锐角三角函数难点解析
中考数学-锐角三角函数(解析版)
知识点一:锐角三角函数 1.三角函数定义 在 Rt△ABC 中,若∠C=90°
sin A A的对边 a
斜边
c
A的邻边
b
cos A
斜边
c
A的对边
a
tan A A的邻边 b
A的邻边
b
cot A A的对边 a
2.同角三角函数的关系
(1)平方关系: sin2 Acos2 A1
(1)三边之间的关系为 a2 b2 c2 (勾股定理)
(2)锐角之间的关系为∠A+∠B=90°
(3)30°角所对直角边等于斜边的一半。
(4)直角三角形斜边上的中线等于斜边的一半。
(5)边角之间的关系为:(三角函数定义)
2.其他有关公式
(1)
S
1 2
ab sin C
=
1 2
bc sin
A
=
1 2
ac sin
B
(2)Rt△面积公式:
S
1 2
ab
1 2
ch
(3)直角三角形外接圆的半径
R c 2
,内切圆半径
r abc 2
结论:直角三角形斜边上的高 h ab c
3.实际问题中术语的含义
(1)仰角与俯角
在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角。
(2)坡度:如图,我们通常把坡面的铅直高度和水平宽度的比叫做坡度(或坡比),用字母 i 表示,即 i h . l
见问题,这也是以后中考命题的趋势。 5.解决实际问题的关键在于建立数学模型,要善于把实际问题的数量关系转化为解直角三角形的问题.在 解直角三角形的过程中,常会遇到近似计算,应根据题目要求的精确度定答案.
2023 数学浙教版新中考 考点29锐角三角函数(解析版)
考点29锐角三角函数考点总结1.锐角三角函数的意义:如图,在Rt △ABC 中,设∠C =90°,∠α为Rt △ABC 的一个锐角,则: ∠α的正弦sin α=∠α的对边斜边;∠α的余弦cos α=∠α的邻边斜边;∠α的正切tan α=∠α的对边∠α的邻边2.同角三角函数之间的关系: sin 2A +cos 2A = 1 ,tan A =s inA cos A .3.互余两角三角函数之间的关系:(1)sin α=cos (90°-α),cos α=sin (90°-α). (2)tan α·tan (90°-α)=1.(3)锐角的正弦值或正切值随着角度的增大而增大,锐角的余弦值随着角度的增大而减小.(4)对于锐角A 有0<sin A <1,0<cos A <1,tan A >0. 4.特殊的三角函数值:5.如图,直角三角形的三条边与三个角这六个元素中,有如下的关系:(1)三边的关系(勾股定理):a 2+b 2=c 2. (2)两锐角间的关系:∠A +∠B =90°. (3)边与角的关系:sin A =cos B =a c, cos A =sin B =b c ,tan A =a b ,tan B =b a.6.直角三角形的边角关系在现实生活中有着广泛的应用,它经常涉及测量、工程、航海、航空等,其中包括了一些概念,一定要根据题意理解其中的含义才能正确解题. (1)仰角:向上看时,视线与水平线的夹角,如图.(2)俯角:向下看时,视线与水平线的夹角, (3)坡角:坡面与水平面的夹角.(4)坡度:坡面的铅直高度与水平宽度的比叫做坡度(或坡比),一般情况下,我们用h 表示坡的铅直高度,用l 表示坡的水平宽度,用i 表示坡度,即i =hl=tan α,显然,坡度越大,坡角就越大,坡面也就越陡,如图.(5)方向角:指北或指南的方向线与目标方向线所成的小于90°的锐角叫做方向角,如图324.真题演练一、单选题1.(2021·浙江台州·中考真题)如图,将长、宽分别为12cm ,3cm 的长方形纸片分别沿AB ,AC 折叠,点M ,N 恰好重合于点P .若∠α=60°,则折叠后的图案(阴影部分)面积为( )A .(36-cm 2B .(36-cm 2C .24 cm 2D .36 cm 2【答案】A 【分析】过点C 作CF MN ⊥,过点B 作BE MN ⊥,根据折叠的性质求出60PAC α∠=∠=︒,30EAB PAB ∠=∠=︒,分别解直角三角形求出AB 和AC 的长度,即可求解.【详解】解:如图,过点C 作CF MN ⊥,过点B 作BE MN ⊥,∵长方形纸片分别沿AB ,AC 折叠,点M ,N 恰好重合于点P , ∵60PAC α∠=∠=︒, ∵30EAB PAB ∠=∠=︒,∵90BAC ∠=︒,6cm sin BE AB EAB ==∠,sin CFAC α==,∵12ABCSAB AC =⋅=∵(212336cm ABCS S S=-=⨯-=-阴矩形,故选:A .2.(2021·浙江金华·中考真题)如图是一架人字梯,已知2AB AC ==米,AC 与地面BC 的夹角为α,则两梯脚之间的距离BC 为( )A .4cos α米B .4sin α米C .4tan α米D .4cos α米 【答案】A 【分析】根据等腰三角形的性质得到12BD DC BC ==,根据余弦的定义即可,得到答案. 【详解】过点A 作AD BC ⊥,如图所示:∵AB AC =,AD BC ⊥, ∵BD DC =, ∵DCco ACα=, ∵cos 2cos DC AC αα=⋅=, ∵24cos BC DC α==, 故选:A .3.(2021·浙江温州·中考真题)图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若1AB BC ==.AOB α∠=,则2OC 的值为( )A .211sin α+ B .2sin 1α+ C .211cos α+ D .2cos 1α+【答案】A 【分析】根据勾股定理和三角函数求解. 【详解】∵在Rt OAB 中,AOB α∠=,1AB = ∵1=sin sin AB OB αα= 在Rt OBC 中,1BC =,2222221111sin sin OC OB BC αα⎛⎫=+=+=+ ⎪⎝⎭故选:A .4.(2021·浙江·中考真题)如图,已知在矩形ABCD 中,1,AB BC ==P 是AD 边上的一个动点,连结BP ,点C 关于直线BP 的对称点为1C ,当点P 运动时,点1C 也随之运动.若点P 从点A 运动到点D ,则线段1CC 扫过的区域的面积是( )A .πB .π+C D .2π【答案】B 【分析】先判断出点Q 在以BC 为直径的圆弧上运动,再判断出点C 1在以B 为圆心,BC 为直径的圆弧上运动,找到当点P 与点A 重合时,点P 与点D 重合时,点C 1运动的位置,利用扇形的面积公式及三角形的面积公式求解即可. 【详解】解:设BP 与CC 1相交于Q ,则∵BQC =90°,∵当点P 在线段AD 运动时,点Q 在以BC 为直径的圆弧上运动, 延长CB 到E ,使BE =BC ,连接EC , ∵C 、C 1关于PB 对称, ∵∵EC 1C =∵BQC =90°,∵点C 1在以B 为圆心,BC 为直径的圆弧上运动, 当点P 与点A 重合时,点C 1与点E 重合, 当点P 与点D 重合时,点C 1与点F 重合,此时,tanPC AB PBC BC BC ∠=== ∵∵PBC =30°,∵∵FBP =∵PBC =30°,CQ =12BC =BQ 32=,∵∵FBE =180°-30°-30°=120°,11322BCFS CC BQ =⨯==线段1CC 扫过的区域的面积是2120360BCFSππ⨯+=故选:B .5.(2021·浙江丽水·中考真题)如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是( )A .tan OE m α=⋅B .2sin CD m α=⋅C .cos AE m α=⋅D .2sin CODSm α=⋅【答案】B 【分析】根据垂径定理、锐角三角函数的定义进行判断即可解答. 【详解】解:∵AB 是O 的直径,弦CD OA ⊥于点E , ∵12DE CD =在Rt EDO ∆中,OD m =,AOD α∠=∠ ∵tan =DEOEα ∵=tan 2tan DE CDOE αα=,故选项A 错误,不符合题意; 又sin DEODα=∵sin DE OD α=∵22sin CD DE m α==,故选项B 正确,符合题意; 又cos OEODα=∵cos cos OE OD m αα== ∵AO DO m ==∵cos AE AO OE m m α=-=-,故选项C 错误,不符合题意; ∵2sin CD m α=,cos OE m α=∵2112sin cos sin cos 22COD S CD OE m m m αααα∆=⨯=⨯⨯=,故选项D 错误,不符合题意; 故选B .6.(2021·浙江宁波·中考真题)如图,在ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,BD =E ,F 分别为AB ,BC 的中点,则EF 的长为( )A B C .1 D 【答案】C 【分析】根据条件可知∵ABD 为等腰直角三角形,则BD =AD ,∵ADC 是30°、60°的直角三角形,可求出AC 长,再根据中位线定理可知EF =2AC。
第二十八章锐角三角函数(教案)
一、教学内容
第二十八章锐角三角函数:本章节主要围绕锐角三角函数的定义、性质及图像展开,教学内容包括:
1.锐角三角函数的定义:正弦、余弦、正切的定义及其在直角三角形中的应用。
2.锐角三角函数的性质:正弦、余弦、正切的取值范围及增减性。
3.锐角三角函数的图像:利用坐标轴绘制正弦、余弦、正切函数的图像,并观察其特点。
首先,我发现学生们对于正弦、余弦、正切这三个函数的定义掌握得还不错,但在具体应用时,有些同学还是会混淆。在今后的教学中,我需要多设计一些实际案例,让学生有更多机会将理论知识运用到解决问题中,提高他们的应用能力。
其次,教学难点部分,如锐角三角函数的增减性和图像特点,学生们理解起来有一定难度。在讲解这部分内容时,我应该更加注重引导学生通过观察和思考,自己总结规律。同时,可以借助一些教具或多媒体工具,以更直观的方式展示函数图像的变化,帮助学生突破这个难点。
-难点三:图像绘制中的精确性和细节处理。在绘制锐角三角函数图像时,学生需要准确地表示角度和对应的函数值,同时注意图像的连续性和平滑性。
举例:在绘制正切函数图像时,如何处理90°处的无穷大和不存在的点,以及如何表示其增减趋势。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《锐角三角函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量物体高度或距离的情况?”(如测量旗杆高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索锐角三角函数的奥秘。
1.讨论主题:学生将围绕“锐角三角函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
九年级数学锐角三角函数浙江版知识精讲
九年级数学锐角三角函数某某版【本讲教育信息】一. 教学内容:锐角三角函数二. 教学重难点:1. 重点:准确、熟练地掌握三角函数的概念,在理解特殊角的三角函数的基础上熟记︒30,45°和60°角的三角函数值。
2. 难点:灵活运用三角函数的概念进行相关的计算和论证。
三. 知识回顾1. 锐角三角函数可借助于直角三角形来定义。
若α为锐角,则角α的四个三角函数值定义为:的对边的邻边的邻边的对边斜边的邻边斜边的对边αα=ααα=αα=αα=αcot tan cos sin斜边α的对边αα的邻边三角函数值只是一个比值,由角α的大小唯一确定,与直角三角形的边长无关。
锐角三角函数的主要性质如下①ααααcot ,tan ,cos ,sin 均为正值。
②当︒<α<900时,正弦与正切函数为增函数,余弦与余切函数为减函数。
③对于同一个角α,存在以下的关系:平方和关系:1cos sin 22=α+α比的关系:α=ααα=ααcot sin cos ,tan cos sin 倒数关系:1cot tan =α⋅α④若βα,互余,则有:β=αβ=αβ=αβ=αtan cot ,cot tan ,sin cos ,cos sin2. ︒︒90~0之间的特殊角的各三角函数值如下【典型例题】例1. 若角α的终边经过点P (x,2),0x >,且32sin =α,求α的其他三个三角函数值以及点P 。
解析:抓住三角函数定义中三个量之间的关系,进行合理变换是解题的关键。
25tan 1cot ,55252x y tan ,35r x cos )0x (5•x ,34x 32sin ,4x 2r y sin 4x r 222=α=α===α==α∴>=∴=+∴=α+==α+=又且例2. 已知α=αcos sin 2(α为锐角) 证明①α=α-+α+cos 2cos 11cos 11 ②215cos -=α 解析:应充分利用同角三角函数的关系式。
考点20 锐角三角函数及其应用-备战2023届中考数学一轮复习考点梳理(解析版)
考点20 锐角三角函数及其应用锐角三角函数及其应用是数学中考中比较重要的考点,其考察内容主要包括①正弦、余弦、正切三函数、②特殊角的三角函数值、③解直角三角形与其应用等。
而且,因为锐角三角函数的性质的特点,出题时除了会单独出题以外,还常和四边形、圆、网格图形等结合考察。
特别是三角函数的应用,是近几年中考填空压轴题常考题型。
学生在复习这块考点时,需要付出更多的努力,已达到熟练掌握这块考点的要求。
一、锐角三角函数的定义及其性质二、特殊角的三角函数值三、解直角三角形四、解直角三角形的应用考向一:锐角三角函数的定义及其性质一.锐角三角函数的定义:在Rt △AABC 中,∠C=90°,AB=c ,BC=a ,AC=b则:∠A 正弦:;ACBabc∠A余弦:;∠A正切:;二.锐角三角函数的函数关系当∠A+∠B=90°时,有以下两种关系:(1).同角三角函数的关系:;(2)互余两角的三角函数的关系:;1.如图,在Rt△ABC中,∠C=90°,AB=5,AC=3,则cos B的值为( )A.B.C.D.【分析】先根据勾股定理计算出BC,再根据三角函数的定义,即可得解.【解答】解:根据勾股定理可得,则cos B==.故选:B.2.Rt△ABC中,∠C=90°,AC=1,BC=2,tan A的值为( )A.B.C.D.2【分析】根据勾股定理求出AB的值,代入正切公式即可得到答案;【解答】解:∵∠C=90°,AC=1,BC=2,∴.故选:D.3.在Rt△ABC中,∠C=90°,sin A=,BC=6,则AC=( )A.10B.8C.5D.4【分析】在Rt△ABC中,利用锐角三角函数的定义求出AB,再根据勾股定理进行计算即可解答.【解答】解:在Rt△ABC中,∠C=90°,sin A=,BC=6,∴sin A===,∴AB=10,∴AC===8.故选:B.4.已知0°<θ<45°,则下列各式中正确的是( )A.cosθ<B.tanθ>1C.sinθ>cosθD.sinθ<tanθ【分析】根据逐项进行判断即可.【解答】解:A.由于一个锐角的余弦值随着锐角的增大而减小,而0°<θ<45°,所以cosθ>cos60°,即cosθ>,因此选项A不符合题意;B.由于一个锐角的正切值随着锐角的增大而增大,而所以tanθ<tan45°,即tanθ<1,因此选项B不符合题意;C.由于cosθ=sin(90°﹣θ),而0°<θ<45°,即45°<90°﹣θ<90°,所以sinθ<sin(90°﹣θ),即sinθ<cosθ,因此选项C不符合题意;D.由于sinθ=,tanθ=,而锐角的邻边小于斜边,所以sinθ<tanθ,因此选项D符合题意.故选:D.5.如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,则下列结论中不正确的是( )A.a2+b2=c2B.sin B=cos A C.tan A=D.sin B=【分析】根据直角三角形的边角关系逐项进行判断即可.【解答】解:在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,由勾股定理可得a2+b2=c2,因此选项A不符合题意;由锐角三角函数的定义可得sin B==cos A,因此选项B不符合题意;由锐角三角函数的定义可知,tan A=,因此选项C符合题意;由于sin2A+cos2A=()2+()2===1,因此选项D不符合题意;故选:C.考向二:特殊角的三角函数值特殊角的三角函数值表αsinαcosαtanα30°45°60°1.下列三角函数中,值为的是( )A.cos45°B.tan30°C.sin5°D.cos60°【分析】根据特殊锐角三角函数值逐项进行判断即可.【解答】解:A.由于cos45°=,因此选项A不符合题意;B.由于tan30°=,因此选项B不符合题意;C.sin5°<sin30°,即sin5°<,因此选项C不符合题意;D.由于cos60°=sin30°=,因此选项D符合题意;故选:D.2.计算tan45°+tan30°cos30°的值为( )A.B.1C.D.2【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=1+×=1+=,故选:C.3.4sin260°的值为( )A.3B.1C.D.【分析】根据特殊角的三角函数值计算即可得出答案.【解答】解:.故选:A.4.若sin(x+15°)=,则锐角x= 45 °.【分析】根据特殊角的三角函数值,即可解答.【解答】解:∵sin(x+15°)=,∴x+15°=60°,解得:x=45°,故答案为:45.5.计算:tan60°﹣sin245°+tan45°﹣2cos30°= .【分析】直接利用特殊角的三角函数值代入,进而得出答案.【解答】解:原式=﹣()2+1﹣2×=﹣+1﹣=.故答案为:.6.在△ABC中,,则△ABC的形状是 等边三角形 .【分析】非负数的和为0,则每个加数都等于0,求得相应的三角函数,进而求得∠A,∠B的度数.根据三角形的内角和定理求得∠C的度数.【解答】解:由题意得:2cos A﹣1=0,﹣tan B=0,解得cos A=,tan B=,∴∠A=60°,∠B=60°.∴∠C=180°﹣60°﹣60°=60°,∴△ABC是等边三角形.故答案为:等边三角形.7.计算:.【分析】根据特殊角三角函数值的混合计算法则求解即可.【解答】解:=====.考向三:解直角三角形解直角三角形相关:三边关系:在Rt△ABC中,∠C=90°两锐角关系:AB=c,BC=a,AC=b边与角关系:,,,锐角α是a、b的夹角面积:1.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P.则tan∠APD的值是( )A.2B.1C.0.5D.2.5【分析】连接格点AE,BE.根据题图和勾股定理先判断△ABE的形状,再求出∠APD的正切,利用平行线的性质可得结论.【解答】解:如图,连接格点AE,BE.由网格和勾股定理可求得;,,,∴BE2+AE2=AB2,∴△ABE是直角三角形.在Rt△ABE中,.∵BE∥CD,∴∠APD=∠ABE,∴tan∠APD=2,故选:A.2.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若tan∠BDC =,则BC的长是( )A.6cm B.5cm C.4cm D.2cm【分析】设CD为xcm,则有AD为(8﹣x)cm,根据垂直平分线得到AD=BD,根据得到BC,最后根据勾股定理即可得到答案.【解答】解:设CD为xcm,则有AD为(8﹣x)cm,∵AB的垂直平分线MN交AC于D,∴AD=BD=8﹣x,∵,∴,∴,∵∠C=90°,∴,解得:x1=3,x2=﹣12(不符合题意舍去),∴,故答案为:C.3.如图,在Rt△ABC中,∠CAB=90°,sin C=,AC=8,BD平分∠CBA交AC边于点D.求:(1)线段AB的长;(2)tan∠DBA的值.【分析】(1)先解Rt△ABC,得出sin C==,设出AB=3k,则BC=5k,由BC2﹣AB2=AC2,得出方程(5k)2﹣(3k)2=82,解方程求出k的值,进而得到AB;(2)过D点作DE⊥BC于E,设AD=x,则CD=8﹣x.根据角平分线的性质得出DE=AD=x,利用HL 证明Rt△BDE≌Rt△BDA,得到BE=BA=6,那么CE=BC﹣BE=4.然后在Rt△CDE中利用勾股定理得出DE2+CE2=CD2,即x2+42=(8﹣x)2,解方程求出x的值,即为AD的长,再根据正切函数的定义即可求解.【解答】解:(1)∵在Rt△ABC中,∠CAB=90°,∴sin C==,BC2﹣AB2=AC2,∴可设AB=3k,则BC=5k,∵AC=8,∴(5k)2﹣(3k)2=82,∴k=2(负值舍去),∴AB=3×2=6;(2)过D点作DE⊥BC于E,设AD=x,则CD=8﹣x.∵BD平分∠CBA交AC边于点D,∠CAB=90°,∴DE=AD=x.在Rt△BDE与Rt△BDA中,,∴Rt△BDE≌Rt△BDA(HL),∴BE=BA=6,∴CE=BC﹣BE=5×2﹣6=4.在Rt△CDE中,∵∠CED=90°,∴DE2+CE2=CD2,∴x2+42=(8﹣x)2,解得x=3,∴AD=3,∴tan∠DBA===.4.如图,⊙O是△ABC的外接圆,点D在BC延长线上,且满足∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若AC是∠BAD的平分线,sin B=,BC=4,求⊙O的半径.【分析】(1)连接OA,OC与AB相交于点E,如图,由OA=OC,可得∠OAC=∠OCA,根据圆周角定理可得,由已知∠CAD=∠B,可得∠AOC=2∠CAD,根据三角形内角和定理可得∠OCA+∠CAO+∠AOC=180°,等量代换可得∠CAO+∠CAD=90°,即可得出答案;(2)根据角平分线的定义可得∠BAC=∠DAC,由已知可得∠BAC=∠B,根据垂径定理可得,OC⊥AB,BE=AE,在Rt△BEC中,根据正弦定理可得sin B===,即可算出CE的长度,根据勾股定理可算出BE=的长度,设⊙O的半径为r,则CE=OC﹣CE=r﹣,在Rt△AOE中,OA2=OE2+AE2,代入计算即可得出答案.【解答】证明:(1)连接OA,OC与AB相交于点E,如图,∵OA=OC,∴∠OAC=∠OCA,∵,∴,∵∠CAD=∠B,∴∠AOC=2∠CAD,∵∠OCA+∠CAO+∠AOC=180°,∴2∠CAO+2∠CAD=180°,∴∠CAO+∠CAD=90°,∴∠OAD=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;解:(2)∵AC是∠BAD的平分线,∴∠BAC=∠DAC,∵∠CAD=∠B,∴∠BAC=∠B,∴OC⊥AB,BE=AE,在Rt△BEC中,∵BC=4,∴sin B===,∴CE=,∴BE===,设⊙O的半径为r,则CE=OC﹣CE=r﹣,在Rt△AOE中,OA2=OE2+AE2,r2=(r﹣)2+,解得:r=.5.如图,△ABC中,AB=AC=6cm,BC=8cm,点P从点B出发,沿线段BC以2cm/s的速度向终点C运动,点Q从点C出发,沿着C→A→B的方向以3cm/s的速度向终点B运动,P,Q同时出发,设点P运动的时间为t(s),△CPQ的面积为S(cm2).(1)sin B= ;(2)求S关于t的函数关系式,并直接写出自变量t的取值范围.【分析】(1)过点A作AD⊥BC,垂足为D,利用等腰三角形的三线合一性质求出BD的长,再利用勾股定理求出AD的长即可解答;(2)分两种情况,当0<t≤1时,当1<t<2时.【解答】解:(1)过点A作AD⊥BC,垂足为D,∵AB=AC=6cm,AD⊥BC,∴BD=BC=4cm,在Rt△ABD中,AB=6cm,BD=4cm,∴AD==2,∴sin B==;故答案为:.(2)过点Q作QE⊥BC,垂足为E,∵AB=AC,∴∠B=∠C,∴sin B=sin C=,分两种情况:当0<t≤1时,由题意得:CQ=3t,BP=2t,∴CP=BC﹣BP=8﹣2t,在Rt△CQE中,QE=CQ sin C=3t•=t,∴S=CP•QE=•(8﹣2t)•t=4t﹣t2=﹣t2+4t,当1<t<2时,由题意得:CA+AQ=3t,BP=2t,∴CP=BC﹣BP=8﹣2t,BQ=AB+AC﹣(CA+AQ)=12﹣3t,在Rt△BQE中,QE=BQ sin B=(12﹣3t)•=4﹣t,∴S=CP•QE=•(8﹣2t)•(4﹣t)=,∴S=.考向四:解直角三角形的应用解直角三角形的应用:仰角和俯角仰角:在视线与水平线所成的角中,视线在水平线上方的叫仰角.俯角:视线在水平线下方的叫俯角坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作坡度和坡角坡度越大,坡角越大,坡面越陡1. 在实际测量高度、宽度、距离等问题中,常结合平面几何知识构造直角三角形,利用三角函数或相似三角形来解决问题,常见的构造的基本图形有如下几种:(1)不同地点看同一点,如图①(2)同一地点看不同点,如图②(3)利用反射构造相似,如图③2. 常用结论:1.在山坡上植树,要求两棵树间的坡面距离是3,测得斜坡的倾斜角为27°,则斜坡上相邻两棵树的水平距离是( )A.3sin27°B.3cos27°C.D.3tan27°【分析】根据坡角的定义、余弦的概念列式计算即可.【解答】解:如图,过点A作AB⊥BC于B,∴∠ABC=90°,cos∠BAC=,∵AC=3,∠BAC=27°,∴AB=AC cos∠BAC=3cos27°;故选:B.2.如图,在天定山滑雪场滑雪,需从山脚下A处乘缆车上山顶B处,缆车索道与水平线所成的∠BAC=α,若山的高度BC=800米,则缆车索道AB的长为( )A.800sinα米B.800cosα米C.米D.米【分析】利用直角三角形的边角关系定理列出关系式即可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,sin BAC=,∴AB=.∵∠BAC=α,BC=800米,∴AB=(米).故选:C.3.如图,为了估算某河流的宽度,在该河流的对岸选取一点A,在近岸取点D,C,使得A、D、C在一条直线上,且与河流的边沿垂直,测得CD=15m,然后又在垂直AC的直线上取点B,并量得BC=30m,若cos B=,则该河流的宽AD为 25 m.【分析】根据三角形函数的定义可得AB的长,利用勾股定理可得AC的长,由线段的和差关系可得答案.【解答】解:∵∠C=90°,BC=30m,cos B==,∴AB=50m,∴AC==40(m),∵CD=15m,∴AD=AC﹣CD=25(m),故答案为:25.4.某古村落为方便游客泊车,准备利用长方形晒谷场长60m一侧,规划一个停车场,已知每个停车位需确保有如长5.5m,宽2.5m的长方形AEDF供停车,如图平行四边形ABCD是其中一个停车位,所有停车位都平行排列,∠ABD为60°,则每个体车位的面积大约为 17 m2(结果保留整数),这个晒谷场按规划最多可容纳 20 个停车位.()【分析】由题意,在Rt△ABF中,由直角三角形的边角关系得出AB,BF的长,讲而可以解决问题.【解答】解:由题意,在Rt△ABF中,∠AFB=90°,∠ABF=60°,AF=2.5m,∴AB===≈2.94(m),∴BF=AB≈1.47(m),∴BD=DF+BF≈5.5+1.47=6.97(m),∵CD=AB≈2.94m,∴S平行四边形ABDC=BD•AF≈6.97×2.5≈17 (m2),∴每个停车位的面积大约为17m2;∵60÷2.94≈20.4,∴这个晒谷场按规划最多可容纳20个停车位.故答案为:17;20.5.夏秋季节,许多露营爱好者晚间会在湖边露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处(EF⊥BF),使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,幕布宽AC=AD=2m,CD⊥AB 于点O,支杆AB与树干EF的横向距离BF=2.2m.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)(1)天晴时打开“天幕”,若∠CAE=140°,求遮阳宽度CD.(2)下雨时收拢“天幕”,∠CAE由140°减小到90°,求点E下降的高度.【分析】(1)根据在Rt△AOD中,,先算出OD的长,再根据AD=2OD即可得到答案;(2)过点E作EH⊥AB于H,在Rt△AHE中,,得,当∠CAE=140°时和当∠CAE=90°时,分别求出AH的值,作差即可得到答案.【解答】解:(1)∵∠CAE=140°,AC=AD,AO⊥CD,∴,CD=2DO,在Rt△AOD中,,即,解得:OD≈1.88m,∴CD=2OD≈3.76m,答:遮阳宽度CD约为3.76m;(2)如图,过点E作EH⊥AB于H,∴∠BHE=90°,∵AB⊥BF,EF⊥BF,∴∠ABF=∠EFB=90°,∴∠ABF=∠EFB=∠BHE=90°,∴EH=BF=2.2m,在Rt△AHE中,,∴,当∠CAE=140°时,∠EAO=70°,m,当∠CAE=90°时,∠EAO=45°,AH=2.2m,2.2﹣0.8=1.4m,答:点E下降的高度为1.4m.6.近几年中学生近视的现象越来越严重,为响应国家的号召,某公司推出了如图1所示的护眼灯,其侧面示意图(台灯底座高度忽略不计)如图2所示,其中灯柱BC=18cm,灯臂CD=31cm,灯罩DE=24cm,BC⊥AB,CD、DE分别可以绕点C、D上下调节一定的角度.经使用发现:当∠DCB=140°,且ED∥AB时,台灯光线最佳.求此时点D到桌面AB的距离.(精确到0.1cm,参考数值:cos50°≈0.77,cos50°≈0.64,tan50°≈1.19)【分析】根据题意,作出合适的辅助线,然后根据锐角三角函数,即可得到DF的长,再根据FG=CB,即可求得DG的长,从而可以解答本题.【解答】解:过点D作DG⊥AB,垂足为G,过点C作CF⊥DG,垂足为F,如右图所示,∵CB⊥AB,FG⊥AB,CF⊥FG,∴∠B=∠BGF=∠GFC=90°,∴四边形BCFG为矩形,∴∠BCF=90°,FG=BC=18cm,又∵∠DCB=140°,∴∠DCF=50°,∵CD=31cm,∠DFC=90°,∴DF=CD•sin50°≈31×0.77=23.87(cm),∴DG≈23.87+18≈41.9(cm),答:点D到桌面AB的距离约为41.9cm.1.(2022•扬州)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sin A的值为 . .【分析】根据勾股定理和锐角三角函数的定义解答即可.【解答】解:在△ABC中,∠C=90°,∴c2=a2+b2,∵b2=ac,∴c2=a2+ac,等式两边同时除以ac得:=+1,令=x,则有=x+1,∴x2+x﹣1=0,解得:x1=,x2=(舍去),当x=时,x≠0,∴x=是原分式方程的解,∴sin A==.故答案为:.2.(2022•荆州)如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB上,OC:BC=1:2,连接AC,过点O作OP∥AB交AC的延长线于P.若P(1,1),则tan∠OAP的值是( )A.B.C.D.3【分析】根据OP∥AB,证明出△OCP∽△BCA,得到CP:AC=OC:BC=1:2,过点P作PQ⊥x轴于点Q,根据∠AOC=∠AQP=90°,得到CO∥PQ,根据平行线分线段成比例定理得到OQ:AO=CP:AC=1:2,根据P(1,1),得到PQ=OQ=1,得到AO=2,根据正切的定义即可得到tan∠OAP的值.【解答】解:如图,过点P作PQ⊥x轴于点Q,∵OP∥AB,∴△OCP∽△BCA,∴CP:AC=OC:BC=1:2,∵∠AOC=∠AQP=90°,∴CO∥PQ,∴OQ:AO=CP:AC=1:2,∵P(1,1),∴PQ=OQ=1,∴AO=2,∴tan∠OAP===.故选:C.3.(2022•天津)tan45°的值等于( )A.2B.1C.D.【分析】根据特殊角的三角函数值,进行计算即可解答.【解答】解:tan45°的值等于1,故选:B.4.(2022•荆门)计算:+cos60°﹣(﹣2022)0= ﹣1 .【分析】先化简各式,然后再进行计算即可解答.【解答】解:+cos60°﹣(﹣2022)0=﹣+﹣1=0﹣1=﹣1,故答案为:﹣1.5.(2022•金华)计算:(﹣2022)0﹣2tan45°+|﹣2|+.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质、算术平方根分别化简,进而计算得出答案.【解答】解:原式=1﹣2×1+2+3=1﹣2+2+3=4.6.(2022•贵港)如图,在4×4网格正方形中,每个小正方形的边长为1,顶点为格点,若△ABC的顶点均是格点,则cos∠BAC的值是( )A.B.C.D.【分析】延长AC到D,连接BD,由网格可得AD2+BD2=AB2,即得∠ADB=90°,可求出答案.【解答】解:延长AC到D,连接BD,如图:∵AD2=20,BD2=5,AB2=25,∴AD2+BD2=AB2,∴∠ADB=90°,∴cos∠BAC===,故选:C.7.(2022•广西)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC 是( )A.12sinα米B.12cosα米C.米D.米【分析】直接根据∠A的正弦可得结论.【解答】解:Rt△ABC中,sinα=,∵AB=12米,∴BC=12sinα(米).故选:A.8.(2022•宜宾)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE 交AB于点F,则cos∠ADF的值为( )A.B.C.D.【分析】利用矩形和折叠的性质可得BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt△ADF中利用勾股定理列方程,即可求出x的值,进而可得cos∠ADF.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AB∥CD,AD=BC=3,AB=CD=5,∴∠BDC=∠DBF,由折叠的性质可得∠BDC=∠BDF,∴∠BDF=∠DBF,∴BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt△ADF中,32+(5﹣x)2=x2,∴x=,∴cos∠ADF=,故选:C.9.(2022•广元)如图,在正方形方格纸中,每个小正方形的边长都相等,A、B、C、D都在格点处,AB 与CD相交于点P,则cos∠APC的值为( )A.B.C.D.【分析】把AB向上平移一个单位到DE,连接CE,则DE∥AB,由勾股定理逆定理可以证明△DCE为直角三角形,所以sin∠APC=sin∠EDC即可得答案.【解答】解:把AB向上平移一个单位到DE,连接CE,如图.则DE∥AB,∴∠APC=∠EDC.在△DCE中,有EC==,DC==2,DE==5,∵EC2+DC2=DE2,故△DCE为直角三角形,∠DCE=90°.∴cos∠APC=cos∠EDC==.故选:B.10.(2022•陕西)如图,AD是△ABC的高.若BD=2CD=6,tan C=2,则边AB的长为( )A.3B.3C.3D.6【分析】利用三角函数求出AD=6,在Rt△ABD中,利用勾股定理可得AB的长.【解答】解:∵2CD=6,∴CD=3,∵tan C=2,∴=2,∴AD=6,在Rt△ABD中,由勾股定理得,AB=,故选:D.11.(2022•常州)如图,在四边形ABCD中,∠A=∠ABC=90°,DB平分∠ADC.若AD=1,CD=3,则sin∠ABD= .【分析】过点D作DE⊥BC,垂足为E,如图,由已知∠A=∠ABC=90°,可得AD∥BC,由平行线的性质可得∠ADB=∠CBD,根据角平分线的定义可得∠ADB=∠CDB,则可得CD=CB=3,根据矩形的性质可得AD=BE,即可得CE=BC﹣BE,在Rt△CDE中,根据勾股定理DE=,在Rt△ADB中,根据勾股定理可得,根据正弦三角函数的定义进行求解即可得出答案.【解答】解:过点D作DE⊥BC,垂足为E,如图,∵∠A=∠ABC=90°,∴AD∥BC,∴∠ADB=∠CBD,∵DB平分∠ADC,∴∠ADB=∠CDB,∴CD=CB=3,∵AD=BE=1,∴CE=BC﹣BE=3﹣1=2,在Rt△CDE中,DE===,∵DE=AB,在Rt△ADB中,==,∴sin∠ABD==.故答案为:.12.(2022•齐齐哈尔)在△ABC中,AB=3,AC=6,∠B=45°,则BC= 3+3或3﹣3 .【分析】利用分类讨论的思想方法,画出图形,过点A作AD⊥BC于点D,利用勾股定理解答即可.【解答】解:①当△ABC为锐角三角形时,过点A作AD⊥BC于点D,如图,∵AB=3,∠B=45°,∴AD=BD=AB•sin45°=3,∴CD==3,∴BC=BD+CD=3+3;②当△ABC为钝角三角形时,过点A作AD⊥BC交BC延长线于点D,如图,∵AB=3,∠B=45°,∴AD=BD=AB•sin45°=3,∴CD==3,∴BC=BD﹣CD=3﹣3;综上,BC的长为3+3或3﹣3.13.(2022•连云港)如图,在6×6正方形网格中,△ABC的顶点A、B、C都在网格线上,且都是小正方形边的中点,则sin A= .【分析】先构造直角三角形,然后即可求出sin A的值.【解答】解:设每个小正方形的边长为a,作CD⊥AB于点D,由图可得:CD=4a,AD=3a,∴AC===5a,∴sin∠CAB===,故答案为:.14.(2022•长春)如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A,变幅索的底端记为点B,AD垂直地面,垂足为点D,BC⊥AD,垂足为点C.设∠ABC =α,下列关系式正确的是( )A.sinα=B.sinα=C.sinα=D.sinα=【分析】根据直角三角形的边角关系进行判断即可.【解答】解:在Rt△ABC中,∠ACB=90°,∠ABC=α,由锐角三角函数的定义可知,sinα=sin∠ABC=,故选:D.15.(2022•沈阳)如图,一条河的两岸互相平行,为了测量河的宽度PT(PT与河岸PQ垂直),测量得P,Q两点间距离为m米,∠PQT=α,则河宽PT的长为( )A.m sinαB.m cosαC.m tanαD.【分析】根据垂直定义可得PT⊥PQ,然后在Rt△PQT中,利用锐角三角函数的定义进行计算即可解答.【解答】解:由题意得:PT⊥PQ,∴∠APQ=90°,在Rt△APQ中,PQ=m米,∠PQT=α,∴PT=PQ•tanα=m tanα(米),∴河宽PT的长度是m tanα米,故选:C.16.(2022•福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44cm,则高AD约为( )(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.9.90cm B.11.22cm C.19.58cm D.22.44cm【分析】根据等腰三角形性质求出BD,根据角度的正切值可求出AD.【解答】解:∵AB=AC,BC=44cm,∴BD=CD=22cm,AD⊥BC,∵∠ABC=27°,∴tan∠ABC=≈0.51,∴AD≈0.51×22=11.22cm,故选:B.17.(2022•六盘水)“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E 处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).(参考数据:sin65°≈0.90,cos65°≈0.42,tan65°≈2.14,≈1.41)【分析】(1)根据对称性得出AD=2m,再根据锐角三角函数求出OD,即可求出答案;(2)过点E作EH⊥AB于H,得出EH=BF=3m,再分别求出∠α=65°和45°时,AH的值,即可求出答案.【解答】解:(1)由对称知,CD=2OD,AD=AC=2m,∠AOD=90°,在Rt△AOD中,∠OAD=α=65°,∴sinα=,∴OD=AD•sinα=2×sin65°≈2×0.90=1.80m,∴CD=2OD=3.6m,答:遮阳宽度CD约为3.6米;(2)如图,过点E作EH⊥AB于H,∴∠BHE=90°,∵AB⊥BF,EF⊥BF,∴∠ABF=∠EFB=90°,∴∠ABF=∠EFB=∠BHE=90°,∴EH=BF=3m,在Rt△AHE中,tan a=,∴AH=,当∠α=65°时,AH=≈≈1.40m,当∠α=45°时,AH==3,∴当∠α从65°减少到45°时,点E下降的高度约为3﹣1.40=1.6m.18.(2022•盐城)2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC =143°.机械臂端点C到工作台的距离CD=6m.(1)求A、C两点之间的距离;(2)求OD长.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈2.24)【分析】(1)过点A作AE⊥CB,垂足为E,在Rt△ABE中,由AB=5m,∠ABE=37°,可求AE和BE,即可得出AC的长;(2)过点A作AF⊥CD,垂足为F,在Rt△ACF中,由勾股定理可求出AF,即OD的长.【解答】解:(1)如图,过点A作AE⊥CB,垂足为E,在Rt△ABE中,AB=5m,∠ABE=37°,∵sin∠ABE=,cos∠ABE=,∴=0.60,=0.80,∴AE=3m,BE=4m,∴CE=6m,在Rt△ACE中,由勾股定理AC==3≈6.7m.(2)过点A作AF⊥CD,垂足为F,∴FD=AO=1m,∴CF=5m,在Rt△ACF中,由勾股定理AF==2m.∴OD=2≈4.5m.1.(2022•滨州)在Rt△ABC中,若∠C=90°,AC=5,BC=12,则sin A的值为 .【分析】根据题意画出图形,进而利用勾股定理得出AB的长,再利用锐角三角函数关系,即可得出答案.【解答】解:如图所示:∵∠C=90°,AC=5,BC=12,∴AB==13,∴sin A=.故答案为:.2.(2022•湖州)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.【分析】根据勾股定理求AC的长,根据正弦的定义求sin A的值.【解答】解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.3.(2022•广东)sin30°= .【分析】熟记特殊角的三角函数值进行求解即可得出答案.【解答】解:sin30°=.故答案为:.4.(2022•绥化)定义一种运算:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ.例如:当α=45°,β=30°时,sin(45°+30°)=×+×=,则sin15°的值为 .【分析】把15°看成是45°与30°的差,再代入公式计算得结论.【解答】解:sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=×﹣×=﹣=.故答案为:.5.(2022•张家界)计算:2cos45°+(π﹣3.14)0+|1﹣|+()﹣1.【分析】根据特殊锐角三角函数值,零指数幂,绝对值以及负整数指数幂的性质进行计算即可.【解答】解:原式==.6.(2022•岳阳)计算:|﹣3|﹣2tan45°+(﹣1)2022﹣(﹣π)0.【分析】先化简各式,然后再进行计算即可解答.【解答】解:|﹣3|﹣2tan45°+(﹣1)2022﹣(﹣π)0=3﹣2×1+1﹣1=3﹣2+1﹣1=1.7.(2022•通辽)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则cos∠ADC的值为( )A.B.C.D.【分析】由格点构造直角三角形,由直角三角形的边角关系以及圆周角定理可得答案.【解答】解:∵AB为直径,∴∠ACB=90°,又∵点A,B,C都在格点上,∴∠ADC=∠ABC,在Rt△ABC中,cos∠ABC====cos∠ADC,故选:B.8.(2022•乐山)如图,在Rt△ABC中,∠C=90°,BC=,点D是AC上一点,连结BD.若tan∠A=,tan∠ABD=,则CD的长为( )A.2B.3C.D.2【分析】过D点作DE⊥AB于E,由锐角三角函数的定义可得5DE=AB,再解直角三角形可求得AC的长,利用勾股定理可求解AB的长,进而求解AD的长.【解答】解:过D点作DE⊥AB于E,∵tan∠A==,tan∠ABD==,∴AE=2DE,BE=3DE,∴2DE+3DE=5DE=AB,在Rt△ABC中,tan∠A=,BC=,∴,解得AC=,∴AB=,∴DE=1,∴AE=2,∴AD=,∴CD=AC﹣AD=,故选:C.9.(2022•泸州)如图,在平面直角坐标系xOy中,矩形OABC的顶点B的坐标为(10,4),四边形ABEF是菱形,且tan∠ABE=.若直线l把矩形OABC和菱形ABEF组成的图形的面积分成相等的两部分,则直线l的解析式为( )A.y=3x B.y=﹣x+C.y=﹣2x+11D.y=﹣2x+12【分析】分别求出矩形OABC和菱形ABEF的中心的坐标,利用待定系数法求经过两中心的直线即可得出结论.【解答】解:连接OB,AC,它们交于点M,连接AE,BF,它们交于点N,则直线MN为符合条件的直线l,如图,∵四边形OABC是矩形,∴OM=BM.∵B的坐标为(10,4),∴M(5,2),AB=10,BC=4.∵四边形ABEF为菱形,BE=AB=10.过点E作EG⊥AB于点G,在Rt△BEG中,∵tan∠ABE=,∴,设EG=4k,则BG=3k,∴BE==5k,∴5k=10,∴k=2,∴EG=8,BG=6,∴AG=4.∴E(4,12).∵B的坐标为(10,4),AB∥x轴,∴A(0,4).∵点N为AE的中点,∴N(2,8).设直线l的解析式为y=ax+b,∴,解得:,∴直线l的解析式为y=﹣2x+12,故选:D.10.(2022•益阳)如图,在Rt△ABC中,∠C=90°,若sin A=,则cos B= .【分析】根据三角函数的定义即可得到cos B=sin A=.【解答】解:在Rt△ABC中,∠C=90°,∵sin A==,∴cos B==.故答案为:.11.(2022•西宁)在Rt△ABC中,∠C=90°,AC=1,BC=,则cos A= .【分析】根据勾股定理求出AB,再根据锐角三角函数的定义求出cos A即可.【解答】解:由勾股定理得:AB===,所以cos A===,故答案为:.12.(2022•通辽)如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE= ﹣1 .【分析】用含有AB的代数式表示AD,再根据锐角三角函数的定义进行计算即可.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵AB=AE,设AB=a,则AE=a,BE==a=ED,∴AD=AE+DE=(+1)a,在Rt△ABD中,tan∠BDE===﹣1,故答案为:﹣1.13.(2022•张家界)我国魏晋时期的数学家赵爽在为天文学著作《周髀算经》作注解时,用4个全等的直角三角形和中间的小正方形拼成一个大正方形,这个图被称为“弦图”,它体现了中国古代数学的成就.如图,已知大正方形ABCD的面积是100,小正方形EFGH的面积是4,那么tan∠ADF= .【分析】根据两个正方形的面积可得AD=10,DF﹣AF=2,设AF=x,则DF=x+2,由勾股定理得,x2+(x+2)2=102,解方程可得x的值,从而解决问题.【解答】解:∵大正方形ABCD的面积是100,∴AD=10,∵小正方形EFGH的面积是4,∴小正方形EFGH的边长为2,∴DF﹣AF=2,设AF=x,则DF=x+2,由勾股定理得,x2+(x+2)2=102,解得x=6或﹣8(负值舍去),∴AF=6,DF=8,∴tan∠ADF=,故答案为:.14.(2022•金华)一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC=α,则房顶A 离地面EF的高度为( )A.(4+3sinα)m B.(4+3tanα)m C.(4+)m D.(4+)m【分析】过点A作AD⊥BC于点D,利用直角三角形的边角关系定理求得AD,.用AD+BE即可表示出房顶A离地面EF的高度.【解答】解:过点A作AD⊥BC于点D,如图,∵它是一个轴对称图形,∴AB=AC,∵AD⊥BC,∴BD=BC=3m,在Rt△ADB中,∵tan∠ABC=,∴AD=BD•tanα=3tanαm.∴房顶A离地面EF的高度=AD+BE=(4+3tanα)m,故选:B.15.(2022•枣庄)北京冬奥会开幕式的巨型雪花状主火炬塔的设计,体现了环保低碳理念.如图所示,它的主体形状呈正六边形.若点A,F,B,D,C,E是正六边形的六个顶点,则tan∠ABE= .【分析】由正六边形的性质得AB=BC=AC,BE垂直平分AC,再由等边三角形的性质得∠ABC=60°,则∠ABE=∠ABC=30°,即可得出结论.【解答】解:如图,连接AB、BC、AC、BE,∵点A,F,B,D,C,E是正六边形的六个顶点,∴AB=BC=AC,BE垂直平分AC,∴△ABC是等边三角形,∴∠ABC=60°,∵BE⊥AC,∴∠ABE=∠ABC=30°,∴tan∠ABE=tan30°=,故答案为:.16.(2022•绵阳)如图,测量船以20海里每小时的速度沿正东方向航行并对某海岛进行测量,测量船在A 处测得海岛上观测点D位于北偏东15°方向上,观测点C位于北偏东45°方向上.航行半个小时到达B 点,这时测得海岛上观测点C位于北偏西45°方向上,若CD与AB平行,则CD= (5﹣5) 海里(计算结果不取近似值).【分析】过点D作DE⊥AB,垂足为E,根据题意可得:AB=10海里,∠FAD=15°,∠FAC=45°,∠FAB=90°,∠CBA=45°,从而可得∠DAC=30°,∠CAB=45°,进而利用三角形内角和定理求出∠ACB=90°,然后在Rt△ACB中,利用锐角三角函数的定义求出AC的长,设DE=x海里,再在Rt△ADE 中,利用锐角三角函数的定义求出AE的长,在Rt△DEC中,利用锐角三角函数的定义求出EC,DC的长,最后根据AC=5海里,列出关于x的方程,进行计算即可解答.【解答】解:如图:过点D作DE⊥AB,垂足为E,由题意得:AB=20×=10(海里),∠FAD=15°,∠FAC=45°,∠FAB=90°,∠CBA=90°﹣45°=45°,∴∠DAC=∠FAC﹣∠FAD=30°,∠CAB=∠FAB﹣∠FAC=45°,∴∠ACB=180°﹣∠CAB﹣∠CBA=90°,在Rt△ACB中,AC=AB•sin45°=10×=5(海里),设DE=x海里,在Rt△ADE中,AE===x(海里),∵DC∥AB,∴∠DCA=∠CAB=45°,在Rt△DEC中,CE==x(海里),DC===x(海里),∵AE+EC=AC,∴x+x=5,∴x=,∴DC=x=(5﹣5)海里,故答案为:(5﹣5).17.(2022•荆门)如图,一艘海轮位于灯塔P的北偏东45°方向,距离灯塔100海里的A处,它沿正南方向以50海里/小时的速度航行t小时后,到达位于灯塔P的南偏东30°方向上的点B处,则t= (1+) 小时.【分析】根据题意可得:∠PAC=45°,∠PBA=30°,AP=100海里,然后在Rt△APC中,利用锐角三角函数的定义求出AC,PC的长,再在Rt△BCP中,利用锐角三角函数的定义求出BC的长,从而求出AB的长,最后根据时间=路程÷速度,进行计算即可解答.【解答】解:如图:由题意得:∠PAC=45°,∠PBA=30°,AP=100海里,在Rt△APC中,AC=AP•cos45°=100×=50(海里),PC=AP•sin45°=100×=50(海里),在Rt△BCP中,BC===50(海里),∴AB=AC+BC=(50+50)海里,∴t==(1+)小时,故答案为:(1+).18.(2022•桂林)如图,某雕塑MN位于河段OA上,游客P在步道上由点O出发沿OB方向行走.已知∠AOB=30°,MN=2OM=40m,当观景视角∠MPN最大时,游客P行走的距离OP是 20 米.【分析】先证OB是⊙F的切线,切点为E,当点P与点E重合时,观景视角∠MPN最大,由直角三角形的性质可求解.【解答】解:如图,取MN的中点F,过点F作FE⊥OB于E,以直径MN作⊙F,∵MN=2OM=40m,点F是MN的中点,∴MF=FN=20m,OF=40m,∵∠AOB=30°,EF⊥OB,∴EF=20m,OE=EF=20m,∴EF=MF,又∵EF⊥OB,∴OB是⊙F的切线,切点为E,∴当点P与点E重合时,观景视角∠MPN最大,此时OP=20m,故答案为:20.19.(2022•内江)如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)【分析】(1)过点A作AE⊥l,垂足为E,设CE=x米,则DE=(x+60)米,先利用平角定义求出∠ACE =45°,然后在Rt△AEC中,利用锐角三角函数的定义求出AE的长,再在Rt△ADE中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答;(2)过点B作BF⊥l,垂足为F,CE=AE=BF=(30+30)米,AB=EF,先利用平角定义求出∠BCF =60°,然后在Rt△BCF中,利用锐角三角函数的定义求出CF的长,进行计算即可解答.【解答】解:(1)过点A作AE⊥l,垂足为E,设CE=x米,∵CD=60米,∴DE=CE+CD=(x+60)米,∵∠ACB=15°,∠BCD=120°,∴∠ACE=180°﹣∠ACB﹣∠BCD=45°,在Rt△AEC中,AE=CE•tan45°=x(米),在Rt△ADE中,∠ADE=30°,。
第28章《锐角三角函数》教材分析与教学建议(人教新课标九年级下)doc
第二十八章“锐角三角函数”教材分析与教学建议本章“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。
从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。
在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。
在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。
无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。
本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章重点是锐角三角函数的概念和直角三角形的解法。
锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
本章内容与已学“相似三角形”“勾股定理”等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
本章教学时间约需12课时,具体分配如下(仅供参考):28.1 锐角三角函数约6课时28.2 解直角三角形约4课时数学活动小结约2课时一、教科书内容与课程学习目标(一)本章知识结构框图本章知识的展开顺序(二)教科书内容本章内容分为两节,第一节主要学习正弦、余弦和正切等锐角三角函数的概念,第二节主要研究直角三角形中的边角关系和解直角三角形的内容。
(完整)锐角三角函数—知识讲解
锐角三角函数—知识讲解【学习目标】1.结合图形理解记忆锐角三角函数定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值; 3.理解并能熟练运用“同角三角函数的关系"及“锐角三角函数值随角度变化的规律".【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A aA c∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c ∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化. (2)sinA ,cosA,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成 “tanAEF";另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在. (4)由锐角三角函数的定义知:当角度在0°〈∠A〈90°间变化时,,,tanA >0.要点二、特殊角的三角函数值锐角Ca bc30°45°160°要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);②余弦值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:; (3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、锐角三角函数值的求解策略1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A .2B .C .D .【思路点拨】根据勾股定理,可得AC 、AB 的长,根据正切函数的定义,可得答案. 【答案】D . 【解析】 解:如图:,由勾股定理,得AC=,AB=2,BC=, ∴△ABC 为直角三角形, ∴tan ∠B==,故选:D .【总结升华】本题考查了锐角三角函数的定义,先求出AC 、AB 的长,再求正切函数. 举一反三:【变式】在Rt ΔABC 中,∠C =90°,若a =3,b =4,则c = ,sinA = , cosA = ,sinB = , cosB = .【答案】c = 5 ,sinA = 35 , cosA =45,sinB =45, cosB =35.类型二、特殊角的三角函数值的计算2.求下列各式的值:(1)(2015•茂名校级一模) 6tan 230°﹣sin60°﹣2sin45°;ACa bc(2)(2015•乐陵市模拟)sin60°﹣4cos230°+sin45°•tan60°;(3)(2015•宝山区一模)+tan60°﹣.【答案与解析】解:(1)原式==122-.(2)原式=×﹣4×()2+×=﹣3+=63-;(3)原式=+﹣=2+﹣=3﹣2+2=322+.【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:【变式】在RtΔABC中,∠C=90°,若∠A=45°,则∠B=,sinA=,cosA=,sinB=,cosB=.【答案】∠B=45°,sinA=22,cosA=22,sinB=22,cosB=22.类型三、锐角三角函数之间的关系3.(2015•河北模拟)已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA )2﹣2﹣(3+tanC )0的值.【答案与解析】解:(1)∵|1﹣tanA)2+|sinB ﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴△ABC 是锐角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1=.【总结升华】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.类型四、锐角三角函数的拓展探究与应用4.如图所示,AB 是⊙O 的直径,且AB =10,CD 是⊙O 的弦,AD 与BC 相交于点P , 若弦CD =6,试求cos ∠APC 的值.【答案与解析】连结AC,∵ AB 是⊙O 的直径,∴ ∠ACP =90°, 又∵ ∠B =∠D ,∠PAB =∠PCD ,∴ △PCD ∽△PAB,∴ PC CD PA AB=. 又∵ CD =6,AB =10, ∴ 在Rt △PAC 中,63cos 105PC CD APC PA AB ∠====.【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.锐角的三角函数是针对直角三角形而言的,故可连结AC,由AB 是⊙O 的直径得∠ACB =90°,cos PC APC PA ∠=,PC 、PA 均为未知,而已知CD =6,AB =10,可考虑利用△PCD ∽△PAB 得PC CDPA AB=.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC,顶角A 的正对记作sadA ,这时sadA BCAB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______.(3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值.【答案与解析】(1)1; (2)0<sadA <2;(3)如图2所示,延长AC 到D ,使AD =AB ,连接BD .设AD =AB =5a ,由3sin 5BC A AB ==得BC =3a,∴ 22(5)(3)4AC a a a =-=,∴ CD =5a-4a =a ,22(3)10BD a a a =+=, ∴ 10sadA 5BD AD ==. 【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA =1;(2)在图①中设想AB =AC 的长固定,并固定AB 让AC 绕点A 旋转,当∠A 接近0°时,BC 接近0,则sadA 接近0但永远不会等于0,故sadA >0,当∠A 接近180°时,BC 接近2AB ,则sadA 接近2但小于2,故sadA <2;(3)将∠A 放到等腰三角形中,如图2所示,根据定义可求解.。
锐角三角函数教案
活动四:布置作业 作业:习题 28.2 第 3,6.
补充题:
1.在 Rt△ABC 中,∠C=90°,AC=5 3 ,
BC=5,求∠A 和∠B 的度数.
教师布置作业,学生
记录作业,并能独立完成
2.若 3 tan( 10 ) 1 ,求锐角 . 作业.
3. tan 2 A 3 ,则∠A 的度数是多少? 3
【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。(演示学校操场 上的国旗图片)
小明站在离旗杆底部 10 米远处,目测旗杆的顶部,视线与水平线的夹角为 34 度,并已知目高为 1 米.然后他很快就算出旗杆的高度了。
你想知道小明怎样算出的吗? 下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦
个固定值?
如图:Rt△ABC 和 Rt△A′B′C′,∠C=∠C′ =90°,∠B=∠B′=α, 那么 BC 与 B 'C ' 有什么关系?
AB A' B ' 分析:由于∠C=∠C′ =90o,∠B=∠B′=α,
所以 Rt△ABC∽Rt△A′B′C′,
,
5
即 结论:在直角三角形中,当锐角 B 的度数一定时,不管三角形的大小如何,
巩固特殊角 的三角函数值. 学生认真独立完成,教师巡视, 对学习较困难的学生适当的给予指 点.
例 2:(1)如图(1),在 Rt△ABC 中,
∠C=90°,AB= 6 ,BC= 3 ,求∠A 的
度数.
(2)如图(2),已知圆锥的高 AO 等
利用此题目
教师出示题目后,让学生认真(1)培养学生的
于圆锥的底面半径)OB 的 3 倍,求 .读题,分析题目条件与要求的结论,逆向思维;(2)初
28.1 锐角三角形 第二课时
精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数难点解析试题(含答案及详细解析)
人教版九年级数学下册第二十八章-锐角三角函数难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,△ABC 的顶点在正方形网格的格点上,则cos ∠ACB 的值为( )A .12BCD 2、如图,在平面直角坐标系xoy 中,直线14y k x =+与y 轴交于点C ,与反比例函数2k y x =在第一象限内的图象交于点B ,连接BO ,若2OBC S ∆=,1tan 5BOC ∠=,则2k 的值是( )A .-20B .20C .-5D .53、如图,在33⨯的网格中,A,B均为格点,以点A为圆心,AB的长为半径作弧,图中的点C是该弧与格线的交点,则tan BAC∠的值是()A.12B.255C.53D.234、如图,过点O、A(1,0)、B(0作⊙M,D为⊙M上不同于点O、A的点,则∠ODA的度数为()A.60°B.60°或120°C.30°D.30°或150°5、如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0<α<120°)得到△AB'C',B'C'与BC、AC分别交于点D、点E,设CD+DE=x,△AEC'的面积为y,则y与x的函数图象大致为()A. B.C. D.6、tan45 的值为()A.1 B.2 C D.7、如图所示,点C是⊙O上一动点,它从点A开始逆时针旋转一周又回到点A,点C所走过的路程为x,BC的长为y,根据函数图象所提供的信息,∠AOB的度数和点C运动到弧AB的中点时所对应的函数值分别是()A B.150°,2 C D.120°,28、在正方形网格中,ABC的位置如图所示,点A、B、C均在格点上,则cos B的值为()A.12B.22C.32D.249、△ABC中,tan A=1,cos B=2,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.锐角三角形10、如图要测量小河两岸相对的两点P,A的距离,点P位于点A正北方向,点C位于点A的北偏西46°,若测得PC=50米,则小河宽PA为()A.50sin44°米B.50cos44°C.50tan44°米D.50tan46°米第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,小明家附近有一观光塔CD,他发现当光线角度变化时,观光塔的影子在地面上的长度也发生变化.经测量发现,当小明站在点A处时,塔顶D的仰角为37°,他往前再走5米到达点B(点A,B,C在同一直线上),塔顶D的仰角为53°,则观光塔CD的高度约为 _____.(精确到0.1米,参考数值:tan37°≈34,tan53°≈43)2、如图,以BC 为直径作圆O ,A ,D 为圆周上的点,AD ∥BC ,AB =CD =AD =1.若点P 为BC 垂直平分线MN 上的一动点,则阴影部分图形的周长最小值为__________ .3、如图, 在 Rt ABC △ 中, 390,tan ,2ACB BAC CD ∠∠== 是斜边 AB 上的中线, 点 E 是直线 AC 左侧一点, 联结 AE CE ED 、、, 若 ,EC CD EAC B ∠∠⊥=, 则 CDE ABC S S 的值为______.4、若一个小球由桌面沿着斜坡向上前进了10cm ,此时小球距离桌面的高度为5cm ,则这个斜坡的坡度为______.5、在△ABC 中,∠A ,∠C 都是锐角,cos A =12,sin CB =________. 三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,抛物线2154y ax bx =+-与x 轴交于点A 、点B ,与y 轴交于点C ,点D 在第三象限的抛物线上,直线31522y x =--经过点A 、点D ,点D 的横坐标为3-. (1)如图1,求抛物线的解析式;(2)如图2,直线AD 交y 轴于点T ,过点D 作DP y ⊥轴,交y 轴于点H,交抛物线于点P,过点P 作PQ AD⊥,交直线AD于点Q,求线段PQ的长;(3)在(2)的条件下,点F在OA上,直线PF交OC于点G,2FG PG=,点M在第二象限,连接PM交OG于点E,连接MF,tan2MFO∠=,FMEG=R在GF的延长线上,点N在直线MR上,且点N的横坐标为5,连接PN,PN NR=,求点N的纵坐标.2、定义:如果一个三角形一条边上的高与这条边的比值叫做这条边所对角的准对(记作qad).如图1,在△ABC中,AH⊥BC于点H,则qad∠BAC=AHBC.当qad∠BAC=35时,则称∠BAC为这个三角形的“金角”.已知在矩形ABCD中,AB=3,BC=6,△ACE的“金角”∠EAC所对的边CE在BC边上,将△ACE绕点C按顺时针方向旋转α(0°<α<90°)得到△A'CE',A'C交AD边于点F.(1)如图2,当α=45°时,求证:∠ACF 是“金角”.(2)如图3,当点E '落在AD 边上时,求qad ∠AFC 的值.3、计算:0201521π 3.14122cos303--⨯-+-+︒()()()4、计算:32022tan 45(4sin 601)|2--⨯+-+--.5、小明周末沿着东西走向的公路徒步游玩,在A 处观察到电视塔在北偏东37度的方向上,5分钟后在B 处观察到电视塔在北偏西53度的方向上.已知电视塔C 距离公路AB 的距离为300米,求小明的徒步速度.(精确到个位,sin370.6︒≈,cos370.8︒≈,sin530.8︒≈,cos530.6︒≈,tan370.75︒≈,tan53 1.3︒≈)---------参考答案-----------一、单选题1、D【分析】根据图形得出AD 的长,进而利用三角函数解答即可.【详解】解:过A 作AD ⊥BC 于D ,∴DC =1,AD =3,∴AC∴cos ∠ACB =DC AC == 故选:D .【点睛】本题主要考查了解直角三角形,解题的关键是掌握勾股定理逆定理及余弦函数的定义.2、D【分析】先根据直线解析式求得点C 的坐标,然后根据△BOC 的面积求得BD 的长,然后利用正切函数的定义求得OD 的长,从而求得点B 的坐标,利用待定系数法将点B 坐标代入即可求得结论.【详解】解:∵直线y =k 1x +4与x 轴交于点A ,与y 轴交于点C ,∴点C 的坐标为(0,4),∴OC =4,过B 作BD ⊥y 轴于D ,∵S △OBC =2, ∴114222OC BD BD ⋅=⨯⋅=,∴BD =1,∵tan∠BOC =15, ∴15BD OD =, ∴OD =5,∴点B 的坐标为(1,5), ∵反比例函数2k y x=在第一象限内的图象交于点B , ∴k 2=1×5=5.故选:D .【点睛】本题考查了反比例函数与一次函数的交点坐标,锐角三角函数,三角形面积,待定系数法求分别列函数解析式,解题的关键是作辅助线构造直角三角形.3、B【分析】利用CD AB ∥,得到∠BAC =∠DCA ,根据同圆的半径相等,AC =AB =3,再利用勾股定理求解,CD 可得tan ∠ACD =AD CD =. 【详解】解:如图, ∵CD AB ∥,∴∠BAC =∠DCA .∵同圆的半径相等, ∴AC =AB =3,而2,AD = 225,CD AC AD在Rt △ACD 中,tan ∠ACD =AD CD =∴tan ∠BAC =tan ∠ACD故选B .【点睛】 本题主要考查了解直角三角形的应用,利用图形的性质进行角的等量代换是解本题的关键.4、D【分析】连接AB ,先利用正切三角函数可得30OBA ∠=︒,再分点D 在x 轴上方的圆弧上和点D 在x 轴下方的圆弧上两种情况,分别利用圆周角定理、圆内接四边形的性质求解即可得. 【详解】解:如图,连接AB ,(1,0),A B ,1,OA OB ∴==90AOB ∠=︒,∴在Rt AOB 中,tanOA OBA OB ∠== 30OBA ∴∠=︒,由题意,分以下两种情况:(1)如图,当点D 在x 轴上方的圆弧上时,由圆周角定理得:30OBA ODA ∠∠==︒;(2)如图,当点D 在x 轴下方的圆弧上时,由圆内接四边形的性质得:180150OD BA A O ∠=︒-∠=︒;综上,ODA ∠的度数为30或150︒,故选:D .【点睛】本题考查了正切、圆周角定理、圆内接四边形的性质等知识点,正确分两种情况讨论是解题关键.5、B【分析】先证△ABF ≌△AC ′E (ASA ),再证△B ′FD ≌△CED (AAS ),得出DE +DC =DE +DB ′=B ′E =x ,利用锐角三角函数求出2B C GC '''==AG =AC ′sin30°=1,根据三角形面积列出函数解析式12y x =是一次函数,即可得出结论.【详解】解:设BC 与AB ′交于F ,∵△ABC 绕点A 逆时针旋转α(0<α<120°)得到△AB 'C ',∴∠BAF =∠C ′AE =α,∵AB =AC =AB ′=AC ′,∠B =∠C =∠B ′=∠C ′=30°,在△ABF 和△AC ′E 中,B C AB AC CAF C AE ∠=∠⎧⎪=⎨⎪∠=∠''⎩', ∴△ABF ≌△AC ′E (ASA ),∴AF =AE ,∵AB ′=AC ,∴B ′F =AB ′-AF =AC -AE =CE ,在△B ′FD 和△CED 中,B C FDB EDC B F CE '''∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△B ′FD ≌△CED (AAS ),∴B ′D =CD ,FD =ED ,∴DE +DC =DE +DB ′=B ′E =x ,过点A 作AG ⊥B′C′于G ,∵AB ′=AC ′,∴B′G =C′G ,∵AC ′=2,∴cos C′=2GC GC AC ''==',∴B G GC ''==∴2B C GC '''==∴AG =AC ′sin30°=1∴EC ′=B C B E x '''-=∴()1111222y EC AG x x '=⋅=⨯⨯=∴12y x =是一次函数,当x =0时,y =故选择B .【点睛】本题考查等腰三角形性质,图形旋转,三角形全等判定与性质,解直角三角形,三角形面积,列一次函数解析式,识别函数图像,本题综合性强,难度大,掌握以上知识是解题关键.6、A【分析】直接求解即可.【详解】解:tan 45︒=1,故选:A .【点睛】本题考查特殊角的三角函数值,熟记特殊角的三角函数值是解答的关键.7、D【分析】观察图象可得:y 的最大值为4,即BC 的最大值为4,当x =0时,y =AB =C ′是AB 的中点,连接OC ′交AB 于点D ,则OC ′⊥AB ,AD =BD AOB =2∠BOC ′,利用三角函数定义可得∠BOC ′=60°,即可求得答案.【详解】解:由函数图象可得:y 的最大值为4,即BC 的最大值为4,∴⊙O 的直径为4,OA =OB =2,观察图象,可得当x =0时,y =∴AB =如图,点C ′是AB 的中点,连接OC ′交AB 于点D ,∴OC ′⊥AB ,AD =BD AOB =2∠BOC ′,∴sin∠BOC ′=BD OB ∴∠BOC ′=60°,∴∠AOB=120°,∵OB=OC′,∠BOC′=60°,∴△BOC′是等边三角形,∴BC′=OB=2,即点C运动到弧AB的中点时所对应的函数值为2.故选:D【点睛】本题主要考查了垂径定理,锐角三角函数,等边三角形的判定和性质,熟练掌握相关知识点是解题的关键.8、B【分析】如图所示,过点A作AD垂直BC的延长线于点D得出△ABD为等腰直角三角形,再根据45°角的余弦值即可得出答案.【详解】解:如图所示,过点A作AD⊥BC交BC延长线于点D,∵AD=BD=4,∠ADB=90°,∴△ABD为等腰直角三角形,∴∠B=45°∴cos B故选B.【点睛】本题主要考查了求特殊角三角函数值,解题的关键在于根据根据题意构造直角三角形求解.9、C【分析】先根据△ABC中,tanA=1,cosB=求出∠A及∠B的度数,进而可得出结论.2【详解】,解:∵△ABC中,tanA=1,cosB=2∴∠A=45°,∠B=45°,∴∠C=90°,∴△ABC是等腰直角三角形.故选:C.【点睛】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.10、C【分析】先根据AP⊥PC,可求∠PCA=90°-46°=44°,在Rt△PCA中,利用三角函数AP=tan4450tan44︒⨯=︒PC米即可.【详解】解:∵AP ⊥PC ,∴∠PCA +∠A =90°,∵∠A =46°,∴∠PCA =90°-46°=44°,在Rt△PCA 中,tan∠PCA =AP CP,PC =50米, ∴AP =tan 4450tan 44PC ︒⨯=︒米.故选C .【点睛】本题考查测量问题,掌握测量问题经常利用三角函数求边,熟悉锐角三角函数定义是解题关键.二、填空题1、8.6米【解析】【分析】根据题意,利用锐角三角函数解直角三角形即可.【详解】解:由题意知,∠A =37°,∠DBC =53°,∠D =90°,AB =5,在Rt△CBD 中,tan∠DBC =CD BC , ∴BC =tan 53CD ≈34CD , 在Rt△CAD 中,tan∠A =CD AC ,即354CD CD +=tan37°≈34 ∴解得:CD =607≈8.6,答:观光塔CD 的高度约为8.6米.【点睛】本题考查解直角三角形的实际应用,熟练掌握锐角三角函数解直角三角形的方法是解答的关键.21【解析】【分析】连接BP ,BD ,OD ,根据线段垂直平分线的性质定理,可得BP =CP ,从而得到当点B 、P 、D 三点共线时,DP +CP 的值最小,最小值为BD 的长,再由直径所对的圆周角为直角,可得∠BDC =90°,再由AB AD CD == ,可得∠COD =11803⨯︒ =60°,从而得到1302CBD COD ∠=∠=︒ ,进而得到tan CD BD CBD==∠ 【详解】解:如图,连接BP ,BD ,OD ,∵MN 为BC 的垂直平分线,∴BP =CP ,∴DP +CP =DP +BP ≥BD ,即当点B 、P 、D 三点共线时,DP +CP 的值最小,最小值为BD 的长, ∵BC 为直径,∴∠BDC =90°,∵AB =CD =AD ,∴AB AD CD == ,∴∠COD =11803⨯︒ =60°, ∴1302CBD COD ∠=∠=︒ ,∴tan CD BD CBD ===∠,∴DP +CP,1 .1【点睛】本题主要考查了圆周角定理,线段垂直平分线的性质定理,特殊角锐角三角函数,熟练掌握圆周角定理,线段垂直平分线的性质定理,特殊角锐角三角函数是解题的关键.3、1336【解析】【分析】先证明Rt AED Rt CED ≌,则AED CED S S =,进而证明DAE BCA ∽,据3tan 2BAC ∠=求得相似比,根据面积比等于相似比的平方即可求解【详解】解:CD 是Rt ABC 斜边 AB 上的中线,12CD AB AD ∴== DCA DAC ∴∠=∠90ACB ∠=︒90CAB B ∴∠+∠=︒EAC B∠=∠90EAC DAC∴∠+∠=︒即90EAD∠=︒又EC CD⊥90ECD∴∠=︒EAD ECD∴∠=∠Rt AED Rt CED∴≌AED CEDS S∴=,DA DC EA EC==ED AC∴⊥又90ACB∠=︒BC AC∴⊥//ED BC∴ADE B∴∠=∠又90EAD ACB∠=∠=︒DAE BCA∴∽2ADCABCS ADS BC⎛⎫∴= ⎪⎝⎭3tan2BAC∠=32CBCA∴=设3CB k=,则2AC k=AB∴=12AD AB ∴==AED CED S S =2CDE ADC ABC ABC S S AD S SBC ⎛⎫∴== ⎪⎝⎭2132336k ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭ 故答案为:1336【点睛】 本题考查了解直角三角形,三角形全等的性质与判定,相似三角形的性质与判定,直角三角形斜边上的中线等于斜边的一半,垂直平分线的性质与判定,正切的定义,证明AED CED SS =是解题的关键. 4【解析】【分析】过B 作BC ⊥桌面于C ,由题意得AB =10cm ,BC =5cm ,再由勾股定理求出AC 的长度,然后由坡度的定义即可得出答案.【详解】如图,过B 作BC⊥桌面于C ,由题意得:AB =10cm ,BC =5cm ,∴AC =,∴这个斜坡的坡度BC i AC ==,【点睛】 本题考查了解直角三角形的应用-坡度坡角问题以及勾股定理;熟练掌握坡度的定义和勾股定理是解题的关键.5、60°##60度【解析】【分析】利用特殊角的锐角三角函数值先求解60,60,A C ∠=︒∠=︒再利用三角形的内角和定理可得答案.【详解】解: ∠A ,∠C 都是锐角,cos A =12,sin C 60,60,A C ∴∠=︒∠=︒180606060,B ∴∠=︒-︒-︒=︒ 故答案为:60.︒【点睛】本题考查的是已知锐角三角函数值求解锐角的大小,掌握“特殊角的锐角三角函数值”是解本题的关键.三、解答题1、(1)抛物线的解析式为:21115424y x x =+-;(2)PQ =;(3)点N 的纵坐标为5. 【解析】【分析】(1)根据题意可得一次函数图象经过A 、D 两点,所以当0y =及当3x =-时,可确定A 、D 两点坐标,然后代入抛物线解析式求解即可确定;(2)根据题意当3y =-时,代入抛物线解析式确定点P 的坐标,求得PD ,然后求出直线与y 轴的交点T ,利用勾股定理确定AT ,由平行可得三角形相似,利用相似三角形的性质即可得出结果;(3)过点P 作PS x ⊥轴,且()1,3P -,即3PS =,1OS =,利用相似三角形的性质可确定()2,0F -,()0,2G -,求出直线GF 的函数解析式,过点M 作ML x ⊥轴,设(),M a b 且()2,0F -,可求得MF 的长度,设直线MP 的函数解析式为:()0y kx b k =+≠,将点(),24M a a +,()1,3P -代入即可确定点E 的坐标,求出EG ,根据题意即可确定点()1,2M -,设点R 、点N 在如图所示位置:过点N 作NV x ⊥轴,过点M 作MI NV ⊥,过点R 作RJ NV ⊥,利用相似三角形及勾股定理即可得出结果.【详解】解:(1)∵31522y x =--经过A 、D 两点, ∴当0y =时,315022x --=, 解得5x =-,∴()5,0A -,当3x =-时,()3153322y =-⨯--=-, ∴()3,3D --, 将A 、D 两点代入抛物线解析式可得:1502554153934a b a b ⎧=--⎪⎪⎨⎪-=--⎪⎩,解得:1412a b ⎧=⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为:21115424y x x =+-; (2)当3y =-时,211153424x x +-=-,解得:13x =-,21x =,∴()1,3P -,∴4PD =, 直线解析式31522y x =--,当0x =时,152y =-, ∴150,2T ⎛⎫- ⎪⎝⎭, ∴152OT =,在Rt AOT 中,AT ==,∵DP y ⊥轴,∴∥DP x 轴,∴QAD PDQ ∠=∠,∵AOT PQD ∠=∠,∴~AOT DQP ,∴DP PQ AT OT=,即154PQ ⨯==; (3)如图所示:过点P 作PS x ⊥轴,且()1,3P -,即3PS =,1OS =,∴∥PS GO ,∴~FGO FPS ,∵2FG GP =,∴2FO OS =,23OG PS =, ∴2FO =,2OG =,∴()2,0F -,()0,2G -,设直线GF 的函数解析式为:()0y kx b k =+≠,可得:022k b b=-+⎧⎨-=⎩, 解得:12k b =-⎧⎨=-⎩, ∴直线GF 的函数解析式为:2y x =--,过点M 作ML x ⊥轴,设(),M a b 且()2,0F -,∴2FL a =+,ML b =,∵tan 2MFO ∠=, 即22b a =+, ∴24b a =+,∴)2MF a =+,设直线MP 的函数解析式为:()0y kx b k =+≠,将点(),24M a a +,()1,3P -代入可得:可得:243a ak b k b+=+⎧⎨-=+⎩, 解得:271541a k a a b a +⎧=⎪⎪-⎨--⎪=⎪-⎩, 点540,1a E a --⎛⎫ ⎪-⎝⎭, ∵()0,2G -,∴()321a EG a -+=-,∵FM EG =∴)()2321a a a +-+-,解得:1a =-,点()1,2M -,设点R 、点N 在如图所示位置:过点N 作NV x ⊥轴,过点M 作MI NV ⊥,过点R 作RJ NV ⊥,∴∥MI RJ ,∴~NMI NRJ ,设()5,N d ,(),2R x x --,则6MI =,5RJ x =-,2NI d =-,2NJ d x =++, ∴MI NI RJ IJ=, 代入化简可得:3304d x d --=+①, ∵NR NP =,∴()()()22225243x d x d -+++=++②,联立①②求解可得:53d x =⎧⎨=-⎩, ∴点N 的纵坐标为5.【点睛】题目主要考查一次函数与二次函数的综合问题,包括待定系数法确定函数解析式,相似三角形的判定和性质,勾股定理,锐角三角函数解直角三角形等,理解题意,作出相应辅助线是解题关键.2、(1)见解析(2)23【解析】【分析】(1)过点E 作EG AC ⊥于点G ,解直角三角形求得45EAC ∠=︒,进而证明AF EC =,根据“金角”的定义即可证明当α=45°时,∠ACF 是“金角”.(2)过点E '作E H A F ''⊥于点H ,证明HFE DFC '∽,可得E F E H FC CD ''==E F x '=,则FC =,4FD E D E F x ''=-=-,根据勾股定理列出方程,解方程即可求得52E F '=,进而根据定义AB qad AFC AF ∠=即可求得答案 【详解】解:(1)四边形ABCD 是矩形,∴90B ∠=︒,,//AB CD AD BC =△ACE 的“金角”∠EAC 所对的边CE 在BC 边上,35AB qad EAC EC ∴∠== 3AB = ,BC =6,5,651EC BE BC BE ∴==-=-=将△ACE 绕点C 按顺时针方向旋转45°得到△A 'CE ',45ACA '∴∠=︒,即45ACF ∠=︒如图,过点E 作EG AC ⊥于点G ,在Rt ABC 中,31tan 62AB ACB BC ∠===,又ECG BCA ∠=∠ ∴1tan 2EG GCE GC ∠== 设EG a =,则2CG a =EC ∴=5=a ∴=EG ∴= 在Rt ABC 中,3,6AB BC ==AC ∴=AG AC GC ∴=-=在Rt AEG 中,tan 1GE EAG AG ∠== 45EAC ∴∠=︒ ACF CAE ∴∠=∠//AE CF ∴//AF CE∴四边形AECF 是平行四边形,AE CF AF EC ∴==35CD AB qad ACF AF EC ∴∠=== ∴当α=45°时,∠ACF 是“金角”.(2)如图,过点E '作E H A F ''⊥于点H由(1)可知5CE =,45EAC E A F ''∠=∠=︒则HE HA ''=由旋转的性质可得5CE CE '==,3CD AB ==,AE AE '=在Rt ABE △中,3,1AB BE ==,则AE AE '==在Rt E DC '中4E D '642AE AD DE ''∴=-=-=在等腰直角三角形A E H ''中,sin 45A H HE A E ''''==⋅︒=90E HF FDC '∠=∠=︒,HFE DFC '∠=∠HFE DFC '∴∽E F E H FC CD ''∴== 设E F x '=,则FC x =,4FD E D E F x ''=-=- 在Rt FDC 中,222FC FD DC =+即()22243x ⎫=-+⎪⎭ 解得1252522x x ==-,(舍) 则52E F '=59222AF AE E F ''∴=+=+= 32932AB qad AFC AF ∴∠===【点睛】本题考查了“准对”,三角形的“金角”的定义,解直角三角形,相似三角形的性质,矩形的性质,旋转的性质,理解新定义是解题的关键.3、6+【解析】【分析】本题涉及零指数幂、负指数幂、绝对值和特殊角的三角函数值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:原式=1×(﹣1)2=192-+=6+.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.4、0【解析】【分析】根据乘方,二次根式的化简、特殊的三角函数值,零指数幂的意义以及绝对值的性质即可求出答案.【详解】解:原式=181124-⨯+--=-2+2=0【点睛】本题考查了实数的运算,乘方,二次根式的化简、特殊的三角函数值,零指数幂的意义以及绝对值的性质,熟练掌握各自的性质是解本题的关键.5、126米/分钟【解析】【分析】过C 作CD AB ⊥于D ,则300CD =米,由解直角三角形求出AD 和BD 的长度,则求出AB 的长度,即可求出小明的速度.【详解】解:过C 作CD AB ⊥于D ,则300CD =米,∴903753CAD ∠=︒-︒=︒, ∴300tan tan 53 1.3CAD AD∠=︒=≈, ∴231AD ≈,同理:400BD ≈631AB AD BD =+= 速度:631÷5≈126(米/分钟).【点睛】本题考查了解直角三角形的应用,以及解直角三角形,解题的关键是正确求出AD 和BD 的长度.。
锐角三角函数(通用8篇)
锐角三角函数(通用8篇)锐角三角函数篇1教学三维目标:一.学问目标:初步了解正弦、余弦、正切概念;能较正确地用siaa、cosa、tana表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能依据这些值说出对应的锐角度数。
二.力量目标:逐步培育同学观看、比较、分析,概括的思维力量。
三.情感目标:提高同学对几何图形美的熟悉。
教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaa、cosa、tana表示正弦,余弦,正切教学程序:一.探究活动1.课本引入问题,再结合特别角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaa= ,cosa= ,tana=3例1.求如图所示的rt ⊿abc中的siaa,cosa,tana的值。
4.同学练习p21练习1,2,3二.探究活动二1.让同学画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°归纳结果30°45°60°siaacosatana2. 求下列各式的值(1)sia 30°+cos30°(2)sia 45°- cos30°(3) +ta60°-tan30°abc三.拓展提高p82例4.(略)1. 如图在⊿abc中,∠a=30°,tanb= ,ac=2 ,求ab四.小结五.作业课本p85-86 2,3,6,7,8,10锐角三角函数篇2一、锐角三角函数正弦和余弦第一課时:正弦和余弦(1)教学目的1,使同学了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素。
2,使同学了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。
初三数学——锐角三角函数的讲义
在直角三角形中,由已知元素求未知元素的过程,就是解直角三角形.
〈注〉解直角三角形,需把所有的边、角都求出来(不包括直角).
2.解直角三角形的依据
在直角三角形中有6个元素(三边三角),它们具有如下关系:
(1)边之间的关系:(勾股定理)
(2)角之间的关系:(两锐角互余)
解:,
.
设,
则,,,
,
.
6.在四边形ABCD中,∠B=∠D=90°,AB=2,CD=1, ∠A=60°,求AD、BC的长.
解:延长AD、BC相交于点E.
∠B=90°,∠A=60°,
,
;
同理,
,
;
;
.
方法3.如(方法2)图,,
,即.
.
如图,在中,于C,,,,
,,.作于E,
,
,
即.
.
【探究2】sin2α与sinα之间有什么关系?
解:易证∠BAC=∠ADE=a ,
在中,,
,
.
选B.
说明:可能有的同学会根据以前的知识,设,从而得出,最终算出,这样当然是很好的.但是,对于这种过去就比较熟悉的问题,应该尝试用新的观点去看待它、用新的方法去求解,逐渐形成使用锐角三角函数解题的意识.
(3)边、角之间的关系:
①;.
②;.
(4)其它:射影定理;直角三角形斜边中线等于斜边的一半;三角形面积公式等.
3.直角三角形的可解条件和基本类型
已知条件 解法
一条边和一个锐角 斜边c和锐角A ,,,
直角边a和锐角A ,,,
两条边 两条直角边a和b ,由求,,
中考数学专题复习10锐角三角函数及其运用(解析版)
锐角三角函数及其运用复习考点攻略考点一 锐角三角函数1. 锐角三角函数的定义:在Rt △ABC 中.∠C =90°.AB =c .BC =a .AC =b .正弦:sin A =∠的对边=斜边A ac ;余弦:cos A =∠的邻边=斜边A bc;正切:tanA =∠的对边=邻边A ab.【注意】根据定义求三角函数值时.一定要根据题目图形来理解.严格按照三角函数的定义求解.有时需要通过辅助线来构造直角三角形.2【例2】A .BCD .1【答案】C 【解析】把sin45°=代入原式得:原式=2×.故选C . 考点三 解直角三角形1.在直角三角形中.求直角三角形所有未知元素的过程叫做解直角三角形. 2.解直角三角形的常用关系: 在Rt △ABC 中.∠C =90°.则: (1)三边关系:a 2+b 2=c 2; (2)两锐角关系:∠A +∠B =90°; (3)边与角关系:sin A =cos B =a c .cos A =sin B =b c .tan A =ab; (4)sin 2A +cos 2A =1.3.科学选择解直角三角形的方法口诀: 已知斜边求直边.正弦、余弦很方便; 已知直边求直边.理所当然用正切; 已知两边求一边.勾股定理最方便; 已知两边求一角.函数关系要记牢; 已知锐角求锐角.互余关系不能少; 已知直边求斜边.用除还需正余弦.【例3】如图.我市在建高铁的某段路基横断面为梯形ABCD .DC ∥AB ,BC 长为6米.坡角β为45°.AD 的坡角α为30°.则AD 的长为 ________ 米 (结果保留根号)2sin 222【答案】62【解析】解:过C 作CE ⊥AB 于E.DF ⊥AB 于F.可得矩形CEFD 和Rt △CEB 与Rt △DFA. ∵BC=6.∴CE=2sin 456322BC ︒=⨯=.∴DF=CE=32.∴62sin 30DF AD ==︒.故答案为:62.【例4】如图.大海中有A 和B 两个岛屿.为测量它们之间的距离.在海岸线PQ 上点E 处测得74AEP =︒∠.30BEQ =︒∠;在点F 处测得60AFP =︒∠.60BFQ =︒∠.1km EF =.⑴ 判断AB 、AE 的数量关系.并说明理由⑵ 求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3 1.73≈. sin740.96︒≈.cos740.28︒≈.tan74 3.49︒≈.sin760.97︒≈.cos760.24︒≈)【答案】(1)见解析;(2)3.6km【解析】(1)相等.证明:∵30BEQ =︒∠.60BFQ =︒∠.∴30EBF =︒∠.EF BF =.又∵60AFP =︒∠.∴60BFA =︒∠.在AEF △与ABF △中.EF BF =.AFE AFB =∠∠.AF AF =. ∴AEF ABF △≌∠.∴AB AE =. (2)作AH PQ ⊥.垂足为H .设AE x =.则sin74AH x =︒.cos74HE x =︒.cos741HF x =︒+.Rt AHF △中.tan60AH HF =⋅︒.∴()cos74cos741tan 60x x ︒=︒+⋅︒.即()0.960.281 1.73x x =+⨯. ∴ 3.6x ≈.即 3.6km AB ≈.考点四 锐角三角函数的应用1.仰角和俯角:仰角:在视线与水平线所成的角中.视线在水平线上方的角叫做仰角. 俯角:在视线与水平线所成的角中.视线在水平线下方的角叫做俯角. 2.坡度和坡角坡度:坡面的铅直高度h 和水平宽度l 的比叫做坡面的坡度(或坡比).记作i =h l. 坡角:坡面与水平面的夹角叫做坡角.记作α.i =tan α. 坡度越大.α角越大.坡面越陡. 3.方向角(或方位角)指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角.4.解直角三角形中“双直角三角形”的基本模型:5.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语.根据题意画出图形.建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系.把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式.使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义.从而得到问题的解.6.解直角三角形应用题应注意的问题:(1)分析题意.根据已知条件画出它的平面或截面示意图.分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形.但可添加适当的辅助线.把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件.选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算.检验是否符合实际.并按题目要求的精确度取近似值.注明单位.【例5】如图.一名滑雪爱好者先从山脚下A处沿登山步道走到点B处.再沿索道乘坐缆车到达顶部C.已知在点A处观测点C.得仰角为35°.且A.B的水平距离AE=1000米.索道BC 的坡度i=1:1.长度为2600米.求山的高度(即点C到AE的距离)(参考数据:sin35°≈0.57.cos35°≈0.82.tan35°≈0.70.≈1.41.结果保留整数)【答案】1983米【解析】:如图.作CD⊥AE于点D.BF⊥CD于点F.又∵BE⊥AD.∴四边形BEDF是矩形.在Rt△BCF中.∵BC的坡度i=1:1.∴∠CBF=45°.∵BC=2600米.∴米.∴米.∵A.B的水平距离AE=1000米.∴米.∵∠CAD=35°.∴(米).答:山高CD约为1983米.【例6】如图.一艘海轮位于灯塔P的南偏东30°方向.距离灯塔100海里的A处.它计划沿正北方向航行.去往位于灯塔P的北偏东45°方向上的B处.(1)问B处距离灯塔P有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域.它的圆心位于射线PB上.距离灯塔150海里的点O处.圆形暗礁区域的半径为60海里.进入这个区域.就有触礁的危险.请判断海轮到达B处是否有触礁的危险?如果海伦从B处继续向正北方向航行.是否有触礁的危险?并说明理由.(参考数据:≈1.414.≈1.732)【答案】(1)71海里;(2)见解析【解析】解:(1)过点P作PD⊥AB于点D.依题意可知.P A=100.∠APD=60°.∠BPD=45°.∴∠A=30°.∴PD=50.在△PBD中.BD=PD=50.∴PB =50≈71.答:B 处距离灯塔P 约71海里.(2)依题意知:OP =150.OB =150﹣71=79>60. ∴海轮到达B 处没有触礁的危险.海伦从B 处继续向正北方向航行.有触礁的危险.第一部分 选择题一、选择题(本题有10小题.每题3分.共30分)1. 比萨斜塔是意大利的著名建筑.其示意图如图所示.设塔顶中心点为点B .塔身中心线AB 与垂直中心线AC 的夹角为A ∠.过点B 向垂直中心线AC 引垂线.垂足为点D .通过测量可得AB 、BD 、AD 的长度.利用测量所得的数据计算A ∠的三角函数值.进而可求A ∠的大小.下列关系式正确的是( )A .sin BDA AB= B .cos ABA AD=C .tan ADA BD=D .sin ADA AB=【答案】A【解析】由题可知.△ABD 是直角三角形.90BDA ∠=︒.sin BD A AB ∴=.cos AD A AB=,tan BDA AD =.∴选项B 、C 、D 都是错误的.故答案选A . 2. 如图.在ABC 中.∠C =90°.设∠A .∠B .∠C 所对的边分别为a .b .c .则( )A .c =b sinB B .b =c sin BC .a =b tan BD .b =c tan B【答案】B【解析】∵Rt ABC 中.90C ∠=︒.A ∠、B 、C ∠所对的边分别为a 、b 、c ∴sin bB c=.即sin b c B =.则A 选项不成立.B 选项成立 tan bB a=.即tan b a B =.则C 、D 选项均不成立故选:B . 3. 已知α是锐角.sin α=cos60°.则α等于( ) A .30° B .45°C .60°D .不能确定4. 若∠A 是锐角.且sinA= 3.则( )A. 0°<∠A<30°B. 30°<∠A<45°C. 45°<∠A<60°D. 60°<∠A<90° 【答案】 A【解析】∵sin0°=0.sinα= 13.sin30°= 12.又0< 13< 12.∴0°<α<30°. 故答案为:A .5. 点(-sin60°.cos60°)关于y 轴对称的点的坐标是( )A. (√32.12) B. (-√32.12) C. (-√32.-12) D. (- 12.- 32)【答案】 A 【解析】∵sin60°=√32.cos60°=12.∴(-sin60°.cos60°)=(-√32. 12).关于y 轴对称点的坐标是( √32.12).故答案为:A .6. 在Rt △ABC 中.∠C =90°.BC =5.AC =12.则sinB 的值是( )A .512B .125C .513D .1213【答案】D【解析】解:如图所示:∵∠C =90°.BC =5.AC =12.∴13AB =. ∴12sin 13AC B AB ==.故选:D .7. 如图.某停车场入口的栏杆AB.从水平位置绕点O 旋转到A′B′的位置.已知AO 的长为4米.若栏杆的旋转角∠AOA′=α.则栏杆A 端升高的高度为( ) A .米 B .4sinα米 C .米 D .4cosα米【答案】B【解析】 解:如答图.过点A′作A′C ⊥AB 于点C .在Rt △OCA′.sinα=.所以A′C =A′O ·sinα.由题意得A′O =AO =4.所以A′C =4sinα.因此本题选B .8. 菱形ABCD 的对角线AC =10cm.BD =6cm.那么tan为( )【解析】如图.由题意得.AO ⊥BO .AO =AC =5cm.BO =BD =3cm. 4sin α4cos αA CA O''2B1212则tan=tan ∠OBA .故选A.9. 如图.AB 是圆锥的母线.BC 为底面直径.已知BC =6 cm.圆锥的侧面积为15π cm 2 . 则sin∠ABC 的值为 ( )A.34B.35C.45 D. 53【答案】 C【解析】解:设圆锥的母线长为R.由题意得: 15π=π6R.解得:R=5. ∴圆锥的高为4. ∴.故答案为:C.10. 如图.四边形ABCD 是一张平行四边形纸片.其高2cm AG =.底边6cm BC .45B ∠=︒.沿虚线EF 将纸片剪成两个全等的梯形.若30BEF ∠=︒.则AF 的长为( )2B53AO BO ==A .1cm B.cm 3C.3)cm - D.(2-【答案】D【解析】如图所示.过点F 作FM BC ⊥交BC 于点M.∵AG BC ⊥.45B ∠=︒.AG=2.∴BG=FM=2.AF=GM.令AF=x. ∵两个梯形全等.∴AF=GM=EC=x.又∵30BEF ∠=︒.∴2=tan 30FMME =︒.∴ME =.又∵BC=6.∴26BC BG GM ME EC x x =+++=+++=.∴2x =-D .第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11..若tan (α–15°)= .则锐角α的度数是________.【答案】 75°【解析】【解答】由tan(α−15°)= √3.得 α−15°=60°. 解得α=75°. 故答案为:75°12.如图.在Rt △ABC 中.∠C =90°.BC =12.tan A =.则sin B =___________.125【答案】【解析】在Rt △ABC 中.∠C =90°.BC =12.tan A =.得.即. ∴AC =5.由勾股定理.得AB.所以sin B =. 故答案为:.13. 如图.A.B.C 是O上的三点.若OBC ∆是等边三角形.则cos A ∠=___________.【解析】解:∵△OBC 是等边三角形∴∠COB=60° ∴∠A=12COB ∠=30°∴cos cos30A ∠= 14. 如图是某商场营业大厅自动扶梯示意图.自动扶梯AB 的倾斜角为30.在自动扶梯下方地面C 处测得扶梯顶端B 的仰角为60︒.A 、C 之间的距离为4m . 则自动扶梯的垂直高度BD =_________m .(结果保留根号)【答案】【解析】∵∠BAC+∠ABC=∠BCD=60°.∠BAC=30°. ∴∠ABC=30°.∴∠ABC=∠BAC.∴BC=AC=4. 在Rt △BCD 中.BD=BCsin60°=4×2=故答案为: 513125125BC AC =12125AC =513AC AB =51315. 如图所示.在四边形ABCD 中.90B ∠=︒.2AB =.8CD =.连接AC .AC CD ⊥.若1sin 3ACB ∠=.则AD 长度是_________.【答案】10【解析】解:在Rt ABC 中.∵12,sin 3AB AB ACB AC =∠==.∴1263AC =÷=.在Rt ADC 中.AD ==10=.故答案为:10.16. 如图.某校教学楼后面紧邻着一个山坡.坡上面是一块平地.//,BC AD BE AD ⊥.斜坡AB 长26m .斜坡AB 的坡比为12∶5.为了减缓坡面.防止山体滑坡.学校决定对该斜坡进行改造.经地质人员勘测.当坡角不超过50°时.可确保山体不滑坡.如果改造时保持坡脚A 不动.则坡顶B 沿BC 至少向右移________m 时.才能确保山体不滑坡.(取tan50 1.2︒=)【答案】10【解析】解:如图.设点B 沿BC 向右移动至点H.使得∠HAD=50°.过点H 作HF ⊥AD 于点F.∵AB=26.斜坡AB 的坡比为12∶5.则设BE=12a.AE=5a.∴()()22212526a a +=.解得:a=2.∴BE=24.AE=10.∴HF=BE=24.∵∠HAF=50°.则24tan50 1.2HFAF AF︒===.解得:AF=20.∴BH=EF=20-10=10.故坡顶B沿BC至少向右移10m时.才能确保山体不滑坡.故答案为:10.第三部分解答题二、解答题(本题有7小题.共46分)17. 如图.在ABC中.90,tanC A ABC∠==∠的平分线BD交AC于点.D CD=AB的长?【答案】6【解析】解:在Rt ABC中.90,3C tanA∠==30,60,A ABC∴∠=∠=BD是ABC∠的平分线.30,CBD ABD∴∠=∠=︒又3,CD=330CDBCtan∴==.在Rt ABC中.90,30∠=︒∠=︒C A.630BCABsin∴==︒.故答案为:6.18. 已知:如图.在菱形ABCD中.AE⊥BC.垂足为E.对角线BD=8.tan∠CBD=.(1)求边AB的长;(2)求cos∠BAE的值.12【答案】(1)2√5 ;(2)35【解析】(1)连接AC .AC 与BD 相交于点O .∵四边形ABCD 是菱形.∴AC ⊥BD .BO =BD =4. ∵Rt △BOC 中.tan ∠CBD ==.∴OC =2. ∴AB =BC(2)∵AE ⊥BC.∴S 菱形ABCD =BC ·AE=BD ·AC . ∵AC=2OC =4.∴=×8×4.∴AE =.∴BE. ∴cos ∠ABE ==.19. 如图.小明利用学到的数学知识测量大桥主架在水面以上的高度AB .在观测点C 处测得大桥主架顶端A 的仰角为30°.测得大桥主架与水面交汇点B 的俯角为14°.观测点与大桥主架的水平距离CM 为60米.且AB 垂直于桥面.(点,,,A B C M 在同一平面内)12OC OB 1212125BE AB 35(1)求大桥主架在桥面以上的高度AM ;(结果保留根号)(2)求大桥主架在水面以上的高度AB .(结果精确到1米)(参考数据sin140.24,cos140.97,tan14 1.73︒︒︒≈≈≈≈)【答案】(1)大桥主架在桥面以上的高度AM 为(2)大桥主架在水面以上的高度AB 约为50米.【解析】解:(1)AB 垂直于桥面90︒∴∠=∠=AMC BMC在Rt AMC △中.60,30︒=∠=CM ACMtan ∠=AM ACM CM tan 30603︒∴=⋅=⨯=AM CM (米)答:大桥主架在桥面以上的高度AM 为(2)在Rt BMC △中.60,14︒=∠=CM BCMtan ∠=MBBCM CMtan14600.2515︒∴=⋅=⨯≈MB CM=+AB AM MB 1550∴≈+≈AB (米)答:大桥主架在水面以上的高度AB 约为50米.20. 如图.某船向正东航行.在A 处望见海岛C 在北偏东60°.前进6海里到B 点.此时测得海岛C 在北偏东45°.已知在该岛周围6海里内有暗礁.问船继续向正东航行.有触礁的危险吗?【答案】见解析【解析】 解:如图.过点C 作CD ⊥AB 于点D.∵∠CAD=90°-60°=30°.∠CBD=90°-45°=45°.∴BD=CD.设CD=x.∴AD=AB+6=6+x.在Rt△CAD中.tan∠CAD=CD AD.∴√33= xx+6.3x=6 √3+ √3x.(3-√3)x=6 √3.解得x=3 √3+3>6.答:若船继续向东航行.无触礁危险。
九年级人教版数学第二学期第28章锐角三角函数整章知识详解
九年级数学第28章锐角三角函数
【例】求下列各式的值.
(1) cos260°+sin260°
(2) csoins4455
-tan45
【解析】(1)cos²60°+sin²60°
cos²60°表示 (cos60°)², 即cos60°的平方.
=( 12)²+(
3 2
)²
=1;
(2)cos 45 tan 45
九年级数学第28章锐角三角函数
2.(黄冈中考)在△ABC中,∠C=90°,sinA=
则tanB=( B )
A. 4
B. 3
C. 3
D. 4
3
4
5
5
3.(丹东中考)如图,小颖利用有一
个锐角是30°的三角板测量一棵树的高度, 30 已知她与树之间的水平距离BE为5m,AB为 °A
B 1.5m(即小颖的眼睛距地面的距离),那
九年级数学第28章锐角三角函数
【例】如图,在Rt△ABC中,∠C=90°,BC=6,sinA= 3 ,
求cosA,tanB的值.
5
B
【解析】 sinA BC ,
AB
6
AB BC 6 5 10,
sinA 3
又 AC AB2 BC2 102 62 8,
A
C
cosA AC 4 , tanB AC 4 .
100
D.不能确定
3.如图 A
B
1
3
,则 sinA=___2___ .
30°
C
7
九年级数学第28章锐角三角函数
1.(温州中考)如图,在△ABC中,∠C=90°, AB=13,
锐角三角形函数重点难点突破
《锐角三角形函数》重点难点突破本章是在直角三角形的概念、性质、判定以及作图的基础上,继续深入研究几何图形,前后在直角三角形中两锐角互余,三边关系有勾股定理,那么边与角之间有什么样的关系呢?通过锐角三角形函数的学习,从而实现这部分知识与实际生活的紧密结合.锐角三角函数不仅是初中数学学习的重点内容,也是高中数学后继学习内容的基础.一、准确理解概念,掌握本章知识的重点1.明确锐角是在什么样三角形中,在哪个直角三角形中;正弦、余弦、正切的定义.2.三角函数值是比值,与三边大小无关.3.必须熟记所有特殊角的三角函数值,并做到准确运算(既能知角求值,又能知值求角).4.掌握三角函数基本关系式以及余角的三角函数关系式,例:22sin cos 1+=S αα;sin tan cos =S αααsin(90)cos ︒-=αα,cos(90)sin ︒-=αα5.锐角三角函数的增减性.6.解直角三角形的基本类型(已知一边一角,已知两边).7.弄清仰角、俯角、坡度、坡角、垂直距离、水平距离等常用的概念的意义.8.能把实际问题中的已知条件和未知元素归结到某个直角三角形中(这是两年中考命题常见的一类题型).二、本章重点是以上几个方面,也是学好本章知识的关键.那么难点是什么呢?本章难点是把几何图形和实际生活,生产中的计算问题添辅助线转化为解直角三角形问题.三、例1,如图ABC △中,⊥AD BC 于D ,74=BD DC ∶∶,2tan 3=B ,求:tan C . “遇此可设辅助未知数”,这是解数学问题的重要方法之一:分析:∵74=BD DC ∶∶,设7=BD x ,4=DC x在Rt ABC △中,2tan 3==AD B BD D CA设2=AD y ,3=BD y 由7=BD x ,3=BD y ,得37=y x ∴312477=⋅=y DC y ∴27tan 1267===AD y C DC y例2,如图在ABC △中,5=AC ,3=AB ,7=BC ,求:∠A .解:过C 作⊥CD AB 垂足为D ,设=AD x , 则有22227(3)5-+=-x x 22496925---=-x x x 52=x 512cos 52∠===AD DAC AC ∴60∠=︒DAC 则120∠=︒BAC C B A 73D A B C。
锐角三角函数教材分析和教学建议
《锐角三角函数》教材分析和教学建议一、教材分析1、地位、作用从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段,在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,即本章内容在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程.无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的基础.与此同时,本章为学生提供了更加广阔的探索空间,可以开阔思路,发展学生的思维能力,有效改变学生的学习方式.2、主要内容本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容.锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度.本章需要落实五个教学内容:锐角三角函数的概念;特殊角的三角函数值;根据三角函数值求角度;解直角三角形的含义;实际问题与解直角三角形.本章需要认识三个教学要点:基本点——对锐角三角函数的认识与应用;支撑点——相似和勾股定理;能力提升点——组合图形的转化求解,根据具体问题构造直角三角形.二、教学目标1、课标对教材的总体要求(1)通过实例认识锐角三角函数(sinA,cosA,tanA),知道300,450,600角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角.(2)运用三角函数解决与直角三角形有关的简单实际问题.2、课标对本章内容的具体要求(1)了解锐角三角函数的概念,能够正确应用sinA,cosA,tanA表示直角三角形中两边的比;记忆300,450,600角的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值说出这个角的度数;(2)能够正确地使用计算器,由已知锐角求它的三角函数值,由已知三角函数值求出相应的锐角;(3)理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;(4)通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角形的学习,体会数学在解决实际问题中的作用,并结合实际问题对微积分的思想有所感受.三、教学重点、难点1、教学重点:锐角三角函数的概念,解直角三角形及其简单应用.2、教学难点:锐角三角函数的概念;掌握300,450,600角的三角函数值.三、教材的编写意图1、正确处理数学,社会,学生三者的关系,适应科技发展的形势,关注社会进步的需求,更新对数学基础知识和基本技能的认识,注重培养理性精神和创新意识,提高学生发现、提出、分析和解决问题的能力.2、遵循认知规律,为学生创造自主探究,合作交流的空间,为教师营造教学创新的氛围,为师生互动式教学提供丰富的资源.促进现代信息技术与数学课程的整合,改进教材的呈现方式,提高学生学习数学的兴趣.四、学情分析学生前面已经学习了函数、四边形、相似三角形和勾股定理的知识,已经掌握了直角三角形各边、各角之间的关系和函数的基本概念,能够熟练地利用勾股定理解决有关直角三角形的问题.为锐角三角函数的学习提供了研究的方法,具备了一定的逻辑思维能力和推理能力,通过以前的合作学习,具备了一定的合作与交流的能力,会观察、猜想、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理.但在本章,学生首次接触到以角度为自变量的三角函数,初学者不易理解,学生很难想到对于任意锐角,它的对边、邻边和斜边的比值也是固定的实事,关键在于教师引导学生比较、分析、得出结论.五、教学建议在本章,学生首次接触到以角度为自变量的三角函数,初学者不易理解,应注意,只有让学生正确理解锐角三角函数的概念,才能掌握直角三角形边与角之间的关系,才能运用这些关系解直角三角形.因此在教学中将采取以下策略:1、认真钻研教材、选择教法,选取的例子要深入浅出,让教学内容一脉贯通.突出学数学、用数学的意识与过程.因为锐角三角函数的概念是本章的重点、难点和关键,因此,如何选取例子引入这个概念就显得尤为重要,在教学三角函数的应用时尽量和实际问题联系起来,减少单纯解直角三角形的问题,让学生感觉自然,熟悉和容易理解.2、重视学生记忆的环节,充分运用现代信息技术.教师要引导学生对定义、基本公式、性质等进行记忆,并检查和督促,因为这是整册书学习的基础,如果忽略了这一环节的工作,我们的教学将会是事倍功半,甚至是徒劳无功的.三角函数定义的记忆在解直角三角形这章中显得尤其重要,学生只有在熟记的基础上才能谈得上运用,形成技能,发展思维.另外,教师应当在学生理解并能正确应用公式、法则等进行计算的基础上,指导学生用计算器完成较为繁杂的计算.在课堂教学、课外作业、实践活动中,鼓励学生用计算器进行探索规律等活动.3、注意数形结合,自然体现数与形之间的联系.数形结合是一种重要的数学思想和数学方法,是几何学习必不可少的有效方法.如本章对于锐角三角函数的概念,教科书是利用学生对直角三角形的认识以及相似三角形的有关知识引入的,结合几何图形来定义锐角三角函数的概念,将数形结合起来,有利于学生理解锐角三角函数的本质;再如,解直角三角形在实际中有着广泛的应用,先将这些实际问题抽象成数学问题,并利用锐角三角函数解直角三角形时,离不开几何图形,这时往往需要根据题意画出几何图形,通过分析几何图形得到边、角等关系,再通过计算、推理等使实际问题得到解决.因此,在本章教学时,要注意加强数形结合,在引入概念、化简计算、解决实际问题时都要尽量画图帮助分析,通过图形帮助找到直角三角形的边、角之间的关系,加深对直角三角形本质的理解.4、数学来源于生活,又服务于生活.在教学中还要提供一些具有实际背景和应用意义的题目,让学生经历“问题情境——建立模型——解释、应用与拓展”解决问题的过程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数难点解析
本章“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。
从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。
在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。
在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。
无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。
本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章重点是锐角三角函数的概念和直角三角形的解法。
锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA
表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
本章内容与已学“相似三角形”“勾股定理”等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。