模拟电子技术基础1.ppt

合集下载

模拟电子技术第1章PPT课件

模拟电子技术第1章PPT课件

多数载流子——自由电子 施主离子
少数载流子—— 空穴
7
8
2. P型半导体
在本征半导体中掺入三价杂质元素,如硼、镓等。
硅原子
+4
空穴
+4
硼原子
+4
8
电子空穴对
空穴
+4 +4
P型半导体
- - --
+3 +4
- - --
- - --
+4 +4
受主离子
多数载流子—— 空穴 少数载流子——自由电子 9
杂质半导体的示意图
(1) 稳定电压UZ ——
在规定的稳压管反向工作电流IZ下UZ,所对应的Iz反min 向工作电u压。
(2) 动态电阻rZ ——
△I
rZ =U /I
rZ愈小,反映稳压管的击穿特性△愈U 陡。
I zmax
(3) 最小稳定工作 电流IZmin——
保证稳压管击穿所对应的电流,若IZ<IZmin则不能稳压。
(4) 最大稳定工作电流IZmax——
17
EW
R
18
(2) 扩散电容CD
当外加正向电压
不同时,PN结两 + 侧堆积的少子的 数量及浓度梯度 也不同,这就相 当电容的充放电 过程。
P区 耗 尽 层 N 区 -
P 区中电子 浓度分布
N 区中空穴 浓度分布
极间电容(结电容)
Ln
Lp
x
电容效应在交流信号作用下才会明显表现出来
18
19
1.2 半导体二极管
30
31
四、稳压二极管
稳压二极管是应用在反向击穿区的特殊二极管
பைடு நூலகம்

模拟电子技术基础PPT课件-经典全

模拟电子技术基础PPT课件-经典全
模拟电子技术基础
绪论
一、电子技术的发展 二、模拟信号与模拟电路 三、电子信息系统的组成 四、模拟电子技术基础课的特点 五、如何学习这门课程
一、电子技术的发展
电子技术的发展,推动计算机技术的发展,使之“无 孔不入”,应用广泛!
• 广播通信:发射机、接收机、扩音、录音、程控交换机、电 话、手机
• 网络:路由器、ATM交换机、收发器、调制解调器
因基区薄且多子浓度低,使极少 数扩散到基区的电子与空穴复合
基区空穴 的扩散
因发射区多子浓度高使大量 电子从发射区扩散到基区
最大功耗PZM= IZM UZ
动态电阻rz=ΔUZ /ΔIZ
若稳压管的电流太小则不稳压,若稳压管的电流太大则会
因功耗过大而损坏,因而稳压管电路中必需有限制稳压管电
流的限流电阻!
§1.3 晶体三极管
一、晶体管的结构和符号 二、晶体管的放大原理 三、晶体管的共射输入特性和输出特性 四、温度对晶体管特性的影响 五、主要参数
结电容小,故结允许 结电容大,故结允许 可大,小的工作频率
的电流小,最高工作 的电流大,最高工作 高,大的结允许的电
频率高。
频率低。
流大。
二、二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性。
i f (u)
u
i IS(eUT 1) (常温下UT 26mV)
击穿 电压
温度的 电压当量
漂移运动
因电场作用所产 生的运动称为漂移 运动。
参与扩散运动和漂移运动的载流子数目相同,达到动态 平衡,就形成了PN结。
PN 结的单向导电性
PN结加正向电压导通: 耗尽层变窄,扩散运动加
剧,由于外电源的作用,形 成扩散电流,PN结处于导通 状态。

电路与模拟电子技术技术基础_图文

电路与模拟电子技术技术基础_图文

线性:VCR曲线为通过原点的直线。 否则,为非线性。
非时变(时不变): VCR曲线不随时间改变而 改变。 否则,为时变。 即: VCR曲线随时间改变而改变。
电阻元件有以下四种类型:
u-i特性 时不变 时变
线性 u
i u t1 t2
i
非线性 u i
u t1 t2 i
电阻实物
精密型金属膜电阻器
金属氧化皮膜电阻器
直流电流——大小、方向恒定, 用大写字母 I 表示。
参考方向--人为假设,可任意设定,但 一经设定,便不再改变。
参考方向的两种表示方法:
1 在图上标箭头; i
2 用双下标表示
a
b
在参考方向下,若计算值为正,表明
电流真实方向与参考方向一致;若计
算值为负,表明电流真实方向与参考
方向相反。
1.2.2 电压和电压的参考方向
信号处理 (中间环节)
接受转换信 号的设备
(负载)
1.2 电 路 变 量
1.2.1 电流和电流的参考方向
电流方向—正电荷运动的方向
电流参考方向—任选一方向为电流正方向。
如:
a
I
ba
I
b
正值
负值
严格定义:电荷在导体中的定向移动形 成电流。电流强度,简称电流i(t),大 小为:
单位:A , 1安 = 1 库 / 秒

(R=0)时,相当于导线,“短路”
注意:u与 i 非关联时 ,欧姆定理应改写为
例 分别求下图中的电压U或电流I。
3A 2 +U 解:关联
I2 + -6V -
非关联
瞬时功率:
电阻是耗能元件,
是无源元件。

模电课件-第1章-精选文档

模电课件-第1章-精选文档
(3)运算电路:完成一个或多个信号的各种运算。 (4)信号转换电路: 电压(流)→电流(压)、
直(交)流→交(直)流。
(5)信号发生电路:产生正弦、三角、矩形波等。 (6)直流电源:将交流电转换成不同输出电压和电流的 直流电。
33 MHz
目录
Analog Electronics
1
导言
33 MHz
2 运算放大器 3 二极管及其基本电路 4 晶体三极管及放大电路基础 5 场效应管放大电路 6 模拟集成电路 7 反馈放大电路 8 信号的运算和滤波 9 波形的发生与变换电路 10 直流稳压电源
信号的 信号的 信号的
信号的
提取
传感器 接收器
预处理
隔离、滤波 放大、阻抗 变换
加工
运算、转 换、比较
执行
功率放大 A/D转换
33 MHz
图1.2.1电子信息系统示意图
Analog Electronics
1.2.3
电子信息系统中的模拟电路
信号的 预处理 信号的 加工 信号的 执行
信号的 提取
(1)放大电路:用于信号的电压、电流或功率放大。 (2)滤波电路:用于信号的提取、变换或抗干扰。
Analog Electronics
模拟电子技术基本教程 Fundamentals of Analog Electronics 华成英 主编
33 MHz
Analog Electronics 1. 电子技术的发展简史
电子技术诞生的历史虽短,但深入的领域却是最深最广, 它不仅是现代化社会的重要标志,而且成为人类探索宇宙宏观 世界和微观世界的物质技术基础。 1904年第一只电子器件发明以来,世界电子技术经历了 电子管、晶体管和集成电路等重要发展阶段。

1模拟电子技术基础简明教程(第三版)杨素行_PPT课件_第一章1

1模拟电子技术基础简明教程(第三版)杨素行_PPT课件_第一章1

又称正向偏置,简称正偏。
P
空间电荷区
空间电荷区变窄,有利 于扩散运动,电路中有 较大的正向电流。
N
I 内电场方向
外电场方向
V
R
图3 正向偏置PN结
在 PN 结加上一个很小的正向电压,即可得到较大的 正向电流,为防止电流过大,可接入电阻 R。
(2) PN 结外加反向电压(反偏) 反向接法时,外电场与内电场的方向一致,增强了内 电场的作用;
模拟电子技术基础
一、电子技术的发展
• 1947年 • 1958年 • 1969年 • 1975年
贝尔实验室制成第一只晶体管 集成电路 大规模集成电路 超大规模集成电路
第一片集成电路只有4个晶体管,而1997年一片集成电路 中有40亿个晶体管。有科学家预测,集成度还将按10倍/6年 的速度增长,到2015或2020年达到饱和。
3. 本征半导体中自由电子和空穴的浓度相等。
4. 载流子的浓度与温度密切相关,它随着温度 的升高,基本按指数规律增加。
三、杂质半导体
杂质半导体有两种 1、 N 型半导体
N 型半导体 P 型半导体
在硅或锗的晶体中掺入少量的 5 价杂质元素, 如磷、锑、砷等,即构成 N 型半导体(或称电子 型半导体)。
学习电子技术方面的课程需时刻关注电子技术的发展!
电子技术的发展很大程度上反映在元器件的发展 上。从电子管→半导体管→集成电路
1904年 电子管问世
1947年 晶体管诞生
1958年集成电 路研制成功
电子管、晶体管、集成电路比较
值得纪念的几位科学家!
第一只晶体管的发明者
(by John Bardeen , William Schockley and Walter Brattain in Bell Lab)

模拟电子技术PPT1

模拟电子技术PPT1

电工与模数电技术
数字电子技术
参考书1:张炳达,注册电气工程师执业资格考试专业基础考试 复习教程,天津大学出版社,2013年
参考书2:元增民,数字电子技术讲义 参考书3:谢庆等,注册电气工程师(供配电)执业资格考试基础考 试历年真题详解,人民交通出版社,2014年
制作:元增民
主讲人:元增民
数字电子技术(1)
(1) 整数部分的转换
除基取余法(平式书写):用目标数制的基数(R=2)去除 十进制数,第一次相除所得余数为目的数的最低位K0,将所 得商再除以基数,反复执行上述过程,直到商为“0”,所得 余数为目的数的最高位Kn-1。 例:(25)10=(?)2
0
1 1
1 3
001 余 6 12 25
2进制 10进制
2015级注册电气工程师考培
电工与模数电技术
主讲教师:元增民
电工与模数电技术
主讲教师简介
元增民,77级大学生,82级研究生,高级领域发表数千篇满意答复。
已发表论文30多篇。出版三种特色教科书: 1.《单片机原理与应用基础》国防科大出版社2006; 2.《模拟电子技术》中国电力出版社2009,清华大学出版社2013,2014修
★ 模拟信号与数字信号区别
电 子
模拟信号 时间连续的信号




信 号
数字信号 时间和幅度都是离散的
图形区别:
★模拟信号时间和数值均连续变化的信号,如正弦波、锯齿波
u 正弦波信号
t
★数字信号时间和幅度都是离散的
u
数字信号
t

离散信号电压或数字电压通常用逻辑电平来表示。 例如,逻辑电平与电压值的关系可用下表来描述:

华中科技大学《模拟电子技术基础》——CH01-1省公开课一等奖全国示范课微课金奖PPT课件

华中科技大学《模拟电子技术基础》——CH01-1省公开课一等奖全国示范课微课金奖PPT课件

绝大部分电路使用 电压恒定,电流随负载改变
电流源
电路中恒流用
不能成为电路系统电源
18/7118
模拟电子电源表示: 电源在哪里?
图二
图一
图三
电源省略
19/71
电源是什么样:
20/71
模拟电路电源大小:
直流电压源:5V,±5V, ±12V ,±15V 直流电压源:1.8V,2.7V, 3.3V , 特点:弱电
2/71 2
1.0 引言
我们生存自然界中存在大量物理量
温度 电量
压力 重量
光亮 流量
声音 风速 XX
速度 液位 XX
位移 转速 XX
3/71 3
1.0 引言
物理量改变就是信息
IT是什么?
信息技术
问题:怎样获取这些物理量改变?
传感器
4/71 4
1.0 引言
传感器怎样反应物理量改变?
温度 重量 压力 流量 光亮 液位 速度 转速 位移 XX 电压 XX
48/7148
1.4.3 放大电路模型类型
AS
Vo VS
AVO
RL Ro RL
Ri Rs Ri
源电压放大倍数是对信号纯放大,应该尽可能确保
信号源电阻会消耗一部分信号源电压造成开环放大倍数降低 为降低开环放大倍数降低,输入电阻应尽可能大
输出电阻会消耗一部分输出电压造成开环放大倍数降低 为降低开环放大倍数降低,输入电阻应尽可能小
模拟电路电源对电路电位限制:
普通情况下,电路中各点电位不会超出电源电压
21/71
放大器
信号源
电源 放大器
负载
n模电关键 n为何要放大? n什么是放大? n对放大有什么要求? n怎样满足对放大要求? n什么器件能够进行放大? n怎样组成放大系统?

模拟电子技术(第三版)江晓安版 第一章ppt

模拟电子技术(第三版)江晓安版 第一章ppt
模拟电子技术基础
教材:《模拟电子技术》(第三版) 作者:江晓安 西电出版社
专业基础课课程体系
专业基础课
专业课
模电 (低频电子线路) 高频电子线路等 电路 数电 (计算机硬件) 信号与系统
学位课
微机原理、单片机等
数字信号处理
语音信号处理
图像信号处理等
考研课—电子技术(模电、数电)、信号与系统
概述:
3. 本征半导体中的两种载流子
运载电荷的粒子称为载流子。 外加电场时,带负电的自由电 子和带正电的空穴均参与导电, 且运动方向相反。由于载流子数 目很少,故导电性很差。 温度升高,热运动加剧,载 流子浓度增大,导电性增强。 热力学温度0K时不导电。 两种载流子
为什么要将半导体变成导电性很差的本征半导体?
2. 本征半导体的结构
共价键
由于热运动,具有足够能量 的价电子挣脱共价键的束缚 而成为自由电子 自由电子的产生使共价键中 留有一个空位置,称为空穴 自由电子与空穴相碰同时消失,称为复合。 动态平衡 一定温度下,自由电子与空穴对的浓度一定;温度升高, 热运动加剧,挣脱共价键的电子增多,自由电子与空穴对 的浓度加大。
电子技术的发展 从电子管→半导体管→集成电路
1904年 电子管问世
1947年 晶体管诞生
1958年集成电 路研制成功
1958年只有4个晶体管 1997年一芯片中有40亿个晶体管 电子管、晶体管、集成电路比较
值得纪念的几位科学家!
第一只晶体管的发明者 (by John Bardeen , William Schockley and Walter Brattain in Bell Lab) 贝尔实验室三名科学家在1947 年11月底发明了晶体管,1956年因 此获得诺贝尔物理学奖。 巴因所做的超导研究于1972年 第二次获得诺贝尔物理学奖。 第一个集成电路及其发明者 ( Jack Kilby from TI ) 1958年9月12日,在德州仪器公司 的实验室,实现了把电子器件集成在 一块半导体材料上的构想。42年后, 于2000年获诺贝尔物理学奖。

《模拟电子技术》课件

《模拟电子技术》课件
《模拟电子技术》PPT课件
CATALOGUE
目录
模拟电子技术概述模拟电子技术基础知识模拟电路分析模拟电子技术实践应用模拟电子技术面临的挑战与解决方案模拟电子技术未来展望
01
模拟电子技术概述
总结词
模拟电子技术是研究模拟电子电路及其应用的科学技术,具有模拟信号处理的特点。
详细描述
模拟电子技术主要涉及对模拟信号的处理,即对连续变化的电压或电流信号进行处理,实现信号的放大、滤波、转换等功能。与数字电子技术相比,模拟电子技术具有处理连续信号、实时性强、精度高等特点。
例如,石墨烯、氮化镓等新型材料具有优良的导电性能和热稳定性,可以应用于高性能的电子器件中。
此外,还有一些新型复合材料也逐渐被应用于模拟电子技术中,以提高器件的性能和稳定性。
03
此外,还需要加强人才培养和技术交流,提高电路设计师的技术水平和创新能力。
01
高性能电路设计是模拟电子技术的重要组成部分,也是实现高性能电子器件的关键。
二极管的结构
二极管由一个PN结和两个电极组成,其结构简单、可靠,应用广泛。
正向导通特性
当二极管正向偏置时,电流可以通过PN结,表现出低阻抗的导通特性。
反向截止特性
当二极管反向偏置时,电流很难通过PN结,表现出高阻抗的截止特性。
03
02
01
1
2
3
三极管由三个半导体组成,包括两个N型和一个P型半导体,具有三个电极。
总结词
滤波电路是一种根据特定频率范围对信号进行筛选和处理的电路,主要用于提取有用信号、抑制噪声和干扰。
详细描述
滤波电路通过利用电感器和电容器的频率特性,将信号中特定频率范围内的成分保留或滤除,从而实现信号的处理和控制。常见的滤波电路有低通滤波器、高通滤波器和带通滤波器等。

模拟电子技术基础(第4版华成英)ppt课件

模拟电子技术基础(第4版华成英)ppt课件

1
乙类功率放大器是一种非线性放大器,其工作原 理是将输入信号的负半周切除,仅让正半周通过 晶体管放大。
2
在乙类功率放大器中,晶体管只在正半周导通, 因此效率较高。但因为晶体管工作在截止区和饱 和区,所以失真较大。
3
乙类功率放大器通常采用推挽电路形式,以减小 失真。
THANKS
感谢观看
利用晶体管、可控硅等开关元件的开关特性,通过适当组合实现非 正弦波信号的输出。
非正弦波发生电路的组成
包括开关元件、储能元件和输出电路。
非正弦波发生电路的特点
输出信号波形多样,幅度大,但频率稳定性较差,且波形质量受开 关元件特性的影响较大。
波形变换电路
波形变换电路的原理
利用运算放大器和适当组合的RC电路,将一种波形变换为另一种波 形。
基本放大电路 放大电路的基本概念和性能指标
总结词
共基极放大电路的特点是输入阻抗低、 输出阻抗高。
VS
详细描述
共基极放大电路是一种特殊的放大电路, 其工作原理基于晶体管的电压放大作用。 由于其输入阻抗低、输出阻抗高的特点, 因此常用于实现信号的电压放大。在电路 结构上,共基极放大电路与共发射极放大 电路类似,只是晶体管的基极接输入信号 而不是发射极。
01
特征频率
晶体管在特定工作点上的最高使 用频率,超过该频率时放大电路 将失去放大能力。
截止频率
02
03
放大倍数
晶体管在正常放大区与截止区的 交界点上所对应的频率,是晶体 管的重要参数之一。
晶体管在不同频率下的电压放大 倍数,反映了晶体管在不同频率 下的放大性能。
单级放大电路的频率响应
低通部分
放大电路对低频信号的放大能力较强,随着频 率升高,增益逐渐下降。

模拟电子技术第一章PPT课件

模拟电子技术第一章PPT课件

06 反馈放大电路
反馈的基本概念
反馈:将放大电路输出信号的一部分或全部,通过一定 的方式(反馈网络)送回到输入端的过程。
反馈的判断:瞬时极性法。
反馈的分类:正反馈和负反馈。 反馈的连接方式:串联反馈和并联反馈。
正反馈和负反馈
正反馈
反馈信号使输入信号增强的反 馈。
负反馈
反馈信号使输入信号减弱的反 馈。
集成化与小型化
随着便携式设备的普及,模拟电子技术需要实现 更高的集成度和更小体积,以满足设备小型化的 需求。
未来发展趋势
智能化
01
随着人工智能技术的发展,模拟电子技术将逐渐实现智能化,
能够自适应地处理各种复杂信号和数据。
高效化
02
未来模拟电子技术将更加注重能效,通过优化电路设计和材料
选择,提高能量利用效率和系统稳定性。
电压放大倍数的大小与电路中 各元件的参数有关,可以通过 调整元件参数来改变电压放大 倍数。在实际应用中,需要根 据具体需求选择合适的电压放 大倍数。
输入电阻和输出电阻
总结词
详细描述
总结词
详细描述
输入电阻和输出电阻分别表 示放大电路对信号源和负载 的阻抗,影响信号源和负载 的工作状态。
输入电阻越大,信号源的负 载越轻,信号源的输出电压 越稳定;输出电阻越小,放 大电路对负载的驱动能力越 强,负载得到的信号电压越 大。
共基放大电路和共集放大电路
共基放大电路的结构和工作原理
共基放大电路是一种特殊的放大电路,其输入级和输出级采用相同的晶体管,输入信号 通过输入级进入,经过晶体管的放大作用,输出信号被送到输出级,最终输出放大的信
号。
共集放大电路的结构和工作原理
共集放大电路是一种常用的放大电路,其结构包括输入级、输出级和偏置电路。输入信 号通过输入级进入,经过晶体管的放大作用,输出信号被送到输出级,最终输出放大的 信号。共集放大电路的特点是电压增益高、电流增益低、输出电压与输入电压同相位。

模拟电子技术基础第四版课件-第一章

模拟电子技术基础第四版课件-第一章
60A 40A
20A IB=0 9 12 UCE(V)
(1-51)
4
IC(mA
) 此区域中UC1E00UBAE,
集电结正偏,
3
IB>IC,UCE800.3VA 称为饱和区。
60A
2
40A
1
20A
IB=0
3 6 9 12 UCE(V)
(1-52)
IC(mA ) 4 3
2
此1区00域A中 :
I,UB=B80E0<,ICA死=I区CEO 电压60,A称为 截止40区A。
变薄
+ P
-+ -+ -+ -+
内电场被削弱,多子 的扩散加强能够形成 较大的扩散电流。
_ N
外电场
R
内电场
E
(1-22)
2、PN 结反向偏置
_ P
变厚
-+ -+ -+ -+
内电场被被加强,多子
的扩散受抑制。少子漂
移加强,但少子数量有
限,只能形成较小的反
向电流。
+
N
内电场
外电场
R
E
(1-23)
3 PN 结方程
I
U
I I S (e UT 1)
U
三 PN结的击穿
(1-24)
四 PN结的电容效应
PN结高频小信号时的等效电路: rd
势垒电容和扩散电 容的综合效应
(1-25)
1. 2 半导体二极管
1.2. 1 半导体二极管的结构和符号
PN 结加上管壳和引线,就成为半导体二极管。
点接触型
触丝线
PN结
引线 外壳线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.3 放大电路的主要性能指标
4. 频率响应
B.频率失真(线性失真)
幅度失真: 对不同频率的信号增
益不同,产生的失真。
相位失真: 对不同频率的信号相
移不同,产生的失真。
1.2.3 放大电路的主要性能指标
5. 非线性失真
由元器件非线性特性 引起的失真。 非线性失真系数:
Vo2k
k2 100%
Ro Ro RL
则电流增益为
Ai
io ii
Ais
Ro Ro RL
由此可见 RL
Ai
要想减小负载的影响,则希望…? Ro RL 理想情况 Ro
由输入回路得
ii
is
Rs Rs Ri
要想减小对信号源的衰减,则希望…? Ri Rs 理想情况 Ri 0
1.4 放大电路模型
C. 互阻放大模型(自学) D. 互导放大模型(自学) E. 隔离放大电路模型
iS
vS RS
电流源等效电路
1.2 信号的频谱
1. 电信号的时域与频域表示
时域
A. 正弦信号
v(t) Vm sin(0t )
T 2π
0
0 2πf0
1.2 信号的频谱
1. 电信号的时域与频域表示
B. 方波信号
满足狄利克雷条件,展开成 傅里叶级数
方波的时域表示
v(t)
VS 2
2VS π
(sin0t
四种增益
Av
vo vi
Ai
io ii
Ar
vo ii
其中 Av、Ai 常用分贝(dB)表示。
电压增益 20lg Av (dB)
电流增益 20lg Ai (dB)
Ag
io vi
功率增益 10lg AP (dB)
1.5 放大电路的主要性能指标
4. 频率响应
A.频率响应及带宽
在输入正弦信号情况下,输出随输入信号频率连续变化的稳态 响应,称为放大电路的频率响应。
输入输出回路没有公共端
1.5 放大电路的主要性能指标
1. 输入电阻
Ri
vt it
1.5 放大电路的主要性能指标
2. 输出电阻
vt
R o
vs 0,RL
it
注意:输入、输出电阻为交流电阻
1.5 放大电路的主要性能指标
3. 增益
反映放大电路在输入信号控制下,将供电电源能量
转换为输出信号能量的能力。
Vo1
VO1是输出电压信号基波分量的 有效值,Vok是高次谐波分量的有效
值,k为正整数。
end
Ro RL 理想情况 Ro 0
1.4 放大电路模型
A. 电压放大模型
另一方面,考虑到 输入回路对信号源的 衰减

Vi
Ri Rs Ri
Vs
要想减小衰减,则希望…?
Ri Rs 理想情况 Ri
1.4 放大电路模型
2. 电流放大模型
Ais ——负载短路时的
电流增益
由输出回路得
io
Ais ii
io vi
(S)
1.4 放大电路模型
2. 放大电路模型
A. 电压放大模型
Avo ——负载开路时的
电压增益
Ri ——输入电阻
Ro ——输出电阻
由输出回路得 则电压增益为
Vo AV
AVVVoOi ViRAoVROLRRLo RLRL
由此可见 RL
AV 即负载的大小会影响增益的大小
要想减小负载的影响,则希望…? (考虑改变放大电路的参数)
2VS π
(sin0t
1 3
s
in
30t
1 5
sin
5
0t
)
幅度谱
相位谱
1.2 信号的频谱
C. 非周期信号
傅里叶变换:
周期信号 非周期信号
离散频率函数 连续频率函数
非周期信号包含了所有可能的频 率成分 (0 )
通过快速傅里叶变换(FFT) 可迅速求出非周期信号的频谱函 数。
气温波形 气温波形的频谱函数(示意图)
1 3
s
in
3
0
t
1 5
s
in
5
0t
)
其中
0
2π T
VS ——直流分量 2
2VS ——基波分量 π
2VS 1 ——三次谐波分量 π3
1.2 信号的频谱
2. 信号的频谱
频谱:将一个信号分解为正弦信号的集合,得到其正弦信号幅值和相位 随角频率变化的分布,称为该信号的频谱。
B. 方波信号
v(t)
VS 2
模拟电子技术基础
——电子教案 V2.0
华中科技大学电信系 张林
1.1 信号 1.2 信号的频谱 1.3 模拟信号和数字信号 1.4 放大电路模型 1.5 放大电路的主要性能指标
1.1 信号
1. 信号: 信息的载体
微音器输出的某一段信号的波形
1.1 信号
2. 电信号源的电路表达形式
电压源等效电路
电压增益可表示为
AV
(
j
)
Vo ( j Vi (j
) )
Vo (j ) Vi (j )
[o ( ) i ( )]
或写为 AV AV ( ) ( )
其中
AV ( )
Vo ( j ) Vi ( j )
称为幅频响应
( ) o ( ) i ( ) 称为相频响应
1.5 放大电路的主要性能指标
4. 频率响应
A.频率响应及带宽
普通音响系统放大电路的幅频响应
该图称为波特图 纵轴:dB 横轴:对数坐标
其中
fH — —上限频率 fL — —下限频率
BW fH fL 称为带宽
当 fH fL时,BW fH
1.5 放大电路的主要性能指标
4. 频率响应
B.频率失ቤተ መጻሕፍቲ ባይዱ(线性失真)
幅度失真: 对不同频率的信号增
益不同,产生的失真。
1.3 模拟信号和数字信号
模拟信号:在时间和幅值上都是连续的信号。 数字信号:在时间和幅值上都是离散的信号。
处理模拟信号的电子电路称为模拟电路。
1.4 放大电路模型
1. 放大电路的符号及模拟信号放大
电压增益(电压放大倍数)
Av
vo vi
互阻增益
Ar
vo ii
()
电流增益
Ai
io ii
互导增益
Ag
相关文档
最新文档