微波技术与天线傅文斌-习题答案-第4章
微波技术课后习题答案-第四章习题参考答案
第三章习题参考答案带状线为双导体结构,中间填充均匀介质,所以能传输TEM 导波,且为带状线的工作模式。
4.1可由P.107:4.1-7式计算特性阻抗0Z 由介质r ε,导体带厚度与接地板高度的比bt ,以及导体带宽度与接地板高度的比bW确定。
Ω=45.690Z4.5可由P.107:4.1-6式计算⎪⎩⎪⎨⎧>--<=1206.085.012000Z x Z x b W r r εε 其中: 441.0300-=Z x r επ已知:1202.74502.20<=⨯=Z r ε 83.0441.02.7430441.0300=-=-=πεπZ x r 所以: )(66.283.02.3mm bx W =⨯==衰减常数P.109:4.1-10:d c ααα+=c α是中心导体带和接地板导体的衰减常数,d α为介质的衰减常数。
TEM 导波的介质损耗为:)/(2m Np ktg d δα=,其中εμω'=k 由惠勒增量电感法求得的导体衰减常数为)/(m Np :P.11109:4.1-11⎪⎪⎩⎪⎪⎨⎧Ω>Ω<-⨯=-12016.0120)(30107.200003Z B b Z R Z A t b Z R r s r r s c εεπεα 其中:⎪⎭⎫⎝⎛--++-+=t t b t b t b t b W A 2ln 121π ⎪⎭⎫⎝⎛++-++++=t W W t t b t b t W b B πππ4ln 21414.05.01)7.05.0(1)/(155.02001.0100.32.21010222289m Np tg c f ktg r d =⨯⨯===πδεπδα铜的表面电阻在10GHz 下Ω==026.02σωμs R ,74.4=A m Np A t b Z R r s c /122.0)(30107.203=-⨯=-πεαm Np d c /277.0=+=αααdB e Np 686.8lg 1012==m dB m Np d c /41.2/277.0==+=ααα4.6可由P.107:4.1-6式计算⎪⎩⎪⎨⎧>--<=1206.085.012000Z x Z x b W r r εε 其中: 441.0300-=Z x r επ已知:1204.1481002.20>=⨯=Z r ε 194.0441.04.14830441.0300=-=-=πεπZ x r 所以: )(67.02128.016.3)6.085.0(mm x b W =⨯=--= 在10GHz ,带状线的波长为:cm fcr 02.210102.210398=⨯⨯⨯==ελ4.16可由P.130:4.3-27式计算已知Ω=700e Z ,Ω=300o Z ,mm b 4=,1.2=r ε3813.3300==re e Z A ε648.02212212143813.33813.3214=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+--=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+--=e e e e k e eA A e45.1300==ro o Z A ε99.022222=⎪⎪⎪⎭⎫⎝⎛+-=o o A A o e e k ππ68.02==o e k k arctg b W π015.0112=⎪⎪⎭⎫⎝⎛--=oee o k k k k arctg b S π mm b 4=mm W 7.268.04=⨯= mm S 06.0015.04=⨯=。
微波技术与天线傅文斌习题答案
第2章 微波传输线2.1什么是长线?如何区分长线和短线?举例说明。
答 长线是指几何长度大于或接近于相波长的传输线。
工程上常将1.0>l 的传输线视为长线,将1.0<l 的传输线视为短线。
例如,以几何长度为1m 的平行双线为例,当传输50Hz 的交流电时是短线,当传输300MHz 的微波时是长线。
2.2传输线的分布参数有哪些?分布参数分别与哪些因素有关?当无耗传输线的长度或工作频率改变时分布参数是否变化?答 长线的分布参数一般有四个:分布电阻R 1、分布电感L 1、分布电容C 1、分布电导G 1。
分布电容C 1(F/m )决定于导线截面尺寸,线间距及介质的介电常数。
分布电感L 1(H/m )决定于导线截面尺寸,线间距及介质的磁导率。
分布电阻R 1(Ω/m )决定于导线材料及导线的截面尺寸。
分布电导G 1(S/m ) 决定于导线周围介质材料的损耗。
当无耗传输线(R 1= 0,G 1= 0)的长度或工作频率改变时,分布参数不变。
2.3传输线电路如图所示。
问:图(a )中ab 间的阻抗0=ab Z 对吗?图(b )中问ab 间的阻抗∞=ab Z 对吗?为什么?答 都不对。
因为由于分布参数效应,传输线上的电压、电流随空间位置变化,使图(a )中ab 间的电压不一定为零,故ab 间的阻抗ab Z 不一定为零;使图(b )中a 点、b 点处的电流不一定为零,故ab 间的阻抗ab Z 不一定为无穷大。
2.4平行双线的直径为2mm ,间距为10cm ,周围介质为空气,求它的分布电感和分布电容。
解 由表2-1-1,L 1=1.84×10-6(H/m ),C 1=6.03×10-12(F/m )2.5写出长线方程的的解的几种基本形式。
长线方程的解的物理意义是什么? 答(1)复数形式λ/8 aba)λ/8 abb)题2.3图()()()z L L z L L I Z U I Z U z U ββj 0j 0e 21e 21--++= ()()()z L L z L L I Z U Z I Z U Z z I ββj 00j 00e 21e 21---+=(2)三角函数形式()z Z I z U z U L L ββsin j cos 0+=()z I z Z U z I L Lββcos sin j+= (3)瞬时形式()()A z t A t z u ϕβω++=cos , ()B z t B ϕβω+-+cos ()()A z t Z A t z i ϕβω++=cos ,0()B z t Z B ϕβω+--cos 0其中,()L L I Z U A 021+=,()L L I Z U B 021-= 物理意义:传输线上的电压、电流以波动的形式存在,合成波等于入射波与反射波的叠加。
微波技术与天线复习题答案
设特性阻抗为 Z °的无耗传输线的驻波比,第一个电压波节点离负载的距离为《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为50的均匀传输线终端接负载 R 100 ,求负载反射系数i,在离负载0.2 ,0.25及0.5处的输入阻抗及反射系数分别为多少?1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两 导体间填充介电常数r 2.25的介质,求其特性阻抗及f 300MHz 时的波长。
则空气同轴线 乙 60ln b65.9a 当 r 2.25时,z 。
-60ln b43.9V r a 当f 300MHz 时的波长:0.67m1.3题解:1 (Z 1 Z °).( Z 1 Z 0) 1 3 (0.2 )j2 z1 j0.8 1ee 3(0.5 )13(二分之一波长重复性) 1 (0.25 ) 3Z 1 jZ 0tan 丨Z in (0.2 ) z 。
一129.4323.79乙n (0.25 ) 502/100 25(四分之一波长阻抗变换性)乙 n (0.5 ) 100(二分之一波长重复性)解:同轴线的特性阻抗Z 0Z2Z in -2500R 11.5方。
证明:令传输线上任意一点看进去的输入阻抗为Z in ,与其相距处看进去的输入阻抗为4Z n ,则有:Z 1 jZ °tan zZ 0jZ 1 tan zl min1,试证明此时的终端负载应为乙 Z o证明:对于无耗传输线而言:Z1Zj tan丨 min 1 Z in( 1 min 1)Z 0ZZ1j tan丨 min 1Zin(l min1)Z/由两式相等推导出:乙Z 01 j tan lmin1jtan lmin 1传输线上的波长为:cf 2 g— 2mr因而,传输线的实际长度为:I -0.5m4终端反射系数为:R1 Z0 R1 Z49490.96151输入反射系数为:1ej2 1in 1490.96151根据传输线的4的阻抗变换性,输入端的阻抗为:试证明无耗传输线上任意相距入/4的两点处的阻抗的乘积等于传输线特性阻抗的平Z in1 j tan I minijtan 1min 11.4特性阻抗为Z 0 100长度为 /8的均匀无耗传输线,终端接有负载① ② ③ 解:传输线始端的电压。
《微波技术与天线》傅文斌-习题标准答案-第4章
《微波技术与天线》傅文斌-习题答案-第4章————————————————————————————————作者:————————————————————————————————日期:238第4章 无源微波器件4.1微波网络参量有哪几种?线性网络、对称网络、互易网络的概念在其中有何应用? 答 微波网络参量主要有转移参量、散射参量、阻抗参量和导纳参量。
线性网络的概念使网络参量可用线性关系定义;对二口网络,对称网络的概念使转移参量的d a =,散射参量的2211S S =,阻抗参量的2211Z Z =,导纳参量的2211Y Y =。
互易网络的概念使转移参量的1=-bc ad ,散射参量的2112S S =,阻抗参量的2112Z Z =,导纳参量的2112Y Y =。
4.2推导Z 参量与A 参量的关系式(4-1-13)。
解 定义A 参量的线性关系为()()⎩⎨⎧-+=-+=221221I d cU I I b aU U 定义Z 参量的线性关系为⎩⎨⎧+=+=22212122121111I Z I Z U I Z I Z U⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=c d c c bc ad ca Z Z Z Z 122211211Z 4.3从I S S =*T出发,写出对称互易无耗三口网络的4个独立方程。
解 由对称性,332211S S S ==;由互易性,2112S S =,3113S S =,3223S S =。
三口网络的散射矩阵简化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112313231112131211S S S S S S S S S S 由无耗性,I S S =*T,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001*11*23*13*23*11*12*13*12*11112313231112131211S S S S S S S S S S S S S S S S S S39得1213212211=++S S S0*2313*1112*1211=++S S S S S S 0*1113*2312*1311=++S S S S S S 0*1123*2311*1312=++S S S S S S4.4二口网络的级联如图所示。
最新微波技术与天线答案
微波技术与天线答案1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<< 此传输线为短线1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。
用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。
1-4 解: 特性阻抗050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入 33223420220218j j z Ueej j j V ππλ-'==+=-+=-()3412020.11200z Ij j j A λ'==--=- ()()()34,18cos 2j te z u z t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''==()()()212321100j j z z U z e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解:210.20.2130j L e ccm fπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L LL Z Z -Γ+===Ω+Γ- 由 ()()()22max 0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1in in Z z z ''=∞Γ= (b) ()()0100,0in in Z z Z z ''==ΩΓ= (c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3in in Z z Z z ''==ΩΓ= 1-9 解: 1 1.21.510.8ρ+Γ===-Γ 0max 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-= min1120.2,0.514L z ρππβρλ-'Γ===⨯=+min1min120.2j z z Le β'-'Γ=-=Γ ∴ 2420.20.2j jL eeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β=开路线输入阻抗 0in Z jZ ctg l β=- a) 00252063in Z jZ tgjZ tgj πλπλ=⨯=Ω b) 002252033in Z jZ tg jZ tg j πλπλ=⨯=-Ωc) 0173.23in Z jZ ctgj π=-=-Ω d) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013oj L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-41-14 解: 表1-5 1-15 解: 表1-61-16 解: 表1-71-17 解: 1350.7oj L e Γ= 1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求min1min10min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5L Z j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =- 最短分支线长度为 l=0.174λ()0.516B =- 1-19 解: 302.6 1.4,0.3,0.30.16100L L lZ j Y j λ=-===+ 由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω 1.01 1.31in Y j =- ()0.020.026in Y j S =- 1-20 解: 12L Y j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.31 1.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577in Z j =-Ω 1-21 解: 11 2.5 2.50.20.2L LY j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5L Z '= 500/2.5200LZ '==Ω(纯电阻) 变换段特性阻抗316Z '===Ω 1-22 解: 1/0.851.34308.66o o L arctg ϕ=-=-=由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12L z ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1in Z j '+= 得 1in Z j '=- 向负载方向等效(沿等Γ图)0.25电长度 得 1in in Z Z ''='则 in in Y Z '''=由in in in Y Y j Z ''''''=+= 得 12in in Y Z j j ''''=-=- 由负载方向等效0.125电长度(沿等Γ图)得 12L Y j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。
微波技术与天线,课后答案
|U |max = UC = 450 V
|I|min = UC /Zbc = 0.5 A
|U |min = |I|minZ01 = 300 V
|I|max = |U |max/Z01 = 0.75 A
(20)
Γ
=
RL RL
− Z0 + Z0
当RL > Z0时 ,Γ(z)为 正 实 数 , 终 端 为 电 压 的 波 腹 点 , 则 有RL = Z0ρ,所以ρ = RL/Z0 当RL < Z0时,Γ(z)为负实数,终端为电压的波节点,则有RL = Z0/ρ,所 以ρ = Z0/RL 证毕。
2-15 有一特性阻抗为75Ω、长为9λ/8的无耗传输线,测得电压结点 的 输入阻抗为25Ω,终端为电压腹点,求:(1)终端反射系数; (2)负载阻抗; (3)始端的输入阻抗; (4)距终端3λ/8处的反射系数。
图 5: ZL = 0的情况 2-26 ( ) 传输线电路如下图所示。图中,Z0 = 75Ω,R1 = 150Ω,R2 = 37.5Ω,行波 电压幅值|U +| = 150V 。 (1)试求信号源端的电流|ID|; (2)画出各传输线上的电压、电流幅值分布并标出极大、极小值; (3)分别计算负载R1、R2吸收的功率。 解: (1) CA段的输入阻抗为:ZCA = R1 = 150Ω; CB段的输入阻抗为:ZCB = Z02/R2 = 150Ω; C点阻抗为:ZC = ZCA//ZCB = 75Ω;
ZCE
=
Z02 2Z0
=
Z0/2
(10)
ZCF
=
Z0
微波技术与天线答案
1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<<此传输线为短线1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。
用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。
1-4 解: 特性阻抗 90101210 1.66510500.66610L L Z C C --⨯====Ω⨯ f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入 33223420220218j j z Ueej j j V ππλ-'==+=-+=-()3412020.11200z Ij j j A λ'==--=- ()()()34,18cos 2j te z u z t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''==()()()212321100j j z z U z e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解:210.20.2130j L e ccm fπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L L L Z Z -Γ+===Ω+Γ-由 ()()()22max 0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1in in Z z z ''=∞Γ= (b) ()()0100,0in in Z z Z z ''==ΩΓ= (c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3in in Z z Z z ''==ΩΓ= 1-9 解: 1 1.21.510.8ρ+Γ===-Γ 0max 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-= min1120.2,0.514L z ρππβρλ-'Γ===⨯=+min1min120.2j z z Le β'-'Γ=-=Γ ∴ 2420.20.2j jL eeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β= 开路线输入阻抗 0in Z jZ ctg l β=- a) 00252063in Z jZ tgjZ tgj πλπλ=⨯=ΩBb) 002252033in Z jZ tgjZ tg j πλπλ=⨯=-ΩBc) 0173.23in Z jZ ctgj π=-=-Ω d) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013o j L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-4短路线长度 0.182λ 0.25λ0.15λ 0.62λ 输入阻抗in Z j2.2 ∞j1.38 j0.94 输入导纳in Y-j0.46-j0.024-j1.061-14 解: 表1-5 开路线长度 0.1λ 0.19λ0.37λ 0.48λ 输入阻抗in Z -j1.38 -j0.4j0.94 j7.9 输入导纳in Yj0.73j2.5-j1.06-j0.131-15 解: 表1-6负载阻抗L Z0.3+j1.3 0.5-j1.6 30.25 0.45-j1.2 -j2.0驻波比ρ 9.16 1.86 3 4 5.7 ∞ 反射系数Γ0.80.30.50.60.711-16 解: 表1-7 负载阻抗L Z 0.8+j 0.3-j1.1 ∞ j1.0 1.0 6+j3输入阻抗in Z 0.488-j0.61 0.23+j0.85-j1 1 0.13-j0.067输入阻抗in Z (Ω) 24.4-j30.5 11.5+j42.3-j50 50 6.67-j3.331-17 解: 1350.7oj L e Γ= 1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求min1min10min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5L Z j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =- 最短分支线长度为 l=0.174λ()0.516B =- 1-19 解: 302.6 1.4,0.3,0.30.16100L L lZ j Y j λ=-===+ 由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω 1.01 1.31in Y j =- ()0.020.026in Y j S =- 1-20 解: 12L Y j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.31 1.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577in Z j =-Ω 1-21 解: 11 2.5 2.50.20.2L L Y j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5L Z '= 500/2.5200LZ '==Ω(纯电阻) 变换段特性阻抗 0010000010010316L Z Z Z ''===Ω 1-22 解: 1/0.851.34308.66o o L arctg ϕ=-=-=由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12L z ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1in Z j '+= 得 1in Z j '=- 向负载方向等效(沿等Γ图)0.25电长度 得 1in in Z Z ''='则 in in Y Z '''=由in in in Y Y j Z ''''''=+= 得 12in in Y Z j j ''''=-=- 由负载方向等效0.125电长度(沿等Γ图)得 12L Y j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。
微波技术与天线习题答案
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少解:1))(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)求内外导体直径分别为和的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
《微波技术与天线》习题集规范标准答案
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少?解:1)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++=ο79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(Θ1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
微波技术与天线习题包括答案.docx
《微波技术与天线》习题答案章节微波传输线理路1.1设一特性阻抗为 50 的均匀传输线终端接负载 R 1100 ,求负载反射系数1 ,在离负载 0.2 , 0.25 及 0.5处的输入阻抗及反射系数分别为多少解: 1 ( Z 1Z 0 ) (Z 1 Z 0 ) 1 3(0.2) 1e j 2 z1 e j 0 .813(0.5)(二分之一波长重复性)3 (0.25 )13Z in (0.2 )Z 1jZ 0 tan l 29.4323.79Z 0jZ 1 tan lZ 0Z in (0.25 ) 502 /100 25(四分之一波长阻抗变换性)Z in (0.5) 100(二分之一波长重复性)求内外导体直径分别为和的空气同轴线的特性阻抗; 若在两导体间填充介电常数 r 2.25的介质,求其特性阻抗及 f300MHz 时的波长。
解:同轴线的特性阻抗 Z 060blnra则空气同轴线 Z 060 lnb65.9a当 r 2.25 时, Z 0 60b 43.9lnra当 f 300MHz 时的波长:cp0.67mfr题设特性阻抗为Z 0 的无耗传输线的驻波比,第一个电压波节点离负载的距离为l m in1,试证明此时的终端负载应为Z1 Z01j tan lmin 1j tan lmin 1证明:对于无耗传输线而言:Zin (l min 1)Z1Z 0 j tanlmin 1 Z 0Z1 j tanlmin 1 Z 0Zin (l min 1 )Z0/由两式相等推导出:Z1Z 0 1 j tan lmin 1j tan lmin 1传输线上的波长为:cfg2mr因而,传输线的实际长度为:gl0.5m4终端反射系数为:R1Z0490.9611Z 051R1输入反射系数为:in1e j 2 l490.96151根据传输线的 4 的阻抗变换性,输入端的阻抗为:2Z0Z in2500R1试证明无耗传输线上任意相距λ/4 的两点处的阻抗的乘积等于传输线特性阻抗的平方。
微波技术与天线,课后答案
T E11、T M11: λc = 2ab/ a2 + b2 = 61.57mm > λ, 故T E11、T M11波 型能传播
T E30: λc = 2a/3 = 48.09mm < λ,故T E30波型不能传播
T E21、T M21: λc = 2ab/ a2 + (2b)2 = 49.51mm < λ, 故T E21、T M21波 型能传播. 综上,能传输的波型为:T E10、T E20、T E01、T E11、T M11波型。
微波技术与天线课后部分习题解答1第三章34矩形波导存在哪3中状态
《微波技术与天线》课后部分习题解答
1 第三章
3-4 矩形波导存在哪3中状态?其导行条件是什么?
答:存在:(a)临界状态(k = kc或λ = λc或f = fc);(b)传输状 态(k < kc或λ < λc或f > fc);(c)截止状态(k > kc或λ > λc或f < fc)。
答:
(1)截止波长:λc = 2a = 4 (λ = 3 × 108/1 × 1010 = 3cm)
1−(
λ λc
)2
相移常数:β
=
2π λp
=
157.7
(2) λc = 9.12cm λp = 3.18cm β = 197.8
(3)各参数同(1)
(4)λc = 4.56cm λp = 2.25cm β = 282.3
(
m a
)2
+
(
n b
)2
+
(
p l
微波技术习题解答(部分)概要
欲使 A 处无反射,要求有 ZinA Z0 得到
2 Z0 Z01 jZ0 ZL tan l Z01ZL jZ01 tan l
由上式得 又
Z01 100 2
tan l 2
c 3 108 m 0.1m 10cm 9 f 3 10
arc tan 2
微波技术基础课后习题
杜 英
2011.5.1
第二章 传输线理论
2-6 如图所示为一无耗传输线,已知工作频率 f 3GHz , Z0 100 ,
ZL 150 j50 ,欲使 A 处无反射,试求
l 和
Z 01 。
答案:由输入阻抗定义知
ZinA Z01 Z L jZ01 tan l Z01 jZ L tan l
3 108 答案:当工作频率 f 5GHz , m 60mm 9 5 10
矩形波导TE、TM波截止波长公式为:
c
2
m a n b
2
2
当矩形波导的尺寸为 a b 109.2mm 54.6mm ,各波型的截止波长c 为
第三章 微波传输线
矩形波导中能传输的波型有 TE10 TE20 TE01 TE11 TM11 TE21 TM 21
2
p
1 c
2
vg v 1 c
2
第三章 微波传输线
3-9 一个空气填充的矩形波导,要求只传输 TE10 模,信号源的频率为 10GHz,试确定波导的尺寸,并求出相速 vp 、群速 vg 及相波长 p 答案: f 10 Hz
10
c 3 108 m 3cm 10 f 10
T T e j S12 e j12 S21 e j21
微波技术与天线部分课后答案
微波技术与天线* 1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少? 解:31)()(01011=+-=ΓZ Z Z Z πβλ8.02131)2.0(j z j e e --=Γ=Γ 31)5.0(=Γλ 31)25.0(-=Γλ Ω-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z l jZ Z Z Z in ββλ Ω==25100/50)25.0(2λin Z Ω=100)5.0(λin Z1.3设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯= 证明: 1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(* 1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
证明:令传输线上任意一点看进去的输入阻抗为in Z ,与其相距λ/4处看进去的输入阻抗为'in Z ,则有: zjZ Z z jZ Z Z ββtan tan Z 10010in ++= )()(4tan 4tan Z 10010in λβλβ++++='z jZ Z z jZ Z Z =z jZ Z z jZ Z Z ββcot cot 10010-- 所以有: 20Z Z Z in in ='⨯故可证得传输线上相距的二点处阻抗的乘积等于传输线的特性阻抗。
1.6 设某一均匀无耗传输线特性阻抗为Z 0=50Ω,终端接有未知负载Z 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 无源微波器件4.1微波网络参量有哪几种?线性网络、对称网络、互易网络的概念在其中有何应用? 答 微波网络参量主要有转移参量、散射参量、阻抗参量和导纳参量。
线性网络的概念使网络参量可用线性关系定义;对二口网络,对称网络的概念使转移参量的d a =,散射参量的2211S S =,阻抗参量的2211Z Z =,导纳参量的2211Y Y =。
互易网络的概念使转移参量的1=-bc ad ,散射参量的2112S S =,阻抗参量的2112Z Z =,导纳参量的2112Y Y =。
4.2推导Z 参量与A 参量的关系式(4-1-13)。
解 定义A 参量的线性关系为 定义Z 参量的线性关系为4.3从I S S =*T出发,写出对称互易无耗三口网络的4个独立方程。
解 由对称性,332211S S S ==;由互易性,2112S S =,3113S S =,3223S S =。
三口网络的散射矩阵简化为由无耗性,I S S =*T,即 得4.4二口网络的级联如图所示。
写出参考面T 1、T 2之间的组合网络的A 参量。
(参考面T 1处即组合网络的端口1,参考面T 2处即组合网络的端口2)解 []⎥⎦⎤⎢⎣⎡=1j 011B A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛+-+-=θθθθθθθθsin cos cos sin sin 11j sin j sin cos 00000BZ BZ B Z B Z BZ (l βθ=)4.5微波电路如图所示。
已知四口网络的S 矩阵是其端口2、3直接接终端反射系数为2Γ、3Γ的负载,求以端口1、4为端口的二口网络题4.4图题4.5图的散射矩阵。
解 由表4-1-4,四口网络的工作条件是222Γ=b a ,333Γ=b a ,代入式(4-1-23)得 即将上式中32,b b 的表达式代入41,b b 的表达式,得 记[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡4441a a S b b ,得 4.6试按要求对学过的二口元件进行列表归纳:(1)按名称、类型、功用、特性;(2)按与第二章学过的元件比较。
答4.7简述4λ结构的工作原理。
它被应用于哪些微波元件中?答 4λ结构的工作原理(以扼流式短路活塞为例,图4-2-1 b ):将BA 、DC 看成4λ传输线段,因AC 点短路,由倒置性BD 点开路。
再将AB 、A ′B ′也看成4λ传输线段,因BD 点(即BB ′点)开路,故AA ′点短路(即电接触良好)。
应用于扼流式短路活塞、抗流接头4.8欲利用阶梯波导实现两段尺寸分别为2.5×1.3 cm 2和2.5×0.8 cm 2的波导的连接。
当工作波长λ= 3cm 时,试求(1) 阶梯波导段的窄边b=? (2) 阶梯波导段的长度l =? (3) 阶梯波导段的单模传输条件。
解 (1)cm 02.18.03.121=⨯==b b b (2)()221a p λλλ-==3.75cm ,cm 9375.0475.34===p λ(3)a a 2<<λ,cm 5cm 5.2<<λ4.9什么是禁戒规则?在T 形接头分析中它有何作用?答指偶模激励只能激励起对称场,不能激励起反对称场,或者说反对称场被禁戒;奇模激励只能激励起反对称场而对称场被禁戒。
作用:(1)可用于分析TE 10波的场结构的对称性;(2)可用于分析E-T 、H-T 和魔T 。
4.10 E-T 接头的端口1、2匹配,证明适当选择参考面后,其S 矩阵是 解 三口网络的S 矩阵是:依题意:02211==S S ,由互易性,2112S S =,3132S S =,2332S S =,由反对称场性质,1323S S -= 由无耗性,I S S =*T,有 即1213212=+S S ①0*1313=S S ②12332*13213=+-+S S S ③由式②,013=S ;由式①,112=S ,若适当选择参考面,112=S ;由式③,133=S 。
若适当选择参考面,133=S 。
因此有4.11推导魔T 的S 矩阵并利用该S 矩阵简述其特性。
(提示:利用魔T 等效网络的对称性、互易性和无耗性,以及魔T 中场的对称性和反对称性)解 四口网络的S 矩阵是依题意:当E 臂、H 臂为端口匹配状态时,033=S ,044=S ;由旁臂 1、旁臂2的对称性,2211S S =;由互易性,()j i j i S S ji ij ≠==;4,3,2,1,,由E-T 接头的反对称场性质和H-T 接头的对称场性质,1323S S -=,1424S S =,04334==S S 。
得由无耗性,I S S =*T,有 即1214213212211=+++S S S S (1)0*1414*1313*1112*1211=+-+S S S S S S S S (2)0*1312*1311=-S S S S (3)0*1412*1411=+S S S S (4)由式(3)、式(4),01211=-S S ,01211=+S S ,故01211==S S 。
由式(2),1413S S =,代入式(1),并适当选择参考面得211413==S S 。
因此,得魔T 的S 矩阵是由上述S 矩阵,易知魔T 具有:(1)匹配性。
例如,若使04433==S S ,则自动有02211==S S 。
(2)均分性。
例如,若从端口1输入,则从E 臂、H 臂等分输出;若从E 臂输入,则从端口1、2等分输出。
(3)隔离性。
例如,若从端口1输入,则端口2无输出;若从E 臂输入,则H 臂无输出。
4.12由魔T 组成的输出调节器如图所示,其中,功率从端口1输入,从端口2输出;端口3、4分别接短路活塞。
为使端口2的输出最大,试分析3l 和4l 应满足什么条件?解 魔T的散射矩阵是⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=001100111100110021S 由表4-1-4,魔T的工作条件是32j 33eθ--=b a ,42j 44eθ--=b a ,式中,33 βθ=,44 βθ=。
代入上式有 即()432j 42j 31e e21θθ----=b b b ①()432j 42j 32e e21θθ---=b b b ②()21321a a b -=③()21421a a b +=④将式③、式④代入式②功率从端口1输入,为使端口2的输出最大,也就是使电压传输系数的模21S T =最大,即求下式的最大值: 将上式化简:显然,上式取最大值的条件是 即4.13如图所示可调式同轴型功分器将信号源的功率分配给匹配负载1、2,其中,两个短路活塞用连杆联动,短路活塞与主馈线AB 的距离分别为1l 和2l ,且412p l l λ+=。
各段同轴线的特性导纳均为S 02.00=Y 。
证明:(1)当41p l λ=时,信号全部送到负载1。
(2)当01=l 时,信号全部送到负载2。
(3)当31p l λ=时,该功分器向负载1、2等功率馈电。
解 画出可变同轴型功分器的等效电路如左图所示: (1)当41p l λ=时,2412p p l l λλ=+=,B 点呈短路,信号不能到达负载2。
由B 点呈短路,知0=CB Y ;由41p l λ=,知0=AG Y ;0Y Y CD =,即CD 段呈行波,故信号全部送到负载1。
(2)当01=l 时,A 点呈短路,信号不能到达负载1。
与上述分析类似,信号全部送到负载2。
(3)当31p l λ=时,0Y Y AD =,010cot jY jY Y AG =-= β,()j Y Y Y Y AG AD A +=+=10,0Y Y BE =,0104cot jY jY Y BF -=⎪⎭⎫ ⎝⎛+-=λβ ,()j Y Y Y Y BF BE B -=+=100Y Y Y Y BC BA B =+=,主传输线呈行波,故信号源输入的功率全部进入该功分器,被负载1、2题4.13图所吸收。
又由于A Y 、C Y 是共轭的,所以进入该功分器的功率被负载1、2平分。
4.14同轴型定向耦合器如图所示,试分析其工作原理。
图中,主线通过耦合片将信号耦合到输出端,耦合片的右边接匹配负载。
答 (1)电耦合:耦合片与主线内导体构成耦合电容,产生耦合电流1i 、2i ;(2)磁耦合:主线内导体上的电流产生磁场,形成的磁力线与耦合片发生交链,产生耦合电流3i ;(3)定向性:由于1i 和3i 同向,合成电流为1i +3i ;由于2i 和3i 反向,合成电流为2i -3i ,因而形成定向耦合。
4.15简述波导型单孔定向耦合器的构成和工作原理。
答 波导型单孔定向耦合器由主波导和副波导构成,公共壁为宽壁,耦合机构是开在公共宽壁中央的小孔。
工作原理:图(a )表示电场耦合。
在耦合孔处,TE 10波的电力线会发生如图所示的畸变,故使副线的下宽壁出现负电荷分布(电力线终止于负电荷),它通过感应使上宽壁出现正电荷分布,于是,在副线中激励起如图所示的电力线。
图(b )表示磁场耦合。
在耦合孔处,TE 10波的磁场所形成的壁电流被切断,耦合孔右边的壁电流流入副线,形成正电荷分布,耦合孔左边的壁电流流出副线,形成负电荷分布,于是,在副线中激励起如图所示的电力线。
图(c )表示耦合的合成。
副线中,耦合孔左边由电场耦合和由磁场耦合形成的电力线方向相同,相互叠加;而耦合孔右边形成的电力线则方向相反,相互抵消,于是呈现出定向性。
波导型单孔定向耦合器的主线和副线间也存在一定夹角,作用是改善定向性。
4.16 如何分析TE 10波中存在圆极化磁场?理解该圆极化磁场的特性对分析波导型十字缝定向耦合器有何作用?题4.14图答 分析如下:TE 10波有两个磁场分量,分别是由圆极化的定义,要求两个磁场分量存在︒90相位差,且z x H H =。
前者显然满足,后者则导出如下关系: 解得⎪⎪⎭⎫ ⎝⎛=-a ax p 2tan π11λ,12x a x -= 即:(1)在1x 、2x 处,TE 10波的磁场是旋向相反的圆极化磁场。
(2)旋向的规律是,以TE 10波的传播方向为参考(即视线沿其传播方向),使大拇指垂直进入纸面,1x 处的旋向正好满足左手螺旋关系,称为左圆极化磁场;2x 处的旋向正好满足右手螺旋关系,称为右圆极化磁场。
作用:上述性质可用于判断波导型十字缝定向耦合器的副线正方向(如图)。
(1)若主线中TE 10波的传播方向向下,则十字缝位于视线的左边,故十字缝处为左圆极化磁场(逆时针方向)。
(2)耦合到副线后,十字缝处仍然应为左圆极化磁场。
(3)假设副线中TE 10波的传播方向向左。
这时,由于十字缝位于视线的右边,按照旋向判断方法,十字缝处为右圆极化磁场。
这与要求的极化旋向矛盾,因此假设错误。