非欧几何创始人

合集下载

关于欧氏几何的第5公设及非欧几何

关于欧氏几何的第5公设及非欧几何

关于欧氏几何的第5公设及非欧几何谢裕华秦敏雁施培成摘要:本文综述了由欧氏几何到非欧几何的发展历史;评述了非欧几何的思想及其伟大意义;论述了欧氏几何,罗氏几何,黎曼几何的对立统一关系。

比较了三种几何的主要特征及适用范围。

关键词:第五公设,欧氏几何,罗氏几何,黎曼几何。

一、关于Euclid的《Elements》欧几里得的《几何原本》早已失传,现存的有:1、公元四世纪末(400年左右)泰恩(Thon)的《原本》修订本。

2、18世纪在梵蒂冈图书馆发现的一个第十世纪的《原本》希腊文手抄本,可能比泰恩本更早些。

3、现代版本最早的是1482在威尼斯印刷的,依据泰恩修订本的版本。

4、现在看到的各种版本(一千多种版本)均非欧几里得手稿的传本,而是依据后人的修订本,注释本,翻译本重新整理出来的。

5、1794年法国数学家勒让德(A.M.Legendre,1752-1833)为使《几何原本》更便于教和学,曾对《原本》作了较大的修改,如删去了《原本》中的非几何部分内容,并将几何部分重新整理和编写。

把“命题”中的定理和问题加以明确区分,还把第5公设换为与它等价的平行公理;“过直线外一点,有而且只有一条直线与原直线平行”等等,编成了《新欧几里得几何原本》。

于是自19世纪开始,初等几何课本一般都是以此为兰本的改编本。

6、中国最早的汉译本是1607年(明万历35年丁未)意大利传教士利玛窦(Matteo Ricci,1552-1610)和徐光启(1562-1633)的合译本(前6卷),称之为“明译本”底本系德国人的拉丁文本15卷。

二百五十年之后,1857年,后9卷由英人伟烈亚(A.Wylie,1815-1887)和李善兰(1811-1882)合译,称之为“清译本”底本是英文版第15卷。

由于它们均系文言,并且名词,术语和现代有很大的差异,不易看懂,故现代新译本于1990年由陕西科技出版社出版。

二、关于第5公设古希腊对于数学的最杰出的贡献就是“根据公理体系来建立数学”的观念,即:一个合乎逻辑的学科,应当是由一组原始定义和原始命题(公设,公理)出发,通过演绎推理导出这一学科的其他所有命题。

非欧几何的创立

非欧几何的创立

非欧几何的创立1893年,喀山大学树立起世界上第一个数学家的塑像,他就是俄国著名学者,非欧几何的创始人之一罗巴切夫斯基。

那么,罗巴切夫斯基是怎么走上非欧几何的创立之路的呢?这就要说到公元前3世纪欧几里得在《几何原本》里给出的五个公设了,从那个世纪开始一直到19世纪初,无数数学家们都想要证明一直被证明不了的第五个公设—平行线理论,也就是我们所熟悉的“一个三角形不可能有两个内角都是90度”的说法,而罗巴切夫斯基,可能也想用这个公设的被证明来体现自己的价值,或是表达自己对学术的不懈追求,他也尝试去证明欧氏第五公设。

最初,他也是在前人的思路上继续求证,但是,当经历了无数次失败之后,他开始接受失败这一事实,开始反思,开始打破传统并换个角度思考问题,可能这个为人们千思万想要证明的权威公设根本就不可证。

于是,他大胆地进行了尝试,创造性的在这个问题上用了处理复杂数学问题的反证法。

他将“第五公设不可证”这一命题与其他公理公设组成新的公理系统,并展开逻辑推演,结果没有得出逻辑矛盾。

于是就这样证明了第五公设不可证。

因此,非欧几何的大门开始向世人打开。

1826年,随着他的论文《几何学原理和平行线定理严格证明的摘要》在喀山大学的宣读,非欧几何诞生。

可想而知,一个新的重大成果的问世,总是要受到一些批判与反对,甚至是无视;当然,罗巴切夫斯基没有停止研究,支持这一理论的部分学者们也在尝试证明非欧几何,终于,1868年,也就是罗逝世后12年,意大利数学家贝特拉米发表论文《非欧几何解释的尝试》,证明了非欧几何可以在欧几里得空间的曲面比如球面上实现,也就意味着人们既然相信欧几里得没有矛盾,那么非欧几何就没有矛盾,于是,人们自然就开始尝试进入罗巴切夫斯基打开的那扇门内,若干年后,还称赞罗为“几何学中的哥白尼”。

那么非欧几何的创立告诉了我们什么呢?就是面对失败的时候,我们首先要承认失败,再自我反省,适当地改变自己的思维方向,更要勇于迈出第一步,并不轻易放弃,这样,就能离成功更近。

非欧几里得几何学(non-Euclidean

非欧几里得几何学(non-Euclidean

⾮欧⼏⾥得⼏何学(non-Euclidean geometry)⾮欧⼏⾥得⼏何学(non-Euclidean geometry)不同于欧⼏⾥得⼏何学的⼏何体系。

简称为⾮欧⼏何。

⼀般是指罗巴切夫斯基⼏何(双曲⼏何)和黎曼的椭圆⼏何。

它们与欧⽒⼏何最主要的区别在于公理体系中采⽤了不同的平⾏公理。

⾮欧⼏何起源于对欧⼏⾥得平⾏公设的讨论。

公元前3世纪初,欧⼏⾥得《⼏何原本》问世,开篇列出定义、公理和公设,其中第五公设是:同⼀平⾯内⼀条直线与另外两条直线相交,若在某⼀侧的两个内⾓之和⼩于⼆直⾓,则这⼆直线经过⽆限延长后在这⼀侧相交。

它不像其他公设那样显然,因此很快就引起⼈们的争议,认为欧⼏⾥得把它放在公理(公设)之列,不是因为它不能证明,⽽是找不到证明,这是欧⼏⾥得⼏何体系的唯⼀“污点”。

2000多年来,许多⼏何学家⽤不同的⽅法试图证明第五公设,可是都失败了,因为在他们的每⼀个所谓“证明”中都引进⼀个新的假定,⽽这个假定等价于第五公设。

公元2世纪,古希腊数学家托勒密试图从欧⼏⾥得其他9个公理、公设以及与平⾏公设⽆关的欧⼏⾥得命题1~28来证明平⾏公设,但假设了两直线平⾏后,另⼀与之相交直线⼀侧内⾓成⽴的东西也必在另⼀侧同样成⽴。

公元5世纪的普罗克洛斯基于亚⾥⼠多德⽤于证明宇宙有限的公理来证明平⾏公设,实际上是把⼀个有问题的公理⽤另⼀个来代替09世纪阿拉伯数学家塔⽐·伊本·库拉在《欧⼏⾥得著名的公设证明》中假设:如果两条直线与第三条直线相交,并且它们在(第三条直线的)某⼀侧靠近或相离,则它的(在第三条直线的)另⼀侧就相离或靠近。

13世纪的纳西尔丁在《平⾏线问题释疑》中也应⽤了这样的假设:同⼀平⾯上的若⼲直线,若在⼀个⽅向上是分离的,则它们在这个⽅向上就不会靠近。

他在此基础上证明了垂线与斜线⼀定相交,⾃⾓内任⼀点必可作⼀直线与⾓的两边都相交等命题,这些都与第五公设等价。

纳西尔丁的⼯作于1663年由英国数学家沃利斯重新阐发,引起欧洲⼈的重视。

欧几里得几何与非欧几何

欧几里得几何与非欧几何

欧几里得几何与非欧几何摘要:欧几里得的《几何原本》奠定了几何学发展的基础, 随着逻辑推理的理论发展, 非欧几何在艰难中产生发展起来;其中少不了欧几里得、罗巴切夫斯基与黎曼在几何学上的巨大贡献,且两者几何学之间存在着严密的辩证关系。

关键词:欧几里得几何、几何原本、非欧几何、辩证关系欧氏几何是人类创立的第一个完整的严密的(相对而言) 科学体系。

它于公元前三世纪由古希腊数学家欧几里得完成,后来经历了两千多年的发展,对科学和哲学的影响是极其深远的。

十九世纪二十年代,几何学发展史上出现了新的转折点,德国数学家高斯、匈牙利数学家亚·鲍耶和俄国数学家罗巴切夫斯基分别在1824年、1825年1826年各自独立地创立了非欧几何,其中以罗巴切夫斯基所发表的内容最完善,因此取名为罗氏几何学。

1854年,德国数学家黎曼创立了黎曼几何。

十九世纪末,德国数学家阂可夫斯基发展了黎曼几何,创立了四维空时几何学。

1915年,爱因斯坦利用非欧几何——四维空间几何学作为工具创立了广义相对论, 不久广义相对论连同非欧几何为天文观察等科学实践所证实。

从此,人们确认非欧几何是人类发现的伟大的自然科学真理。

一、欧几里得几何的发展(一)古希腊前期几何学的发展为欧几里得几何的产生奠定了基础在欧几里得时代以前,数学家与学者们就已经获得许多几何方面的成果,但大多数是零星的,有的对部分内容也作过一些整理加工,但不系统。

面对前人留下的材料以及一些证明方法,欧几里得认真进行了总结、提练、筛选,以及分析、综合、归纳、演绎,集前人工作之大成,系统整理加工成巨著《几何原本》,所以说古希腊前期的几何学的发展为欧几里得几何的产生奠定了基础。

最早研究几何的一批人是爱奥尼亚学派,它的创始人是泰勒斯,据传他曾用一根已知长度的杆子,通过同时测量竿影和金字塔影之长,求出了金字塔的高度。

人也把数学之成为抽象理论和有些定理演绎证明归功于他,如圆被直径二等分,等腰三角形两底角相等,两直线相交对顶角相等,两角及夹边对应相等的两个三角形全等,内接于半圆的角是直角等的论证。

非欧几何的诞生.

非欧几何的诞生.

罗巴切夫斯基非欧几何的
基本思想是,即用与欧几里 得第五公设相反的断言:通 过直线外一点,可以引不止 一条而至少是两条直线平 行于已知直线,作为替代公 设,由此出发进行逻辑推导 而得出一连串新几何学的 定理.如(图1).
罗巴切夫斯基几何的其他结果
• 三角形三内角之和小于两直
角,假如三角形变大,使它 的所有三条高都无限增长,
05级数教 37号 席先贵非欧几何的其他发明人高斯是最先认识到非欧几 何是一种逻辑上相容并且 可以描述物质空间,像欧氏 几何一样正确的新几何,但 他未发表过任何有关非欧 几何的论著,主要是担心世 俗的攻击.
另一位对非欧几何有研究 的是匈牙利青年波约,
罗巴切夫斯基
当罗巴切夫斯基一开 始公布他的这些新几 何学的定理时,的确 遭到了高斯所预料的 “波哀提亚人的叫 嚣”,面对种种攻击, 罗巴切夫斯基表现出 比高斯更有勇气.他 坚信自己是正确的, 他同时还坚信这种新 的几何终有一天“可 以像别的物理规律一 样用实验来验证”.
非欧几何的诞生
1826年2月11日是非欧几何的诞生日。 这一天就是年轻的数学家罗巴切夫斯基
宣读他的非欧几何论文的日子。
1893年,在喀山大学树立起了
世界上第一个为数学家雕塑的 塑像。这位数学家就是俄国的 伟大学者、非欧几何的重要创 始人——罗巴切夫期基。罗巴 切夫斯基(Никола́й Ива́нович Лобаче́вский, 英文串法
Lobachevsky/Lobachevski i)(1792年12月1日—1856年 2月24日),俄罗斯数学家, 非欧几何的早期发现人之一。
第五公设是论及平行线的,它 说的是:如果一直线和两直线 相交,且所构成的两个同侧内 角之和小于两直角,那么,把 这两直线延长,它们一定在那

数学大师们的经典语录和人生简介

数学大师们的经典语录和人生简介

数学大师们的经典语录和人生简介一、罗巴切夫斯基经典语录:任何一门数学分支,不管它如何抽象,总有一天会在现实世界中找到应用.简介:罗巴切夫斯基(Н.И.лобачевский,1792~1856,俄国数学家)是非欧几何的创始人之一,但他的工作在其所处的时代并未获得赞赏,反而遭到嘲弄和打击.去世后不久,人们发现大数学家高斯的手稿中记载了关于非欧几何的同类成果,他的思想才逐渐被接受.罗巴切夫斯基是一位杰出的教育家和管理者,创立了喀山数学学派和喀山数学教育学派,在无穷级数论(特别是三角级数)、积分学和概率论等方面均有出色的工作.罗巴切夫斯基反对康德的唯心主义观点,认为人们头脑里产生的概念来源于客观世界的物质运动.数学概念从现实世界抽象和概括出来,反映了诸多客观事物数量关系和空间形式方面的本质和共性.因此不管数学理论如何抽象,一定会在实际问题中得到应用.事实也是如此,他创造的非欧几何已在描述宇宙空间结构中得到某些应用.二、切比雪夫经典语录:数学脱离实际需要,就好比把母牛关起来不让她接触公牛.简介:切比雪夫(П.Л.Чебьшев,1821~1894,俄国数学家、力学家)是彼得堡数学学派的创始人,其特点是将数学理论与自然科学技术的实践紧密结合,这使得他的许多科学创造都具有极其重要的实用价值.例如,他从研究机诫原理出发,建立了用多项式逼近连续函数的理论,创立了新的数学分支.关于科学与实践的关系,切比雪夫曾指出:“科学在实践中获得了正确的领导地位”,“科学本身在实践的影响下发展,又为实践开发了新的研究对象” .三、惠斯勒经典语录:尽管评论家大声叫喊:2加2应等于5;业余艺术家倾情哭诉:2加2应等于3;对数学家而言,2加2永远等于4. 数学最显著的特点是理论的严谨性,一般从两个方面考虑:一是数学推理的严格性,二是数学结论的确定性.惠斯勒上面的这句名言恰好幽默地说明了后者.简介:惠斯勒(J.M.Whistler,1834~1903,美国画家)早年考入西点军校,I855年去巴黎,1859年定居英国,担任过不列颠美术家协会主席.代表作《在钢琴旁》、《白衣女郎》曾引起轰动.晚年作品追求东方趣味,画中少女常穿日本和服并摆上几件中国瓷器.作品还有铜版画《法国组画》、肖像画《母亲》及组画《泰晤士河》等.四、汉克尔经典语录:在大多数学科里,一代人的建筑往往被另一代人所摧毁,一个人的创造被另一个人所破坏;唯独数学,每一代人都在古老的大厦上添加一层楼.在讲解数学科学的特点时,一般人津津乐道的有三点:高度的抽象性、体系的严谨性、应用的广泛性,往往忽略了它的第四个特点:发展的连续性.对此,汉克尔提出了上述精彩论述,这也是数学与其他自然科学的显著差异.简介:汉克尔(H. Hankel,1839~1873,德国数学家、数学史家)在复数和超复数理论、函数论、数学史等方面皆有所贡献.他修正了形式律的皮科克不变性,证明了任何超复数系都不能满足全部普通算术定律,强调点集的测度性质,系统阐述了黎曼可积性准则,讨论了函数的分类及各类函数的可积性,并提出构造以有理点为奇点函数的方法.汉克尔是著名的数学史家,其著作《近几世纪数学的发展》、《古代与中世纪数学史》等享有盛名,受到数学史家康托尔、卡约里、希思等的重视.五、康托尔经典语录:数学的本质在于它的自由.简介:康托尔(G.F.L.P.Cantor,1845~1918,德国数学家)注意到在数学发展进程中往往有些理论不能被普遍接受,如概率论.于是,他提出“数学的本质在于它的自由”,即不必受传统观念束缚,并于19世纪70年代提出无穷集合论.这种富有革命性的学术思想遭到同时代一些学者的反对和嘲笑,但也得到几位大数学家的支持,如戴德金、魏尔斯特拉斯、希尔伯特等.自20世纪20年代以来,集合论已享有很高的声誉,正如希尔伯特在1926年的一次讲话中强调指出的:“没有人能把我们从康托尔为我们创建的乐园中赶走!”罗素则把康托尔的工作称颂为“可能是这一时代所能夸耀的最巨大的工作” .六、格莱舍经典语录:对于任何一种将一个学科与它的历史割裂开来的企图,我确信,没有哪一个学科比数学的损失更大.与其他自然科学相比,数学的独特之处在于它是积累的科学,它本身就是历史的记录,或者说数学的过去融合于现在与未来之中.正是为了强调数学史的重要性,格莱舍说出以上名言.简介:格莱舍(J.W.L.Glaisher,1848~1928,英国数学家、天文学家)1867年入剑桥大学三一学院读书,毕业后留校任教.一生未婚,致力于科学研究,共发表近400篇文章和笔记.1871年担任《数学信使》编辑,1878年兼任《数学季刊》编辑.主要贡献在特殊函数(特别是椭圆模函数)理论和数学史等方面,另外对天文学也有研究.1884年任伦敦数学学会理事长,1901年任皇家天文学会理事长.他还是英国皇家学会及其他若干科学团体成员.七、福赛思经典语录:数学是最古老的科学之一,然而它又是最活跃的科学之一,因为它的力量来自永葆青春的活力.18世纪的数学家曾对未来的数学感到茫然,1781年拉格朗日给达朗贝尔的信颇有代表性:“在我看来,似乎(数学的)矿井已经挖掘得很深了,除非发现新的矿脉,否则迟早势必放弃它.”然而数学在新世纪里的确发现了新的矿脉,产生了一大批新的分支.不仅如此,数学组织与刊物迅猛发展,数学家人数急剧增长,数学思想日新月异,数学应用日益广泛.数学“不断地用它扎在思维和自然中的深根获取营养”,正如福塞思形容的那样“它的力量来自永葆青春的活力” .简介:福赛思(A.R.Forsyth,1858~1942,英国数学家)1877年就学于剑桥大学三一学院.1881年毕业时以数学优异成绩留校执教.1886年当选为皇家学会会员.他的名作《函数论》被认为是自牛顿《原理》以来对英国数学影响较大的专著之一,对数学现代化起了引导作用.另外著有《变分学》、《理想空间的内蕴几何学》等书.八、怀特黑德经典语录:这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道.数学的特点在于简洁,即将最复杂的东西用最简单明了的内容来表示,而不是使用模糊深奥的语言,这就是怀特黑德的观点.简介:怀特黑德(A.N.Whitehead.1861~1947,英国逻辑学家、数学家、哲学家)1884年毕业于剑桥大学三一学院,1905年获科学博士学位.先后任教于剑桥大学三一学院、伦敦大学学院和哈佛大学.曾获多种奖金,被选为皇家学会会员.怀特黑德主要贡献在数理逻辑和哲学方面,他和罗素被认为是数学基础三大学派之一的逻辑主义学派的创始人.他们合作的《数学原理》一书对逻辑主义学派的基本观点进行了论述,现已成为重要的历史文献.九、凯泽经典语录:数学不是算账和计数的技术,正如建筑学不是造砖伐木的技术,绘画不是调色的技术,地质学不是敲碎岩石的技术,解剖学不是屠宰的技术一样.这是凯泽理解了数学的本质后,深入浅出说出的一句名言. 简介:凯泽(C.J.Keyser,1862~1947,美国数学家)1883年毕业于俄亥俄州师范大学.1901年获博士学位后在华盛顿大学、哥伦比亚大学等校任教,是美国科学发展协会和美国数学学会成员.著作有《新无穷与旧神学》、《数学哲学》等,对几何、逻辑和数学哲学都有贡献.十、波利亚经典语录:数学在用最不显然的方式证明最显然的事情.简介:波利亚(G.Polya,1887~1985,匈牙利一美国数学家、数学教育家)早年在布达佩斯、维也纳、格丁根、巴黎等地攻读数学、物理和哲学.1928年任瑞士联邦工学院数学教授.1940年移居美国,在斯坦福等大学执教.先后成为法国科学院、美国艺术与科学研究院、匈牙利科学院、美国科学院等成员.他在概率论、组合数学、图论等多个领域有建树,而影响最大的是他丰富的数学教育思想.他十分重视从小培养学生的解题能力,始终把高深的数学研究与数学的普及教育结合起来.相关名著《怎样解题》(1944)、《数学与合情推理》(1954)和《数学的发现》(1962~1965)风靡世界,多次修订,并被译为多种文字.其中仅中文就有数个版本,促进了我国数学教育改革和解题研究水平的提高.十一、韦伊经典语录:严格性之于数学家,就如道德之于人.简介:韦伊(A.Weil, 1906-1998,法国数学家、数学史家)是20世纪最有影响的纯粹数学家之一,是公认的布尔巴基学派的精神领袖.20世纪30年代末完成专著《拓扑群的积分及其应用》,其中反映出的数学结构主义体现了布尔巴基学派的观点,开辟了群上调和分析的新领域.40年代,建立了严整的代数几何学体系:1946年出版的《代数几何学基础》建立的代数几何方法对解决代数数论问题具有重要意义.1948年提出了韦伊猜想.这些工作推动了现代数学的发展.1979年韦伊荣获沃尔夫奖,1994年荣获基础科学方面的京都奖.在韦伊看来严格是数学家最根本的素养,在上述名言中他以类比的方法形象地揭示了“严格”的重要性.十二、加德纳经典语录:数学的真谛就在于不断寻求用越来越简单的方法证明定理和解决数学问题.简介:加德纳(M.Gardner,1914~2010,美国数学科普作家)被誉为“数学园丁”,在杂志《科学美国人》每月一篇的专栏发表数学科普文章持续20年以上.他坚信自己所说的这一论断,所以创造的数学趣题往往出人意料,但又非常简单而合乎逻辑.他的作品也以深入浅出著称,使许多读者陶醉于数学乐园之中,并在改善数学的可接受性方面做出了重要贡献.其中最著名的有《关于无穷相对论》、《数学的奇迹和秘密》、《数学游戏和娱乐》、《数学的余暇》、《数学故事》等.译成中文的有《啊哈!灵机一动》、《引人人胜的数学趣题》、《意料之外的绞刑和其他数学娱乐》、《矩阵博士的魔法数》等.。

大学 数学专业 空间解析几何第五章 非欧几何简介 PPT

大学 数学专业 空间解析几何第五章  非欧几何简介 PPT

19世纪初,俄罗斯人罗巴切夫斯 基在否定第五公理的同时,假设其 反面之一:“过已知直线外一点, 可作多于一条的直线与已知直线平 行”,得到了一系列定理,并且认 为他得到了一门新的几何学。这是 过去2000年以来的重大突破。
π(α)
罗巴切夫斯基1826年2月11日宣布 自己建立了新的几何学之后,得到 了许多数学大家的嘲笑、讽刺,德 国诗人歌德也出来讽刺他。实际上, 罗巴切夫斯基的理论得到世界的认 可是在他去世几十年后的事了.
平行公理通常以如下的等价形式出现:过直线 外一点有唯一的一条直线与其平行。所谓平行就是 永不相交的意思,这就牵涉到“无穷”——一个不 很自明、无法亲身经验到的观念。 欧几里得不采取 后一种形式的平行公理,也许也是要使平行公理显 得更自明的缘故。
其中第五公理是说:过已知直线外 一点,可作一条也只可作一条直线 与已知直线平行。
A+B+C=π
第五平行公理的研究(公元前3世纪至1800年)
欧பைடு நூலகம்里得
普莱菲尔(苏格兰, 1748-1819) 勒让德(法, 1752-1833)
平行公理
A
这个平行公理在所有公理之中是最不明显的, 所以数学家或是对数学有兴趣的人便想从其他的 公理去推得平行公理。 而这努力延持了两千年, 后来证明这是不可能的,于是有了非欧几何学的 发现,这在人类思想史上是非常特别、有意思的 事实,是西方数学和中国数学不同的地方。
非欧几何的其他发明人
高斯是最先认识到非欧几何是 一种逻辑上相容并且可以描 述物质空间,像欧氏几何一样 正确的新几何,但他未发表过 任何有关非欧几何的论著,主 要是担心世俗的攻击.
另一位对非欧几何有研究的是 匈牙利青年波约,
在罗氏几何产生后的1854年,德国 数学家黎曼把欧氏第五公理改为: “过已知直线外一点,没有与其平 行之直线”,得到的一种新的几何 学——黎曼非欧几何,为非欧几何 的另一翼。

欧氏几何与非欧几何

欧氏几何与非欧几何

欧氏几何欧几里得几何学,简称欧氏几何,主要是以欧几里得平行公理为基础的几何学。

欧几里得他把当代希腊数学家积累的几何知识和逻辑推理的思想方法加以系统化,初步奠定了几何学的逻辑结构的基础。

19世纪末期,德国数学家希尔伯特于1899年发表了著名的著作《几何基础》,书中提出了一个欧几里得几何的完整的公理体系。

从此人们把满足希尔伯特公理系统中的结合公理、顺序公理、合同公理、平行公理、连续公理等五组公理以及由其导出的一切推论组成的几何学叫做欧几里得几何学。

特别指出的是,平行公理在欧几里得几何中有着很重要的作用。

凡与平行公理有关的命题,都是欧几里得几何学的结论。

如三角形三条高线共点;过不共线的三点恒有一圆;任何三角形三内角之和等于180°;存在相似形;勾股定理成立。

1872年,德国数学家克莱茵在爱尔朗根大学提出著名的“爱尔朗根计划书”,明确了采用几何变换对各种几何进行分类。

指出,如果一种几何变换,它的全体组成一个“群”,就相应有一种几何学。

在每一种几何中主要研究在相应的变换下的不变性和不变量。

根据这种观点,欧几里得几何学就是研究图形在合同变换下(或在运动变换下)不变的科学。

欧几里得著有《几何原本》一书,该书共13卷,除第5、7、8、9、10卷是用几何方法讲述比例和算术理论以外,其他各卷都是论述几何问题的。

《几何原本》共有23个定义,5条公设,5条公理,他力图把几何学建立在这些原始的定义、公理和公设的基础上,然后以这些显然的假设为依据推证出体系里的一切定理。

在第1卷开始他首先提出23个定义,前6个定义是:①点没有大小;②线有长度没有宽度; ③线的界是点;④直线上的点是同样放置的;⑤面只有长度和宽度;⑥面的界是线。

在定义之后,有5个公设:①从任意点到另一点可以引直线;②有限直线可以无限延长;③以任意点为圆心,可用任意半径作圆;④所有直角都相等;⑤如果两条直线与另一条直线相交,所成的同侧内角的和小于两直角,那么这两条直线在这一侧必相交。

非欧几何的诞生及其给我们的启示论文

非欧几何的诞生及其给我们的启示论文

非欧几何的诞生及其给我们的启示摘要:数学史上,非欧几何占有特殊的地位.以非欧几何的发明过程为基本线索,探讨了其对数学学科本身、人类文化、哲学思想的影响;对数学科研者、数学教育工作者及高校学生的启示.关键词:非欧几何;罗巴切夫斯基几何;黎曼几何1 非欧几何的发展史1.1 问题的提出非欧几何的发展源于2 000 多年前的古希腊数学家的欧几里得的《几何原本》.其中公设五是欧几里得自己提出的,它的内容是“若一条直线与两直线相交,且若同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点”.这一公设引起了广泛的讨论,因为它不如其他公理、公设那样简明,欧几里得本人也不满意这条公设,他在证完了所有不需要平行公设的定理后才使用它,怀疑它可能不是一个独立的公设,或许能用其它公设或公理代替.从古希腊时代开始到19 世纪的2000 多年来数学家们始终对这条公设耿耿于怀,孜孜不倦的试图解决这个问题.数学家们主要沿2 条研究途径前进:一条途径是寻找一条更为自明的命题代替平行公设;另一条途径是试图从其他9 条公理、公设推导出平行公设来.沿第一条途径找到的第五公设最简单的表述是1795 年苏格兰数学家普雷菲尔(J.Playfair 1748-1819)给出的:“过直线外一点,有且只有一条直线与原直线平行”也就是我们今天中学课本里使用的平行公理.但实际上古希腊数学家普罗克鲁斯在公元5 世纪就陈述过它.然而问题是,所有这些替代公设并不比原来的第五公设更好接受,更“自然”.历史上第一个证明第五公设的重大尝试是古希腊天文学家托勒玫(Ptolemy,约公元150 年)做出的,后来普罗克鲁斯指出托勒玫的“证明”无意中假定了过直线外一点只能作一条直线与已知直线平行,这就是上面提到的普雷菲尔公设.1.2 问题的解决1.2.1 非欧几何的萌芽沿第二条途径论证第五公设的工作在18 世纪取得突破性进展.首先是意大利人萨凯里(Saccharin 1667-1733)提出用归谬法证明第五公设,萨凯里从四边形ABCD开始,如果角A 和角B 是直角,且AC=BD,容易证明角C等于角D.这样第五公设便等价于角C 和角D 是直角这个论断.萨凯里提出另2 个假设:(1)钝角假设:角C 和角D 都是钝角;(2)锐角假设:角C 和角D 都是锐角.最后在锐角假设下,萨凯里导出了一系列结果,因为与经验认识违背,使他放弃了最后结论.但是从客观上为非欧几何的创立提供了极有价值的思想方法,开辟了一条不同于前人的新途径.其后瑞士数学家兰伯特(Lambert1728-1777)所做的工作与萨凯里相似.他也考察了一类四边形,其中3 个角为直角,而第5 个角有3 种可能性:直角、钝角和锐角.他同样在锐角假设下得到“三角形的面积取决于其内角和;三角形的面积正比于平角与内角和的差.他认为只要一组假设相互没有矛盾,就提供了一种几何的可能.著名的法国数学家勒让德(A.M.Legendar1752-1833)对平行公设问题也十分关注,他得到的一个重要定理:“三角形内角之和不能大于两直角”.这预示着可能存在着一种新几何.19 世纪初,德国人萨外卡特(schweikart 1780-1859)使这种思想更加明朗化.他通过对“星形几何”的研究,指出:“存在两类几何:狭义的几何(欧氏几何)星形几何.在后一个里面,三角形有一个特点,就是三角形内角之和不等于两直角”.1.2.2 非欧几何的诞生前面提到的一些数学家尤其是兰伯特,都是非欧几何的先驱,但是他们都没有正式提出一种新几何并建立其系统的理论.而著名的数学家高斯(Gauss 1777-1855)、波约(Bolyai 1802-1860)、罗巴切夫斯基(Lobatchevsky1793-1856)就这样做了,成为非欧几何的创始人.高斯是最早指出欧几里得第五公设独立于其他公设的人.早在1792 年他就已经有一种思想,去建立一种逻辑几何学,其中欧几里得第五公设不成立.1794 年高斯发现在他的这种几何中,四边形的面积正比于2 个平角与四边形内角和的差,并由此导出三角形的面积不超过一个常数,无论其顶点相距多远.后来他进一步发展了他的新几何,称之为非欧几何.他坚信这种几何在逻辑上是无矛盾的,并且是真实的,能够应用的,为此他还测量了3个山峰构成的三角形内角,他相信内角和的亏量只有在很大的三角形中才能显露出.但他的测量因为仪器的误差而宣告失败.遗憾的是高斯在生前没有任何关于非欧几何的论著.人们是在他逝世后,从他与朋友的来往函件中得知了他关于非欧几何的研究结果和看法.匈牙利青年数学家波约在研究欧几里得第五公设的基础上建立了一种新几何,他称之为“绝对空间中的几何”,并写了一篇26 页的论文《绝对空间的科学》.本论文出版时作为附录附于其父的书《为好学青年的数学原理论著》.当时的波约已建立起非欧几何的思想,并且相信新几何不是自相矛盾的,在1823-11-23 给他父亲的信中,波约写道:“我已得到如此奇异的发现,使我自己也为之惊讶不止”[1],在非欧几何的3 个发明人中,只有罗巴切夫斯基最早且系统地发表了自己的研究成果.罗巴切夫斯基曾卓越的指出:“直到今天,几何学中的平行线理论还是不完善的,从欧几里得时代以来,两千多年来徒劳无益的努力,促使我们怀疑在概念本身之中并未包括那样的真实情况,它是大家想要证明的,也是可以像别的物理规律一样单用实验(如天文检测)来检验.最后,我肯定了推测的真实性,而且认为困难的问题完全解决了”,“不论是如何给出的,只可以认为是说明,而且数学证明的完整意义不是不应该获得尊重的”[2].他的工作是在前人的基础上,引用与欧氏第五公设相矛盾的命题,即直线外1 点可作2 条平行线为假设,并且把他同欧氏几何中其它公设和公理相联系.经过推理后,得出3 个结论:(1)用欧氏几何其它公设和公理不能证明欧氏第五公设,即第五公设是独立的;(2)与第五公设相矛盾的公设同欧氏几何其它公设、公理相结合,展开一系列推理,获得了许多在逻辑上无矛盾的定理,构成了不同于欧氏几何的新的几何学;(3)这种逻辑上无矛盾的几何学的真理性同物理学中的定理一样,只能凭实验,例如用天文观测来检验.这3条结论显然与欧氏几何不同,是一种全新的几何体系,是罗氏独创性思维的结晶.他的结论是在1826 年2 月的一次学术报告上以《简要叙述平行定理的一个严格证明》为题报告的.由于罗巴切夫斯基对非欧几何的特殊贡献,人们把这种几何称为罗氏几何.1.2.3 非欧几何的发展与确认非欧几何要获得人们的普遍接受,需要确实的建立非欧几何自身的无矛盾性和现实意义.罗巴切夫斯基终其一身努力最后并没有实现这个目标.1854 年,黎曼(G.F.B.Riemann 1826-1866)摆脱高斯等前人把几何对象局限在3 维欧几里得空间的曲线和曲面的束缚,从维度出发,建立了更一般的抽象几何空间.黎曼仿照传统的微分几何定义流形上2 点之间的距离、流形上的曲线和曲线之间的夹角.并以这些概念为基础,展开对n 维流形几何性质的研究.在n 维流形上他也定义类似于高斯在研究一般曲面时刻画曲面弯曲程度的曲率.他指出对于3 维空间,有以下3 种情形:(1)曲率为正常数;(2)曲率为负常数;(3)曲率恒等于0.黎曼指出后2 种情形分别对应于罗巴切夫斯基的非欧几何和通常的欧氏几何学,而第一种情形则是黎曼本人的创造,它对应于另一种非欧几何学.黎曼创造的几何中的一条基本规定是:在同一平面内任何2 条直线都有公共点(交点).在黎曼几何学中不承认平行线的存在.它的另一条公设讲:直线可以无限延长,但总的长度是有限的.黎曼几何的模型是一个经过适当“改进”的球面.19 世纪70 年代以后,意大利数学家贝尔特拉米、德国数学家克莱茵和法国数学家庞加莱等人先后在欧几里得空间中给出了非欧几何的直观模型,从而揭示出非欧几何的现实意义.贝尔特拉米的模型是一个叫“伪球面”的曲面,它由平面曳物线绕其渐近线旋转一周而得.贝尔特拉米证明,罗巴切夫斯基平面片上的所有几何关系与适当的“伪球面”片上的几何关系相符合:也就是说,对应于罗巴切夫斯基几何的每一断言,就有一个伪球面上的内蕴几何事实.这使罗巴切夫斯基几何立刻就有了现实意义.克莱茵的模型比贝尔特拉米的简单明了.在普通欧氏平面上取1 个圆,并且只考虑整个圆的内部.他约定把圆的内部叫“平面”,圆的弦叫“直线”(根据约定将弦的端点除外).可以证明,这种圆内部的普通(即欧氏)几何事实就变成罗巴切夫斯基几何的定理,而且反过来,罗巴切夫斯基几何中的每个定理都可以解释成圆内部的普通几何事实.在克莱茵之后,庞加莱也对罗巴切夫斯基几何给出了模型:在欧氏平面内划1 条直线,而使之分为上、下2 个平面,把不包括这条直线在内的上半平面作为罗氏平面,其上的欧氏点当作罗氏几何的点,把以该直线上任一点为中心,任意长为半径所做出的半圆作为罗氏几何的直线,然后对如此规定了的罗氏元素一一验证罗氏几何诸公理全部成立.这样一来,如果罗氏系统在今后出现了正、反2 个相互矛盾的命题的话,则只要按上述规定之几何元素之间的对应名称进行翻译,立即成为相互矛盾的2 个欧氏几何定理,从而欧氏几何就有矛盾了.因此,只要承诺欧氏几何是无矛盾的,那么罗氏几何一定也是相容的,这就把罗氏几何的相容性证明通过上述庞家莱模型转化为欧氏系统的相容性证明.由于人们承认欧氏几何是相容的,因此,罗氏几何也是相容的.这样一来,就使非欧几何具有了至少与欧氏几何同等的真实性.至此,历经2 000 余a,非欧几何学作为一种几何的合法地位可以说充分建立起来了,也真正获得了广泛的理解,人们最初的愿望终于变成了现实.2 非欧几何发展史的启示非欧几何的诞生,是自希腊时代以来数学中一个重大的革新步骤.在这里我们将沿着事物的历史发展过程来叙述这一历史的重要意义.M.克莱茵(M. Klein)在评价这一段历史的时候说:“非欧几何的历史以惊人的形式说明数学家受其时代精神影响的程度是那么厉害.当时萨凯里曾拒绝过欧氏几何的奇异定理,并且断定欧氏几何是唯一正确的.但在一百年后,高斯、罗巴切夫斯基和波约满怀信心地接受了新几何”.2.1 对数学学科本身2.1.1 数学发展的相对独立性通过逻辑演绎法建立的非欧几何体系为数学的发展提供了一种模式,使人们清楚地看到数学可以有自己的逻辑体系存在,从而独立发展.数学发展的相对独立性突出表现为:数学理论的发展往往具有超前性,它可以独立于物理世界而进行,可以超前于社会实践,并反作用于社会实践,推动数学乃至于整个科学向前发展.19 世纪前,数学始终与应用数学紧密结合在一起,即数学不能离开实用学科而独立发展,研究数学的最终目的是为了解决实际问题.但是非欧几何第一次使数学的发展领先于实用科学,超越人们的经验.非欧几何为数学创造了一个全新的世界:人类可以利用自己的思维,按照数学的逻辑要求自由自在的进行思考.于是数学被认为应当是那些并不是直接地或间接地由于研究自然界的需要而产生出来的任意结构.这种观点逐渐被人们了解,于是造成了今天的纯粹数学与应用数学的分裂[1].2.1.2 数学的本质在于它的充分自由非欧几何的创立,使一直为人们意识到但未曾清楚地认识的区别呈现出来了即数学空间与物理空间的不同.数学家创造出几何理论,然后由此决定他们的空间观.这种建立在数学理论基础上的空间观、自然观,一般并不能否定客观世界的存在等内容,它仅仅强调这样一些事实:人们关于空间的判断所获得的一系列结论纯粹是自己的创造.物质世界现实与这种现实的理论,永远是两回事.正因为如此,人类探索知识、建立理论的认识活动才永远没有尽头.非欧几何的创立使人们认识到数学是人的精神的创造物,而不是对客观现实的直接临摹,这样就使数学获得了极大的自由,同时也使数学丧失了对现实的确定性.数学从自然界和科学中解脱出来,继续着它自己的行程.对此,M.克莱茵说:“数学史的这一阶段,使数学摆脱了与现实的紧密联系,并使数学本身从科学中分离出来了,就如同科学从哲学中分离出来,哲学从宗教中分离出来,宗教从万物有灵论和迷信中分离出来一样.现在可以利用乔治.康托的话了:‘数学的本质在于它的充分自由’”.2.1.3 几何观念的更新非欧几何的出现打破了欧氏几何一统天下的局面,使几何学的观念得到更新.传统欧氏几何认为空间是唯一的,而非欧几何的出现打破了这种观念,促使人们对欧氏几何乃至整个几何学的基础问题作深入探讨.2.2.1 非欧几何是敢于向传统挑战、勇于为科学献身的人类精神的产物高斯、波约、罗巴切夫斯基几乎同时发现了非欧几何,但3 人对待新几何的态度是不同的.高斯很早就意识到了新几何的存在,但他没有向世人公布他的新思想,他受康特(Kant)唯心思想的影响,不敢向传统几何学界达2 000 a 之久的欧氏几何挑战,以致推迟了非欧几何的诞生.波约致力于平行公设的研究,终于发现了新几何.这其中还有一个故事,当高斯决定将自己的发现秘而不宣时,波约却急切的想通过高斯的评价将自己的研究公诸于世,然而高斯回信给他的父亲F.波约中说:“夸奖他就等于称赞我自己.整篇文章的内容,你儿子采取的思路和获得的结果,与我在30 至35 年前的思考不谋而合”[3],波约对高斯的回答深感失望,认为高斯想剽窃自己的成果,特别是在罗巴切夫斯基关于非欧几何的著作出版后,他更决定从此不再发表论文.罗巴切夫斯基在1826 年公开新几何思想后,并没有得到同代人的理解与赞扬,反而遭到讽刺和攻击,“可是没有任何力量可以动摇罗巴切夫斯基的信心,他像屹立在大海中的灯塔,惊涛骇浪的冲击,十足显出他刚毅的意志,他一生始终为新思想而斗争[4]”.在他双目失明时,还口授完成了《泛几何学》.3 人们发现新几何的过程启示我们:只有突破了对传统、对权威的迷信,才能充分发挥科学的创造性;只有不畏艰难困苦,勇于为科学献身,才能追求、捍卫超越时代的真理.一般认为高斯、波约、罗巴切夫斯基3 人们同时发现了新几何,这是人们对历史的公正,但人们更喜欢称新几何为罗氏几何,这正是人们对罗巴切夫斯基为科学献身精神的高度赞扬.2.2.2 非欧几何精神促使人们树立宽容、包容一切的产物非欧几何的创立,解放了人类思想,新见解、新观点不断涌现,“数学显现为人类思想的自由创造物”[5].数学的发展使康托由衷的说道:“数学的本质在于其自由”.这种思想活跃而且民主的艺术气氛,使数学以前所未有的速度向前发展.非欧几何曲折的创建历程及其所带来的数学的发展,使人们意识到自由创造、百家争鸣对科学发展的重要性,促使人们树立宽容、包容一切的精神与美德[6].2.3 哲学思想方面2.3.1 认识论的变革法国哲学家、数学家彭加莱(Henri Poincare)说过[7]:非欧几何的发现,是认识论一次革命的根源.简单讲,人们可以说,这一发现已经胜利的打破了那个为传统逻辑所要求的,束缚住任何理论的两难论题:即科学的原理要么(感官观察的事实).他指出:原理可能是简单的任意约定,但是这些约定决不是同我们的心灵和自然界无关的,它们只能靠着一切人的默契才能存在,它们并且紧密地依赖着我们所生活的环境中的实际外界条件.事实上正是由于这一点,对于探索未知或目前无法感知的事物,我们可对自然界的认识作某种“默契约定”,这是认识一切事物的开始和基础.另外,我们在理论评判中,放弃非彼即此的评判,爱因斯坦就说过[8]:这种非彼即此的评判是不正确的.这些评判家、数学家的评判无疑是非欧几何创立后,其对思想、理论建立,特别是对认识论有最为直接的影响;更进一步的近代的理论和技术的进步均离不开它的内在影响,像“相对论”的产生、特别是对时空的进一步认识,集合论、现代分析基础、数理逻辑、量子力学等学科建立与发展均可以看成是非欧几何的直接结果.非欧几何的创立所产生的震荡至今余波未消[9,10].2.3.2 打破人类的传统思维方式分析和评价一种理论的首要依据应该是看其是否有“相容性”,即它是否有或会得出自相矛盾的结论.如果一个理论尚不能“自圆其说”,说明这一理论要么还只是人类经验的一种简单表述和列举,还没有进化到“理论”的高度;要么至少还需要进一步完善和改进.本来非欧几_何与欧氏几何理论建立的前提是矛盾的,而欧氏几何已被普遍接受.是否接受非欧几何势必产生这样的问题,矛盾的前提是否一定能够导出矛盾的结果?传统的思维方式认为这是一定的,即矛盾的前提必然导致矛盾的结果.接受非欧几何就意味着要冲破这一传统思维方式的束缚.随着时间的推移,特别是非欧几何的成果的广泛应用,使人们认识到:我们在建立理论的过程中不能保证矛盾的前提一定能导出矛盾的结果.因此,在理论的建立过程中,相容性是必须具备的[11],特别是在导出某个结论的过程中,我们必须清醒的认识到建立的理论体系是否具有无矛盾性、是否具有排中性.2.4 对数学科研者2.4.1 勇敢面对在科学探索路途上的暴风雨在科学探索的征途上,一个人经得住一时的挫折和打击并不难,难的是勇于长期甚至终生在逆境中奋斗.罗巴切夫斯基的新学说,违背了2 000 多a 来的传统思想,动摇了欧氏几何“神圣不可侵犯”的权威基础,同时也违背了人们的“常识”.他的学说一发表,社会上的嘲弄、攻击,甚至侮辱、谩骂,暴雨般地袭来:科学院拒绝接受他的论文;大主教宣布他的学说是“邪说”;大多数的权威们称罗巴切夫斯基的学说是“伪科学”,是一场“笑话”;即使那些心肠比较好的人最多也只能抱着“对一个错误的怪人的宽容和惋惜态度”;连不少著名的文学家也起来反对这种新的几何,如德国诗人歌德,在他的名著(浮士德)中写下了这样的诗句:“有几何兮,名曰:‘非欧’,自己嘲笑,莫名其妙”.面对种种攻击、嘲笑,罗巴切夫斯基毫不畏惧,寸步不让,他像屹立在大海中的灯塔,表现出一个科学家“追求科学需要的特殊勇敢”.罗巴切夫斯基坚信自己学说的正确性,为此奋斗一生.从1826 年发表了非欧几何体系后,又陆续出版了《关于几何原本》等8本著作.在他逝世前1 a,他的眼睛差不多瞎了,还口述,用俄、法2 种文字写成他的名著《泛几何学》.罗巴切夫斯基就是在逆境中奋斗终生的勇士.同样,一名数学工作者,特别是声望较高的学术专家,正确识别出那些已经成熟的或具有明显现实意义的科技成果并不难,难的是及时识别出那些尚未成熟或现实意义尚未显露出来的科学成果.数学的发展决不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折甚至会面临更多危机的.我们每一位科学工作者,既应当作一名勇于在逆境中顽强点头的科学探索者,又应当成为一个科学领域中新生事物的坚定支持者.2.4.2 正确对待数学领域里的成就数学是一门历史性或者说积累性很强的学科.重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有的理论,而且总是包含原先的理论.如非欧几何可以看成是欧氏几何的拓广.因此,有的数学史家认为“在大多数的学科里,一代人的建筑为下一代人所拆毁,一个人的创造被下一个人所破坏.惟独数学,每一代人都在古老的大厦上添加一层楼”[12].克莱茵在考察第五公设研究的历史特别是从18~19 世纪非欧几何由“潜”到“显”转变的100 多a 的历史过程时指出:“任何较大的数学分支或较大的特殊成果,都不会只是个人的工作,充其量,某些决定性步骤或证明可以归功于个人.这种数学积累特别适用于非欧几何”.事实上,自从《几何原本》以后到19 世纪,第五公设问题就像一块磁石一样广泛地吸引和激励着各个时代有才华的数学家为之奋斗.这就形成了一个在科学史上时间跨度最长、成员最多,并以传播和研究第五公设为范式的数学共同体.在这个共同体中,数学家相互交流思想,交换研究成果,对研究成果进行评议,形成不断竞争和激励的体制.罗巴切夫斯基也是从前人和自己的失败得到启迪,使他大胆思索问题的相反提法:可能根本就不存在第五公设的证明.于是,他便调转思路,着手寻求第五公设不可证的解答.罗巴切夫斯基正是沿着这个途径,在试证第五公设不可证的过程中发现一个新的几何世界的.也可以说,罗氏几何的出现应归功与萨凯里、兰伯特等对第五公设的研究.在今天分支越来越细的数学领域里,精通多个领域的知识的数学家也越来越少.对此,数学科研者应团结,相互进行交流;用平和的心态对待已取得的成绩,不骄不躁.2.5 对数学教师和数学学习者2.5.1 在质疑问难中培养创新思维罗巴切夫斯基认为,作为一名优秀的数学教师,讲授数学必须叙述精确、严密,所有概念都应当完全清晰.因为在他看来,数学课程是以概念为基础的,几何学尤其如此.所以他在备课中,通过对欧氏几何的逻辑结构的全面思考,发现了其逻辑体系的缺陷,使他感到非常困惑.他决心在自己的教学实践中消除那些缺陷.后来他确实编写了一本几何教科书《几何学教程》(1883).他不仅在教材中形成并贯彻了他的非欧几何思想,而且他关于非欧几何的研究,始终是和教学活动相结合的.他关于非欧几何的许多定理都是在授课过程中推导出来的,在学生中交流、修改和完善的.我们可以肯定的说,他创立非欧几何的伟大成果是从几何教育改革的角度切入的,是一个数学教育家取得伟大突破的成功范例.正如数学史家鲍尔加斯指出的“罗巴切夫斯基希望建立起在教学法意义上无可指责的几何学”,“这是促使他改革新几何的重要原因”.“他对教学法的探讨,获得了出色的、开创几何学发展新阶段的、作为人类研究和征服周世界围新方法的科学结论”.所以作为一名21 世纪的数学教师,在平时的教学过程中要不断的学习这个时代的新的知识,要勇于质疑你已经掌握的知识;教学中要引导学生广开思路,重视发散思维;教师要精选一些典型问题,鼓励学生标新立异、大胆猜想、探索,培养学生的创新意识.2.5.2 在教学中训练学生的创新思维罗巴切夫斯基刚开始是循着前人的思路,试图给出第五公设的证明.在仅存下来的他的学生听课笔记中,就记载着他在1816-1817 学年度几何教学中给出的几个证明.但他很快就意识到证明是错误的.前人和自己的失败从反面启迪了他,使他大胆思索问题的相反提法:可能根本就不存在第五公设的证明.于是,他便调转思路,着手寻求第五公设不可证的解答.罗巴切夫斯基正是沿着这个途径,在试证第五公设不可证的过程中发现一个新的几何世界的.“学起于思,思源于疑”,我们在探索知识的思维过程总是从问题开始,又在解决问题中得到发展.教师不仅要善于设。

罗巴切夫斯基

罗巴切夫斯基

罗巴切夫斯基罗巴切夫斯基_93年,在喀山大学树立起世界上第一个数学家的塑像。

这位数学家就是俄国的伟大学者、非欧几何的创始人之一罗巴切夫斯基(Н.И.Лобачевскии,_92-_56)。

非欧几何是人类认识史上一个富有创造性的伟大成果,它的创立,不仅带来了近百年来数学的巨大进步,而且对现代物理学、天文学以及人类时空观念的变革都产生了深远的影响。

可是,这一重要的数学发现在罗巴切夫斯基提出后相当长的段时间内,不但没能赢得社会的承认和赞美,反而遭到种种歪曲、非难和攻击,使非欧几何这一新理论迟迟得不到学术界的公认。

失败的启迪罗巴切夫斯基是在尝试解决欧氏第五公设问题的过程中,从失败走上他的发现之路的。

欧氏第五公设问题是数学史上最古老的著名难题之一。

它是由古希腊学者最先提出来的。

公元前3世纪,希腊亚历山大里亚学派的创始者欧几里得(Euclid,约公元前330年-前275)集前人几何研究之大成,编写了数学发展史上具有极其深远影响的数学巨著《几何原本》。

这部著作的重要意义在于,它是用公理法建立科学理论体系的最早典范。

在这部著作中,欧几里得为推演出几何学的所有命题,一开头就给出了五个公理(适用于所有科学)和五个公设(只应用于几何学),作为逻辑推演的前提。

《几何原本》的注释者和评述者们对五个公理和前四个公设都是很满意,唯独对第五个公设(即平行公理)提出了质疑。

第五公设是论及平行线的,它说的是:如果一直线和两直线相交,所构成的两个同侧内角之和小于两直角,那么,把这两直线延长,它们一定在那两内角的侧相交。

数学家们并不怀疑这个命题的真实性,而是认为它无论在语句还是在内容上都不大像是个公设,而倒像是个可证的定理,只是由于欧几里得没能找到它的证明,才不得不把它放在公设之列。

为给出第五公设的证明,完成欧几里得没能完成的工作,自公元前3世纪起到_世纪初,数学家们投入了无穷无尽的精力,他们几乎尝试了各种可能的方法,但都遭到了失败。

非欧几何(Non-Euclidean.

非欧几何(Non-Euclidean.

非欧几何(Non-Euclidean geometry)简介福州大学林鸿仁非欧几何就是非欧几里得几何,是针对欧几里得几何而言的,非欧几何通常指的是罗巴切夫斯基几何和黎曼几何。

众所周知,素有“几何之父”之称的古希腊的数学家欧几里得( Euclid,希腊文:Ευκλειδης,约公元前330年-前275年)有一本传世之作叫《几何原本》,已经传了两千多年了。

其中的基本内容,至今还是我们孩子们学习的课程,包括《平面几何》和《立体几何》。

西方的几何学大概兴于公元前7世纪的古埃及,对古代埃及人来说,几何学就是“测地术”,几何是在测量地块中获得的,是一种经验的几何知识,所以大都十分零散杂乱,缺乏系统。

古希腊的欧几里得首先觉察到,很有必要对这些“上帝的杰作”进行整理,于是特地到古埃及的亚历山大,收集整理并于公元前3世纪写成《几何原本》这一巨著,开创了数学理论的系统化逻辑化的先河,除了使几何成为一门独立学科之外,也成为西方科学研究方法的典范。

欧几里得的《几何原本》全书共分13卷,包含了5条“公理”、5条“公设”、23个定义和467个命题。

在每一卷中,欧几里得都采用了完全不同的叙述方式,先提出公理、公设和定义,再将命题进行逻辑推理和证明。

他先后对直边形、圆、比例论、相似形、数、立体几何等进行系统的论述。

在这里,作为定义的基本概念,如点、线、面、直角等,已不是具体的图形或图像,而是抽象的一般概念;推演定理的方法,也尽量避开直观,而采用“三段论式”的逻辑方法。

欧几里得的成功之处在于,从一些被认为是不证自明的事实出发,通过逻辑演绎,用很少的几个公理公设,令人信服地推出了很多的定理,而且它们与现实世界又是一致的。

欧几里得建立的这一个几何学公理体系一直受到后世数学家的普遍称颂,被公认为数学严格性的典范。

因此,在相当长的历史时期里,人们一直把几何称为“欧几里得几何”简称“欧氏几何”,并把它奉为金科玉律。

但由于时代的局限,他的5条公设中的第5条一直被质疑。

非欧几里得几何

非欧几里得几何

非欧几里得几何各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢非欧几里得几何。

Non-Euclidean geometry 非欧几里得几何是一门大的数学分支。

一般来讲。

它有广义。

狭义。

通常意义这三个方面的不同含义。

所谓广义的非欧几何是泛指一切和欧几里得几何不同的几何学;狭义的非欧几何只是指罗氏几何;至于通常意义的非欧几何。

就是指椭圆几何学。

中文名,非欧几里得几何。

别称,非欧几何。

提出者,罗巴切夫斯基。

黎曼。

应用学科,数学。

适用领域范围,数学。

诞生。

欧几里得的《几何原本》提出了五条公设。

头四条公设分别为:1.过两点能作且只能作一直线。

2.线段可以无限地延长。

3.以任一点为圆心。

任意长为半径。

可作一圆。

4.任何直角都相等。

第五条公设说:同一平面内一条直线和另外两条直线相交。

若在某一侧的两个内角的和小于两直角。

则这两直线经无限延长后在这一侧相交。

长期以来。

数学家们发现第五公设和前四个公设比较起来。

显得文字叙述冗长。

而且也不那么显而易见。

有些数学家还注意到欧几里得在《几何原本》一书中直到第二十九个命题中才用到。

而且以后再也没有使用。

也就是说。

在《几何原本》中可以不依靠第五公设而推出前二十八个命题。

因此。

一些数学家提出。

欧几里得第五公设能不能不作为公设。

而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的。

争论了长达两千多年的关于“平行线理论”的讨论。

由于证明第五公设的问题始终得不到解决。

人们逐渐怀疑证明的路子走的对不对?第五公设到底能不能证明?到了十九世纪二十年代。

俄国喀山大学教授罗巴切夫斯基在证明第五公设的过程中。

他走了另一条路子。

他提出了一个和欧式平行公理相矛盾的命题,用它来代替第五公设。

然后与欧式几何的前四个公设结合成一个公理系统。

展开一系列的推理。

他认为如果这个系统为基础的推理中出现矛盾。

就等于证明了第五公设。

我们知道。

这其实就是数学中的反证法。

但是。

在他极为细致深入的推理过程中。

几何学的发展简述

几何学的发展简述

几何学的发展历程几何学是一门历史悠久、源远流长的学科。

因为它与人类的生活密切相关,所以在人类的早期文明里,它凭借丰富的直观形象和深奥的内在本质,成为当之无愧的老大哥。

在人类历史的长河中,无论在思想领域的突破上,还是在科学方法论的创建上,几何学总扮演着“开路先锋”的角色。

下面就来了解一下几何学的发展史。

一、欧几里得与《几何原本》欧几里得是古希腊数学的集大成者, 是古希腊亚历山大学派的创始人。

从公元前7 世纪到公元前4 世纪, 伴随着哲学的发展, 古希腊数学, 特别是几何学获得了充分的发展, 积累了丰富的材料。

要进一步促进数学的发展, 同时满足教学的需要, 如何把这些材料整理成/ 逻辑严密的系统知识就成了当时希腊数学家的非常重要且非常艰巨的一项任务。

欧几里得总结了前人的经验和教训, 巧妙地把亚里士多得的/ 逻辑学和数学结合起来, 精细地选择命题和公理, 合理地安排知识的顺序, 使之能从很少的几个原始命题( 或说公理) 开始逻辑地展开。

于是, 人类历史上的第一部( 我们可以这样认为) 数学理论著作---《几何原本》诞生了, 第一个公理化的逻辑体现出现了。

它共有十三卷, 包含了465 个命题, 所涉及到的知识包含平面几何、立体几何、比例论、初等数论、无理数等知识。

欧几里得几何从此成为经典几何的代名词。

二、非欧几何的诞生直到18世纪末,几何领域仍然是欧几里得一统天下.虽然解析几何实现了几何学研究方法的革命,但没有从本质上改变欧氏几何本身的内容。

然而,这个近乎科学“圣经”的欧几里得几何并非无懈可击。

到1800年时,平行线公理已经成了几何学瑕站的标志。

因此,从古希腊时代开始,数学家们就一直没有放弃消除对第五公设疑问的努力。

来自不同国家的三位数学家相继独立地发现了非欧几何学.他们是德国的高斯句牙利的J.波尔约和俄国的罗巴切夫斯基。

.从18世纪90年代起,高斯就一直对平行线理论和几何学的基础感兴趣.在1805年的一个笔记本里,高斯考虑到了已知直线距离一定的点的轨迹未必是一条直线.他还曾经证明:非欧假设隐含着绝对长度单位的存在性.但他在生前从未发表过他关于这个问题的观点。

时空几何|欧几里德(平面)几何非欧几里德(双曲、椭圆)几何

时空几何|欧几里德(平面)几何非欧几里德(双曲、椭圆)几何

时空几何|欧几里德(平面)几何非欧几里德(双曲、椭圆)几何数学研究的对象是“数”与“形”,形的数学就是几何学.它是以直观为主导,以培养人的空间洞察力与思维为目的.从数学发展的历史来看几何学的第一个最重要著作就是欧几里得(Euclid,约公元前330一275年)的《几何原本》.它被世界各国翻译成各种文字.它的印刷量仅次于“圣经”,所以不少人称《几何原本》为数学工作者的“圣经”。

《几何原本》在数学史乃至人类思想史上有着无比崇高的地位。

1 欧几里德几何(Euclid Geometry)-平面欧氏几何源于公元前3世纪。

古希腊数学家欧几里德把人们公认的一些几何知识作为定义和公理(公设),在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。

按所讨论的图形在平面上或空间中,又分别称为“平面几何”与“立体几何”(欧几里得空间)。

Euclid(约公元前330一275) ↑在欧几里德以前,古希腊人已经积累了大量的几何知识,并开始用逻辑推理的方法去证明一些几何命题的结论。

欧几里德将早期许多没有联系和未予严谨证明的定理加以整理,写下《几何原本》一书,标志着欧氏几何学的建立。

这部划时代的著作共分13卷,465个命题。

其中有八卷讲述几何学,包含了现今中学所学的平面几何和立体几何的内容。

但《几何原本》的意义却绝不限于其内容的重要,或者其对诸定理的出色证明。

真正重要的是欧几里德在书中创造的公理化方法。

在证明几何命题时,每一个命题总是从再前一个命题推导出来的,而前一个命题又是从再前一个命题推导出来的。

我们不能这样无限地推导下去,应有一些命题作为起点。

这些作为论证起点,具有自明性并被公认下来的命题称为公理,如“两点确定一条直线”即是一例。

同样对于概念来讲也有些不加定义的原始概念,如点、线等。

在一个数学理论系统中,我们尽可能少地先取原始概念和不加证明的若干公理,以此为出发点,利用纯逻辑推理的方法,把该系统建立成一个演绎系统,这样的方法就是公理化方法。

数学概览课程 第四章 数学发展中的非欧几何发展历程

数学概览课程  第四章 数学发展中的非欧几何发展历程
《几何原本》是一部在科学史上千古流芳的巨著。它不仅保存 了许多古希腊早期的几何学理论,而且通过欧几里得开创性的系统 整理和完整阐述,使这些远古的数学思想发扬光大。
它开创了古典数论的研究,在一系列公理、定义、公设的基 础上,创立了欧几里得几何学体系,成为用公理化方法建立起来 的数学演绎体系的最早典范。
预见到非欧几何的第二人鲍耶.在青年时代就醉心于第五公 设的证明.他不顾父亲的劝告,坚持研究,终于建立了非欧几何 .1823年11月3日,他高兴地写信告诉父亲:“我已从乌有中创 造了另一个新奇的世界.”当他父亲把鲍耶的研究成果写信告诉 高斯的时候,高斯感到十分吃惊,回信说:“这和我40年来沉思 的结果不谋而合.”鲍耶看到高斯的回信,大大刺伤了自己的自 尊心,反而怀疑高斯剽窃他的成果.从此消沉下去,不再研究这一 问题.
尽管萨开里没有证明欧几里得第五公设,但是他的讨论去告 诉人们,从逻辑上,如果更换欧几里得第五公设可能导致一些新 的几何现象。
萨凯里本想通过逻辑证明来排除钝角和锐角两种情况,从而 间接证明转角假设为真,即平行公设为真。结果他却得到了一个 没有矛盾的新几何体系——双曲几何。
但他却以“结论不合情理”而否认了,并在书末写到“欧式 几何无懈可击”。为什么呢?有两种说法。
此外,萨开里还在锐角假设下,导出 了过线外一点可以有多条直线与已知 直线平行。萨开里的推导是完全正确 的,但是他认为由锐角导出了什么矛 盾,这是错误的。事实上,无论是三 角形内角和小于180。或过线外一点 有多条直线与给定直线平行,这些现 象并不与第五公设之外的其他公设或 者公理矛盾。
萨开里在锐角假设下所导致的现象只是与通常人们的观念相 矛盾,而非逻辑上的矛盾。因此萨开里并没有证明欧几里得,第 五公设,最早指出这一点的是德国数学家克吕格尔。克吕格尔对 欧几里得第五公设能否由其他公设来证明产生了怀疑。

非欧几何的由来

非欧几何的由来

非欧几何的由来非欧几何的由来作者:彭林文章来源:《中学数学教学参考》点击数:5450 更新时间:2007-3-17在数学史乃至整个科学史中,很少有一个分支能像非欧几何一样对人类认识史发生如此直接的影响。

它的创立,不仅决定了近百年来数学许多领域的发展。

而且对现代人文学、宇宙学、物理学的进步以及人类时空观念的变革都产生深远影响。

正如伟大的物理学家爱因斯坦所指出的:“已经有大量的根据可以说:从非欧几何发展起来的思想是极富有成效的”。

1、第五公设问题的发生非欧几何的产生与著名的欧几里得第五公设密切相关,它是数学家们为解决这个问题而进行长期努力的结果。

公元前三世纪欧几里得( Euclid)在其著作《原本》中从一些被认为是不证直明的事实出发,通过逻辑演绎建立了第一个几何学公理体系一一欧几里得几何学。

这个理论受到后世数学家的普遍称颂,被公认为是数学严格性的典范。

但是人们感到欧氏几何中仍然存在着某些瑕疵,其中最使数学家们关注的是欧氏公理系统中的所谓“第五公设”一一若两条直线被一直线截得的一组同侧内角之和小于二直角,则若适当延长这两条直线必在和小于二直角的一侧相交。

数学家们普遍认为这条公理所说明的事实并不像欧几里得的其他公理那样显而易见,它们似乎缺少作为一条公理所必需的直明性。

因此尽管人们并不怀疑第五公设本身的真实性,但却怀疑它作为公理的资格。

此便发生了数学史上有名的第五公设问题。

2、证明尝试的失败于是以证明第五公设为目的的种种尝试出现了。

从《原本》出现到19世纪初非欧几何问世,许多杰出的数学家提出了各种“证明”,然而结果却都是错误的。

因为所有这些“证明”中都默认了一条与第五公设相互等价的命题。

通俗地说所谓等价是指含义与本质完全一样只是表述的形式不同而已。

曾经用来证明第五公设的等价命题有许多。

其中较简单的有芬恩( Fenn)1769年提出的:“两相交直线不能同时平行于第三条直线”还有英国普雷非尔(Playfair, 1748-1819)提出的“过直线外一点有且仅有一条直线与该直线平行”等等。

大学 数学专业 空间解析几何第五章 非欧几何简介 PPT

大学 数学专业 空间解析几何第五章  非欧几何简介 PPT

19世纪初,俄罗斯人罗巴切夫斯 基在否定第五公理的同时,假设其 反面之一:“过已知直线外一点, 可作多于一条的直线与已知直线平 行”,得到了一系列定理,并且认 为他得到了一门新的几何学。这是 过去2000年以来的重大突破。
π(α)
罗巴切夫斯基1826年2月11日宣布 自己建立了新的几何学之后,得到 了许多数学大家的嘲笑、讽刺,德 国诗人歌德也出来讽刺他。实际上, 罗巴切夫斯基的理论得到世界的认 可是在他去世几十年后的事了.
欧氏几何
欧氏几何在公元前300年就已产生。 欧几里德在他的名著《几何原本》中,以5 个基本假设为基础,把当时人类已经掌握的纷杂 的几何知识变成一个演绎系统,使用逻辑推理方 法,一共推出了465个定埋。 这个系统所依据的只是几个虽然没有加以证 明,但是看起来相当明显,并且合乎人类经验的 假设。这几个“不证自明”的事实叫做公理 (axioms)。
1854年黎曼(德, 1826-1866)《关于 几何基础的假设》
(黎曼非欧几何)

(罗氏几何)
(欧氏几何)
椭圆几何 双曲几何 抛物几何
A+B+C=π
第五平行公理的研究(公元前3世纪至1800年)
欧几里得
普莱菲尔(苏格兰, 1748-1819) 勒让德(法, 1752-1833)
平行公理
A
这个平行公理在所有公理之中是最不明显的, 所以数学家或是对数学有兴趣的人便想从其他的 公理去推得平行公理。 而这努力延持了两千年, 后来证明这是不可能的,于是有了非欧几何学的 发现,这在人类思想史上是非常特别、有意思的 事实,是西方数学和中国数学不同的地方。
这五个公理是
1. 两点间必可连一条直线; 2. 直线可以任意延长; 3. 已知圆心及半径可作一圆; 4. 凡直角皆相等;

关于非欧几何的产生与发展的感想与浅见 初中作文【550字】

关于非欧几何的产生与发展的感想与浅见 初中作文【550字】

关于非欧几何的产生与发展的感想与浅见初中作文
【550字】
了解了关于非欧几何的产生与发展的数学历史之后,对于以后数学的学习,产生一些新的想法和感知。

萌芽阶段和发展阶段的研究虽然是孤立的、片面的,但它确实地为非欧几何的成熟奠定了一定的基础。

成熟阶段主要由两部分构成,一是以俄国数学家罗巴切夫斯基为首的罗巴切夫斯基几何学派,一是以德国数学家黎曼为首的黎曼几何学派。

前面提到的一些数学家尤其是兰伯特,都是非欧几何的先驱,但是他们都没有正式提一种新几何并建立其系统的理论,而着名的数学家高斯、波约、罗巴切夫斯基提出来较系统的理论,成为非欧几何的创始人,高斯是最早指出欧几里得第五公设独立于其他公设的人,早在1792年他就已经有一种思想,去建立一种逻辑几何学,其中欧几里得第五公设不成立.1794年高斯发现在他的这种几何中,四边形的面积正比于2个平角与四边形内角和的差,并由此导出三角形的面积不超过一个常数,无论其顶点相距多远.后来他进一步发展了他的新几何,称之为非欧几何。

这就告诉我们应该辩证并带有批判、质疑的学习,不唯上不唯书只唯实。

学习是个反复探究不断升华并经时间反复检验的过程,我们不能浅尝辄止又或者含糊了事,必须知其然知其所以然。

在平时的学
习过程中要不断的学习新的知识,要勇于质疑自己已经掌握的知识;广开思路,重视发散思维;课余精选一些典型问题,标新立异、大胆猜想、探索,培养自己的创新求证意识。

非欧几何的哲学思考

非欧几何的哲学思考

非欧几何的哲学思考摘要]本文扼要阐述了非欧几何的产生,并从中梳理出三方面的哲学上的思考,希望抒发心中的感想,与同行共同勉励。

[关键词]数学几何教学1非欧几何产生过程简介公元前三世纪,希腊数学家欧几里得(Euclid)收集当时所能知道的一切几何事实,确定一些被认为是不证自明的事实,从此出发,通过演绎推理,建立了第一个几何学公理体系——欧氏几何学,著书《几何原本》,他自己也因此成了当时的几何集大成者。

关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。

目前,属于中学课程里初等几何的主要内容已经完全包含在《几何原本》里了,因此,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。

德国数学王子高斯(C.F.Gauss)是真正预见到非欧几何的第一人,不幸的是,毕其一生,从没有关于此命题公开发表过任何文章,只在一些私人信件中有所谈起。

匈牙利数学家波耳约(Johann Bolyai)在1823年写了一篇26页的论文《绝对空间的几何》,阐述了新的平行线理论的结果。

俄国数学家罗巴切夫斯基(N.I.Lobatchevsky)是发表此课题的有系统的著作的第一人。

罗巴切夫斯基否定第五公设的等价命题“过平面上直线外一点,只能引一条直线与已知直线不相交”,得到其否定命题“过平面上直线外一点,至少可引两条直线与已知直线不相交”,并用这个否定命题和欧氏的其它公理公设组成新的公理系统展开逻辑推演。

在推演过程中,得到了一系列的没有任何逻辑矛盾却古怪的命题。

比如:不存在相似三角形;三角形的内角和小于180°。

罗巴切夫斯基以深刻的洞察力,果断放弃欧氏几何唯一性的传统观念,大胆断言,这个“在结果中并不存在任何矛盾”的新公理系统构成一种新的几何。

由于新几何的理论与直观表象不相符合,不能马上得到它的现实意义,罗巴切夫斯基谨慎地称为“虚几何”。

后人把这种仅仅改变了平行公理的几何称为非欧几何。

1826年2月23日,罗巴切夫斯基于喀山大学公开宣读了他的第一篇关于非欧几何的论文《简要叙述平行线定理的一个严格证明》,这一天被公认为非欧几何的诞生日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非欧几里得几何学的创始人:黎曼
非欧几里得几何学的创始人——[德国]黎曼(1826~1866)德国有名的数学家希尔伯特在老年时曾被人问到一个有趣的问题:“假定你去世后一两千年能复活,您会做什么呢?”希尔伯特毫不犹豫且满脸认真地回答道:“我会先问‘黎曼猜想’是否已经解决了?”原来他在1900年时就把这问题列为20世纪数学家所面对的一个重要难题如果他死能复活,当然关心的是这个问题是否解决了? 在此,读者一定会自然而然地想到所谓“黎曼猜想”的作者正是本文的主人翁——黎曼。

数学奇才
格奥尔格•弗里德里希•伯恩哈德•黎曼(Gcorg Ffiedrich Bernhard№e㈣)是德国数学家。

1826年9月17日他出生在德国汉诺威的一个叫布雷斯伦茨的小村庄,父亲伯恩哈德•黎曼是当地的牧师。

他家人口够,全家共有6个小孩,他排行第二。

黎曼天资聪明,为人友善,深得父母的喜爱。

5岁时,他对历史表现出了强烈的兴趣,常常因沉迷于古代战争故事而难以自拔。

对于非正义的事他嫉恶如仇,对于被压抑的民族,他常常抱以深切的同情,他特别同情波兰人被外国侵略者统治的命运。

一年之后,他的兴趣逐渐转移,他开始学习算术,算术给这个敏感的孩子提供了一些不太困难的东西去细想。

从此,他天生的数学才能开始表现出来,他不但解决了别人留给他的所有题目,甚至还常出一
些困难的题目去考他的兄弟姐妹。

有个故事足可以证明他的数学天赋。

据黎曼中学时的数学老师回忆说:“黎曼在16岁时曾经向我借数学书看,并且很谦虚地说希望有一本不太容易看懂的书。

我对他说只要你喜欢,书架上的书任你挑选,结果他选了法国数学家勒让德的《数论》。

这是一本长达859页、难度非常大的大四开本书。

我对黎曼说:‘试试,看你能读懂里面多少东西。

’6天后,他把书送回来了。

我问他读懂了多少?他竟回答说:‘这本书写得非常奇妙,我已全部懂了。

’此后,黎曼就再也没有看这本书了。

在后来的‘数论’毕业考试中老师拿勒让德那本书里的一些问题来考黎曼,出乎老师的意料,他的回答是那样的精彩,好像他是特意读了那本书准备考试一样。

数论对他是那样有特别的吸引力,后来,黎曼又读了勒让德写的其他几何书,并从几何书中选了许多题目来做。

这说明,还在中学时代,黎曼就已显示出他是一个数学天才了,他具有很强的数学直观能力及抽象思维能力。

” 1846年黎曼进入哥廷根大学研读哲学和神学。

实际上,神学并非他的兴趣所在。

他只是为了让他的父亲高兴,想尽快得到一个有报酬的工作,以便在经济上支援家庭,才选择了神学。

然而,他的心思仍然扑在数学上,他丢不开斯特恩的方程论和定积分,高斯的最小二乘法及戈尔德斯米特的地磁学。

黎曼的父亲不忍心看他学得那么辛苦,最终还是让他选择了数学专业。

因哥廷根大学的教育方法较为落后,在读了一年后,黎曼便转到了柏林大学,从学于著名教授雅可比、狄利克雷、施特涅尔。

从此他便开始进入新的、充满活力的数学境界。

他从老师那里学到了很多东西。

如从雅可比那里学到了高等力学和高等代数,从狄利克雷那里学到了数论和分析,从施特涅尔那里学到了现代几何,而从比他年长3岁的艾森斯坦那里不仅学到了椭圆函数,而且学到了一个人为何坚持“自信”,因为他和这位年轻的大师兄对数学理论应该如何发展,有着根本的、最激励人的不同观点。

1849年在回哥廷根准备写博士论文时,为了减轻父亲的经济负担,黎曼参加了由高斯的朋友韦伯等主持的数学物理研讨会,并作为韦伯的助手做一些物理实验,为一些初学物理的人进行讲演。

这些琐碎的事使黎曼花掉了不少时间,并影响了他递交博士论文的时间。

到了1851年11月,他才呈上了《复变函数论的一般理论的基础》一文。

高斯对这篇论文的评价很高,他说:“黎曼先生交来的论文提供了令人信服的证据,证明作者具有创造性的、活跃的、真正的数学头脑,以及具有灿烂丰富的想象力。


1854年在取得哥廷根大学的哲学博士学位后,黎曼想谋取讲师职位。

为此,他得做一次就职演讲。

为了对付这次严峻的考验,黎曼提交了三个题目由老师们从中选择,他希望他们会选中前两个题目中的一个,因为前两个题目他早已经准备好了,但使
黎曼失望的是,高斯指定了黎曼轻率地提出的第三个题目——“几何基础”。

在没多少准备的情况下,黎曼在1854年所做的讲演《论作为几何基础的假设》不仅是数学上的一篇杰作,而且在表述方面也堪称典范,为此高斯兴奋不已,并顺利地让黎曼获得了讲师职位。

提出“黎曼几何学”
2000多年来,人们一直认为欧几里得平面几何学是反映现实世界惟一正确的几何学。

19世纪20~30年代非欧氏几何的诞生使人们从这一思想中解放出来。

在数学史中,很少有一个分支能像非欧氏几何那样对人类的认识史发生如此深刻的影响,其代表人物主要有高斯、鲍耶、
罗巴切夫斯基,其中著作最多并为确立和发展非欧几何而始终不渝的当推罗巴切夫斯基。

罗巴切夫斯基从宇宙弯曲的空间特性出发,对欧氏的平行公理(常称第五公设)进行改进,而得出了三角形的内角和小于两直角的公理,从而推翻了欧几里得几何学的惟一性的传统观念,这一思想一般简称为“罗氏几何”。

1854年,黎曼在《关于几何基础的假设》的演说中,站在微观空间的立场,又提出了一种既不是欧氏几何,又不是罗氏几何的非欧几何,即黎曼几何,被称为椭圆几何,是非欧几里得几何的一种。

它完全排除欧几里得的第五公设,并对第二公设加以
修改。

欧几里得的第五公设是:经给定直线外的一点,有惟一的一条直线与之平行,在黎曼几何学中没有与给定直线平行的直线。

欧几里得的第二公设是:有限直线段可以无限延长。

在黎曼几何学中,有限的直线段可以无限延长,但所有直线有相同的长度。

欧几里得的其余三个公设仍、
被采用。

虽然黎曼几何学的有些定理与欧几里得几何相同,但多数是不同的。

例如,在欧几里得几何中两条平行线,处处有相同的距离,而在黎曼几何中,平行线不存在;在欧几里得几何中,三角形三内角之和等于两直角,而在黎曼几何中,其和小于两直角。

在欧几里得几何中,面积不等的多边形可以相似,而在黎曼几何中,不存在面积不等的相似多边形。

所以在大的范围里,与欧氏几何有着很大的区别。

黎曼揭示了不同于欧几里得几何的各种几何的可能性,他的这一工作,引出了深远的结果,而且有益于相对论。

相关文档
最新文档