值为163或16秒.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系进行列方程求解.。
七年级数学第三次月考试卷及答案
word 格式-可编辑-感谢下载支持**中学2013年秋季七年级第三次月考____数学_____试卷命题人:*** 考试时间:120分钟 满分:120分一.选择题(每小题3分,共30分) 1、-5的绝对值是( )A.5B.-5C.51D.-512、下列各数中,相等的是( )A.-1与(-4-3)B.)(与33---C.169432与 D.3642与- 3、1米成的小棒,第一次截取一半,第二次截取剩下的一半,如此下去,第6次后剩下的小棒长为( )A.121B.321B.C.641 D.12814、原产量n 吨,增产30℅之后的产量为( ) A.(1-30℅)n 吨 B.(1+30℅)n 吨 C.n+30℅吨 D.30℅吨5、下列说法正确的是( )A.31312的系数是x πB.x xy 21212的系数是 C.552的系数为x - D.12--的系数为x 6、下面的正确结论是( )A.0不是单项式B.25abc 是五次单项式C.-x 是单项式D. x1是单项式7、已知关于x 的方程5x+3k=24与方程5x+3=0的解相同,则k 的值为( ) A. 7 B.-8 C. -10 D.98、若代数式的值为能合并成一项,则与x b a b a x x 134242.03-( )A.21B.1C. 31D.09、一轮船往返A 、B 两港之间,逆水航行需要3小时,顺水航行需2小时,水速是3千米每小时,则轮船在静水中的速度是( )A.18千米∕小时B.15千米∕小时C.12千米∕小时D.20千米∕小时10、加工1500个零件,甲单独做需12小时,乙单独做需15小时,若两个合做需x 小时,依据题意可列方程是( )A.1500)151121(=+xB.1500)151500121500(=+x C.1500)151500121(=+x D.1)151500121500(=+x二.填空题(每小题3分,共30分)11、比-3小9的数是_____,绝对值等于它相反数的是_____; 12、计算:=+-2123_____,-5-9-=____; 13、多项式-53x +64a -532b a 的最高次项是_______; 14、若∣x-1∣=2,则x=_____;15、若∣b-1∣+(a+3)=0,则:a=___,b=___;16、如果代数式2x+3与x-5的值互为相反数,则x=____; 17、若374-n x+5=0是一元一次方程,则n=____;18、一件商品成本价5元,按市场标价的8折出售每件还获利2元,问市场标价为_____元;19、滨海公园成人票10元∕张,学生票6元∕张,某一天这个公园共售出800张门票,共得门票6000元,则成人票____张,学生票____张; 20、若x=3是方程ax=5的解,则方程3(x-a )=6的解为x=____. 三.解答题(共60分)21.计算题(每小题4分,共8分)(1) )411()2(32)53()5(22-⨯-÷+-⨯-(2) ∣-97∣÷(5132-)-2)4(31-⨯22.解下列方程(每小题4分,共8分)(1) 221312+=++x x(2) 6.15.032.04=--+x x23.先化简)(3)(3)22(22222222y y x x y x y x +++--,再求值,其中x=-1,y=2.(6分)word 格式-可编辑-感谢下载支持24.若y=4是方程)(538m y m y -=-+的解,则关于x 的方程05)23(=-+-m x m的解是多少?(6分)25.某中学组织学生到校外参加义务植树活动,一部分学生骑自行车先走,速度为9km ∕h ,小时32后其余学生乘汽车出发,速度为45km∕h,结果他们同时到达目的地,则目的地距学校多少千米?(6分)26. 一项工作,甲单独做8天完成,乙单独做12天完成,丙单独做24天完成。
初一秋季第三次月考(数学)试题含答案
初一秋季第三次月考(数学)(考试总分:120 分)一、 单选题 (本题共计12小题,总分36分)1.(3分) |-5|的相反数是( )A .5B .-5C .51 D .-51 2.(3分)化简 -3a-(3a+2)的结果是( )A. -6a-2B. 6a-2C. 2D. -23.(3分)每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( ) A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米4.(3分)下列式子正确的是( )A .z y x z y x --=--)(B .z y x z y x ---=+--)(C .)(222y z x z y x +-=-+D .)()(d c b a d c b a -----=+++-5.(3分)生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于( )A .圆柱体B .球体C .圆D .圆锥体6.(3分)如图所示的图形中,属于棱柱的有( )A .2个B .3个C .4个D .5个7.(3分)如图是由5个大小相同的小正方体摆成的立体图形,它的主视图...是( )8.(3分)下面四个图形是多面体的展开图,其中哪一个是四棱锥的展开图( )9.(3分)沿图中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A B C D10.(3分)如图,OC 平分∠AOB ,OD 平分∠AOC ,∠AOD =35°,则∠AOB 为( )A .80°B .100°C .120°D .140°11.(3分)如图,某测绘装置上一枚指针原来指向南偏西50°,把这枚指针按逆时针方向旋转14圆周,则结果指针的指向是( )A .南偏东50°方向B .北偏西40°方向C .南偏东40°方向DB C AD .东南方向12.(3分)已知A ,B ,C 三点在同一条直线上,M ,N 分别为线段ABBC 的中点,且AB=60,BC=40,则MN 的长为( )A.10B.50C.10或50D.15或55二、 填空题 (本题共计4小题,总分16分)13.(4分)如图,小明到小颖家有四条路,小明想尽快到小颖家,他应该走第________条路,其中的道理是____________________.14.(4分)已知∠A 与∠B 互余,若∠A =20°15′,则∠B 的度数为________. 15.(4分)如图是一个正方体的展开图,在a ,b ,c 处填上一个适当的数,使得正方体相对的面上的两数互为相反数,则cab 的值为________.16.(4分)已知(a +1)2+|b -2|=0,则1+ab 的值等于 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浠水县英才学校兰溪中学2013年秋季第三次月考七年级 数 学 试 题 命题人:李 欣 审稿人:郭 勇 满 分:120分 时 间:120分钟 同学们,你们好!今天是展示你聪明才智的时候了。
只要你仔细审题、多思多想、沉着应答,把平常的水平发挥出来,你就会有出色的表现。
放松一点,相信自己的实力! 一、选择题:(每题只有一个正确的答案供选择,每题3分,共30分)、 1.下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这 个立体图形的左视图是( )
2.解方程1-,去分母,得( ) A .x x 331=-- B.x x 336=+- C.x x 336=-- D.x x 331=+- 3.若关于x ) A. 1.25 B. 0.5 C. —1 D.—1.25 4.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A.不赔不赚 B.赚了10元 C.赔了10元 D.赚了50元 5.在800米跑道上有两人练跑步,甲每分钟跑200米,乙每分钟跑160米,•两人同地、同时、同向起跑,t 分钟后第一次相遇,t 等于( )。
A .10分钟 B .15分钟 C .20分钟 D .30分钟 6.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场。
A .3 B .4 C .5 D .6
A. B. C. D. ※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
班级:
姓名:
考号:
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
※※※※※※
7方程3x-1=2x+1和2m+x=4有相同的解,则m 的值为( )
A .0
B .1
C .-2
D .- 1
8.已知ax=ay ,下列等式中成立的是( )
A . x=y B. ax+1=ay-1 C .ax=-ay D. 3-ax=3-ay
9. 在一个农场,母鸡的只数与猪的头数之和是70,腿数之和是196,则母鸡比猪多( )只。
A . 14 B. 16 C . 22 D. 42
10.某种手机卡的市话费上次已按原收费标准降低了b 元/分钟,现在又下调20﹪,使收费标准为a 元/分钟,那么原收费标准为( )
A. B. C. D. 二、填空题(每题3分,共24分) 11.在①21x -;②213x x +=;③π3
π3-=-;④13t +=中,等式有_______
,方程有_______.(填入式子的序号)
12。
.
13.已知0531=+-n x 为一元一次方程,则n =________.
14.一列火车匀速行驶,经过一条长300m 的隧道需要20秒的时间。
隧道的顶上有一盏灯 ,垂直向下发光,灯光照在火车上的时间是10秒,则火车的速度为 。
15.当
x = 时,代数式2+x 与代数式2
8x -的值相等 16.九年级某班的50名学生进行物理,化学两种试验。
经最后统计可知,物理实验做对了的有40人,化18. 自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按0.8元收费,超过10吨的部分按每吨1.5元收费,王老师三月份平均水费为每吨1.0元,则王老师家三月份用水_______吨.
三、解答题(共66分)
19. 解方程(每题4分,共16分)
(1))2(6)23(36+-=--x x x (2)1412313=+--x x
432.5x x ---=b a -4
5b a +45b a +43b a +3
4
20.化简并求值(5分)
)213(2)46(22
2b ab a ab a -+-+,其中1,2==b a
21.把一些苹果分给几个小朋友,如果每人分3个,那么还剩20个苹果,如果每人分4个,那么还缺25个苹果,一共有几个苹果?几个小朋友?(8分)
22.一货船在甲乙两码头之间运货,从甲码头到乙码头是顺流行驶,某天早晨6:00,开始给货物装箱运到船上,用了一个小时,装完货物之后,马上出发,11:00到达乙码头,船长让水手下船吃饭休息花了2小时,休息好了之后,搬货装货用了1小时;然后从乙码头返回甲码头,由于是逆流行驶到达甲码头已经是晚上19:00.水手告诉船长今天测得的水流的速度是4千米/小时,求(1)船在静水中的速度.(2)甲乙两码头之间的距离。
(8分)
23.某水果商贩买进水果若干筐,每筐进价3元,如果4元的价格出售,那么卖出全部水果的一半又10筐时,已收回全部成本,问一共买进水果多少筐?买完这些水果,这个小贩可以赚多少钱?(8分)
24.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,而且定价也都相同.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).
问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(5分)
(2)当分别购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?(4分)
25.(12分)我们知道23=2×10+3;865=8×100+6×10+5;5984=5×1000+9×100+8×10+5;……(1)若某三位数个位数字为a,十位数字为b,百位数字为c,则该三位数如何表示?(2分)
(2)一个两位数,个位上的数是十位上的数的3倍,如果把十位上的数和个位上的数对调,那么所得的两位数比原两位数大18。
求对调后的两位数.(4分)
(3)设有六位数1abcde,乘以3以后,变成abcde1。
求这个六位数(6分)。