九年级数学综合练习人教版
九年级数学上册第一章综合练习1新版新人教版
第一章特殊平行四边形总分120分120分钟一.选择题(共8小题,每题3分)1.在四边形ABCD中,∠A=60°,∠ABC=∠ADC=90°,BC=2,CD=11,自D作DH⊥AB于H,则DH的长是()A.7.5 B.7 C.6.5 D.5.52.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有()A.1个B.2个C.3个D.4个3.不能判断四边形ABCD是矩形的是(0为对角线的交点)()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.ABCD,AC=BD D.ABCD,OA=OC,OB=OD4.如图,在四边形ABCD中,AB=CD,AC⊥BD,添加适当的条件使四边形ABCD成为菱形.下列添加的条件不正确的是()A.AB∥CD B.AD=BC C.BD=AC D.BO=DO5.能判定四边形ABCD是菱形的条件是()A.对角线AC平分对角线BD,且AC⊥BDB.对角线AC平分对角线BD,且∠A=∠CC.对角线AC平分对角线BD,且平分∠A和∠CD.对角线AC平分∠A和∠C,且∠A=∠C6.已知如图,在矩形ABCD中有两个一条边长为1的平行四边形.则它们的公共部分(即阴影部分)的面积是()A.大于1 B.等于1 C.小于1 D.小于或等于17.矩形各内角的平分线能围成一个()A.矩形 B.菱形 C.等腰梯形 D.正方形8.如果一个平行四边形要成为正方形,需增加的条件是()A.对角线互相垂直且相等 B.对角线互相垂直C.对角线相等D.对角线互相平分二.填空题(共6小题,每题3分)9.如图,凸五边形ABCDE中,∠A=∠B=120°,EA=AB=BC=2,CD=DE=4,则它的面积为_________ .10.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则在下列推理不成立的是_________A、①④⇒⑥;B、①③⇒⑤;C、①②⇒⑥;D、②③⇒④11._________ 的矩形是正方形,_________ 的菱形是正方形.12.若四边形ABCD是矩形,请补充条件_________ (写一个即可),使矩形ABCD是正方形.13.如图,在△ABC中,点D在BC上过点D分别作AB、AC的平行线,分别交AC、AB于点E、F①如果要得到矩形AEDF,那么△ABC应具备条件:_________ ;②如果要得到菱形AEDF,那么△ABC应具备条件:_________ .14.在矩形ABCD中,M为AD边的中点,P为BC上一点,PE⊥MC,PF⊥MB,当AB、BC满足条件_________ 时,四边形PEMF为矩形.三.解答题(共11小题)15.(6分)如图所示,顺次延长正方形ABCD的各边AB,BC,CD,DA至E,F,G,H,且使BE=CF=DG=AH.求证:四边形EFGH是正方形.16.(6分)已知:如图,△ABC中,D是BC上任意一点,DE∥AC,DF∥AB.①试说明四边形AEDF的形状,并说明理由.②连接AD,当AD满足什么条件时,四边形AEDF为菱形,为什么?③在②的条件下,当△ABC满足什么条件时,四边形AEDF为正方形,不说明理由.17.(6分)已知:如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE 于点E,求证:四边形ADCE是矩形.18.(6分)已知:如图,M为▱ABCD的AD边上的中点,且MB=MC,求证:▱ABCD是矩形.19.(6分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠C=45°,BC=4,AD=2.求四边形ABCD的面积.20.(8分)如图,∠CAE是△ABC的外角,AD平分∠EAC,且AD∥BC.过点C作CG⊥AD,垂足为G,AF是BC边上的中线,连接FG.(1)求证:AC=FG.(2)当AC⊥FG时,△ABC应是怎样的三角形?为什么?21.(8分)如图,E是等边△ABC的BC边上一点,以AE为边作等边△AEF,连接CF,在CF延长线取一点D,使∠DAF=∠EFC.试判断四边形ABCD的形状,并证明你的结论.22.(8分)如图,矩形ABCD的对角线AC、BD相交于点0,BE∥AC,EC∥BD,BE、EC相交于点E.试说明:四边形OBEC是菱形.23.(8分)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,判断四边形CODE 的形状,并计算其周长.24.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接MN,DN.(1)求证:四边形BMDN是菱形;(2)若AB=6,BC=8,求MD的长.25.(8分)如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.第十九章矩形,菱形与正方形章末测试(一)参考答案与试题解析一.选择题(共8小题)1.在四边形ABCD中,∠A=60°,∠ABC=∠ADC=90°,BC=2,CD=11,自D作DH⊥AB于H,则DH的长是()A.7.5 B.7 C.6.5 D.5.5考点:矩形的判定与性质;含30度角的直角三角形.专题:几何综合题.分析:过C作DH的垂线CE交DH于E,证明四边形BCEH是矩形.所以求出HE的长;再求出∠DCE=30°,又因为CD=11,所以求出DE,进而求出DH的长.解答:解:过C作DH的垂线CE交DH于E,∵DH⊥AB,CB⊥AB,∴CB∥DH又CE⊥DH,∴四边形BCEH是矩形.∵HE=BC=2,在Rt△AHD中,∠A=60°,∴∠ADH=30°,又∵∠ADC=90°∴∠CDE=60°,∴∠DCE=30°,∴在Rt△CED中,DE=CD=5.5,∴DH=2+5.5=7.5.故选A.点评:本题考查了矩形的判定和性质,直角三角形的一个重要性质:30°的锐角所对的直角边是斜边的一半;以及勾股定理的运用.2.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有()A.1个B.2个C.3个D.4个考点:矩形的判定与性质.分析:直接利用矩形的性质与判定定理求解即可求得答案.解答:解:①矩形是轴对称图形,两组对边的中点的连线所在的直线是它的对称轴,故错误;②两条对角线相等的平行四边形是矩形,故错误;③有两个邻角相等的平行四边形是矩形,故错误;④两条对角线相等且互相平分的四边形是矩形;正确;⑤两条对角线互相垂直平分的四边形是菱形;故错误.故选A.点评:此题考查了矩形的性质与判定定理.此题难度不大,注意熟记定理是解此题的关键.3.不能判断四边形ABCD是矩形的是(0为对角线的交点)()A.AB=CD,AD=BC,∠A=90° B. OA=OB=OC=ODC.ABCD,AC=BD D.ABCD,OA=OC,OB=OD考点:矩形的判定.分析:矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.据此判断.解答:解:A、由“AB=CD,AD=BC”可以判定四边形ABCD是平行四边形,又∠BAD=90°,则根据“有一个角是直角的平行四边形是矩形”可以判定平行四边形ABCD是矩形,故本选项不符合题意;B、根据“对角线互相平分且相等的四边形是矩形”可以判定平行四边形ABCD是矩形,故本选项不符合题意;C、根据ABCD得到四边形是平行四边形,根据AC=BD,利用对角线相等的平行四边形是矩形,故本选项不符合题意;D、只能得到四边形是平行四边形,故本选项符合题意;故选:D.点评:本题考查的是矩形的判定定理,但考生应注意的是由矩形的判定引申出来的各图形的判定.难度一般.4.如图,在四边形ABCD中,AB=CD,AC⊥BD,添加适当的条件使四边形ABCD成为菱形.下列添加的条件不正确的是()A.AB∥CD B.AD=BC C.BD=AC D.B O=DO考点:菱形的判定.分析:通过菱形的判定定理进行分析解答.解答:解:A项根据对角线互相垂直的平行四边形是菱形这一定理可以推出四边形ABCD为菱形,故本选项错误,B项根据对角线互相垂直的平行四边形是菱形这一定理可以推出四边形ABCD为菱形,故本选项错误,C项根据题意还可以推出四边形ABCD为等腰梯形,故本选项正确,D项根据题意可以推出Rt△AOD≌Rt△COB,即可推出OA=OC,再根据对角线互相垂直且平分的四边形是菱形这一定理推出四边形ABCD为菱形,故本选项错误,故选择C.点评:本题主要考查菱形的判定,关键在于熟练掌握菱形的判定定理.5.能判定四边形ABCD是菱形的条件是()A.对角线AC平分对角线BD,且AC⊥BDB.对角线AC平分对角线BD,且∠A=∠CC.对角线AC平分对角线BD,且平分∠A和∠CD.对角线AC平分∠A和∠C,且∠A=∠C考点:菱形的判定.专题:推理填空题.分析:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.据此判断即可.解答:解:A、C的反例如图,AC垂直平分BD,但AO≠OC;B只能确定为平行四边形.故选D.点评:主要考查了菱形的判定.菱形的特性:菱形的四条边都相等;菱形的对角线互相垂直平分,且每一条对角线平分一组对角.6.已知如图,在矩形ABCD中有两个一条边长为1的平行四边形.则它们的公共部分(即阴影部分)的面积是()A.大于1 B.等于1 C.小于1 D.小于或等于1考点:菱形的判定与性质.分析:利用割补法得出阴影部分面积为四边形EFMN的面积,进而利用直角三角形的性质得出EG <1,即可得出答案.解答:解:如图所示:作EN∥AB,FM∥CD,过点E作EG⊥MN于点G,可得阴影部分面等于四边形EFMN的面积,则四边形EFMN是平行四边形,且EN=FM=1,∵EN=1,∴EG<1,∴它们的公共部分(即阴影部分)的面积小于1.故选:C.点评:此题主要考查了平行四边形的性质以及平行四边形面积求法,得出阴影部分面等于四边形EFMN的面积是解题关键.7.矩形各内角的平分线能围成一个()A.矩形B.菱形C.等腰梯形D.正方形考点:正方形的判定;矩形的性质.分析:根据矩形的性质及角平分线的性质进行分析即可.解答:解:矩形的四个角平分线将矩形的四个角分成8个45°的角,因此形成的四边形每个角是90°又知两条角平分线与矩形的一边构成等腰直角三角形,所以这个四边形邻边相等,根据有一组邻边相等的矩形是正方形,得到该四边形是正方形.故选:D.点评:此题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角8.如果一个平行四边形要成为正方形,需增加的条件是()A.对角线互相垂直且相等B.对角线互相垂直 C.对角线相等D.对角线互相平分考点:正方形的判定;平行四边形的性质.分析:根据正方形的判定:对角线相等且互相垂直平分的四边形是正方形对各个选项进行分析.解答:解:A、对角线相等的平行四边形是矩形,而对角线互相垂直的平行四边形是菱形,同时具有矩形和菱形的性质的平行四边形是正方形,故本选项正确;B、对角线互相垂直的平行四边形是菱形,而非正方形,故本选项错误;C、对角线相等的平行四边形是矩形,故本选项错误;D、平行四边形的对角线都互相平分,这是平行四边形的性质.故本选项错误;故选A.点评:此题主要考查正方形的判定:对角线相等的菱形是正方形.二.填空题(共6小题)9.如图,凸五边形ABCDE中,∠A=∠B=120°,EA=AB=BC=2,CD=DE=4,则它的面积为7 .考点:菱形的判定与性质;等边三角形的判定与性质.专题:计算题.分析:作辅助线延长EA,BC相交于点F,CG⊥EF于G,BH⊥EF于H,因为∠EAB=∠CBA=120°,可得∠FAB=∠FBA=60°,可得△FAB为等边三角形,容易证明四边形EFCD是菱形,所以S ABCDE=S CDEF﹣S△ABF由此即可求解.解答:解:如图,延长EA,BC相交于点F,CG⊥EF于G,BH⊥EF于H,因为∠EAB=∠CBA=120°,所以∠FAB=∠FBA=60°,所以△FAB为等边三角形,AF=FB=AB=2,所以CD=DE=EF=FC=4,所以四边形EFCD是菱形,所以S ABCDE=S CDEF﹣S△ABF点评:本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.10.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则在下列推理不成立的是 CA、①④⇒⑥;B、①③⇒⑤;C、①②⇒⑥;D、②③⇒④考点:正方形的判定与性质;全等三角形的判定与性质;菱形的判定与性质;矩形的判定与性质.专题:证明题.分析:根据矩形、菱形、正方形的判定定理,对角线互相平分的四边形为平行四边形,再由邻边相等,得出是菱形,和一个角为直角得出是正方形,根据已知对各个选项进行分析从而得到最后的答案.解答:解:A、由①④得,一组邻边相等的矩形是正方形,故正确;B、由③得,四边形是平行四边形,再由①,一组邻边相等的平行四边形是菱形,故正确;C、由①②不能判断四边形是正方形;D、由③得,四边形是平行四边形,再由②,一个角是直角的平行四边形是矩形,故正确.故选C.点评:此题用到的知识点是:矩形、菱形、正方形的判定定理,如:一组邻边相等的矩形是正方形;对角线互相平分且一组邻边相等的四边形是菱形;对角线互相平分且一个角是直角的四边形是矩形.灵活掌握这些判定定理是解本题的关键.11.有一组邻边相等的矩形是正方形,有一个角为直角的菱形是正方形.考点:正方形的判定.分析:根据正方形的判定定理(有一组邻边相等的矩形是正方形,有一个角为直角的菱形是正方形)求解即可求得答案.解答:解:有一组邻边相等的矩形是正方形,有一个角为直角的菱形是正方形.故答案为:有一组邻边相等,有一个角为直角.点评:此题考查了正方形的判定.此题比较简单,注意熟记定理是解此题的关键.12.若四边形ABCD是矩形,请补充条件此题答案不唯一,如AC⊥BD或AB=AD等(写一个即可),使矩形ABCD是正方形.考点:正方形的判定.专题:开放型.分析:由四边形ABCD是矩形,根据邻边相等的矩形是正方形或对角线互相垂直的矩形是正方形,即可求得答案.解答:解:∵四边形ABCD是矩形,∴当AC⊥BD或AB=AD时,矩形ABCD是正方形.故答案为:此题答案不唯一,如AC⊥BD或AB=AD等.点评:此题考查了正方形的判定.此题比较简单,注意熟记定理是解此题的关键.13.如图,在△ABC中,点D在BC上过点D分别作AB、AC的平行线,分别交AC、AB于点E、F①如果要得到矩形AEDF,那么△ABC应具备条件:∠BAC=90°;②如果要得到菱形AEDF,那么△ABC应具备条件:AD平分∠BAC.考点:菱形的判定;矩形的判定.分析:已知DE∥AB,DF∥AC,则有四边形AEDF是平行四边形.①因为有一直角的平行四边形是矩形,可添加条件:∠BAC=90°;②邻边相等的平行四边形是菱形,可添加条件:AD平分∠BAC.解答:解:∵DE∥AB,DF∥AC,AF、AE分别在AB、AC上∴DE∥AF,DF∥AE∴四边形AEDF是平行四边形①∵∠BAC=90°∴四边形AEDF是矩形;②∵AD是△ABC的角平分线,∴∠DAE=∠DAF∴∠ADE=∠DAE∴AE=DE∴▱AEDF是菱形.故答案为∠BAC=90°,AD平分∠BAC.点评:本题考查菱形和矩形的判定.本题是开放题,可以针对各种特殊的平行四边形的判定方法,给出条件,再证明结论.答案可以有多种,主要条件明确,说法有理即可.14.在矩形ABCD中,M为AD边的中点,P为BC上一点,PE⊥MC,PF⊥MB,当AB、BC满足条件AB=BC 时,四边形PEMF为矩形.考点:矩形的判定与性质.分析:根据已知条件、矩形的性质和判定,欲证明四边形PEMF为矩形,只需证明∠BMC=90°,易得AB=BC时能满足∠BMC=90°的条件.解答:解:AB=BC时,四边形PEMF是矩形.∵在矩形ABCD中,M为AD边的中点,AB=BC,∴AB=DC=AM=MD,∠A=∠D=90°,∴∠ABM=∠MCD=45°,∴∠BMC=90°,又∵PE⊥MC,PF⊥MB,∴∠PFM=∠PEM=90°,∴四边形PEMF是矩形.点评:此题考查了矩形的判定和性质的综合应用,是一开放型试题,是中考命题的热点.三.解答题(共11小题)15.如图所示,顺次延长正方形ABCD的各边AB,BC,CD,DA至E,F,G,H,且使BE=CF=DG=AH.求证:四边形EFGH是正方形.考点:正方形的判定;全等三角形的判定与性质.专题:证明题.分析:此题先根据正方形ABCD的性质,可证△AEH≌△CGF≌△DHG(SAS),得四边形EFGH为菱形,再求一个角是直角从而证明它是正方形.解答:证明:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠EBF=∠HAE=∠GDH=∠FC G,又∵BE=CF=DG=AH,∴CG=DH=AE=BF∴△AEH≌△CGF≌△DHG,∴EF=FG=GH=HE,∠EFB=∠HEA,∴四边形EFGH为菱形,∵∠EFB+∠FEB=90°,∠EFB=∠HEA,∴∠FEB+∠HEA=90°,∴四边形EFGH是正方形.点评:本题主要考查了正方形的判定方法:一角是直角的菱形是正方形.16.已知:如图,△ABC中,D是BC上任意一点,DE∥AC,DF∥AB.①试说明四边形AEDF的形状,并说明理由.②连接AD,当AD满足什么条件时,四边形AEDF为菱形,为什么?③在②的条件下,当△ABC满足什么条件时,四边形AEDF为正方形,不说明理由.考点:正方形的判定;平行四边形的判定;菱形的判定.分析:①根据DE∥AC,DF∥AB可判断四边形AEDF为平行四边形;②由四边形AEDF为菱形,能得出AD为∠BAC的平分线即可;③由四边形AEDF为正方形,得∠BAC=90°,即当△ABC是以BC为斜边的直角三角形即可.解答:解:①∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形;②∵四边形AEDF为菱形,∴AD平分∠B AC,则AD平分∠BAC时,四边形AEDF为菱形;③由四边形AEDF为正方形,∴∠BAC=90°,∴△ABC是以BC为斜边的直角三角形即可.点评:本题考查了正方形的性质、菱形的性质、平行四边形的性质以及矩形的性质.17.已知:如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.考点:矩形的判定.分析:首先利用外角性质得出∠B=∠ACB=∠FAE=∠EAC,进而得到AE∥CD,即可求出四边形AEDB 是平行四边形,再利用平行四边形的性质求出四边形ADCE是平行四边形,即可求出四边形ADCE是矩形.解答:证明:∵AB=AC,∴∠B=∠ACB,∵AE是∠BAC的外角平分线,∴∠FAE=∠EAC,∵∠B+∠ACB=∠FAE+∠EAC,∴∠B=∠ACB=∠FAE=∠EAC,∴AE∥CD,又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD,又∵BD=DC,∴AE平行且等于DC,故四边形ADCE是平行四边形,又∵∠ADC=90°,∴平行四边形ADCE是矩形.即四边形ADCE是矩形.点评:此题主要考查了平行四边形的判定与性质以及矩形的判定,灵活利用平行四边形的判定得出四边形AEDB是平行四边形是解题关键.18.已知:如图,M为▱ABCD的AD边上的中点,且MB=MC,求证:▱ABCD是矩形.考点:矩形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:根据平行四边形的两组对边分别相等可知△ABM≌△DCM,可知∠A+∠D=180°,所以是矩形.解答:证明:∵四边形ABCD是平行四边形,∵AM=DM,MB=MC,∴△ABM≌△DCM.∴∠A=∠D.∵AB∥CD,∴∠A+∠D=180°.∴∠A=90°.∴▱ABCD是矩形.点评:此题主要考查了矩形的判定,即有一个角是90度的平行四边形是矩形.19.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠C=45°,BC=4,AD=2.求四边形ABCD的面积.考点:矩形的判定与性质;等腰直角三角形.分析:如上图所示,延长AB,延长DC,相交于E点.△ADE是等腰直角三角形,AD=DE=2,则可以求出△ADE的面积;∠C=∠AED=45度,所以△CBE是等腰直角三角形,BE=CB=4厘米,则可以求出△CBE 的面积;那么四边形ABCD的面积是两个三角形的面积之差.解答:解:延长AB,延长DC,相交于E点,得到两个等腰直角三角形△ADE和△CBE,由等腰直角三角形的性质得:DE=AD=2,BE=CB=4,那么四边形ABCD的面积是:4×4÷2﹣2×2÷2=8﹣2=6.答:四边形ABCD的面积是6.点评:此题考查了等腰直角三角形的性质以及三角形的面积公式的运用,解题的关键是作延长线,找到交点,组成新图形,是解决此题的关键.20.如图,∠CAE是△ABC的外角,AD平分∠EAC,且AD∥BC.过点C作CG⊥AD,垂足为G,AF是BC边上的中线,连接FG.(1)求证:AC=FG.(2)当AC⊥FG时,△ABC应是怎样的三角形?为什么?考点:矩形的判定与性质;等腰三角形的判定与性质;等腰直角三角形.专题:证明题.分析:先根据题意推理出四边形AFCG是矩形,然后根据矩形的性质得到对角线相等;由第一问的结论和AC⊥FG得到四边形AFCG是正方形,然后即可得到△ABC是等腰直角三角形.解答:(1)证明:∵AD平分∠EAC,且AD∥BC,∴∠ABC=∠EAD=∠CAD=∠ACB,∴AB=AC;AF是BC边上的中线,∴AF⊥BC,∵CG⊥AD,AD∥BC,∴AF∥CG,∴四边形AFCG是平行四边形,∵∠AFC=90°,∴四边形AFCG是矩形;∴AC=FG.(2)解:当AC⊥FG时,△ABC是等腰直角三角形.理由如下:∵四边形AFCG是矩形,∴四边形AFCG是正方形,∠ACB=45°,∵AB=AC,∴△ABC是等腰直角三角形.点评:该题目考查了矩形的判定和性质、正方形的判定和性质、等腰三角形的性质,知识点比较多,注意解答的思路要清晰.21.如图,E是等边△ABC的BC边上一点,以AE为边作等边△AEF,连接CF,在CF延长线取一点D,使∠DAF=∠EFC.试判断四边形ABCD的形状,并证明你的结论.考点:菱形的判定;全等三角形的判定与性质;等边三角形的性质.专题:证明题.分析:在已知条件中求证全等三角形,即△BAE≌△CAF,△AEC≌△AFD,从而得到△ACD和△ABC 都是等边三角形,故可根据四条边都相等的四边形是菱形判定.解答:解:四边形ABCD是菱形.证明:在△ABE、△ACF中∵AB=AC,AE=AF∠BAE=60°﹣∠EAC,∠CAF=60°﹣∠EAC∴∠BAE=∠CAF∴△BAE≌△CAF∵∠CFA=∠CFE+∠EFA=∠CFE+60°∠BEA=∠ECA+∠EAC=∠EAC+60°∴∠EAC=∠CFE∵∠DAF=∠CFE∴∠EAC=∠DAF∵AE=AF,∠AEC=∠AFD∴△AEC≌△AFD∴AC=AD,且∠D=∠ACE=60°∴△ACD和△ABC都是等边三角形∴四边形ABCD是菱形.点评:本题考查了菱形的判定、等边三角形的性质和全等三角形的判定,学会在已知条件中多次证明三角形全等,寻求角边的转化,从而求证结论.22.如图,矩形ABCD的对角线AC、BD相交于点0,BE∥AC,EC∥BD,BE、EC相交于点E.试说明:四边形OBEC是菱形.考点:菱形的判定;矩形的性质.专题:证明题.分析:在矩形ABCD中,可得OB=OC,由BE∥AC,EC∥BD,所以四边形OBEC是平行四边形,两个条件合在一起,可得出其为菱形.解答:证明:在矩形ABCD中,AC=BD,∴OB=OC,∵BE∥AC,EC∥BD,∴四边形OBEC是平行四边形,∴四边形OBEC是菱形.点评:熟练掌握菱形的性质及判定定理.23.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,判断四边形CODE的形状,并计算其周长.考点:菱形的判定与性质;矩形的性质.分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.解答:解:∵CE∥BD,DE∥A C,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故答案为:8.点评:此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.24.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接MN,DN.(1)求证:四边形BMDN是菱形;(2)若AB=6,BC=8,求MD的长.考点:菱形的判定与性质;线段垂直平分线的性质;矩形的性质.分析:(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,推出x2=(8﹣x)2+62,求出即可.解答:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,在△DMO和△BNO中,,∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+62,解得:x=.答:MD长为.点评:本题考查了矩形性质,平行四边形的判定,菱形的判定和性质,勾股定理等知识点的应用.注意对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.25.如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.考点:正方形的判定与性质;全等三角形的判定与性质.专题:动点型.分析:(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形,故可根据正方形的定义证明四边形PQEF是否使正方形.(2)证PE是否过定点时,可连接AC,证明四边形APCE为平行四边形,即可证明PE过定点.解答:解:(1)在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,∴BP=QC=ED=FA.又∵∠BAD=∠B=∠BCD=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF.∴FP=PQ=QE=EF,∠APF=∠PQB.∴四边形PQEF是菱形,∵∠FPQ=90°,∴四边形PQEF为正方形.(2)连接AC交PE于O,∵AP平行且等于EC,∴四边形APCE为平行四边形.∵O为对角线AC的中点,∴对角线PE总过AC的中点.点评:在证明过程中,应了解正方形和平行四边形的判定定理,为使问题简单化,在证明过程中,可适当加入辅助线.。
2021年人教版初中数学九年级上旋转综合专项练习
数学九年级(上)2021年人教版九年级上旋转的综合专项练习一.选择题(共3小题)1.如图,在Rt△ABC中,∠C=90°,AC=BC,AB=8,点D为AB的中点,若直角MDN绕点D旋转,分别交AC于点E,交BC于点F,则下列说法正确的有()①AE=CF;②EC+CF=;③DE=DF;④若△ECF的面积确定,则EF的长也是一个定值.A.①②B.①③C.①②③D.①②③④2.已知:如图,在等边△ABC中取点P,使得PA,PB,PC的长分别为3,4,5,将线段AP 以点A为旋转中心顺时针旋转60°得到线段AD,连接BD,下列结论:①△ABD可以由△APC绕点A顺时针旋转60°得到;②点P与点D的距离为3;③∠APB=150°;④S△APC+S△APB=,其中正确的结论有()A.①②④B.①③④C.①②③D.②③④3.如图直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是()A.1 B.2 C.3 D.不能确定二.填空题(共5小题)4.如图,△ABC中,∠ACB=90°,把△ABC绕点C顺时针旋转到△A1B1C的位置,A1B1交直线CA于点D.若AC=6,BC=8,当线段CD的长为时,△A1CD是等腰三角形.5.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转60°后,得到△P′AB,则点P与P′之间的距离为,∠APB=.6.如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连接CP,将CP绕点C顺时针方向旋转90°得CE,连接BE,若AB=4,则BE的最小值为.7.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.8.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是.三.解答题(共7小题)9.阅读与理解:图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.操作与证明:(1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;(2)操作:若将图1中的△C′DE,绕点C按顺时针方向任意旋转一个角度α(0°≤α≤360°),连接AD,BE,如图3;在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论;猜想与发现:根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大是多少?当α为多少度时,线段AD的长度最小是多少?10.如图1、2是两个相似比为1:的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE2+BF2=EF2;(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE2+BF2=EF2是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN 能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由.11.如图(1)正方形ABCD和正方形AEFG,边AE在边AB上,AB=12,AE=.将正方形AEFG绕点A逆时针旋转α(0°≤α≤45°)(1)如图(2)正方形AEFG旋转到此位置,求证:BE=DG;(2)在旋转的过程中,当∠BEA=120°时,试求BE的长;(3)BE的延长线交直线DG于点Q,当正方形AEFG由图(1)绕点A逆时针旋转45°,请直接写出旋转过程中点Q运动的路线长;(4)在旋转的过程中,是否存在某时刻BF=BC?若存在,试求出DQ的长;若不存在,请说明理由.(点Q即(3)中的点)12.一副三角板如图1摆放,∠C=∠DFE=90°,∠B=30°,∠E=45°,点F在BC上,点A在DF上,且AF平分∠CAB,现将三角板DFE绕点F以每秒5°的速度顺时针旋转(当点D落在射线FB上时停止旋转),设旋转时间为t秒.(1)当t=秒时,DE∥AB;当t=秒时,DE⊥AB;(2)在旋转过程中,DF与AB的交点记为P,如图2,若△AFP有两个内角相等,求t的值;(3)当边DE与边AB、BC分别交于点M、N时,如图3,连接AE,设∠BAE=x°,∠AED =y°,∠DFB=z°,试问x+y+z是否为定值?若是,请求出定值;若不是,请说明理由.13.在菱形ABCD中,∠BAD=120°,E是对角线BD上的一点,连接AE.(1)当E在AB的中垂线上时,把射线EA绕点E顺时针旋转90°后交CD于F,连接BF.如图①,若AB=4,求EF的长;(2)在(1)的条件下,连接BF,把△BEF绕点B顺时针旋转得到△BHK,如图②,连接CH,点N为CH的中点,连接AN,求AN的最大值.14.某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.15.在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O 的对应点分别为点A′、O′),并回答下列问题:∠ABC=,∠A′BC=,OA+OB+OC=.参考答案1.D.2.C.3.A.4.解:三角形是等腰三角形,有如下三种情况:①当CD=A1C=AC=6时,三角形是等腰三角形;②当CD=A1D时,∵∠B=90°﹣∠BCB1=∠ACB1,∠B=∠B1,∴∠B1=∠B1CD,∴B1D=CD.∵CD=A1D,∴CD=A1B1=5时,三角形是等腰三角形;③当A1C=A1D时,如图.过点C作CE⊥A1B1于E.∵△A1B1C的面积=×6×8=×10×CE,∴CE=4.8.在△A1CE中,∠A1EC=90°,由勾股定理知A1E==3.6,∴DE=6﹣3.6=2.4.在△CDE中,∠CED=90°,由勾股定理知CD==.故当线段CD的长为6或5或时,△A1CD是等腰三角形.5.解:连接PP′,如图,∵△PAC绕点A逆时针旋转60°后,得到△P′AB,∴∠PAP′=60°,PA=P′A=6,P′B=PC=10,∴△PAP′为等边三角形,∴PP′=PA=6,∠P′PA=60°,在△BPP′中,P′B=10,PB=8,PP′=6,∵62+82=102,∴PP′2+PB2=P′B2,∴△BPP′为直角三角形,且∠BPP′=90°,∴∠APB=∠P′PB+∠BPP′=60°+90°=150°.故答案为6,150°.6.解法1:如图所示,将BC绕着点C顺时针旋转90°得FC,作直线FE交OM于H,则∠BCF=90°,BC=FC,∵将CP绕点C按顺时针方向旋转90°得CE,∴∠PCE=90°,PC=EC,∴∠BCP=∠FCE,在△BCP和△FCE中,,∴△BCP≌△FCE(SAS),∴∠CBP=∠CFE,又∵∠BCF=90°,∴∠BHF=90°,∴点E在直线FH上,即点E的轨迹为射线,∵BH⊥EF,∴当点E与点H重合时,BE=BH最短,∵当CP⊥OM时,Rt△BCP中,∠CBP=30°,∴CP=BC=2,BP=CP=2,又∵∠PCE=∠CPH=∠PHE=90°,CP=CE,∴正方形CPHE中,PH=CP=2,∴BH=BP+PH=2+2,即BE的最小值为2+2,故答案为:2+2.解法2:如图,连接PD,由题意可得,PC=EC,∠PCE=90°=∠DCB,BC=DC,∴∠DCP=∠BCE,在△DCP和△BCE中,,∴△DCP≌△BCE(SAS),∴PD=BE,当DP⊥OM时,DP最短,此时BE最短,∵∠AOB=30°,AB=4=AD,∴OD=OA+AD=4+4,∴当DP⊥OM时,DP=OD=2+2,∴BE的最小值为2+2.故答案为:2+2.7.解:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB==13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为:42.8.解:如图,取AC的中点G,连接EG,∵旋转角为60°,∴∠ECD+∠DCF=60°,又∵∠ECD+∠GCE=∠ACB=60°,∴∠DCF=∠GCE,∵AD是等边△ABC的对称轴,∴CD=BC,∴CD=CG,又∵CE旋转到CF,∴CE=CF,在△DCF和△GCE中,,∴△DCF≌△GCE(SAS),∴DF=EG,根据垂线段最短,EG⊥AD时,EG最短,即DF最短,此时∵∠CAD=×60°=30°,AG=AC=×6=3,∴EG=AG•sin30°=1.5,∴DF=1.5.故答案为:1.5.三.解答题(共7小题)9.解:操作与证明:(1)BE=AD.∵△C′DE绕点C按顺时针方向旋转30°,∴∠BCE=∠ACD=30°,∵△ABC与△C′DE是等边三角形,∴CA=CB,CE=CD,∴△BCE≌△ACD,∴BE=AD.(2)BE=AD.∵△C′DE绕点C按顺时针方向旋转的角度为α,∴∠BCE=∠ACD=α,∵△ABC与△C′DE是等边三角形,∴CA=CB,CE=CD,∴△BCE≌△ACD,∴BE=AD.猜想与发现:当α为180°时,线段AD的长度最大,等于a+b;当α为0°(或360°)时,线段AD的长度最小,等于a﹣b.10.证明:(1)连CD,如图4,∵两个等腰直角三角形的相似比为1:,而小直角三角形的斜边等于大直角三角形的直角边,∴点D为AB的中点,∴CD=AD,∠4=∠A=45°,又∵∠1+∠2=∠2+∠3=90°,∴∠3=∠1,∴△CDF≌△ADE,∴CF=AE,同理可得△CED≌△BFD,∴CE=BF,而CE2+CF2=EF2,∴AE2+BF2=EF2;(2)结论AE2+BF2=EF2仍然成立.理由如下:把△CFB绕点C顺时针旋转90°,得到△CGA,如图5∴CF=CG,AG=BF,∠4=∠1,∠B=∠GAC=45°,∴∠GAE=90°,而∠3=45°,∴∠2+∠4=90°﹣45°=45°,∴∠1+∠2=45°,∴△CGE≌△CFE,∴GE=EF,在Rt△AGE中,AE2+AG2=GE2,∴AE2+BF2=EF2;(3)线段BM、MN、DN能构成直角三角形的三边长.理由如下:把△ADF绕点A顺时针旋转90°得到△ABP,点N的对应点为Q,如图∴∠4=∠2,∠1+∠3+∠4=90°,BP=DF,BQ=DN,AF=AP,∵△CEF的周长等于正方形ABCD的周长的一半,∴EF=BE+DF,∴EF=EP,∴△AEF≌△AEP,∴∠1=∠3+∠4,而AQ=AN,∴△AMQ≌△AMN,∴MN=QM,而∠ADN=∠QBA=45°,∠ABD=45°,∴∠QBN=90°,∴BQ2+BM2=QM2,∴BM2+DN2=MN2.11.(1)证明:在正方形ABCD和正方形AEFG中,AB=AD,AE=AG,∠BAD=∠EAG=90°,∵∠BAE+∠EAD=∠BAD=90°,∠DAG+∠EAD=∠BAD=90°,∴∠BAE=∠DAG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴BE=DG;(2)如图,过点A作AH⊥BE交BE的延长线于H,∵∠BEA=120°,∴∠AEH=180°﹣120°=60°,∵AE=6,∴AH=AE•sin60°=6×=3,EH=AE•cos60°=6×=3,在Rt△ABH中,BH====3,∴BE=BH﹣EH=3﹣3;(3)∵△ABE≌△ADG,∴∠ABE=∠ADG,∴∠BQD=∠BAD=90°,∴点Q的运动轨迹为以BD为直径的,所对的圆心角是90°,∵AB=12,∴BD=AB=12,∴旋转过程中点Q运动的路线长==3π;(4)由勾股定理得,AF=AE=×6=12,∵BF=BC=12,∴AB=AF=BF=12,∴△ABF是等边三角形,又∵AE=EF,∴直线BE是AF的垂直平分线,∴∠ABQ=∠BAF=30°,设BQ与AD相交于H,则AH=AB•tan30°=12×=4,∴DH=AD﹣AH=12﹣4,在Rt△DQH中,DQ=DH•cos30°=(12﹣4)×=6﹣6.12.解:(1)如图(1),当DE∥AB时,∠EDF=∠BPF=45°∵AF平分∠BAC,∠BAC=60°,∴∠BAF=30°,又∵∠BPF为△APF的一个外角,∴∠PFA=∠BPF﹣∠BAF=45°﹣30°=15°,∴t==3;如图(2),当DE⊥AB时,∠DPB=180°﹣90°﹣45°=45°,∴∠APF=∠DPB=45°,∵∠BAF=30°,∴∠AFP=180°﹣∠APF﹣∠BAF=180°﹣45°﹣30°=105°,∴t==21.故答案为:3;21.(2)①如图(3),当∠PAF=∠PFA时,∵∠PAF=30°,∴∠PFA=30°,∴t=6;②如图(4),当∠PFA=∠APF时,∵∠PAF=30°,∠PAF+∠PFA+∠APF=180°,∴∠AFP=(180°﹣30°)=75°,∴t=15;③如图(5),当∠PAF=∠APF时,∠AFP=180°﹣∠PAF﹣∠APF=180°﹣30°﹣30°=120°,∴t=24,综上所述:当t为6或15或24时,∠PAF=∠APF.(3)x+y+z是为定值105,理由如下:∵∠BMN是△AME的一个外角,∠MNB是△DFN的一个外角,∴∠BMN=∠BAE+∠AED=x°+y°,∠MNB=∠DFB+∠D=z°+45°,又∵∠BMN+∠MNB+∠B=180°,∠B=30°,∴x°+y°+z°+45°+30°=180°,∴x°+y°+z°=105°,∴x+y+z=105.13.解:(1)如图①,连接AC交BD于O,∵菱形ABCD中,∠BAD=120°,AB=4,∴∠AOB=90°,OB=OD,AD=BC=AB=4,∠BAO=∠DAO=60°,∴∠ABO=∠ADB=30°,在Rt△ABO中,OB=AB•sin∠BAO=4×sin60°=2,∴BD=2OB=4,∵E在AB的中垂线上,∴EA=EB,∴∠BAE=∠ABO=30°,∴∠DAE=∠BAD﹣∠BAE=90°,∴DE===,∵射线EA绕点E顺时针旋转90°后交CD于F,∴∠AED+∠DEF=90°,∵∠AED=90°﹣∠ADE=60°,∴∠DEF=30°,∵∠DBC=∠ABD=30°,∴∠DEF=∠DBC,∴EF∥BC,∴=,即=,∴EF=;(2)如图②,过点A作AG⊥BC于G,连接AC,GN,∵四边形ABCD是菱形,∠BAD=120°,∴∠ABC=60°,AB=BC,∴△ABC是等边三角形,∵AG⊥BC,∴BG=CG=2,∴AG===2,由旋转得:BH=BE=BD﹣DE=4﹣=,∵点G,N分别是BC,CH的中点,∴GN=BH=×=,∵AN≤AG+GN=2+=;∴AN的最大值为.14.(1)证明:∵用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),∴AB=AF,∠BAM=∠FAN,在△ABM和△AFN中,,∴△ABM≌△AFN(ASA),∴AM=AN;(2)解:当旋转角α=30°时,四边形ABPF是菱形.理由:连接AP,∵∠α=30°,∴∠FAN=30°,∴∠FAB=120°,∵∠B=60°,∴∠B+∠FAB=180°,∴AF∥BP,∴∠F=∠FPC=60°,∴∠FPC=∠B=60°,∴AB∥FP,∴四边形ABPF是平行四边形,∵AB=AF,∴平行四边形ABPF是菱形.15.解:∵∠C=90°,AC=1,BC=,∴tan∠ABC===,∴∠ABC=30°,∵△AOB绕点B顺时针方向旋转60°,∴△A′O′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∵∠ACB=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=∠BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C===,∴OA+OB+OC=A′O′+OO′+OC=A′C=.故答案为:30°;90°;.。
2022年人教版初中九年级数学期末综合素质检测卷(四)含答案
期末综合素质检测卷(四)一、选择题(每题3分,共30分)1.【教材P7例3改编】已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限2.【2022·十堰】下列几何体中,主视图与俯视图的形状不一样...的几何体是()3.如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别交于点A,B,C和点D,E,F,若BC=2AB,DE=3,则EF的长是()A.3 B.4 C.5 D.64.【教材P84复习题T2变式】【2021·云南】在△ABC中,∠ABC=90°.若AC=100,s in A=35,则AB的长是()A.5003 B.5035C.60 D.805.【教材P8练习T2变式】【2021·天津】若点A(-5,y1),B(1,y2),C(5,y3)都在反比例函数y=-5x的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1 C.y1<y3<y2D.y3<y1<y26.【2021·宁波】如图,正比例函数y1=k1x(k1<0)的图象与反比例函数y2=k2x(k2<0)的图象相交于A,B两点,点B的横坐标为2,当y1>y2时,x的取值范围是() A.x<-2或x>2 B.-2<x<0或x>2C.x<-2或0<x<2 D.-2<x<0或0<x<2(第6题) (第7题) (第8题)7.如图,△ABC 中,AB =6,AC =4,BC =5,点D ,E 分别在AB ,AC 上,AD=2,∠AED =∠B ,则DE =( ) A.52 B.43 C .3 D .28.【教材P 19活动2变式】【2021·丽水】一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四名同学分别在杆的另一端竖直向下施加压力F 甲,F 乙,F 丙,F 丁,将相同质量的水桶吊起同样的高度,若F 乙<F 丙<F 甲<F 丁,则这四名同学对杆的压力的作用点到支点的距离最远的是( )A .甲同学B .乙同学C .丙同学D .丁同学9.如图为北京冬奥会“雪飞天”滑雪大跳台赛道的示意图.若点D 与点A 的水平距离DE =a m ,水平赛道BC =b m ,赛道AB ,CD 的坡角均为θ,则点A 的高AE 为( )A .(a -b )tan θ m B.a -btan θ m C .(a -b )sin θ m D .(a -b )cos θ m(第9题) (第10题)10.【2022·威海】由12个有公共顶点O 的直角三角形拼成如图所示的图形.∠AOB =∠BOC =∠COD =…=∠L OM =30°.若S △AOB =1,则图中与△AOB 位似的三角形的面积为( ) A.⎝ ⎛⎭⎪⎫433 B.⎝ ⎛⎭⎪⎫437 C.⎝ ⎛⎭⎪⎫436 D.⎝ ⎛⎭⎪⎫346二、填空题(每题3分,共24分) 11.若x y =25,则x x +y=________.12.在△ABC 中,∠A ,∠B 均为锐角,且(tan A -3)2+|2 cos B -1|=0,则△ABC的形状是______________________________________.13.【教材P 41练习T 1改编】在某一时刻的太阳光下,测得一根长为1.5 m 的标杆的影长为 3 m ,同时测得一根旗杆的影长为16 m ,那么这根旗杆的高度为________m.14.【2022·北京】如图,在矩形ABCD 中,若AB =3,AC =5,AF FC =14,则AE 的长为________.(第14题) (第15题) (第16题)15.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为________cm 2.16.【教材P 77练习T 1变式】【2021·武汉】如图,海中有一个小岛A ,一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60°方向上;航行12 n mile 到达C 点,这时测得小岛A 在北偏东30°方向上.小岛A 到航线BC 的距离是n mile(3≈1.73,结果用四舍五入法精确到0.1 n mile).17.如图,点A 在双曲线y =1x (x >0)上,点B 在双曲线y =3x (x >0)上,点C ,D在x 轴上,若四边形ABCD 为矩形,则它的面积为________.(第17题) (第18题)18.【2022·牡丹江】如图,在等腰直角三角形ABC 和等腰直角三角形ADE 中,∠BAC =∠DAE =90°,点D 在BC 边上,DE 与AC 相交于点F ,AH ⊥DE ,垂足是G ,交BC 于点H .下列结论中:①AC =CD ;②2AD 2=BC ·AF ;③若AD=35,DH=5,则BD=3;④AH2=DH·AC.正确的是__________(填序号).三、解答题(19题6分,20,21题每题8分,22,23题每题10分,24,25题每题12分,共66分)19.【2022·金华】计算:(-2 022)0-2tan 45°+|-2|+9.20.如图,路灯灯泡在线段DM上,在路灯下,王华的身高用线段AB表示,她在地上的影子用线段AC表示,小亮的身高用线段EF表示.(1)请你确定灯泡的位置,并画出小亮在灯光下形成的影子;(2)如果王华的身高AB=1.6 m,她的影长AC=1.2 m,且她到路灯的距离AD=2.1m,求路灯的高度.21.如图,在△ABC中,CD是边AB上的中线,∠B是锐角,且sin B=22,tan A=12,AC=3 5.(1)求∠B的度数与AB的长;(2)求tan∠CDB的值.22.【2022·重庆一中模拟】万盛高速路口的“羽毛球拍”雕塑是万盛城区的标志性雕塑之一,是彰显万盛“羽毛球之乡”的重要运动景观元素.学习了锐角三角函数知识后,某数学“综合与实践”小组的同学们把“测量羽毛球拍雕塑最高点的高度”作为一项课题活动,他们制定了测量方案,并利用课余时间完成了实地测量.其中一次测量过程如下:如图,他们从羽毛球拍雕塑底部B出发,沿水平路面向一侧前进a m到达C点,遇到坡度(或坡比)i=1:2.4的斜坡CD,他们又沿斜坡走13 m到达坡顶D处,测得羽毛球拍雕塑的最高点A的仰角为β,羽毛球拍与斜坡CD的剖面在同一平面内.(1)用含a,β的式子表示羽毛球拍雕塑的高度;(2)若a=40,β=18°,试求羽毛球拍雕塑的高度(结果保留一位小数,参考数据:sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.32).23.【2022·宜宾】如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y轴交于点B,与反比例函数y=kx(x>0)的图象交于点C,D.若tan∠BAO=2,BC=3AC.(1)求一次函数和反比例函数的解析式;(2)求△OCD的面积.24.【2022·广安】如图,AB 为⊙O 的直径,D ,E 是⊙O 上的两点,延长AB 至点C ,连接CD ,∠BDC =∠BAD . (1)求证:CD 是⊙O 的切线;(2)若tan ∠BED =23,AC =9,求⊙O 的半径.25.九(1)班数学兴趣小组的同学参照学习函数的过程与方法,探究函数y =⎩⎪⎨⎪⎧x 2-4(x <3),5x -2(x ≥3)的图象与性质,他们的探究过程如下,请你补充完整.(1)列表:x … -3 -2 -1 0123 4 5 6 7 … y …m-3 -4 -3 05n53541…表中m =________,n =________.(2)描点、连线:如图,在平面直角坐标系中,根据上表中数据以自变量x 的值为横坐标,以相应的函数值y 为纵坐标,描出了部分对应点,请你描出剩余的点,并画出该函数的图象.(3)探究性质,解决问题:①试写出该函数的一条性质:_______________________________________; ②当y ≥1时,函数y =⎩⎪⎨⎪⎧x 2-4(x <3),5x -2(x ≥3)的自变量的取值范围是__________________________;③若直线y =k (x +6)-4与函数y =⎩⎪⎨⎪⎧x 2-4(x <3),5x -2(x ≥3)的图象有三个不同的交点,请直接写出k 的取值范围.答案一、1.D 2.C 3.D 4.D 5.B 6.C7.A 8.B9.A10. C点思路:根据余弦的定义得OB=23OA,进而得OG=⎝⎛⎭⎪⎫236OA.根据位似图形的概念得到△GOH与△AOB位似,根据相似三角形的面积比等于相似比的平方计算.二、11.2712.等边三角形13.814.115.5216.10.417.218. ②③点思路:①根据等腰直角三角形可知∠B=∠ACB=45°,若AC=CD,则∠ADC=∠CAD=67.5°,这个根据由已知得不出来,所以①错误;②证明△AEF∽△ABD,列比例式可作判;④证明△ADH∽△BAH,列比例式可作判断;③先计算AH的长,由④中得到的比例式计算可作判断.三、19.解:原式=1-2×1+2+3=1-2+2+3=4.20.解:(1)如图,G为灯泡所在的位置,ME为小亮在灯光下形成的影子.(2)∵AB∥GD,∴△BAC∽△GDC.∴BAAC=GDDC,即1.61.2=GD1.2+2.1,解得GD=4.4 m.答:路灯的高度为4.4 m.21.解:(1)如图,过点C作CE⊥AB于点E.设CE=x.在Rt△ACE中,∵tan A=CEAE=12,∴AE=2x.∴AC=x2+(2x)2=5x=35,解得x=3. ∴CE=3,AE=6.在Rt△BCE中,∵sin B=2 2,∴∠B=45°.∴△BCE为等腰直角三角形.∴BE=CE=3.∴AB=AE+BE=9.(2)∵CD是边AB上的中线,∴BD=12AB=4.5.∴DE=1.5.∴tan∠CDE=CEDE=31.5=2.22.解:(1)如图,过点D作DE⊥BC交BC的延长线于点E,过点D作DF⊥AB 于F,则四边形BEDF是矩形,∴FD=BE,FB=DE.∵i=1:2.4,∴DECE=512.设DE=5x m,则CE=12x m.在Rt△CDE中,CD2=DE2+CE2,CD=13 m,∴x=1.∴DE =5 m ,CE =12 m.∴FD =BE =(a +12)m ,FB =DE =5 m. 在Rt △AFD 中,tan β=AFFD , ∴AF =tan β·FD =(a +12)·tan β m. ∴AB =AF +FB =[(a +12)·tan β+5]m.(2)当a =40,β=18°时,AB =AF +FB =(a +12)·tan β+5≈(40+12)×0.32+5≈21.6(m).23.解:(1)∵A (4,0),∴OA =4.在Rt △AOB 中,tan ∠BAO =OBOA =2, ∴OB =8. ∴B (0,8).∵A ,B 两点在直线y =ax +b 上, ∴⎩⎨⎧b =8,4a +b =0,解得⎩⎨⎧a =-2,b =8. ∴一次函数的解析式为y =-2x +8. 如图,过点C 作CE ⊥OA 于点E .∵BC =3AC , ∴AB =4AC . 易知CE ∥OB , ∴△ACE ∽△ABO . ∴CE OB =AE OA =AC AB =14. ∴CE =2,AE =1. ∴OE =3. ∴C (3,2).∵点C 在反比例函数y =k x 的图象上,∴k =3×2=6.∴反比例函数的解析式为y =6x .(2)由⎩⎪⎨⎪⎧y =-2x +8,y =6x,得⎩⎨⎧x =1,y =6或⎩⎨⎧x =3,y =2, ∴D (1,6).如图,过点D 作DF ⊥y 轴于点F ,则DF =1. ∴S △OCD =S △AOB -S △BOD -S △COA =12·OA ·OB -12·OB ·DF -12·OA ·CE =12×4×8-12×8×1-12×4×2=8.24.(1)证明:如图,连接OD .∵AB 为⊙O 的直径,∴∠ADB =90°.∴∠A +∠ABD =90°.∵OB =OD ,∴∠ABD =∠ODB .∵∠BDC =∠A ,∴∠BDC +∠ODB =90°.∴∠ODC =90°.∴OD ⊥CD .∵OD 是⊙O 的半径,∴CD 是⊙O 的切线.(2)解:∵∠BED =∠BAD ,tan ∠BED =23,∴tan ∠BAD =23.∴BD AD =23.∵∠DCB=∠ACD,∠BDC=∠BAD,∴△BDC∽△DAC.∴CDAC=BCCD=BDDA=23.∵AC=9,∴CD9=23,解得CD=6.∴BC6=23,解得BC=4.∴AB=AC-BC=9-4=5.∴⊙O的半径为5 2.25. 解:(1)5;5 2(2)描出剩余的点并画出函数图象如图所示.(3)①当x≥3时,y随x的增大而减小(答案不唯一)②x≤-5或5≤x≤7③k的取值范围是0<k<1.点思路:(3)③数形结合求解:当直线经过点(3,5)时,恰有两个交点,此时k =1.根据一次函数的性质可得0<k< 1 .。
2022-2023学年人教版九年级数学上册阶段性(第21章—第24章)综合练习题(附答案)
2022-2023学年人教版九年级数学上册阶段性(第21章—第24章)综合练习题(附答案)一、选择题1.下列图形是中心对称图形的是()A.B.C.D.2.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.内含3.如果﹣1是方程2x2﹣x+m=0的一个根,则m值()A.﹣1B.1C.3D.﹣34.如图,A,B,C是⊙O上的三个点,若∠C=35°,则∠AOB的度数为()A.35°B.55°C.65°D.70°5.在一个不透明的口袋中装有5个白球,若干个黑球,它们除颜色外其它完全相同,已知摸到白球概率为0.2,则袋子中黑球有多少个?()A.15B.10C.5D.206.将抛物线y=(x﹣1)2+2先向右平移3个单位,再向下平移5个单位得到的抛物线解析式是()A.y=(x﹣4)2+7B.y=(x﹣4)2﹣3C.y=(x+2)2+7D.y=(x+2)2﹣3 7.新能源汽车节能、环保,越来越受消费者喜爱,各种品牌相继投放市场,我国新能源汽车近几年销量全球第一,2016年销量为50.7万辆,销量逐年增加,到2018年销量为125.6万辆.设年平均增长率为x,可列方程为()A.50.7(1+x)2=125.6B.125.6(1﹣x)2=50.7C.50.7(1+2x)=125.6D.50.7(1+x2)=125.68.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,PB=2,则⊙O直径()A.10B.8C.5D.39.已知二次函数y=ax2+bx+c(a≠0)图像的一部分如图所示,给出以下结论:①abc<0;②当x=﹣1时,函数有最大值;③方程ax2+bx+c=0的解是x1=1,x2=﹣3;④4a+2b+c>0;⑤2a﹣b=0;其中结论正确的个数是()A.1B.2C.3D.410.如图,在菱形ABCD中,∠B=60°,AB=2.动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC →CD运动到点D,当一个点停止运动时,另一点也随之停止.设△APQ的面积为y,运动时间为x秒.则下列图象能大致反映y与x之间函数关系的是()A.B.C.D.二、填空题11.一个盒子内装有大小、形状相同的6个球,其中红球3个、绿球1个、白球2个,任意摸出一个球,则摸到白球的概率是.12.已知圆锥的底面直径为4cm,母线长为6cm,则此圆锥的侧面积为.13.若关于x的一元二次方程kx2﹣x﹣1=0有两个实数根,则k的取值范围.14.在Rt△ABC中,∠C=90°,BC=3,AC=4,则△ABC的外接圆半径是.15.如图,将△ABC的绕点A顺时针旋转得到△AED,点D正好落在BC边上.已知∠C=80°,则∠EAB=°.16.如图,正六边形ABCDEF内接于圆O,边长AB=2,则正六边形的面积是.17.如图,点C在以O为圆心的半圆内一点,直径AB=4,∠BCO=90°,∠OBC=30°,将△BOC绕圆心逆时针旋转到使点C的对应点C′在半径OA上,则边BC扫过区域(图中阴影部分)面积为.(结果保留π)三、解答题18.解一元二次方程:x2﹣2x=9.19.如图所示,有一建筑工地从10m高的窗口A处用水管向外喷水,喷出的水呈抛物线状,如果抛物线的最高点M离墙1m,离地面m.(1)求抛物线的解析式;(2)求水流落地点B离墙的距离OB.20.已知:在△ABC中,AB=AC.(1)求作:△ABC外接圆(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=.21.为落实“垃圾分类”,环卫部门要求垃圾要按A、B、C三类分别装袋投放,其中A类指废电池、过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾,甲、乙各投放了一袋垃圾.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求甲乙投放的垃圾恰好是同类垃圾的概率(要求画出树状图).22.已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:无论k为任何实数,方程总有两个不相等的实数根;(2)若两个实数根x1,x2满足(x1+1)(x2+1)=30,求k值.23.如图,已知正方形ABCD的边长为3,E、F分别是边BC、CD上的点,∠EAF=45°.(1)求证:BE+DF=EF;(2)当BE=1时,求EF的长.24.如图:以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点交于点G,过点C作CE∥BD交AB的延长线于点E.(1)求证:CG=BG;(2)∠ABD=30°,CG=4,求BE的长.25.如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连接CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B,C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值及点P的坐标;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.参考答案一、选择题1.解:选项B、C、D都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项A能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:A.2.解:∵⊙O的半径为5cm,OA=4cm,∴点A与⊙O的位置关系是:点A在⊙O内.故选:A.3.解:由题意得:把x=﹣1代入2x2﹣x+m=0,则2×(﹣1)2﹣(﹣1)+m=0,解得:m=﹣3;故选:D.4.解:∵A,B,C是⊙O上的三个点,∠C=35°,∴∠AOB=2∠C=70°.故选:D.5.解:设黑球个数为x个,∵摸到白色球的频率稳定在0.2左右,∴口袋中得到白色球的概率为0.2,∴,解得:x=20,经检验,x=20是原方程的解.故黑球的个数为20个.故选:D.6.解:将抛物线y=(x﹣1)2+2先向右平移3个单位,再向下平移5个单位得到的抛物线解析式是y=(x﹣1﹣3)2+2﹣5,即y=(x﹣4)2﹣3,故选:B.7.解:设年平均增长率为x,可列方程为:50.7(1+x)2=125.6,故选:A.8.解:如图,连接OC.∵AB是⊙O的直径,弦CD⊥AB,CD=8,∴∠OPC=90°,PC=CD=4,∴在直角△OPC中,OC2=42+(OC﹣2)2,解得,OC=5.∴AB=2OC=10.故选:A.9.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x==﹣1,∴b=2a<0,2a﹣b=0,故⑤正确,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①错误;∵抛物线开口向下,对称轴为直线x=﹣1,∴当x=﹣1时,函数有最大值,所以②正确;∵抛物线与x轴的一个交点坐标为(1,0),而对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点坐标为(−3,0),∴当x=1或x=﹣3时,函数y的值都等于0,∴方程ax2+bx+c=0的解是:x1=1,x2=﹣3,所以③正确;∵x=2时,y<0,∴4a+2b+c<0,所以④错误,综上,正确的有②③⑤.10.解:当0≤x≤2时,如图1,过点Q作QH⊥AB于H,由题意可得BP=AQ=x,∵在菱形ABCD中,∠B=60°,AB=2,∴AB=BC=AD=CD,∠B=∠D=60°,∴△ABC和△ADC都是等边三角形,∴AC=AB=2,∠BAC=60°=∠ACD,∴HQ=x,∴△APQ的面积=y=(2﹣x)×x=﹣(x﹣1)2+;当2<x≤4时,如图2,过点Q作QN⊥AC于N,由题意可得AP=CQ=x﹣2,∴NQ=(x﹣2),∴△APQ的面积=y=(x﹣2)×(x﹣2)=(x﹣2)2,∴该图象开口向上,对称轴为直线x=2,∴在2<x≤4时,y随x的增大而增大,∴当x=4时,y有最大值为,故选:A.二、填空题11.解:由题意得:从盒子中任意摸出一个球共有6种等可能性的结果,其中,摸到白球的则摸到白球的概率为,故答案为:.12.解:圆锥的侧面积=×2π×2×6=12π(cm2).故答案为12πcm2.13.解:∵关于x的一元二次方程kx2﹣x﹣1=0有两个实数根,∴(﹣1)2+4k≥0且k≠0,解得k≥且k≠0.故答案为:k≥且k≠0.14.解:作△ABC的外接圆⊙O,∵∠C=90°,∴AB是⊙O直径,∵AB2=AC2+BC2,∴AB2=42+32,∴AB=5,∴△ABC的外接圆半径是:r=AB=2.5,故答案为:2.5.15.解:∵△ABC的绕点A顺时针旋转得到△AED,∴AC=AD,∠BAC=∠EAD,∵点D正好落在BC边上,∴∠C=∠ADC=80°,∴∠CAD=180°﹣2×80°=20°,∵∠BAE=∠EAD﹣∠BAD,∠CAD=∠BAC﹣∠BAD,∴∠BAE=∠CAD,∴∠EAB=20°.故答案为:20.16.解:连接OA,OB,作OG⊥AB交AB于点G由题意得中心角∠AOB=60°则∠AOG=30°,△AOB为等边三角形OA=AB=2,根据垂径定理得AG==1,由勾股定理得,.故答案为:.17.解:∵∠BCO=90°,∠OBC=30°,∴OC=OB=1,BC=,则边BC扫过区域的面积为:==π.故答案为:π.三、解答题18.解:x2﹣2x=9,x2﹣2x+1=9+1,(x﹣1)2=10,,,.19.解:(1)可建立如图所示坐标系,由题知A(0,10),顶点坐标M(1,),设y=a(x﹣1)2+,将(0,10)代入,得a=10﹣=﹣,即y=﹣(x﹣1)2+=﹣(x2﹣2x+1)+=﹣x2+x+10;(2)将y=0代入得:﹣x2+x+10=0,解得:x=3或x=﹣1(舍去),即OB=3米.20.解:(1)如图,⊙O为所作;(2)连接OB,延长AO交BC于D,如图,设⊙O的半径为r,∵AB=AC,OB=OC,∴AD垂直平分BC,∴OD=4,BD=CD=3,在Rt△OBD中,OB==5,∴S⊙O=π•52=25π.故答案为25π.21.解:(1)∵垃圾要按A,B,C三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A类的概率为:;(2)如图所示:由图可知,共有9种可能结果,其中甲投放的垃圾与乙投放的垃圾是同一类的结果有3种,所以甲投放的垃圾与乙投放的垃圾是同一类的概率为=.22.(1)证明:∵Δ=(2k+1)2﹣4(k2+k)=1>0∴无论k取任何实数值,方程总有两个不相等的实数根.(2)解:∵x1+x2=2k+1,x1x2=k2+k,∴(x1+1)(x2+1)=x1x2+x1+x2+1=30,∴k2+k+2k+1+1=30,解得:k1=﹣7,k2=4.23.(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠D=∠ABE=∠C=90°,如图,将△ADE绕点A顺时针旋转90°得到△ABG,由旋转得∠F AG=90°,∠ABG=∠D=90°,∠BAG=∠DAF,BG=DF,AG=AF,∵∠ABG+∠ABE=180°,∴点G、B、E在同一条直线上,∵∠EAF=45°,∴∠EAG=∠BAG+∠BAE=∠DAF+∠BAE=45°,∴∠EAG=∠EAF,在△EAG和△EAF中,,∴△EAG≌△EAF(SAS),∴EG=EF,∵EG=BE+BG=BE+DF,∴BE+DF=EF.(2)解:设EF=x,∵BC=CD=3,BE=1,∴DF=EF﹣BE=x﹣1,CE=BC﹣BE=2,∴CF=CD﹣DF=3﹣(x﹣1)=4﹣x,∵CE2+CF2=EF2,∴22+(4﹣x)2=x2,解得x=,∴EF的长为.24.解:(1)∵AB为直径,∴∠ACB=90°,∵CF⊥AB,∴∠ACB=∠CFB=90°,∵∠ABC=∠CBF,∴∠A=∠BCF,∵∠A=∠CBD,∴∠BCF=∠CBD,∴CG=BG;(2)连接AD,∵AB为直径,∴∠ADB=90°,∵∠BAD=30°,∴∠BAD=60°,∵=,∴∠DAC=∠BAC=∠BAD=30°,∴=,∵CE∥BD,∴∠E=∠DBA=30°,∴AC=CE,∴,∵∠A=∠BCF=∠CBD=30°,∴∠BCE=30°,∴BE=BC,∵CG=4,∴BC=,∴BE=.25.解:(1)将点A(﹣5,0)、B(﹣4,﹣3)代入抛物线y=ax2+bx+5,得:,解得:,∴该抛物线的表达式为:y=x2+6x+5…①;(2)①令y=0,得x2+6x+5=0,解得:x1=﹣1,x2=﹣5,∴点C(﹣1,0),设直线BC的解析式为y=kx+d,将点B、C的坐标代入得:,解得:,∴直线BC的解析式为y=x+1…②,如图1,过点P作y轴的平行线交BC于点G,设点G(t,t+1),则点P(t,t2+6t+5),∴PG=t+1﹣(t2+6t+5)=﹣t2﹣5t﹣4,∴S△PBC=PG•(x C﹣x B)=×(﹣t2﹣5t﹣4)×3=﹣t2﹣t﹣6=﹣(t+)2+,∵−<0,∴S△PBC有最大值,当t=﹣时,其最大值为,此时P(﹣,﹣);②∵y=x2+6x+5=(x+3)2﹣4,∴顶点D(﹣3,﹣4),设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,∵线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式得﹣=﹣(﹣)+m,解得:m=﹣4,∴直线BC中垂线的表达式为:y=﹣x﹣4…③,设直线CD的解析式为y=k′x+b′,把C(﹣1,0),D(﹣3,﹣4)代入得:,解得:,∴直线CD的解析式为:y=2x+2…④,联立③④得:,解得:,∴点H(﹣2,﹣2),设直线BH的解析式为y=k″x+b″,则,解得:,∴直线BH的解析式为:y=x﹣1…⑤,联立①⑤得,解得:,(舍去),故点P(﹣,﹣);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);综上所述,点P的坐标为P(﹣,﹣)或(0,5).。
人教版九年级数学上册综合题练习卷:第21章 一元二次方程(包含答案)
第21章一元二次方程1.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?2.某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?3.关于x的一元二次方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0(1)求方程的解;(2)若方程的解为整数,求k值.4.某市为推进养老服务工作的深入开展,在扩大社区养老覆盖率、规范机构养老、科学规划养老服务布局等方面作了大量工作.该市的养老机构拥有的养老床位数从2016年底的2万个增长到2018年底的2.88万个.(1)求该市这两年养老床位数的年平均增长率:(2)该市2018年底正在筹建一社区养老中心,按照规划拟建造三类养老专用房间(一个养老床位的单人间、两个养老床位的双人间、三个养老床位的三人间)共100间,若按规划需要建造的单人间的房间数为m(12≤m≤15),双人间的房间数是单人间的2倍,求该养老中心建成后最多可提供养老床位多少个?最少提供养老床位多少个?5.为进一步弘扬“爱国、进步、民主、科学”的五四精神,倡导“我运动、我健康、我快乐”的生活方式,某县团委准备组织一次共青团员青年足球赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排5场比赛,则该县团委应邀请多少个足球队参赛?6.已知关于x的一元二次方程x2﹣5x+2m=0有实数根.(1)求m的取值范围;(2)当m=时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.7.(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:8.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.9.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.10.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.11.已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=3,求k的值及方程的根.12.已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且+=x1•x2,试求k的值.13.HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.14.(1)关于x,y的方程组满足x+y=5,求m的值.(2)关于x的一元二次方程x2﹣(m﹣1)x﹣m=0的两个根x1,x2满足x12+x22=5,求的值.15.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.16.已知关于x的一元二次方程x2﹣(m+3)x+m+2=0,(1)求证:无论实数m取得何值,方程总有两个实数根;(2)若方程有一个根的平方等于1,求m的值.17.(1)解方程:x2﹣2x﹣1=0.(2)解不等式组:18.已知关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0.(1)求证:不论m为何值,方程必有实数根.(2)当m为整数时,方程是否有有理根?若有,求出m的值:若没有,请说明理由.19.建造一个面积为130m2的长方形养鸡场,鸡场的一边靠墙,墙长为a米,另三边用竹篱笆围成,如果篱笆总长为33米.(1)求养鸡场的长与宽各为多少米?(2)若10≤a<18,题中的解的情况如何?20.2019长春国际马拉松于5月26日上午在长春体育中心鸣枪开跑.某公司为赛事赞助了5000瓶矿泉水,计划以后每年逐年增加,到2021年达到7200瓶,若该公司每年赞助矿泉水数量增加的百分率相同.(1)求平均每年增加的百分率;(2)假设2022年该公司赞助矿泉水增加的百分率与前两年相同,请你预测2022年该公司赞助的矿泉水的数量.参考答案1.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.2.【分析】(1)可设甲种商品的进价是x元,乙种商品的进价是y元,根据等量关系:①一件甲种商品和一件乙种商品的进价之和为30元;②购买8件甲种商品和6件乙种商品一共用了262元;列出方程组求解即可;(2)根据该经销商每天销售甲、乙两种商品获取的利润共2500元,列出方程求解即可.【解答】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.3.【分析】(1)根据一元二次方程的定义,利用因式分解法可解;(2)根据(1),利用整数根可解.【解答】解:(1)∵该方程是关于x的一元二次方程,∴k≠6,k≠9∵(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0∴[(6﹣k)x﹣9][(9﹣k)x﹣6]=0解得x=或∴方程的解为x=或.(2)∵方程的解为x=或.若方程的解为整数,①当6﹣k=±1,±3,±9时,x是整数,此时k=7、5、3、9、15、﹣3;②当9﹣k=±1,±2,±3,±6时,x是整数,此时k=10、8、11、7、12、6、15、3.综上可知,k=3、7、15时原方程的解为整数.【点评】本题考查了一元二次方程的定义及整数根的求解问题,难度中等.4.【分析】(1)设该市这两年(从2016年度到2018年底)拥有的养老床位数的平均年增长率为x,根据“2018年的床位数=2016年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于m的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.【解答】解:(1)设该市这两年拥有的养老床位数的平均年增长率为,由题意可列出方程:2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,三人间的房间数为100﹣3m,设该养老中心建成后能提供养老床位y个,由题意得:y=m+4m+3(100﹣3m)=﹣4m+300∵y随m的增大而减小∴当m=12时,y的最大值为252.当m=15时,y的最小值为240.答:该养老中心建成后最多提供养老床位252个,最少提供养老床位240个.【点评】本题考查了一次函数的应用、一元二次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.5.【分析】关系式为:球队总数×每支球队需赛的场数=9×5,把相关数值代入即可.【解答】解:该县团委应邀请x个足球队参赛.每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=9×5.整理,得x2﹣x﹣90=0.解得x1=﹣9(不合题意,舍去),x2=10.答:该县团委应邀请10个足球队参赛.【点评】本题考查了一元二次方程的应用,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.6.【分析】(1)由根的判别式列出不等式,解不等式可得m的取值范围;(2)由根与系数的关系可得x1+x2=5、x1x2=5,该矩形外接圆的直径是矩形的对角线AC,根据勾股定理可得结论.【解答】(本题6分)解:(1)∵方程有实数根,∴△=(﹣5)2﹣4×1×2m≥0,(1分)m≤,(2分)∴当m≤时,原方程有实数根;(3分)(2)当m=时,原方程可化为:x2﹣5x+5=0,设方程的两个根分别为x1、x2,则x1+x2=5,x1•x2=5,(4分)∵该矩形外接圆的直径是矩形的对角线AC,如图所示,∴AC====,(5分)∴该矩形外接圆的直径是.(6分)【点评】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握根与系数的关系和进行变形是解题的关键.7.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1=﹣,x2=1;(2)∵解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3.【点评】本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.8.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.9.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.11.【分析】(1)由于关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,可知△>0,据此进行计算即可;(2)利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△>0,∴(2k+1)2﹣4(k2+1)>0,整理得,4k﹣3>0,解得:k>,故实数k的取值范围为k>;(2)∵方程的两个根分别为x1,x2,∴x1+x2=2k+1=3,解得:k=1,∴原方程为x2﹣3x+2=0,∴x1=1,x2=2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.12.【分析】(1)根据一元二次方程x2﹣2x+2k﹣1=0有两个不相等的实数根得到△=(﹣2)2﹣4(2k﹣1)≥0,求出k的取值范围即可;(2)根据根与系数的关系得出方程解答即可.【解答】(1)解:∵原方程有实数根,∴b2﹣4ac≥0∴(﹣2)2﹣4(2k﹣1)≥0∴k≤1(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1+x2 =2,x1 •x2 =2k﹣1又∵+=x1•x2,∴∴(x1+x2)2﹣2x1 x2 =(x1 •x2)2∴22﹣2(2k﹣1)=(2k﹣1)2解之,得:.经检验,都符合原分式方程的根∵k≤1∴.【点评】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.13.【分析】(1)设2018年甲类芯片的产量为x万块,由题意列出方程,解方程即可;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的熟练为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,得出丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,由题意得出400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),即可得出答案.【解答】解:(1)设2018年甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:2018年甲类芯片的产量为400万块;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,则:400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,400(1+t)2+2×400(1+t﹣1)2+8000=28000×(1+10%),整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片2020年的产量为8000万块,m=400.【点评】本题考查了一元二次方程的应用、一元一次方程的应用以及一元二次方程和一元一次方程的解法;弄清数量关系列出方程是解题的关键.14.【分析】(1)观察到方程组两方程相加,左边出现3(x+y),把x+y作为一个整体来计算.(2)根据韦达定理求出用m表示x1+x2和x1x2的值,利用完全平方公式的变形得到x12+x22的式子,进而得到关于m的方程.【解答】解:(1)根据题意把方程组两式相加得:2x+y+x+2y=m+3m+13(x+y)=4m+1∴x+y=又∵x+y=5∴解得:m=(2)∵a=1,b=﹣(m﹣1),c=﹣m∴△=[﹣(m﹣1)]2﹣4•(﹣m)=m2﹣2m+1+4m=m2+2m+1=(m+1)2≥0∴无论m为何值时,方程一定有实数根.∵x1+x2==m﹣1,x1x2==﹣m∴x12+x22=(x1+x2)2﹣2x1x2=(m﹣1)2+2m∵x12+x22=5∴(m﹣1)2+2m=5解得:m=±2当m=2时,==当m=﹣2时,==∴的值为或【点评】本题考查了解二元一次方程,一元二次方程根与系数的关系,完全平方公式,分式的加减.15.【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的两个实数根”是解题的关键.16.【分析】(1)求出△=[﹣(m+3)]2﹣4(m+2)=(m+1)2,再判断即可;(2)求出方程的根是±1,再代入方程,即可求出答案.)【解答】(1)证明:x2﹣(m+3)x+m+2=0,△=[﹣(m+3)]2﹣4(m+2)=(m+1)2≥0,所以无论实数m取得何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于1,∴此根是±1,当根是1时,代入得:1﹣(m+3)+m+2=0,即0=0,此时m为任何数;当根是﹣1时,1+(m+3)+m+2=0,解得:m=﹣3.【点评】本题考查了解一元二次方程和根的判别式,能熟记根的判别式的内容是解此题的关键.17.【分析】(1)利用配方法解方程;(2)分别解两个一次不等式得到x>﹣2和x≤2,然后根据确定不等式组的解集.【解答】解:(1)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1=,所以x1=1+,x2=1﹣;(2)解①得x>﹣2,解②得x≤2,所以不等式组的解集为﹣2<x≤2.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了解一元一次不等式组.18.【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出方程总有两个不相等的实数根;(2)先计算出△并且设△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4=n2(n为整数),整系数方程有有理根的条件是△为完全平方数.解不定方程,讨论m的存在性.变形为(2m﹣1)2﹣n2=4,(2m﹣1﹣n)(2m﹣1+n)=﹣4,利用m,n都为整数进行讨论即可.【解答】(1)证明:①当2m﹣1=0即m=时,此时方程是一元一次方程,其根为x=,符合题意;②当2m﹣1≠0即m≠时,△=[﹣(2m+1)]2﹣4(2m﹣1)=(2m﹣1)2+4>0,∴当m≠时,方程总有两个不相等的实数根;综上所述,不论m为何值,方程必有实数根.(2)当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.理由如下:①当m为整数时,假设关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0有有理根,则要△=b2﹣4ac为完全平方数,而△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4,设△=n2(n为整数),即(2m﹣1)2+4=n2(n为整数),所以有(2m﹣1﹣n)(2m﹣1+n)=﹣4,∵2m﹣1与n的奇偶性相同,并且m、n都是整数,所以或,解得m=,②2m﹣1=0时,m=(不合题意舍去).所以当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.【点评】考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式为△=b2﹣4ac.△=b2﹣4ac为完全平方数是方程的根为有理数的充要条件.同时考查了不定方程特殊解的求法.19.【分析】(1)设养鸡场的宽为x米,则长为(33﹣2x)米,利用厂房的面积公式结合养鸡场的面积为130m2,即可得出关于x的一元二次方程,解之即可得出结论;(2)由(1)的结论结合10≤a<18,可得出长方形的长为13米宽为10米.【解答】解:(1)设养鸡场的宽为x米,则长为(33﹣2x)米,依题意,得:(33﹣2x)x=130,解得:x1=6.5,x2=10,∴33﹣2x=20或13.答:养鸡场的长为20米宽为6.5米或长为13米宽为10米.(2)∵10≤a<18,∴33﹣2x=13,∴养鸡场的长为13米宽为10米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【分析】(1)设平均每年增加的百分率为x,根据该公式2019年及2021年赞助矿泉水的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据2022年该公司赞助的矿泉水数量=2021年该公司赞助的矿泉水数量×(1+增长率),即可求出结论.【解答】解:(1)设平均每年增加的百分率为x,依题意,得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:平均每年增加的百分率为20%.(2)7200×(1+20%)=8640(瓶).答:预测2022年该公司赞助矿泉水8640瓶.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。
人教版九年级上册数学《二次函数的图像和性质》综合练习题【含答案】
《二次函数的图象和性质》同步练习题一、选择题(共10小题)1.下列函数中是二次函数的为 ()A .B .C .D .31y x =-231y x =-22(1)y x x =+-323y x x =+-2.二次函数与一次函数,它们在同一直角坐标系中的图象大致是2y ax bx c =++y ax c =+ ()A .B .C .D .3.已知一次函数的图象经过一、二、四象限,则二次函数的顶点y kx b =+2y kx bx k =+-在第 象限.()A .一B .二C .三D .四4.抛物线的顶点坐标是 22(3)2y x =-+()A .B .C .D .(3,2)-(3,2)(3,2)--(3,2)-5.已知,二次函数满足以下三个条件:①,②,③2y ax bx c =++24b c a >0a b c -+<,则它的图象可能是 b c <()A .B .C .D .6.把抛物线向下平移2个单位长度,再向右平移1个单位长度,所得抛物线是2(2)y x =+ ()A .B .C .D .2(2)2y x =++2(1)2y x =+-22y x =+22y x =-7.将抛物线平移得到抛物线,则这个平移过程正确的是 2y x =2(3)y x =+()A .向左平移3个单位B .向右平移3个单位C .向上平移3个单位D .向下平移3个单位8.二次函数的图象可能是 22y x x =-+()A .B .C .D .9.若点,,都在抛物线上,则下1(1,)M y -2(1,)N y 37(,)2P y 2241(0)y mx mx m m =-+++>列结论正确的是 ()A .B .C .D .123y y y <<132y y y <<312y y y <<213y y y <<10.二次函数与轴交点坐标为 23(2)5y x =--y ()A .B .C .D .(0,2)(0,5)-(0,7)(0,3)二、填空题(共4小题)11.请写出一个开口向上且与轴交点坐标为的抛物线的表达式: .y (0,1)12.若二次函数,当时,随的增大而减小,则的取值范围是 22()1y x k =-++2x - y x k .13.抛物线的对称轴是 .22247y x x =+-14.已知抛物线经过,,对于任意,点均不在抛2y ax bx c =++(0,2)A (4,2)B 0a >(,)P m n 物线上.若,则的取值范围是 .2n >m 三、解答题(共6小题)15.已知抛物线.2246y x x =--(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿轴向左平移个单位后经过原点,求的值.x (0)m m >m 16.如图,在中,,,,动点从点开始沿边ABC ∆90B ∠=︒12AB mm =24BC mm =P A向以的速度移动(不与点重合),动点从点开始沿边向以AB B 2/mm s B Q B BC C 的速度移动(不与点重合).如果、分别从、同时出发,那么经过多少4/mm s C P Q A B 秒,四边形的面积最小.APQC17.已知二次函数.243(0)y ax ax b a =-++≠(1)求出二次函数图象的对称轴;(2)若该二次函数的图象经过点,且整数,满足,求二次函数的表(1,3)a b 4||9a b <+<达式;(3)对于该二次函数图象上的两点,,,,设,当时,1(A x 1)y 2(B x 2)y 11t x t + 25x 均有,请结合图象,直接写出的取值范围.12y y t 18.在平面直角坐标系中,抛物线经过点和.xOy 2(0)y ax bx c a =++>(0,3)A -(3,0)B (1)求的值及、满足的关系式;c a b(2)若抛物线在、两点间从左到右上升,求的取值范围;A B a (3)结合函数图象判断,抛物线能否同时经过点、?若能,写出(1,)M m n -+(4,)N m n -一个符合要求的抛物线的表达式和的值,若不能,请说明理由.n 19.小明利用函数与不等式的关系,对形如12()()()0n x x x x x x --⋯->为正整数)的不等式的解法进行了探究.(n (1)下面是小明的探究过程,请补充完整:①对于不等式,观察函数的图象可以得到如表格:30x ->3y x =-的范围x 3x >3x <的符号y +-由表格可知不等式的解集为.30x ->3x >②对于不等式,观察函数的图象可以得到如表表格:(3)(1)0x x -->(3)(1)y x x =--的范围x 3x >13x <<1x <的符号y +-+由表格可知不等式的解集为 .(3)(1)0x x -->③对于不等式,请根据已描出的点画出函数的(3)(1)(1)0x x x --+>(3)(1)(1)y x x x =--+图象;观察函数的图象补全下面的表格:(3)(1)(1)y x x x =--+的范围x 3x >13x <<11x -<<1x <-的符号y +- 由表格可知不等式的解集为 .(3)(1)(1)0x x x --+>⋯⋯小明将上述探究过程总结如下:对于解形如为正整数)的12()()()0(n x x x x x x n --⋯⋯->不等式,先将,,按从大到小的顺序排列,再划分的范围,然后通过列表格的1x 2x ⋯n x x 办法,可以发现表格中的符号呈现一定的规律,利用这个规律可以求这样的不等式的解y 集.(2)请你参考小明的方法,解决下列问题:①不等式的解集为 .(6)(4)(2)(2)0x x x x ---+>②不等式的解集为 .2(9)(8)(7)0x x x --->20.函数是二次函数.223y mx mx m =--(1)如果该二次函数的图象与轴的交点为,那么 ;y(0,3)m(2)在给定的坐标系中画出(1)中二次函数的图象.答案一、选择题(共10小题)1.解:、是一次函数,故错误;A 31y x =-A 、是二次函数,故正确;B 231y x =-B 、不含二次项,故错误;C 22(1)y x x =+-C 、是三次函数,故错误;D 323y x x =+-D 故选:.B 2.解:一次函数和二次函数都经过轴上的,y (0,)c 两个函数图象交于轴上的同一点,排除、;∴y B C 当时,二次函数开口向上,一次函数经过一、三象限,排除;0a >D 当时,二次函数开口向下,一次函数经过二、四象限,正确;0a <A 故选:.A 3.解:一次函数的图象经过一、二、四象限,y kx b =+,,0k ∴<0b >△,2224()40b k k b k =--=+>抛物线与轴有两个交点,∴x、异号,k b 抛物线的对称轴在轴右侧,∴y 二次函数的顶点在第一象限.∴2y kx bx k =+-故选:.A 4.解:抛物线的顶点坐标是,22(3)2y x =-+(3,2)故选:.B 5.解:二次函数满足以下三个条件:①,②,③, 2y ax bx c =++24b c a >0a b c -+<b c <由①可知当时,则抛物线与轴有两个交点,当时,∴0a >240b ac ->x 0a <240b ac -<则抛物线与轴无交点;x 由②可知:当时,,1x =-0y <由③可知:,0b c -+>,必须,0a b c -+< ∴0a <符合条件的有、,∴C D 由的图象可知,对称轴直线,,,抛物线交的负半轴,C 02b x a=->0a <0b ∴>y ,则,0c <b c >由的图象可知,对称轴直线,,,抛物线交的负半轴,D 02b x a=-<0a <0b ∴<y ,则有可能,0c <b c <故满足条件的图象可能是,D 故选:.D 6.解:抛物线的顶点坐标是,向下平移2个单位长度,再向右平移1个单2(2)y x =+(2,0)-位长度后抛物线的顶点坐标是,(1,2)--所以平移后抛物线的解析式为:2(1)2y x =+-故选:.B 7.解:抛物线的顶点坐标为,抛物线的顶点坐标为,2y x =(0,0)2(3)y x =+(3,0)-点向左平移3个单位可得到,(0,0)(3,0)-将抛物线向左平移3个单位得到抛物线.∴2y x =2(3)y x =+故选:.A 8.解:,,22y x x =-+ 0a <抛物线开口向下,、不正确,∴A C 又对称轴,而的对称轴是直线, 212x =-=-D 0x =只有符合要求.∴B 故选:.B 9.解:观察二次函数的图象可知:.132y y y <<故选:.B 10.解:23(2)5y x =-- 当时,,∴0x =7y =即二次函数与轴交点坐标为,23(2)5y x =--y (0,7)故选:.C 二、填空题(共4小题)11.解:抛物线开口方向向上,且与轴的交点坐标为,y (0,1)抛物线的解析式为.∴21y x =+故答案为.21y x =+12.解:,22()1y x k =-++对称轴为,∴x k =-,20a =-< 抛物线开口向下,∴在对称轴右侧随的增大而减小,∴y x 当时,随的增大而减小,2x - y x ,解得,2k ∴-- 2k 故.2k 13.解:抛物线的对称轴是:,22247y x x =+-24622x =-=-⨯故.6x =-14.解:依照题意,画出图形,如图所示.当时,或,2n >0m <4m >当时,若点均不在抛物线上,则.∴2n >(,)P m n 04m 故.04m三、解答题(共6小题)15.解:(1)2246y x x =--22(2)6x x =--,22(1)8x =--故该函数的顶点坐标为:;(1,8)-(2)当时,,0y =202(1)8x =--解得:,,11x =-23x =即图象与轴的交点坐标为:,,x (1,0)-(3,0)故该抛物线沿轴向左平移3个单位后经过原点,x 即.3m =16.解:设经过秒,四边形的面积最小x APQC 由题意得,,,2AP x =4BQ x =则,122PB x =-的面积PBQ ∆12BQ PB =⨯⨯1(122)42x x =⨯-⨯,24(3)36x =--+当时,的面积的最大值是,3x s =PBQ ∆236mm此时四边形的面积最小.APQC 17.解:(1)二次函数图象的对称轴是;422a x a-=-=(2)该二次函数的图象经过点,(1,3),433a a b ∴-++=,3b a ∴=把代入,3b a =4||9a b <+<得.43||9a a <+<当时,,则.0a >449a <<914a <<而为整数,a ,则,2a ∴=6b =二次函数的表达式为;∴2289y x x =-+当时,,则.0a <429a <-<922a -<<-而为整数,a 或,3a ∴=-4-则对应的或,9b =-12-二次函数的表达式为或;∴23126y x x =-+-24169y x x =-+-(3)当时,均有,25x 12y y 二次函数的对称轴是直线,243(0)y ax ax b a =-++≠2x =,12y y ①当时,有,即∴0a >12|2||2|x x -- 12|2|2x x -- ,212222x x x ∴--- ,2124x x x ∴- ,25x ,241x ∴-- 该二次函数图象上的两点,,,,1(A x 1)y 2(B x 2)y 设,当时,均有,11t x t + 25x 12y y ∴115t t -⎧⎨+⎩ .14t ∴- ②当时,,即0a <12|2||2|x x -- 12|2|2x x -- ,或,1222x x ∴-- 1222x x -- ,或12x x ∴ 124x x - ,25x ,241x ∴--该二次函数图象上的两点,,,,1(A x 1)y 2(B x 2)y 设,当时,均有,11t x t + 25x 12y y 比的最大值还大,或比的最小值还小,这是不存在的,t ∴2x 1t + 24x -故时,的值不存在,0a <t 综上,当时,.0a >14t - 18.解:(1)抛物线经过点和. 2(0)y ax bx c a =++>(0,3)A -(3,0)B ,∴3093c a b c-=⎧⎨=++⎩,.3c ∴=-310a b +-=(2)由1可得:,2(13)3y ax a x =+--对称轴为直线,132a x a -=-抛物线在、两点间从左到右上升,当时,对称轴在点左侧,如图: A B 0a >A即:,解得:,1302a a -- 13a.、两点间从左到右上升,103a ∴< A B 当时,抛物线在、两点间从左到右上升,∴103a < A B (3)抛物线不能同时经过点、.(1,)M m n -+(4,)N m n -理由如下:若抛物线同时经过点、.则对称轴为:,(1,)M m n -+(4,)N m n -(1)(4)322m m x -++-==由抛物线经过点可知抛物线经过,与抛物线经过相矛盾,A (3,3)-(3,0)B 故:抛物线不能同时经过点、(1,)M m n -+(4,)N m n -19.解:(1)②由表格可知不等式的解集为或,(3)(1)0x x -->3x >1x <故或;3x >1x <③图象如右图所示,当时,,当时,,11x -<<(3)(1)(1)0x x x --+>1x <-(3)(1)(1)0x x x --+<由表格可知不等式的解集为或,(3)(1)(1)0x x x --+>3x >11x -<<故,,或;+-3x >11x -<<(2)①不等式的解集为或或,(6)(4)(2)(2)0x x x x ---+>6x >24x <<2x <-故或或;6x >24x <<2x <-②不等式的解集为或且,2(9)(8)(7)0x x x --->9x >8x <7x ≠故或且9x >8x <7x ≠20.解:(1)该函数的图象与轴交于点, y (0,3)把,代入解析式得:,∴0x =3y =33m -=解得,1m =-故答案为;1-(2)由(1)可知函数的解析式为,223y x x =-++,2223(1)4y x x x =-++=--+ 顶点坐标为;∴(1,4)列表如下:x 2-1-01234y5-034305-描点;画图如下:。
人教版九年级数学上册 综合练习试题(易)(含答案)
周一练习1、解方程:(1)x2-4x-1=0 (2)3x2-5x+1=02、如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为100°,则∠B的度数是()A.40°B.50°C.60°D.70°3、如图,四边形ABCD内接于⊙O,∠BOD=140°,求∠BCD的度数•4、如图,长方形ABCD绕顶点A旋转后得到长方形AEFG,点B、A、G在同一直线上,试回答下列问题:(1)旋转角度是多少?(2)△ACF是什么形状的三角形,说明理由周二练习1、用配方法解方程:x2+10x+9=0 用公式法解方程:2x2-3x-5=0.2、如图,在△ABO中,AB⊥OB,OB=3,OB在x轴正半轴上,∠AOB=30°,把△ABO 绕点O顺时针旋转150°后得到△A1B1O,则点A的对应点A1的坐标为______________3、如图,AB是⊙O的直径,AC、CD是⊙O的两条弦,CD⊥AB,连接OD,若∠CAB=20°,则∠AOD的度数是()A.100°B.120°C.130°D.140°•4、在正方形ABCD中,∠EDF=45°,求证:EF=AE+CF5、如图所示的美丽图案,绕着它的旋转中心至少旋转______度,能够与原来的图形重合周三练习1、下列语句,错误的是()A.直径是弦B.弦的垂直平分线一定经过圆心C.相等的圆心角所对的弧相等D.平分弧的半径垂直于弧所对的弦2、如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么点M在这条圆弧所在圆的()A.内部B.外部C.圆上D.不能确定3、如图,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=80°,则∠ACB的度数为()A.75°B.60°C.55°D.50°4、已知圆O的半径为R,点O到直线m的距离为d、R、d是方程x2-4x+a=0的两根,当直线m与圆O相切时,a的值是()A.3 B.4 C.5 D.无法确定5、如图,四边形ABCD 内接于⊙O ,AD ,BC 的延长线交于点E ,F 是BD 延长线上一点, ∠CDE=21∠CDF=60°. (1)求证:△ABC 是等边三角形;(2)判断DA ,DC ,DB 之间的数量关系,并证明你的结论周四练习1、如图,PA,PB切⊙O于A,B两点,CD切⊙于点E,交PA、PB于C、D,若△PCD 的周长等于4,则线段PA的长是()A.4 B.8 C.2 D.1•2、如图,△ABD、△CDE是两个等边三角形,连接BC、BE.若∠DBC=30°,BD=3cm,BC=4cm,则BE=3、如果四边形ABCD内接于⊙O,且∠A:∠B:∠C=1:2:3,则∠D=4、如图,AB是⊙O直径,CD为⊙O的切线,C为切点,过A作CD的垂线,垂足为D.(1)求证:AC平分∠BAD;(2)若⊙O半径为5,CD=4,求AD的长5、如图,AB是⊙O直径,弦CD与AB相交于点E,∠ADC=26°.求∠CAB的度数周五练习1、若点A(3,1)与B(-3,m)关于原点对称,则m的值是___________2、如图,AB是⊙O的直径,点C、D在⊙O上,∠AOC=70°,AD∥OC,则∠ABD=________3、如图,在△ABC中,AB=AC,作AD⊥BC于点D,以点A为圆心,AD为半径画⊙A.则点B与⊙A的位置关系为__________(填“在圆内”.“在圆上”或“在圆外”)4、如图,AB为⊙O的直径,CF⊥AB于E,交⊙O于D,AF交⊙O于G.求证:∠FGD=∠ADC5、如图,A、B、C、D在⊙O上,∠CAB=∠ADB=60°,AB=2,求△ABC的周长周六练习1、如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是()A.25°B.30°C.35°D.40°2、在直角坐标系内,点P(−2,6)关于原点的对称点P是______点P到原点的距离为_______3、如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠AOC的度数为________4、如图,PA,PB分别与⊙O相切于点A、B,若PA=4,∠P=60°,则⊙O的半径为5、已知,AB是⊙O的直径,弦CD⊥AB,E是上的一点,AE,DC的延长线相交于点F,求证:∠AED=∠CEF。
人教版九年级数学上册第二十五章综合测试卷含答案
人教版九年级数学上册第二十五章综合测试卷一、选择题(本题有10小题,每小题3分,共30分)1.下列事件中,是必然事件的是()A.五个人分成四组,这四组中有一组有两人B.任意买一张电影票,座位号是单号C.掷一次骰子,向上一面的点数是3D.打开手机就有未接电话2.(2023河北)有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上,若从中随机抽取一张,则抽到的花色可能性最大的是()3.(2023娄底)从367,3.141 592 6,3.3·,4,5,-38,39中随机抽取一个数,此数是无理数的概率是()A.27 B.37 C.47 D.574.一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是()A.13 B.12 C.14 D.165.如图,四张卡片除正面标有的数字不同外,其余完全相同,将四张卡片背面朝上,事件“从A,B,C三张卡片中先抽取一张记下数字后放回,洗匀后再抽取一张记下数字,两张卡片数字之和为正数”的概率为P1,事件“从A,B,C,D四张卡片中抽取一张,卡片数字为奇数”的概率为P2,则P1与P2的大小关系为()A.P1>P2B.P1<P2C.P1=P2D.无法确定(第5题)(第6题)6.如图,正方形ABCD是一块绿化带,其中四边形EOFB,四边形GHMN(阴影部分)都是正方形的花圃,已知自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.1732 B.12 C.1736 D.17387.随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,“”恰好是两个黑色小正方形和一个白色小正方形的概率为()A.13 B.38 C.12 D.238.(2024成都月考)小明和小亮在一次大量重复试验中,统计了某一结果出现的频率,绘制出如图所示的统计图,符合这一结果的试验可能是()A.掷一枚质地均匀的骰子,朝上的一面是3点B.掷一枚质地均匀的硬币,正面朝上C.从分别标有1,1,2,2,3,3的6张纸条中,随机抽出一张纸条上的数字是偶数D.从一道单项选择题的四个备选答案中随机选一个答案,选中正确答案(第8题)(第10题)9.(2023随州一模)看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上、中、下三个等级的三匹马综合指标数如表,每匹马只赛一场,两综合指标数相比,大数为胜,三场两胜则赢,已知齐王的三匹马的出场顺序为6,4,2.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为() 马匹等级下等马中等马上等马齐王 2 4 6田忌 1 3 5A.13 B.16 C.19 D.11210.向上抛掷质地均匀的骰子(如图),落地时向上的面点数为a(a的可能取值为1,2,3,4,5和6),则关于x的不等式1-ax3-x>2有不大于2的整数解的概率为()A.23 B.12 C.13 D.16二、填空题(本题有5小题,每小题4分,共20分)11.“八月十五云遮月,正月十五雪打灯”是一句谚语,意思是说如果八月十五晚上阴天的话,正月十五晚上就下雪,你认为谚语描述的事件是____________(填“必然事件”“不可能事件”或“随机事件”).12.周末期间,小燕在学习之余与妈妈要玩一次转盘游戏,选项与所占比例如图所示,则小燕不看电视的可能性为________.(第12题)13.(2023济南)围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是14,则盒中棋子的总个数是________个.14.用图中两个可自由转动的转盘做“配紫色”游戏:转盘A红色区域对应的圆心角度数为120°,转盘B被分成面积相等的四个扇形,分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色(若指针停在分割线上,则重新转动转盘),那么可配成紫色的概率是________.15.(2023菏泽)用数字0,1,2,3组成个位数字与十位数字不同的两位数,该两位数是偶数的概率为________.三、解答题(本题有5小题,共70分,各小题都必须写出解答过程)16.(12分)(2024淮安月考)某运动员进行打靶练习,对该名运动员打靶正中靶心的情况进行统计,并绘制成了如图所示的统计图,请根据图中信息回答问题:(1)该名运动员正中靶心的频率在________附近摆动,他正中靶心的概率估计值为________.(2)如果一次练习时他一共打了150枪.①试估计他正中靶心的枪数.②如果他想要在这次练习中打中靶心160枪,请计算出他还需要打大约多少枪?17.(14分)甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种,记种植辣椒为A,种植茄子为B,种植西红柿为C.假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种蔬菜被选到的可能性相等.记甲同学的选择为x,乙同学的选择为y.(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P.18.(14分)某市今年中考理、化实验操作考试,采用学生抽签决定自己的考试内容的方式.规定:每名考生必须在三个物理实验(用纸签A,B,C表示)和三个化学实验(用纸签D,E,F表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用列表法或画树状图法表示所有可能出现的结果.(2)小刚物理实验B和化学实验F不会做,那么他这两个实验一个也抽不到(记作事件M)的概率是多少?19.(15分)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是-6,-1,5,转盘B上的数字分别是6,-7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是________;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜.请用列表法或画树状图法说明这个游戏是否公平.20.(15分)某校计划成立五个兴趣活动小组(每名学生只能参加一个活动小组):A.音乐;B.美术;C.体育;D.阅读;E.人工智能.为了解学生对以上兴趣活动的参与情况,随机抽取了部分学生进行调查统计,并根据统计结果,绘制成了如图所示的两幅不完整的统计图.根据图中信息,完成下列问题:(1)①补全条形统计图(要求在条形图上方注明人数);②扇形统计图中的圆心角α的度数为________;(2)若该校有3 600名学生,估计该校参加E组(人工智能)的学生人数;(3)该学校从E组中挑选出了表现最好的两名男生和两名女生,计划从这四名同学中随机抽取两名同学参加市青少年人工智能竞赛,请用画树状图或列表的方法求出恰好抽到一名男生和一名女生的概率.答案一、1.A 2.B 3.A 4.A 5.B 6.C7.B8.C9.B点拨:当田忌的三匹马随机出场时,双方马的对阵情况如下表:齐王的马6,4,2 6,4,2 6,4,2 6,4,2 6,4,2 6,4,2 田忌的马5,3,1 5,1,3 3,5,1 3,1,5 1,5,3 1,3,5 共有6种等可能的对阵情况,只有一种对阵情况田忌能赢,∴田忌能赢得比赛的概率为16.故选B.10.A点思路:将a为1,2,3,4,5和6分别代入不等式中,求出对应不等式的解集,判断是否有不大于2的整数解即可.二、11.随机事件12.85%13.1214.5 1215.59三、16.解:(1)0.8;0.8(2)①150×0.8=120(枪).∴估计他正中靶心的枪数为120枪.②160÷0.8=200(枪),200-150=50(枪).∴他还需要打大约50枪.17.解:(1)画树状图如下.共有9种等可能的结果,分别为(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C).(2)由(1)可知,共有9种等可能的结果,其中甲、乙两名同学选择种植同一种蔬菜的结果有3种,∴甲、乙两名同学选择种植同一种蔬菜的概率P=39=13.18.解:(1)画树状图如下.共有9种等可能的结果,分别是AD,AE,AF,BD,BE,BF,CD,CE,CF.(2)从树状图可以看出,共有9种等可能的结果,其中物理实验B和化学实验F一个也抽不到的结果有4种,所以物理实验B和化学实验F一个也抽不到的概率P(M)=4 9.19.解:(1)1 3(2)列表如下.-6 -1 56 0 5 11-7 -13 -8 -24 -2 3 9由表格可知,一共有9种等可能的结果,其中a+b>0的结果有4种,a+b<0的结果有4种,∴P(小聪获胜)=49,P(小明获胜)=49.∴P(小聪获胜)=P(小明获胜).∴这个游戏公平.20.解:(1)①补全条形统计图如图.②120°(2)易知被调查的学生有300名.3 600×60300=720(名).∴估计该校参加E组(人工智能)的学生有720名.(3)画树状图如下.由树状图知,共有12种等可能的结果,其中抽到一名男生和一名女生的结果有8种,所以恰好抽到一名男生和一名女生的概率为812=23.。
人教版九年级数学中考圆的综合专项练习及参考答案
人教版九年级数学中考圆的综合专项练习类型一 与全等结合1. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.第1题图(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC , ∴△ACO 为等边三角形, ∴∠AOC =∠ACO =∠OAC =60°, ∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C , ∴OC ⊥DC , ∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;第1题解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°, ∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形, ∴OC =CP =OB =PB , ∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径,∴∠CAP =∠ACB =90°, 在Rt △ABC 与Rt △CPA 中,⎩⎪⎨⎪⎧AB =CP AC =AC , ∴Rt △ABC ≌Rt △CPA (HL).2. 如图,AB 为⊙O 的直径,CA 、CD 分别切⊙O 于点A 、D ,CO 的延长线交⊙O 于点M ,连接BD 、DM . (1)求证:AC =DC ; (2)求证:BD ∥CM ;(3)若sin B =45,求cos ∠BDM 的值.第2题图(1)证明:如解图,连接OD ,∵CA 、CD 分别与⊙O 相切于点A 、D , ∴OA ⊥AC ,OD ⊥CD , 在Rt △OAC 和Rt △ODC 中,⎩⎪⎨⎪⎧OA =OD OC =OC,∴Rt△OAC≌Rt△ODC(HL),∴AC=DC;(2)证明:由(1)知,△OAC≌△ODC,∴∠AOC=∠DOC,∴∠AOD=2∠AOC,∵∠AOD=2∠OBD,∴∠AOC=∠OBD,∴BD∥CM;(3)解:∵BD∥CM,∴∠BDM=∠M,∠DOC=∠ODB,∠AOC=∠B,∵OD=OB=OM,∴∠ODM=∠OMD,∠ODB=∠B=∠DOC,∵∠DOC=2∠DMO,∴∠DOC=2∠BDM,∴∠B=2∠BDM,如解图,作OE平分∠AOC,交AC于点E,作EF⊥OC于点F,第2题解图∴EF =AE ,在Rt △EAO 和Rt △EFO 中,∵⎩⎪⎨⎪⎧OE =OE AE =EF , ∴Rt △EAO ≌Rt △EFO (HL), ∴OA =OF ,∠AOE =12∠AOC ,∴点F 在⊙O 上,又∵∠AOC =∠B =2∠BDM , ∴∠AOE =∠BDM , 设AE =EF =y , ∵sin B =45,∴在Rt △AOC 中,sin ∠AOC =AC OC =45,∴设AC =4x ,OC =5x ,则OA =3x ,在Rt △EFC 中,EC 2=EF 2+CF 2, ∵EC =4x -y ,CF =5x -3x =2x , ∴(4x -y )2=y 2+(2x )2, 解得y =32x ,∴在Rt △OAE 中,OE =OA 2+AE 2=(3x )2+(32x )2=352x ,∴cos ∠BDM =cos ∠AOE =OA OE =3x 352x=255.3. 如图,⊙O 是△ABC 的外接圆,AC 为直径,AB ︵=BD ︵,BE ⊥DC 交DC 的延长线于点E . (1)求证:∠1=∠BCE ; (2)求证:BE 是⊙O 的切线; (3)若EC =1,CD =3,求cos ∠DBA .第3题图(1)证明:如解图,过点B 作BF ⊥AC 于点F ,∵AB ︵=BD ︵, ∴AB =BD在△ABF 与△DBE 中, ⎩⎪⎨⎪⎧∠BAF =∠BDE ∠AFB =∠DEB AB =DB, ∴△ABF ≌△DBE (AAS), ∴BF =BE , ∵BE ⊥DC ,BF ⊥AC , ∴∠1=∠BCE ; (2)证明:如解图,连接OB ,∵AC 是⊙O 的直径,∴∠ABC =90°,即∠1+∠BAC =90°, ∵∠BCE +∠EBC =90°,且∠1=∠BCE , ∴∠BAC =∠EBC , ∵OA =OB , ∴∠BAC =∠OBA ,∴∠EBC =∠OBA ,∴∠EBC +∠CBO =∠OBA +∠CBO =90°, ∴∠EBO =90°, 又∵OB 为⊙O 的半径, ∴BE 是⊙O 的切线;第3题解图(3)解:在△EBC 与△FBC 中,⎩⎪⎨⎪⎧∠BEC =∠CFB ,∠ECB =∠FCB ,BC =BC ,∴△EBC ≌△FBC (AAS), ∴CE =CF =1.由(1)可知:AF =DE =1+3=4, ∴AC =CF +AF =1+4=5,∴cos ∠DBA =cos ∠DCA =CD CA =35.类型二 与相似结合4. 如图,△ABC 内接于⊙O ,AB =AC ,∠BAC =36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数; (2)求证:AE 2=EF ·ED ; (3)求证:AD 是⊙O 的切线.第4题图(1)解:∵AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =12(180°-36°)=72°,∴∠AFB =∠ACB =72°, ∵BD 平分∠ABC , ∴∠DBC =36°, ∵AD ∥BC ,∴∠D =∠DBC =36°,∴∠DAF =∠AFB -∠D =72°-36°=36°;(2)证明:∵∠EAF =∠FBC =∠D ,∠AEF =∠AED ,∴△EAF ∽△EDA ,∴AE DE =EF EA, ∴AE 2=EF ·ED ;(3)证明:如解图,过点A 作BC 的垂线,G 为垂足,∵AB =AC , ∴AG 垂直平分BC , ∴AG 过圆心O , ∵AD ∥BC , ∴AD ⊥AG , ∴AD 是⊙O 的切线.第4题解图5. 如图,AB 为半圆的直径,O 为圆心,OC ⊥AB ,D 为BC ︵的中点,连接DA 、DB 、DC ,过点C 作DC 的垂线交DA 于点E ,DA 交OC 于点F .(1)求证:∠CED =45°;(2)求证:AE =BD ;(3)求AO OF的值.第5题图(1)证明:∵∠CDA =12∠COA =12×90°=45°, 又∵CE ⊥DC ,∴∠DCE =90°,∴∠CED =180°-90°-45°=45°;(2)解:如解图,连接AC ,∵D 为BC ︵的中点,∴∠BAD =∠CAD =12×45°=22.5°, 而∠CED =∠CAE +∠ACE =45°,∴∠CAE =∠ACE =22.5°,∴AE =CE ,∵∠ECD =90°,∠CED =45°,∴CE =CD ,又∵CD ︵=BD ︵,∴CD =BD ,∴AE =CE =CD =BD ,∴AE =BD ;第5题解图(3)解:设BD =CD =x ,∴AE =CE =x ,由勾股定理得,DE =2x ,则AD =x +2x ,又∵AB 是直径,则∠ADB =90°,∴△AOF ∽△ADB ,∴AO OF =AD DB =x +2x x=1+ 2. 6. 如图,AB 为⊙O 的直径,P 点为半径OA 上异于点O 和点A 的一个点,过P 点作与直径AB 垂直的弦CD ,连接AD ,作BE ⊥AB ,OE //AD 交BE 于E 点,连接AE 、DE ,AE 交CD 于点F .(1)求证:DE 为⊙O 的切线;(2)若⊙O 的半径为3,sin ∠ADP =13,求AD ; (3)请猜想PF 与FD 的数量关系,并加以证明.第6题图(1)证明:如解图,连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵OE ∥AD ,∴∠OAD =∠BOE ,∠DOE =∠ODA ,∴∠BOE =∠DOE ,在△BOE 和△DOE 中,⎩⎪⎨⎪⎧OB =OD ∠BOE =∠DOE OE =OE,∴△BOE ≌△DOE (SAS),∴∠ODE =∠OBE ,∵BE ⊥AB ,∴∠OBE =90°,∴∠ODE =90°,∵OD 为⊙O 的半径,∴DE 为⊙O 的切线;(2)解:如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ABD +∠BAD =90°,∵AB ⊥CD ,∴∠ADP +∠BAD =90°,∴∠ABD =∠ADP ,∴sin ∠ABD =AD AB =sin ∠ADP =13, ∵⊙O 的半径为3,∴AB =6,∴AD =13AB =2;第6题解图(3)解:猜想PF =FD ,证明:∵CD ⊥AB ,BE ⊥AB ,∴CD ∥BE ,∴△APF ∽△ABE ,∴PF BE =AP AB ,∴PF =AP ·BE AB ,在△APD 和△OBE 中,⎩⎪⎨⎪⎧∠APD =∠OBE∠PAD =∠BOE ,∴△APD ∽△OBE ,∴PD BE =AP OB ,∴PD =AP ·BE OB ,∵AB =2OB ,∴PF =12PD , ∴PF =FD .7. 如图①,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,OD ∥AC ,OD 交⊙O 于点E ,且∠CBD =∠COD .(1)求证:BD 是⊙O 的切线;(2)若点E 为线段OD 的中点,求证:四边形OACE 是菱形.(3)如图②,作CF ⊥AB 于点F ,连接AD 交CF 于点G ,求FG FC的值.第7题图(1)证明:∵AB 是⊙O 的直径,∴∠BCA =90°,∴∠ABC +∠BAC =90°,∵OD ∥AC ,∴∠ACO =∠COD .∵OA=OC,∴∠BAC=∠ACO,又∵∠COD=∠CBD,∴∠CBD=∠BAC,∴∠ABC+∠CBD=90°,∴∠ABD=90°,即OB⊥BD,又∵OB是⊙O的半径,∴BD是⊙O的切线;(2)证明:如解图,连接CE、BE,∵OE=ED,∠OBD=90°,∴BE=OE=ED,∴△OBE为等边三角形,∴∠BOE=60°,又∵AC∥OD,∴∠OAC=60°,又∵OA=OC,∴△OAC为等边三角形,∴AC=OA=OE,∴AC∥OE且AC=OE,∴四边形OACE是平行四边形,而OA=OE,∴四边形OACE是菱形;第7题解图(3)解:∵CF⊥AB,∴∠AFC=∠OBD=90°,而AC∥OD,∴∠CAF=∠DOB,∴Rt△AFC∽Rt△OBD,∴FCBD=AFOB,即FC=BD·AFOB,又∵FG∥BD,∴△AFG∽△ABD,∴FGBD=AFAB,即FG=BD·AFAB,∴FC FG =AB OB=2, ∴FG FC =12. 8. 如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O 、B 重合),作EC ⊥OB 交⊙O 于点C ,作直径CD 过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:AC 平分∠FAB ;(2)求证:BC 2=CE ·CP ;(3)当AB =43且CF CP =34时,求劣弧BD ︵的长度.第8题图(1)证明:∵PF 切⊙O 于点C ,CD 是⊙O 的直径,∴CD ⊥PF ,又∵AF ⊥PC ,∴AF ∥CD ,∴∠OCA =∠CAF ,∵OA=OC,∴∠OAC=∠OCA,∴∠CAF=∠OAC,∴AC平分∠FAB;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵∠DCP=90°,∴∠ACB=∠DCP=90°,又∵∠BAC=∠D,∴△ACB∽△DCP,∴∠EBC=∠P,∵CE⊥AB,∴∠BEC=90°,∵CD是⊙O的直径,∴∠DBC=90°,∴∠CBP=90°,∴∠BEC=∠CBP,∴△CBE ∽△CPB ,∴BC PC =CE CB, ∴BC 2=CE ·CP ;(3)解:∵AC 平分∠FAB ,CF ⊥AF ,CE ⊥AB ,∴CF =CE ,∵CF CP =34, ∴CE CP =34, 设CE =3k ,则CP =4k ,∴BC 2=3k ·4k =12k 2,∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k =32, ∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3.类型三 与全等相似结合9. 如图,四边形ABCD 内接于圆O ,∠BAD =90°,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连接CG .(1)求证:AB =CD ;(2)求证:CD 2=BE ·BC ;(3)当CG =3,BE =92,求CD 的长.第9题图(1)证明:∵AC 为直径,∴∠ABC =∠ADC =90°,∴∠ABC =∠BAD =90°,∴BC ∥AD ,∴∠BCA =∠CAD ,又∵AC=CA,∴△ABC≌△CDA(AAS),∴AB=CD;(2)证明:∵AE为⊙O的切线且O为圆心,∴OA⊥AE,即CA⊥AE,∴∠EAB+∠BAC=90°,而∠BAC+∠BCA=90°,∴∠EAB=∠BCA,而∠EBA=∠ABC,∴△EBA∽△ABC,∴EBAB=BABC,∴AB2=BE·BC,由(1)知AB=CD,∴CD2=BE·BC;(3)解:由(2)知CD2=BE·BC,即CD 2=92BC ①, ∵FG ∥BC 且点F 为AC 的三等分点,∴G 为AB 的三等分点,即CD =AB =3BG ,在Rt △CBG 中,CG 2=BG 2+BC 2,即3=(13CD )2+BC 2②, 将①代入②,消去CD 得,BC 2+12BC -3=0, 即2BC 2+BC -6=0,解得BC =32或BC =-2(舍)③, 将③代入①得,CD =332. 10.如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F .(1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).第10题图 (1)证明:∵BC 2=CD ·CA ,∴BC CA =CD BC ,∵∠C =∠C ,∴△CBD ∽△CAB ,∴∠CBD =∠BAC ,又∵AB 为⊙O 的直径,∴∠ADB =90°,即∠BAC +∠ABD =90°,∴∠ABD +∠CBD =90°,即AB ⊥BC ,又∵AB 为⊙O 的直径,∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形.证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC ,又∵△CBD ∽△CAB ,∴∠BAC =∠CBD ,∴∠CBD =∠DAE ,∵∠DAE =∠DBF ,∴∠DBF =∠CBD ,∵∠BDF =90°,∴∠BDC =∠BDF =90°,∵BD =BD ,∴△BDF ≌△BDC ,∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°, ∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.。
人教版数学九年级上册《二次函数的图像和性质》综合练习(附答案)
22.1二次函数图像性质 综合练习题(附答案)1、函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 。
2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。
(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位。
3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个)。
4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式。
5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积。
6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6。
求:(1)求出此函数关系式。
(2)说明函数值y 随x 值的变化情况。
7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值。
2、()k h x a y +-=2的图象与性质 1、请写出一个以(2, 3)为顶点,且开口向上的二次函数: 。
2、二次函数 y =(x -1)2+2,当 x = 时,y 有最小值。
3、函数 y =12 (x -1)2+3,当 x 时,函数值 y 随 x 的增大而增大。
4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到。
5、已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y 。
(1)确定下列抛物线的开口方向、对称轴和顶点坐标;(2)当x= 时,抛物线有最 值,是 。
人教版九年级数学上册综合题练习卷:第21章 一元二次方程(包含答案)
第21章一元二次方程1.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?2.某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?3.关于x的一元二次方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0(1)求方程的解;(2)若方程的解为整数,求k值.4.某市为推进养老服务工作的深入开展,在扩大社区养老覆盖率、规范机构养老、科学规划养老服务布局等方面作了大量工作.该市的养老机构拥有的养老床位数从2016年底的2万个增长到2018年底的2.88万个.(1)求该市这两年养老床位数的年平均增长率:(2)该市2018年底正在筹建一社区养老中心,按照规划拟建造三类养老专用房间(一个养老床位的单人间、两个养老床位的双人间、三个养老床位的三人间)共100间,若按规划需要建造的单人间的房间数为m(12≤m≤15),双人间的房间数是单人间的2倍,求该养老中心建成后最多可提供养老床位多少个?最少提供养老床位多少个?5.为进一步弘扬“爱国、进步、民主、科学”的五四精神,倡导“我运动、我健康、我快乐”的生活方式,某县团委准备组织一次共青团员青年足球赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排5场比赛,则该县团委应邀请多少个足球队参赛?6.已知关于x的一元二次方程x2﹣5x+2m=0有实数根.(1)求m的取值范围;(2)当m=时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.7.(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:8.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.9.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.10.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.11.已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=3,求k的值及方程的根.12.已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且+=x1•x2,试求k的值.13.HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.14.(1)关于x,y的方程组满足x+y=5,求m的值.(2)关于x的一元二次方程x2﹣(m﹣1)x﹣m=0的两个根x1,x2满足x12+x22=5,求的值.15.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.16.已知关于x的一元二次方程x2﹣(m+3)x+m+2=0,(1)求证:无论实数m取得何值,方程总有两个实数根;(2)若方程有一个根的平方等于1,求m的值.17.(1)解方程:x2﹣2x﹣1=0.(2)解不等式组:18.已知关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0.(1)求证:不论m为何值,方程必有实数根.(2)当m为整数时,方程是否有有理根?若有,求出m的值:若没有,请说明理由.19.建造一个面积为130m2的长方形养鸡场,鸡场的一边靠墙,墙长为a米,另三边用竹篱笆围成,如果篱笆总长为33米.(1)求养鸡场的长与宽各为多少米?(2)若10≤a<18,题中的解的情况如何?20.2019长春国际马拉松于5月26日上午在长春体育中心鸣枪开跑.某公司为赛事赞助了5000瓶矿泉水,计划以后每年逐年增加,到2021年达到7200瓶,若该公司每年赞助矿泉水数量增加的百分率相同.(1)求平均每年增加的百分率;(2)假设2022年该公司赞助矿泉水增加的百分率与前两年相同,请你预测2022年该公司赞助的矿泉水的数量.参考答案1.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.2.【分析】(1)可设甲种商品的进价是x元,乙种商品的进价是y元,根据等量关系:①一件甲种商品和一件乙种商品的进价之和为30元;②购买8件甲种商品和6件乙种商品一共用了262元;列出方程组求解即可;(2)根据该经销商每天销售甲、乙两种商品获取的利润共2500元,列出方程求解即可.【解答】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.3.【分析】(1)根据一元二次方程的定义,利用因式分解法可解;(2)根据(1),利用整数根可解.【解答】解:(1)∵该方程是关于x的一元二次方程,∴k≠6,k≠9∵(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0∴[(6﹣k)x﹣9][(9﹣k)x﹣6]=0解得x=或∴方程的解为x=或.(2)∵方程的解为x=或.若方程的解为整数,①当6﹣k=±1,±3,±9时,x是整数,此时k=7、5、3、9、15、﹣3;②当9﹣k=±1,±2,±3,±6时,x是整数,此时k=10、8、11、7、12、6、15、3.综上可知,k=3、7、15时原方程的解为整数.【点评】本题考查了一元二次方程的定义及整数根的求解问题,难度中等.4.【分析】(1)设该市这两年(从2016年度到2018年底)拥有的养老床位数的平均年增长率为x,根据“2018年的床位数=2016年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于m的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.【解答】解:(1)设该市这两年拥有的养老床位数的平均年增长率为,由题意可列出方程:2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,三人间的房间数为100﹣3m,设该养老中心建成后能提供养老床位y个,由题意得:y=m+4m+3(100﹣3m)=﹣4m+300∵y随m的增大而减小∴当m=12时,y的最大值为252.当m=15时,y的最小值为240.答:该养老中心建成后最多提供养老床位252个,最少提供养老床位240个.【点评】本题考查了一次函数的应用、一元二次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.5.【分析】关系式为:球队总数×每支球队需赛的场数=9×5,把相关数值代入即可.【解答】解:该县团委应邀请x个足球队参赛.每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=9×5.整理,得x2﹣x﹣90=0.解得x1=﹣9(不合题意,舍去),x2=10.答:该县团委应邀请10个足球队参赛.【点评】本题考查了一元二次方程的应用,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.6.【分析】(1)由根的判别式列出不等式,解不等式可得m的取值范围;(2)由根与系数的关系可得x1+x2=5、x1x2=5,该矩形外接圆的直径是矩形的对角线AC,根据勾股定理可得结论.【解答】(本题6分)解:(1)∵方程有实数根,∴△=(﹣5)2﹣4×1×2m≥0,(1分)m≤,(2分)∴当m≤时,原方程有实数根;(3分)(2)当m=时,原方程可化为:x2﹣5x+5=0,设方程的两个根分别为x1、x2,则x1+x2=5,x1•x2=5,(4分)∵该矩形外接圆的直径是矩形的对角线AC,如图所示,∴AC====,(5分)∴该矩形外接圆的直径是.(6分)【点评】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握根与系数的关系和进行变形是解题的关键.7.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1=﹣,x2=1;(2)∵解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3.【点评】本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.8.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.9.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.11.【分析】(1)由于关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,可知△>0,据此进行计算即可;(2)利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△>0,∴(2k+1)2﹣4(k2+1)>0,整理得,4k﹣3>0,解得:k>,故实数k的取值范围为k>;(2)∵方程的两个根分别为x1,x2,∴x1+x2=2k+1=3,解得:k=1,∴原方程为x2﹣3x+2=0,∴x1=1,x2=2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.12.【分析】(1)根据一元二次方程x2﹣2x+2k﹣1=0有两个不相等的实数根得到△=(﹣2)2﹣4(2k﹣1)≥0,求出k的取值范围即可;(2)根据根与系数的关系得出方程解答即可.【解答】(1)解:∵原方程有实数根,∴b2﹣4ac≥0∴(﹣2)2﹣4(2k﹣1)≥0∴k≤1(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1+x2 =2,x1 •x2 =2k﹣1又∵+=x1•x2,∴∴(x1+x2)2﹣2x1 x2 =(x1 •x2)2∴22﹣2(2k﹣1)=(2k﹣1)2解之,得:.经检验,都符合原分式方程的根∵k≤1∴.【点评】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.13.【分析】(1)设2018年甲类芯片的产量为x万块,由题意列出方程,解方程即可;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的熟练为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,得出丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,由题意得出400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),即可得出答案.【解答】解:(1)设2018年甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:2018年甲类芯片的产量为400万块;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,则:400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,400(1+t)2+2×400(1+t﹣1)2+8000=28000×(1+10%),整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片2020年的产量为8000万块,m=400.【点评】本题考查了一元二次方程的应用、一元一次方程的应用以及一元二次方程和一元一次方程的解法;弄清数量关系列出方程是解题的关键.14.【分析】(1)观察到方程组两方程相加,左边出现3(x+y),把x+y作为一个整体来计算.(2)根据韦达定理求出用m表示x1+x2和x1x2的值,利用完全平方公式的变形得到x12+x22的式子,进而得到关于m的方程.【解答】解:(1)根据题意把方程组两式相加得:2x+y+x+2y=m+3m+13(x+y)=4m+1∴x+y=又∵x+y=5∴解得:m=(2)∵a=1,b=﹣(m﹣1),c=﹣m∴△=[﹣(m﹣1)]2﹣4•(﹣m)=m2﹣2m+1+4m=m2+2m+1=(m+1)2≥0∴无论m为何值时,方程一定有实数根.∵x1+x2==m﹣1,x1x2==﹣m∴x12+x22=(x1+x2)2﹣2x1x2=(m﹣1)2+2m∵x12+x22=5∴(m﹣1)2+2m=5解得:m=±2当m=2时,==当m=﹣2时,==∴的值为或【点评】本题考查了解二元一次方程,一元二次方程根与系数的关系,完全平方公式,分式的加减.15.【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的两个实数根”是解题的关键.16.【分析】(1)求出△=[﹣(m+3)]2﹣4(m+2)=(m+1)2,再判断即可;(2)求出方程的根是±1,再代入方程,即可求出答案.)【解答】(1)证明:x2﹣(m+3)x+m+2=0,△=[﹣(m+3)]2﹣4(m+2)=(m+1)2≥0,所以无论实数m取得何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于1,∴此根是±1,当根是1时,代入得:1﹣(m+3)+m+2=0,即0=0,此时m为任何数;当根是﹣1时,1+(m+3)+m+2=0,解得:m=﹣3.【点评】本题考查了解一元二次方程和根的判别式,能熟记根的判别式的内容是解此题的关键.17.【分析】(1)利用配方法解方程;(2)分别解两个一次不等式得到x>﹣2和x≤2,然后根据确定不等式组的解集.【解答】解:(1)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1=,所以x1=1+,x2=1﹣;(2)解①得x>﹣2,解②得x≤2,所以不等式组的解集为﹣2<x≤2.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了解一元一次不等式组.18.【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出方程总有两个不相等的实数根;(2)先计算出△并且设△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4=n2(n为整数),整系数方程有有理根的条件是△为完全平方数.解不定方程,讨论m的存在性.变形为(2m﹣1)2﹣n2=4,(2m﹣1﹣n)(2m﹣1+n)=﹣4,利用m,n都为整数进行讨论即可.【解答】(1)证明:①当2m﹣1=0即m=时,此时方程是一元一次方程,其根为x=,符合题意;②当2m﹣1≠0即m≠时,△=[﹣(2m+1)]2﹣4(2m﹣1)=(2m﹣1)2+4>0,∴当m≠时,方程总有两个不相等的实数根;综上所述,不论m为何值,方程必有实数根.(2)当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.理由如下:①当m为整数时,假设关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0有有理根,则要△=b2﹣4ac为完全平方数,而△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4,设△=n2(n为整数),即(2m﹣1)2+4=n2(n为整数),所以有(2m﹣1﹣n)(2m﹣1+n)=﹣4,∵2m﹣1与n的奇偶性相同,并且m、n都是整数,所以或,解得m=,②2m﹣1=0时,m=(不合题意舍去).所以当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.【点评】考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式为△=b2﹣4ac.△=b2﹣4ac为完全平方数是方程的根为有理数的充要条件.同时考查了不定方程特殊解的求法.19.【分析】(1)设养鸡场的宽为x米,则长为(33﹣2x)米,利用厂房的面积公式结合养鸡场的面积为130m2,即可得出关于x的一元二次方程,解之即可得出结论;(2)由(1)的结论结合10≤a<18,可得出长方形的长为13米宽为10米.【解答】解:(1)设养鸡场的宽为x米,则长为(33﹣2x)米,依题意,得:(33﹣2x)x=130,解得:x1=6.5,x2=10,∴33﹣2x=20或13.答:养鸡场的长为20米宽为6.5米或长为13米宽为10米.(2)∵10≤a<18,∴33﹣2x=13,∴养鸡场的长为13米宽为10米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【分析】(1)设平均每年增加的百分率为x,根据该公式2019年及2021年赞助矿泉水的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据2022年该公司赞助的矿泉水数量=2021年该公司赞助的矿泉水数量×(1+增长率),即可求出结论.【解答】解:(1)设平均每年增加的百分率为x,依题意,得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:平均每年增加的百分率为20%.(2)7200×(1+20%)=8640(瓶).答:预测2022年该公司赞助矿泉水8640瓶.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。
人教版九年级上册数学 第21章 一元二次方程 单元综合练习题
人教版九年级上册数学第21章一元二次方程单元综合练习题一.选择题1.对于已知a2+2a+b2﹣4b+5=0,则b2a=()A.2 B.C.﹣D.2.已知一元二次方程(a+1)x2﹣ax+a2﹣a﹣2=0的一个根与方程(a+1)x2+ax﹣a2+a+2=0的一个根互为相反数,那么(a+1)x2+ax﹣a2+a+2=0的根是()A.0,﹣B.0,C.﹣1,2 D.1,﹣23.若方程x2﹣8x+m=0可以通过配方写成(x﹣n)2=6的形式,那么x2+8x+m=5可以配成()A.(x﹣n+5)2=1 B.(x+n)2=1C.(x﹣n+5)2=11 D.(x+n)2=114.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的两倍,则称这样的方程为“2倍根方程”,以下说法不正确的是()A.方程x2﹣3x+2=0是2倍根方程B.若m+n=0且m≠0,则关于x的方程(x﹣2)(mx+n)=0是2倍根方程C.若关于x的方程(x﹣2)(mx+n)=0是2倍根方程,则m+n=0D.若2m+n=0且m≠0,则关于x的方程x2+(m﹣n)x﹣mn=0 是2倍根方程5.若菱形两条对角线的长度是方程x2﹣6x+8=0的两根,则该菱形的边长为()A.B.4 C.2D.56.观察下列表格,一元二次方程x2﹣x=1.1的一个解x所在的范围是()x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9x2﹣x 0.11 0.24 0.39 0.56 0.75 0.96 1.19 1.44 1.71A.1.5<x<1.6 B.1.6<x<1.7 C.1.7<x<1.8 D.1.8<x<1.97.若实数x满足方程(x2+2x)•(x2+2x﹣2)﹣8=0,那么x2+2x的值为()A.﹣2或4 B.4 C.﹣2 D.2或﹣48.已知三角形的两边长为4和5,第三边的长是方程x2﹣5x+6=0的一个根,则这个三角形的周长是()A.11 B.12 C.11或12 D.159.设x1、x2是二次方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值等于()A.﹣4 B.8 C.6 D.010.把一块长与宽之比为2:1的铁皮的四角各剪去一个边长为10厘米的小正方形,折起四边,可以做成一个无盖的盒子,如果这个盒子的容积是1500立方厘米,设铁皮的宽为x厘米,则正确的方程是()A.(2x﹣20)(x﹣20)=1500 B.10(2x﹣10)(x﹣10)=1500C.10(x﹣10)(x﹣20)=1500 D.10(2x﹣20)(x﹣20)=150011.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax0+b)2.其中正确的()A.①②B.①②④C.①②③④D.①②③12.欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD、BC的中点G、H,再折出线段AN,然后通过沿线段AN折叠使AD落在线段AH上,得到点D 的新位置P,并连接NP、NH,此时,在下列四个选项中,有一条线段的长度恰好是方程x2+x﹣1=0的一个正根,则这条线段是()A.线段BH B.线段DN C.线段CN D.线段NH二.填空题13.一元二次方程(x﹣2)(x+3)=x+1化为一般形式是.14.若关于x的方程(m﹣1)+4x﹣2=0是一元二次方程,则m的值为.15.若关于x的一元二次方程x2+2x+m=0的一根为﹣1,则m的值是.16.若关于x的方程(a+3)x|a|﹣1﹣3x+2=0是一元二次方程,则a的值为.17.对于实数p、q,我们用符号min{p,q}表示p、q两数中较小的数,如min{1,2}=1,若min{(x﹣1)2,x2}=1,则x=.18.若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为.三.解答题19.已知x1,x2是关于的x方程x2﹣x+a=0的两个实数根,且=3,求a的值.20.已知关于x的一元二次方程x2﹣2x﹣3m2=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且α+2β=5,求m的值.21.是否存在实数m,使关于x的方程2x2+mx+5=0的两实根的平方的倒数和等于?若存在,求出m;若不存在,说明理由.22.已知关于x的一元二次方程2x2+4x+m=0(1)x=1是方程的一个根,求方程的另一个根;(2)若x1,x2是方程的两个不同的实数根,且x1和x2满足x12+x22+2x1x2﹣x12x22=0,求m的值.23.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.24.先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x2﹣4>0解:∵x2﹣4=(x+2)(x﹣2)∴x2﹣4>0可化为(x+2)(x﹣2)>0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>2,解不等式组②,得x<﹣2,∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.(1)一元二次不等式x2﹣16>0的解集为;(2)分式不等式的解集为;(3)解一元二次不等式2x2﹣3x<0.25.某小区有50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次活动.为提高大家的积极性,6月份准备把活动一升级为活动二:“垃圾分类抵扣物管费”,同时终止活动一.经调查与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,求a的值.。
2023年人教版九年级上册数学第二十一章综合试卷及答案
第二十一章综合练习
四、(本大题共2小题,每小题8分,满分16分) 17.已知关于x的方程x2+2kx+k2-4=0. (1)不解方程,判断方程根的情况; (2)若k=1,求该方程的根.
-16-
第二十一章综合练习
∴此方程有两个不相等的实数根. (2)当k=1时,原方程化为x2+2x-3=0, 分解因式,得(x-1)(x+3)=0, 解得x1=1,x2=-3.
A.5
B.2
C.1
D.-1
6.某服装原价为200元,连续两次涨价a%后,售
价为242元,则a的值为( B )
A.12
B.10
C.9
D.5
-6-
第二十一章综合练习
7.已知关于x的方程(a-5)x2-4x-1=0有实数根,
则a满足( A )
A.a≥1
B.a≥1且a≠5
C.a>1且a≠5
D.a>1
-7-
-17-
第二十一章综合练习
18.小亮、小明、小刚三名同学中,小亮的年龄比 小明的年龄小2岁,小刚的年龄比小明的年龄大1岁, 并且小亮与小刚的年龄的乘积是130.求小刚的年 龄.
-18-
第二十一章综合练习
解:设小明的年龄为x岁,则小亮的年龄为(x-2) 岁,小刚的年龄为(x+1)岁. 依题意,得(x-2)(x+1)=130, 解得x=12或x=-11(不合题意,舍去), ∴x+1=13. 答:小刚的年龄为13岁.
第二十一章综合练习
第二十一章综合练习
一、选择题(本大题共10小题,每小题4分,满分
40分)
1.下列方程中,属于一元二次方程的是( B )
A.x2-y=6
B.x2-2x-6=0
C.x-2=8