最新人教版九年级数学上学期期末测试卷(含答案)强烈推荐
新人教版九年级数学上册期末测试卷及答案【完整】
新人教版九年级数学上册期末测试卷及答案【完整】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的倒数是()A. B. C. D.2. 下列分解因式正确的是()A. B.C. D.3.若正多边形的一个外角是, 则该正多边形的内角和为()A. B. C. D.4.一组数据: 1.2.2.3, 若添加一个数据2, 则发生变化的统计量是A. 平均数B. 中位数C. 众数D. 方差5.如果分式的值为0, 那么的值为()A. -1B. 1C. -1或1D. 1或06.关于x的方程(为常数)根的情况下, 下列结论中正确的是()A. 两个正根 B. 两个负根C. 一个正根, 一个负根D. 无实数根7.在以下绿色食品、回收、节能、节水四个标志中, 是轴对称图形的是()A. B. C. D.8.如图, A, B是反比例函数y= 在第一象限内的图象上的两点, 且A, B两点的横坐标分别是2和4, 则△OAB的面积是()A. 4B. 3C. 2D. 19.如图, 在矩形ABCD中, 点E是边BC的中点, AE⊥BD, 垂足为F, 则tan∠BDE的值是()A. B. C. D.10.下列所给的汽车标志图案中, 既是轴对称图形, 又是中心对称图形的是()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 化简: =____________.2. 分解因式: =________.3. 已知直角三角形的两边长分别为3.4. 则第三边长为________.4.如图1是一个由1~28的连续整数排成的“数阵”.如图2, 用2×2的方框围住了其中的四个数, 如果围住的这四个数中的某三个数的和是27, 那么这三个数是a, b, c, d中的__________.5. 如图所示, 直线a经过正方形ABCD的顶点A, 分别过正方形的顶点B.D作BF⊥a于点F, DE⊥a于点E, 若DE=8, BF=5, 则EF的长为__________.6. 如图,菱形ABCD顶点A在例函数y= (x>0)的图象上, 函.y= (k>3, x>0)的图象关于直线AC对称, 且经过点B.D两点, 若AB=2, ∠DAB=30°, 则k 的值为______.三、解答题(本大题共6小题, 共72分)1. 解方程:=12. 先化简, 再求值: , 其中.3. 如图, 已知点A(﹣1, 0), B(3, 0), C(0, 1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P, 使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上, 是否存在一点Q, 使∠BQC=∠BAC?若存在, 求出Q点坐标;若不存在, 说明理由.4. 如图, 四边形ABCD内接于⊙O, ∠BAD=90°, 点E在BC的延长线上, 且∠DEC=∠BAC.(1)求证: DE是⊙O的切线;(2)若AC∥DE, 当AB=8, CE=2时, 求AC的长.5. 我国中小学生迎来了新版“教育部统编义务教育语文教科书”, 本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对《三国演义》、《红楼梦》、《西游记》、《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查, 随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍, 请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.5. 某文具店购进一批纪念册, 每本进价为20元, 出于营销考虑, 要求每本纪念册的售价不低于20元且不高于28元, 在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系: 当销售单价为22元时, 销售量为36本;当销售单价为24元时, 销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时, 每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元, 将该纪念册销售单价定为多少元时, 才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、C3、C4、D5、B6、C7、D8、B9、A10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、22.x(x+2)(x﹣2).3.5或4、a, b, d或a, c, d5、136.6+2三、解答题(本大题共6小题, 共72分)1.x=12.3.(1)抛物线的解析式为y=﹣x2+ x+1;(2)点P的坐标为(1, )或(2, 1);(3)存在, 理由略.4.(1)略;(2)AC的长为.5、(1)50;(2)见解析;(3).6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时, 才能使文具店销售该纪念册所获利润最大, 最大利润是192元.。
人教版数学九年级上册期末考试数学试卷含答案解析
人教版数学九年级上册期末考试试卷一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣12.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0B.x<﹣1或0<x<1C.x≤1或0<x≤1D.﹣1<x<0或x≥17.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为cm.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.参考答案与试题解析一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣1【考点】反比例函数的性质.【分析】如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()【解答】解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.2.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.【考点】概率公式;轴对称图形.【分析】由圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;直接利用概率公式求解即可求得答案.【解答】解:∵圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;∴一次过关的概率是:.故选D.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π【考点】扇形面积的计算.【分析】计算阴影部分圆心角的度数,运用扇形面积公式求解.【解答】解:根据扇形面积公式,阴影部分面积==27π.故选B.【点评】考查了扇形面积公式的运用,扇形的旋转.4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π【考点】圆锥的计算.【专题】压轴题.【分析】圆锥的侧面积为半径为10的半圆的面积.【解答】解:圆锥的侧面积=半圆的面积=π×102÷2=50π,故选C.【点评】解决本题的关键是把圆锥的侧面积转换为规则图形的面积.5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】首先根据mn>0确定反比例函数的图象的位置,然后根据m、n异号确定答案即可.【解答】解:∵mn>0,∴m、n异号,且反比例函数y=的图象位于第一、三象限,∴排除C、D;∵当m>0时则n<0,∴排除A,∵m<0时则n>0,∴B正确,故选B.【点评】本题考查了反比例函数的性质及一次函数的性质,解题的关键是了解两种函数的性质.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0B.x<﹣1或0<x<1C.x≤1或0<x≤1D.﹣1<x<0或x≥1【考点】反比例函数与一次函数的交点问题.【分析】求出≥nx,求出B的坐标,根据A、B的坐标结合图象得出即可.【解答】解:∵﹣nx≥0,∴≥nx,∵反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,∴B点的坐标是(1,3),∴﹣nx≥0的解集是x<﹣1或0<x>1,故选B.【点评】本题考查了一次函数与反比例函数的交点问题,函数的图象的应用,主要考查学生的理解能力和观察图象的能力.7.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm【考点】正多边形和圆.【专题】压轴题.【分析】已知小正方形的面积即可求得边长,在直角△ACE中,利用勾股定理即可求解.【解答】解:如图,圆心为A,设大正方形的边长为2x,圆的半径为R,∵正方形有两个顶点在半圆上,另外两个顶点在圆心两侧,∴AE=BC=x,CE=2x;∵小正方形的面积为16cm2,∴小正方形的边长EF=DF=4,由勾股定理得,R2=AE2+CE2=AF2+DF2,即x2+4x2=(x+4)2+42,解得,x=4,∴R=cm.故选C.【点评】本题利用了勾股定理,正方形的性质求解.8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)【考点】规律型:点的坐标.【专题】压轴题;规律型.【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P1秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2015÷4=503 (3)∴A2015的坐标是(2015,﹣1),故选:B.【点评】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于﹣3.【考点】反比例函数图象上点的坐标特征.【分析】直接把点(﹣1,2)代入双曲线y=,求出k的值即可.【解答】解:∵双曲线y=经过点(﹣1,2),∴2=,解得k=﹣3.故答案为:﹣3.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为10πcm2.【考点】圆锥的计算.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.【点评】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.【考点】概率公式.【分析】设袋中有蓝球m个,根据蓝球概率公式列出关于m的方程,求出m的值即可.【解答】解:设袋中有蓝球m个,则袋中共有球(6+5+m)个,若任意摸出一个绿球的概率是,有=,解得m=9,任意摸出一个蓝球的概率是=0.45.故答案为:0.45【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为3cm.【考点】圆周角定理;垂径定理;解直角三角形.【分析】根据∠CDB=30°,求出∠COB的度数,再利用三角函数求出CE的长.根据垂径定理即可求出CD的长.【解答】解:∵∠CDB=30°,∴∠COB=30°×2=60°.又∵⊙O的半径为cm,∴CE=sin60°=×=,∴CD=×2=3(cm).【点评】此题考查了垂径定理和圆周角定理,利用特殊角的三角函数很容易解答.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是x3<x2<x1.【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】把三个点的坐标代入解析式,分别计算出x1、x2、x3的值,然后比较大小即可.【解答】解:把点P(x1,﹣2)、Q(x2,3)、H(x3,1)代入得x1=,x2=﹣,x3=﹣(a2+1),所以x3<x2<x1.故答案为x3<x2<x1.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为30°或150°.【考点】圆周角定理;等边三角形的判定与性质.【专题】分类讨论.【分析】首先根据题意画出图形,然后在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,易得△AOB是等边三角形,再利用圆周角定理,即可求得答案.【解答】解:如图,首先在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,∵OA=OB=6cm,AB=6cm,∴OA=AB=OB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=30°,∴∠D=180°﹣∠C=150°,∴所对的圆周角的度数为:30°或150°.【点评】此题考查了圆周角定理以及等边三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为+.【考点】扇形面积的计算.【专题】压轴题.【分析】连接OE、AE,根据点C为OC的中点可得∠CEO=30°,继而可得△AEO为等边三角形,求出扇形AOE的面积,最后用扇形AOB的面积减去扇形COD的面积,再减去S空白AEC 即可求出阴影部分的面积.【解答】解:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故答案为:+.【点评】本题考查了扇形的面积计算,解答本题的关键是掌握扇形的面积公式:S=.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)在y=2x+2中令y=0,求得B的坐标,然后求得A的坐标,利用待定系数法求得反比例函数的解析式;(2)根据平行线的性质即可直接求得D的坐标,然后代入反比例函数的解析式判断即可.【解答】解:(1)在y=2x+2中令y=0,则x=﹣1,∴B的坐标是(﹣1,0),∵A在直线y=2x+2上,∴A的坐标是(1,4).∵A(1,4)在反比例函数y=图象上∴k=4.∴反比例函数的解析式为:y=;(2)∵四边形ABCD是平行四边形,∴D的坐标是(2,2),∴D(2,2)在反比例函数y=的图象上.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式,用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【专题】图表型.【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线上y=上的情况数,然后根据概率公式列式计算即可得解.【解答】解:(1)根据题意画出树状图如下:;(2)当x=﹣1时,y==﹣2,当x=1时,y==2,当x=2时,y==1,一共有9种等可能的情况,点(x,y)落在双曲线上y=上的有2种情况,所以,P=.【点评】本题考查了列表法与树状图法,反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)【考点】列表法与树状图法.【专题】计算题.【分析】(1)三个选手机会均等,得到邓紫棋获第一名的概率;(2)假设张杰为第一名,列表得出所有等可能的情况数,找出两人中一个人猜中另一个人却没猜中的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:邓紫棋获第一名的概率为;(2)假设张杰为第一名,列表如下:张韩邓张(张,张)(韩,张)(邓,张)韩(张,韩)(韩,韩)(邓,韩)邓(张,邓)(韩,邓)(邓,邓)所有等可能的情况有9种,两人中一个人猜中另一个人却没猜中的情况有4种,则P=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).【考点】圆周角定理;角平分线的定义;三角形的面积;含30度角的直角三角形;勾股定理;扇形面积的计算.【分析】(1)根据直径所对的圆周角是直角推知∠ACB=90°,然后在直角三角形ABC中利用边角关系、勾股定理来求直径AB的长度;(2)连接OD.利用(1)中求得AB=4可以推知OA=OD=2;然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得阴影部分的面积=S扇形△AOD ﹣S△AOD.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,…(1分)∵∠B=30°,∴AB=2AC,…(3分)∵AB2=AC2+BC2,∴AB2=AB2+62,…(5分)∴AB=4.…(6分)(2)连接OD.∵AB=4,∴OA=OD=2,…(8分)∵CD平分∠ACB,∠ACB=90°,∴∠ACD=45°,∴∠AOD=2∠ACD=90°,…(9分)=OA•OD=•2•2=6,…(10分)∴S△AOD=•π•OD2=•π•(2)2=3π,…(11分)∴S扇形△AOD﹣S△AOD=3π﹣6.…(12分)∴阴影部分的面积=S扇形△AOD【点评】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.解答(2)题时,采用了“数形结合”的数学思想.20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.【考点】反比例函数与一次函数的交点问题;三角形的面积.【专题】计算题.【分析】(1)先将点A(2,3)代入反比例函数和一次函数y=kx+2,求得m、k的值,=18,即可求得x,y的值.(2)可求得点B的坐标,设P(x,y),由S△PBC【解答】解:(1)把A(2,3)代入,∴m=6.∴.(1分)把A(2,3)代入y=kx+2,∴2k+2=3.∴.∴.(2分)(2)令,解得x=﹣4,即B(﹣4,0).∵AC⊥x轴,∴C(2,0).∴BC=6.(3分)设P(x,y),==18,∵S△PBC∴y1=6或y2=﹣6.分别代入中,得x1=1或x2=﹣1.∴P1(1,6)或P2(﹣1,﹣6).(5分)【点评】本题考查了一次函数和反比例函数的交点问题,利用待定系数法求解析式是解此题的关键.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)【考点】扇形面积的计算;全等三角形的判定与性质;圆周角定理;切线的性质;解直角三角形.【专题】几何综合题.【分析】(1)根据切线的性质定理和平行线的性质定理得到OC⊥BD,根据垂径定理得到BE的长,再根据圆周角定理发现∠BOE=60°,从而根据锐角三角函数求得圆的半径;(2)结合(1)中的有关结论证明△DCE≌△BOE,则它们的面积相等,故阴影部分的面积就是扇形OBC的面积.【解答】解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°∵BD∥AC∴∠BEO=∠ACO=90°,∴DE=EB=BD=(cm)∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=∴OB=5,即⊙O的半径长为5cm.(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°又∵∠CED=∠BEO,BE=ED,∴△CDE≌△OBE∴,答:阴影部分的面积为.【点评】本题主要考查切线的性质定理、平行线的性质定理、垂径定理以及全等三角形的判定方法.能够熟练解直角三角形.22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.【考点】切线的判定.【专题】计算题;证明题.【分析】(1)根据切线的判定方法,只需证CD⊥OC.所以连接OC,证∠OCD=90°.(2)易求半径OC的长.在Rt△OCD中,运用三角函数求CD.【解答】(1)证明:连接OC.∵OB=OC,∠B=30°,∴∠OCB=∠B=30°.∴∠COD=∠B+∠OCB=60°.(1分)∵∠BDC=30°,∴∠BDC+∠COD=90°,DC⊥OC.(2分)∵BC是弦,∴点C在⊙O上,∴DC是⊙O的切线,点C是⊙O的切点.(3分)(2)解:∵AB=2,∴OC=OB==1.(4分)∵在Rt△COD中,∠OCD=90°,∠D=30°,∴DC=OC=.(5分)【点评】本题考查了切线的判定,证明经过圆上一点的直线是圆的切线,常作的辅助线是连接圆心和该点,证明直线和该半径垂直.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)将A(3,2)分别代入y=,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;(2)观察图象,得在第一象限内,当0<x<3时,反比例函数的图象在正比例函数的上方;故反比例函数的值大于正比例函数的值;=S△OAC=×|k|=3,可得S矩形OBDC=12,即OC•OB=12,进而可得m、n的值,(3)由S△OMB故可得BM与DM的大小;比较可得其大小关系;(4)先求出A点坐标,再分OA=OP,OA=AP及OP=AP三种情况进行讨论.【解答】解:(1)∵将A(3,2)分别代入y=,y=ax中,得:2=,3a=2,∴k=6,a=,∴反比例函数的表达式为:y=,正比例函数的表达式为y=x.(2)∵,解得,∴C(3,2)观察图象,得在第一象限内,当0<x<3时,反比例函数的值大于正比例函数的值;(3)BM=DM理由:∵MN ∥x 轴,AC ∥y 轴,∴四边形OCDB 是平行四边形,∵x 轴⊥y 轴,∴▱OCDB 是矩形.∵M 和A 都在双曲线y=上,∴BM ×OB=6,OC ×AC=6,∴S △OMB =S △OAC =×|k|=3,又∵S 四边形OADM =6,∴S 矩形OBDC =S 四边形OADM +S △OMB +S △OAC =3+3+6=12,即OC •OB=12,∵OC=3,∴OB=4,即n=4∴m==,∴MB=,MD=3﹣=,∴MB=MD ;(4)如图,∵S △OAC =OC •AC=3,OC=3,∴AC=2,∴A (3,2),∴OA==,∴当OA=OP 时,P 1(,0);当OA=AP 时,∵AC ⊥x 轴,OC=3,∴OC=CP 2=3,∴P 2(6,0);当OP=AP 时,设P 3(x ,0),∵O (0,0),A (3,2),∴x=,解得x=,∴P 3(,0).综上所述,P 点坐标为P 1(,0),P 2(6,0),P 3(,0).【点评】此题考查的是反比例函数综合题及正比例函数等多个知识点,此题难度稍大,综合性比较强,在解答(3)时要注意进行分类讨论,不要漏解.第21页共21页。
人教版九年级上册数学期末考试试卷含答案
人教版九年级上册数学期末考试试题一、单选题1.下列图形,可以看作中心对称图形的是()A .B .C .D .2.已知点P (-3,2)是反比例函数图象上的一点,则该反比例函数的表达式为()A .3y x=B .5y x=-C .6y x=D .6y x=-3.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A .12B .13C .310D .154.抛物线y =(x -2)2+1的顶点坐标是()A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)5.如图,△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于()A .30°B .40°C .50°D .60°6.在平面直角坐标系xOy 中,A 为双曲线6y x=上一点,点B 的坐标为(4,0).若 AOB 的面积为6,则点A 的坐标为()A .(﹣4,32)B .(4,32-)C .(﹣2,3)或(2,﹣3)D .(﹣3,2)或(3,﹣2)7.如图,⊙O 的半径为3,点P 是弦AB 延长线上的一点,连接OP ,若4OP =,30P ∠=︒,则弦AB 的长为().A 5B .23C .25D .28.已知二次函数()20y ax bx c a =++≠的图像如图所示,有下列5个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b >;⑤()()1a b m am b m +>+≠,其中正确的结论有()A .2个B .3个C .4个D .5个9.如图,二次函数y =ax 2+bx+c 与反比例函数y =kx的图象相交于点A(﹣1,y 1)、B(1,y 2)、C(3,y 3)三个点,则不等式ax 2+bx+c >kx的解集是()A .﹣1<x <0或1<x <3B .x <﹣1或1<x <3C .﹣1<x <0或x >3D .﹣1<x <0或0<x <110.如图,直角三角形的直角顶点在坐标原点,∠OAB =30°,若点A 在反比例函数6(0)y x x =>的图象上,则经过点B 的反比例函数ky x=中k 的值是()A .﹣2B .﹣4C .﹣3D .﹣1二、填空题11.若点(),1a 与()2b -,关于原点对称,则b a =_______.12.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.13.正比例函数11y k x =和反比例函数22y k x=交于A 、B 两点.若A 点的坐标为(1,2)则B 点的坐标为_______________.14.如图,弦AB 的长等于⊙O 的半径,那么弦AB 所对的圆周角的度数________.15.如图, ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为⊙O 的直径,CD =6,OA 交BC 于点E ,则AD 的长度是___.16.如图所示,△ABC 是⊙O 的内接三角形,若∠BAC 与∠BOC 互补,则∠BOC 的度数为_____.17.如图所示,在平面直角坐标系中,A (4,0),B (0,2),AC 由AB 绕点A 顺时针旋转90°而得,则AC 所在直线的解析式是_____.三、解答题18.为了提高足球基本功,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次.(1)请用树状图列举出三次传球的所有可能情况;(2)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?19.如图,在平面直角坐标系xOy 中,正比例函数2y x =与反比例函数ky x=的图象交于A ,B 两点,A 点的横坐标为2,AC ⊥x 轴于点C ,连接BC(1)求反比例函数的解析式;(2)若点P 是反比例函数ky x=图象上的一点,且满足△OPC 与△ABC 的面积相等,请直接写出点P 的坐标.20.如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.21.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个,设每个定价增加x元.(1)商店若想获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(2)用含x的代数式表示商店获得的利润W元,并计算商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少元?22.如图,一次函数y=﹣x+4的图象与反比例kyx(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)①在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;②在x轴上找一点M,使|MA﹣MB|的值为最大,直接写出M点的坐标.23.如图,抛物线L:y=12x2﹣54x﹣3与x轴正半轴交于点A,与y轴交于点B.(1)求直线AB的解析式及抛物线顶点坐标;(2)如图1,点P为第四象限抛物线上一动点,过点P作PC⊥x轴,垂足为C,PC交AB于点D ,求PD+35AD 的最大值,并求出此时点P 的坐标;(3)如图2,将抛物线L :y =12x 2﹣54x ﹣3向右平移得到抛物线L′,直线AB 与抛物线L′交于M ,N 两点,若点A 是线段MN 的中点,求抛物线L′的解析式.24.如图,在Rt ABC 中,∠ABC =90°,P 是斜边AC 上一个动点,以BP 为直径作⊙O 交BC 于点D ,与AC 的另一个交点E ,连接DE 、DP .点F 为线段CP 上一点,连接DF ,∠FDP =∠DEP .(1)求证:DF 是⊙O 的切线;(2)当 DP EP =时,求证AB =AP ;(3)当AB =15,BC =20时,是否存在点P ,使得 BDE 是以BD 为腰的等腰三角形,若存在,求出所有符合条件的CP 的长;若不存在,请说明理由.25.解方程:2320x x --=.26.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,//OC BD ,交AD 于点E ,连结BC .(1)求证:AE =ED ;(2)若AB =6,∠CBD =30°,求图中阴影部分的面积.参考答案1.B 2.D 3.A 4.A 5.C 6.C 7.C 8.A 9.A 10.A 11.1212.22()1y x =-+13.(1,2)--14.30°或150°15.16.120°17.y =2x ﹣818.(1)见解析;(2)球回到乙脚下的概率大【详解】(1)根据题意画出树状图如下:由树形图可知三次传球有8种等可能结果;(2)由(1)可知三次传球后,球回到甲脚下的概率=28=14;传到乙脚下的概率=38,所以球回到乙脚下的概率大.【点睛】考点:列表法与树状图法.19.(1)8y x=;(2)(2)()1,8P 或()1,8P --.【分析】(1).首先求出点A 的坐标,然后将点A 的坐标代入反比例函数解析式求出解析式;(2).首先求出△ABC 的面积,然后根据面积相等求出点P 的坐标.【详解】解(1).将x=2代入y=2x 中,得y=4.∴点A 坐标为(2,4)∵点A 在反比例函数y=kx的图象上,∴k=2×4=8∴反比例函数的解析式为y=8x (2).()2,4,A B 关于原点对称,()2,4,B ∴--()()114228,22ABC A B S AC x x ∴=-=⨯⨯+= 设8,,P x x ⎛⎫⎪⎝⎭188,2OPC P S OC y x∴=== 1,x ∴=±经检验:1x =±是原方程的解且符合题意,∴P(1,8)或P(-1,-8)20.(1)证明详见解析;(2)163.【分析】(1)过点D 作DF ⊥BC 于点F ,根据角平分线的性质得到AD=DF .根据切线的判定定理即可得到结论;(2)根据切线的性质得到AB=FB .根据和勾股定理列方程即可得到结论.【详解】(1)证明:过点D 作DF ⊥BC 于点F ,∵∠BAD=90°,BD 平分∠ABC ,∴AD=DF .∵AD 是⊙D 的半径,DF ⊥BC ,∴BC 是⊙D 的切线;(2)解:∵∠BAC=90°.∴AB 与⊙D 相切,∵BC 是⊙D 的切线,∴AB=FB .∵AB=5,BC=13,∴CF=13-5=8,AC=12.在Rt △DFC 中,设DF=DE=r ,则()226412r r +=-,解得:r=103.∴CE=163.【点睛】题目主要考查切线的判定、圆周角定理、角平分线的性质定理,勾股定理解三角形,一元二次方程的应用等,理解题意,综合运用这些知识点是解题关键.21.(1)每个定价为70元,应进货200个;(2)W =﹣10(x ﹣15)2+6250,每个定价为65元时获得最大利润,可获得的最大利润是6250元【分析】(1)总利润=每个的利润×销售量,销售量为(400﹣10x )个,列方程求解,根据题意取舍;(2)利用函数的性质求最值.【详解】解:(1)根据题意得:(50﹣40+x )(400﹣10x )=6000,解得:x 1=10,x 2=20,当x =10时,400﹣10x =400﹣100=300,当x =20时,400﹣10x =400﹣200=200,要使进货量较少,则每个定价为50+20=70元,应进货200个.答:每个定价为70元,应进货200个.(2)根据题意得:W =(50﹣40+x )(400﹣10x )=﹣10x 2+300x+4000=﹣10(x ﹣15)2+6250,当x =15时,y 有最大值为6250.所以每个定价为65元时获得最大利润,可获得的最大利润是6250元.【点睛】一元二次方程和二次函数在实际生活中的应用是本题的考点,根据每个小家电利润×销售的个数=总利润列出方程是解题的关键.22.(1)3y x=,B(3,1);(2)①P(52,0);②M(4,0)【分析】(1)利用待定系数法即可解决问题;(2)作点B 关于x 轴的对称点D ,连接AD ,交x 轴于点P ,此时PA+PB 的值最小;(3)直线y =﹣x+4与x 轴的交点即为M 点,此时|MA ﹣MB|的值为最大,令y =0,求得x 的值,即可求得M 的坐标.【详解】解:(1)把点A (1,a )代入一次函数y =﹣x+4,得a =3,∴A (1,3),把点A (1,3)代入反比例y =kx,得k =3,∴反比例函数的表达式y =3x,联立43y x y x =-+⎧⎪⎨=⎪⎩,解得:13x y =⎧⎨=⎩或31x y =⎧⎨=⎩,故B (3,1).(2)①作点B 关于x 轴的对称点D ,连接AD ,交x 轴于点P ,此时PA+PB 的值最小∴D (3,﹣1)设直线AD 的解析式为y =mx+n ,则331m n m n +=⎧⎨+=-⎩,解得25m n =-⎧⎨=⎩,∴直线AD 的解析式为y =﹣2x+5,令y =0,则x =52,∴P 点坐标为(52,0);②直线y =﹣x+4与x 轴的交点即为M 点,此时|MA ﹣MB|的值为最大,令y =0,则x =4,∴M 点的坐标为(4,0).【点睛】本题考查反比例函数的性质、一次函数的性质等知识,解题的关键是熟练掌握待定系数法解决问题,学会利用轴对称解决最短问题.23.(1)AB 解析式为y=34x-3,抛物线顶点坐标为125)2(413-,;(2)点P 的坐标为125)2(413-,,PD+35AD 的最大值为12132;(3)21133242y x x =-+.【分析】(1)先求出点A ,点B 坐标,利用待定系数法可求解析式,通过配方法可求顶点坐标;(2)CD=ADsin ∠BAO=35AD ,则PD+35AD=PD+DC=PC 为最大,即可求解;(3)设点M (x 1,y 1),点N (x 2,y 2),则x 1+x 2=2(m+34),而点A 是MN 的中点,故x 1+x 2=8,进而求解.【详解】解:(1)∵抛物线L :y =12x 2﹣54x ﹣3与x 轴正半轴交于点A ,与y 轴交于点B ,令0y =,则21530,24x x --=解得:123,4,2x x =-=令0,x =则3,y =-∴点A (4,0),点B (0,-3),设直线AB 解析式为:y=kx-3,∴0=4k-3,∴k=34,∴直线AB 解析式为:y=34x-3①,∵y =12x 2﹣54x ﹣3=2152412132x --)(,∴抛物线顶点坐标为125)2(413-;(2)∵点A (4,0),点B (0,-3),∴OA=4,OB=3,∴5==,则sin ∠BAO=35OBAB =,则CD=ADsin ∠BAO=35AD ,则PD+35AD=PD+DC=PC 为最大,当点P 为抛物线顶点时,PC 最大,故点P 的坐标为125)2(413-,则PD+35AD 的最大值=PC 为最大,最大值为12132;(3)设平移后的抛物线L'解析式为21121()232y x m =--②,联立①②并整理得:223252()0416x m x m -++-=,设点M (x 1,y 1),点N (x 2,y 2),∵直线AB 与抛物线L'交于M ,N 两点,∴x 1,x 2是方程223252(0416x m x m -++-=的两根,∴x 1+x 2=2(3)4m +,∵点A 是MN 的中点,∴x 1+x 2=8,∴32()84m +=,∴m=134,∴平移后的抛物线L'解析式为221131211133()2432242y x x =--=-+.24.(1)见解析(2)见解析(3)存在,252或10【分析】(1)利用圆周角定理证明∠FDP=∠DBP ,∠DBP+∠OPD=90°,再证明OD ⊥DF ,即可证明结论;(2)先证明∠CBP=∠EBP ,易证∠C=∠ABE ,由∠APB=∠CBP+∠C ,∠ABP=∠EBP+∠ABE ,得出∠APB=∠ABP ,即可得出结论;(3)先证明△DCP ∽△BCA ,利用相似三角形的性质得到CP =54CD ,再分当BD =BE ,BD =ED 两种情况讨论,即可求解.(1)证明:连接OD ,∵ DPDP =,∴∠DBP =∠DEP ,∵∠FDP =∠DEP ,∴∠FDP=∠DBP ,∵BP 是⊙O 的直径,∴∠BDP=90°,∴∠DBP+∠OPD=90°,∵OD=OP ,∴∠OPD=∠ODP ,∴∠FDP+∠ODP=90°,∴OD ⊥DF ,∴DF是⊙O的切线;(2)证明:连接BE,如图所示:∵DP EP=,∴∠CBP=∠EBP,∵∠ABE+∠A=90°,∠C+∠A=90°,∴∠C=∠ABE,∵∠APB=∠CBP+∠C,∠ABP=∠EBP+∠ABE,∴∠APB=∠ABP,∴AP=AB;(3)解:由AB=15,BC=20,由勾股定理得:AC25,∵12AB•BC=12AC•BE,即12×15×20=12×25×BE,∴BE=12,∵BP是直径,∴∠PDB=90°,∵∠ABC=90°,∴PD∥AB,∴△DCP∽△BCA,∴CPAC=CDBC,∴CP=AC CDBC⋅=2520CD=54CD,△BDE是等腰三角形,分两种情况:①当BD =BE 时,BD =BE =12,∴CD =BC ﹣BD =20﹣12=8,∴CP =54CD =54×8=10;②当BD =ED 时,可知点D 是Rt △CBE 斜边的中线,∴CD =12BC =10,∴CP =54CD =54×10=252;综上所述,△BDE 是等腰三角形,符合条件的CP 的长为252或10.25.123x =-,21x =【分析】选用因式分解法求解.【详解】(32)(1)0x x +-= ,123x ∴=-,21x =.26.(1)证明见解析;(2)3π.【分析】(1)先根据圆的性质可得OA OB =,再根据三角形的中位线定理即可得证;(2)如图(见解析),先根据垂径定理、圆周角定理可得90,30ADB ABC CBD ∠=︒∠=∠=︒,从而可得60,30ABD BAD ∠=︒∠=︒,再根据直角三角形的性质、三角形的面积公式可得AOD S = 120AOD ∠=︒,最后根据图中阴影部分的面积等于扇形OAD 面积减去AOD △面积即可得.【详解】(1)∵AB 是O 的直径,∴OA OB =,即点O 是AB 的中点,∵//OC BD ,∴OE 是ABD △的中位线,∴点E 是AD 的中点,∴AE ED =;(2)如图,连接OD ,∵AB 是O 的直径,6AB =,90ADB ∴∠=︒,132OA OD AB ===,∵//OC BD ,90AEO ADB ∴∠=∠=︒,即OC AD ⊥,又OC 是O 的半径,AC CD ∴=,30ABC CBD ∴∠=∠=︒,60ABD ABC CBD ∴∠=∠+∠=︒,9030BAD ABD ∠=︒-∠=︒,在Rt ABD △中,13,2BD AB AD ====,OD 是Rt ABD △的斜边AB 上的中线,111222AOD Rt ABD S S BD AD ∴==⨯⋅= ,又60ABD ∠=︒ ,2120AOD ABD ∴∠=∠=︒,则图中阴影部分的面积为212033360AOD OAD S S ππ⨯-== 扇形.。
新人教版九年级数学上学期期末考试试题 (含答案)(共6套)
九年级数学上学期期末试题★友情提示:① 所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效; ② 试题未要求对结果取近似值的,不得采取近似计算.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答.题卡..的相应位置填涂) 1.在平面直角坐标系中,点M (1,-2)与点N 关于原点对称,则点N 的坐标为 A .(-2, 1) B .(1,-2) C .(2,-1) D .(-1,2) 2.用配方法解一元二次方程0122=-+x x ,可将方程配方为A .()212=+x B .()012=+x C .()212=-x D .()012=-x3.下列事件中,属于随机事件的有① 任意画一个三角形,其内角和为360°; ② 投一枚骰子得到的点数是奇数; ③ 经过有交通信号灯的路口,遇到红灯; ④ 从日历本上任选一天为星期天.A .① ② ③B .② ③ ④C .① ③ ④D .① ② ④ 4.下列抛物线中,顶点坐标为(4,-3)的是A .()342-+=x y B .()342++=x y C .()342--=x y D .()342+-=x y5.有n 支球队参加篮球比赛,共比赛了15场,每两个队之间都只比赛一场,则下列方程中符合题意的是A .()151=-n nB .()151=+n nC .()301=-n nD .()301=+n n6.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是A .袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6C .在“石头、剪刀、布”的游戏中,小宇随机出的是“剪刀”D .掷一枚质地均匀的硬币,落地时结果是“正面向上”7.如果一个正多边形的中心角为60°,那么这个正多边形的边数是 A .4 B .5 C .6 D .78.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xy 1-=的图象上的两点,若x 1<0<x 2,则下列结论正确的是A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<09.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D , 且CO =CD ,则∠PCA =A .30°B .45°C .60°D .67.5°(第6题图)DCB OAP(第9题图)10.如图,在Rt △ABC 和Rt △ABD 中,∠ADB =∠ACB =90°,∠BAC =30°,AB =4,AD =22,连接DC ,将Rt △ABC 绕点B 顺时针旋转一周,则线段DC 长的取值范围是 A .2≤DC ≤4 B .22≤DC ≤4C .222-≤DC ≤22D .222-≤DC ≤222+二、填空题(本大题共6小题,每空4分,共24分.将答案填入答题卡...的相应位置) 11.如图,在平面直角坐标系xOy 中,矩形OABC ,OA =2, OC =1, 写出一个函数()0≠=k xky ,使它的图象与矩形OABC 的边 有两个公共点,这个函数的表达式可以为 . 12.已知关于x 的方程032=++a x x 有一个根为-2,a = .13.圆锥的底面半径为7cm ,母线长为14 cm ,则该圆锥的侧面展开图的圆心角为 °. 14.设O 为△ABC 的内心,若∠A =48°,则∠BOC = °. 15.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF =CD =4 cm ,则球的半径为 cm . 16. 抛物线c bx ax y ++=2(a >0)过点(-1,0)和点(0,-3),且顶点在第四象限,则a 的取值范围是 .C A B Oy x(第11题图)CDAB(第10题图)CEFD(第15题图)三、解答题(本大题共9小题,共86分.在答题卡...的相应位置作答) 17.(每小题4分,共8分)解方程:(1)022=+x x ; (2)01232=-+x x . 18.(8分)已知关于x 的方程 )0(03)3(2≠=+++k x k kx .(1)求证:方程一定有两个实数根;(2)若方程的两个实数根都是整数,k 为正整数,求k 的值.19.(8分)有甲、乙两个不透明的布袋,甲袋中有3个完全相同的小球,分别标有数字0,1和2;乙袋中有3个完全相同的小球,分别标有数字1,2和3,小明从甲袋中随机取出1个小球,记录标有的数字为x ,再从乙袋中随机取出1个小球,记录标有的数字为y ,这样确定了点M 的坐标(x ,y ).(1)写出点M 所有可能的坐标;(2)求点M 在直线3+-=x y 上的概率.20.(8分)如图,直线y =x +2与y 轴交于点A ,与反比例函数()0≠=k xky 的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =2BO ,求反比例函数的解析式.21.(8分)如图,12×12的正方形网格中的每个小正方形的边长都是1,正方形的顶点叫做格点.矩形ABCD 的四个顶点A ,B ,C ,D 都在格点上,将△ADC 绕点A 顺时针方向旋转得到△AD ′C ′,点C 与点C ′为对应点.(1)在正方形网格中确定D ′的位置,并画出△AD ′C ′;(2)若边AB 交边C ′D ′于点E ,求AE 的长.22.(10分)在矩形ABCD 中,AB =8,BC =6,将矩形按图示方式进行分割,其中正方形AEFG 与正方形JKCI 全等,矩形GHID 与矩形EBKL 全等. (1)当矩形LJHF 的面积为43时,求AG 的长; (2)当AG 为何值时,矩形LJHF 的面积最大.(第21题图)L HI K J F EDBC AG (第22题图)23.(10分)如图,点A ,C ,D ,B 在以O 点为圆心,OA 长为半径的圆弧上,AC=CD=DB ,AB 交OC 于点E .求证:AE =CD .24.(12分)如图,在等边△BCD 中,DF ⊥BC 于点F ,点A 为直线DF 上一动点,以B 为旋转中心,把BA 顺时针方向旋转60°至BE ,连接EC .(1)当点A 在线段DF 的延长线上时,① 求证:DA =CE ;② 判断∠DEC 和∠EDC 的数量关系,并说明理由; (2)当∠DEC =45°时,连接AC ,求∠BAC 的度数.25.(14分)如图,在平面直角坐标系xOy 中,二次函数c bx ax y ++=2(0≠a )的图象经过A (0,4),B (2,0),C (-2,0)三点. (1)求二次函数的解析式; (2)在x 轴上有一点D (-4,0),将二次函数 图象沿DA 方向平移,使图象再次经过点B . ① 求平移后图象顶点E 的坐标;② 求图象 A ,B 两点间的曲线部分在平移过程中所扫过的面积.南平市2017-2018学年第一学期九年级期末质量检测数学试题参考答案及评分说明命题教师:蒋剑虹 欧光宇 王颖 曹美兰 说明:(1)解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分150分.(2)对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分. (3)若考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分. (4)评分只给整数分.选择题和填空题不给中间分. 一、选择题(本大题共10小题,每小题4分,共40分)1.D ; 2.A ; 3.B ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B ; 9.D ; 10.D . 二、填空题(本大题共6小题,每小题4分,共24分)11.如:xy 1=(答案不唯一,0<k <2的任何一个数); 12.2; 13.180; 14.114; 15.2.5; 16.0<a <3.三、解答题(本大题共9小题,共86分) 17.(每小题4分,共8分)(第25题图)E DF B CA (第24题图) O ABC DE (第23题图)(1) 解: 0)2(=+x x ……………………………………………………………2分 ∴2,021-==x x .……………………………………………………4分(2)解:1,2,3-===c b a∴ 161-34-22=⨯⨯=∆)(∴64232162±-=⨯±-=x …………………………………………2分∴1,3121-==x x . …………………………………………………4分18.(8分)(1)证明:9634)3(22+-=⋅⋅-+=∆k k k k0)32≥-=k (,……………………………………………………2分∴方程一定有两个实数根. …………………………………………3分(2)解:3,3,=+==c k b k a ,22)3(34)3-=⋅⋅-+=∆∴k k k (,kk k k k k x 2)3(32)3()3(2-±--=-±+-=∴,kx x 3,121-=-=∴ ,………………………………………………6分∵方程的两个实数根都是整数,∴正整数31或=k .…………………………………………………8分19.(8分)解:(1)方法一:列表:从表格中可知,点1,1),(1,2),(1,3),(2,1),(2,2),(2,3).……………………………………………………………3分 方法二:从树形图中可知,点M 坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).……………………………………………………………3分 (2)当x =0时,y=-0+3=3,当x =1时,y=-1+3=2,当x =2时,y=-2+3=1,……………………………………………………6分 由(1)可得点M 坐标总共有九种可能情况,点M 落在直线y =-x +3上(记为事 件A )有3种情况.∴P(A )3193==.…………………………………………8分20.(8分)解: 当x =0时,y =2,∴A (0,2),…………………………………2分∴A O=2,∵AO =2BO ,∴B O=1,………………………………………………4分 当x =1时,y =1+2=3,∴C (1,3), ……………………………………………6分 把C (1,3)代入xky =,解得:3=k xy 3:=∴反比例函数的解析式为…………………………………………………8分 21.(8分)解:(1)准确画出图形;…………………………………………………3分(2)方法一:∵将△ADC 绕点A 顺时针方向旋转得到△AD ′C ′,点C 与点C ′为对应点, ∴△ADC ≌△AD ′C ′,∴AC =AC ′,AD ′=AD =5,CD ′=CD =10,∠AD ′C ′=∠ADC =90°,∠AC ′D ′=∠ACD , ∵AB ∥CD ,∴∠BAC =∠ACD ,∵AB ⊥C C ′,AC =AC ′,∴∠BAC =∠C ′AB ,∴∠AC ′D ′=∠C ′AB ,∴C ′E =AE .…………………………………………………5分 222R E C BE B C BE C t '=+''∆中,在,x AE AB BE x AE -10-,===则设, 222)-105x x =+(,……………………………………………………………………7分425:=x 解得.425的长为答:AE ……………………………8分方法二:以点D 为原点,CD 所在直线为x 轴, AD 所在直线为y 轴,如图2建立平面直角坐标系.∴A (0,5),D ′(-4,2),C ′(-10,10). (4)设直线D ′C ′的解析式为:b kx y +=(k ≠0),∴⎩⎨⎧+-=+-=b k b k 101042,解得:⎪⎩⎪⎨⎧-=-=31034b k , ∴直线D ′C ′的解析式为:31034--=x y , ………………………………6分当y =5时,310345--=x ,解得:425-=x , …………………………7分∴E (425-,5),∴AE =425.………………………………………………8分22.(10分)解:(1) 正方形AEFG 和正方形JKCI 全等,矩形GHID 和矩形EBKL 全等,设AG =x ,DG =6-x ,BE =8-x ,FL=x -(6-x )=2x -6,LJ =8-2x ,(第21题答题图1)方法1: LJ FL S LIHF ⋅=矩形 ,∴43)28)(62(=--x x ………………………………………………………………2分∴415,41321==x x ,∴AG =413或AG =415.………………………………………4分方法2:AEFG DGHI ABCD LIHF S S S S 正方形矩形矩形矩形22--=)6)(8(2248432x x x ----=∴,…………………………………………………2分 ∴415,41321==x x ,∴AG =413或AG =415.………………………………………4分(2)设矩形LJHF 的面积为S ,)28)(62(x x S --=…………………………………………………………………6分482842-+-=x x1)27(42+--=x …………………………………………………………………8分04<-=a , ∴S 有最大值,∴当AG =7 时,矩形LJHF 的面积最大.………………………………………10分2-902ACO ==∠∴︒,…………5分 ACE CAE AEC ACE ∠∠=∠∆︒--180中,在)290(180AOCAOC ∠--∠-=︒︒2-90AOC∠=︒,……………………………………………………………………6分 AEC ACE ∠=∠∴, ………………………………………………………………7分 AE AC =∴, ……………………………………………………………………8分 CD AC = ,CD AE =∴.………………………………………………………10分 方法二:连接OC ,OD ,∵AC=CD=DB ,∴DB CD AC 弧弧弧==,∴BOD COD AOC ∠=∠=∠,……………………………………………………2分 ∴AOC COD DOB COD COB ∠=∠=∠+∠=∠22,∵CAE COB ∠=∠2,∴CAE AOC ∠=∠,………………………………………4分 ∵∠CAO =∠CAE +∠EAO ,∠AEC =∠AOC +∠EAO ,∴∠CAO =∠AEC ,…………………………………………………………………6分 OC OA AOC =∆中,在, ∴∠ACO =∠CAO ,∴∠ACO =∠AEC ,AE AC =∴, ………………………………………………8分 CD AC = ,CD AE =∴…………………………………………………………10分 方法三:连接AD ,OC ,OD , ∵AC=DB ,∴弧AC =弧BD ,∴∠ADC =∠DAB ,…………………………………………………………………2分 ∴CD ∥AB ,∴∠AEC =∠DCO ,…………………………………………………………………4分 ∵AC=CD ,AO=DO , ∴CO ⊥AD ,(第23题答题图)∴∠ACO =∠DCO ,…………………………………………………………………6分 ∴∠ACO =∠AEC ,∴AC =AE ,……………………………………………………8分 ∵AC=CD ,∴AE =CD .……………………………………………………………10分 24.(12分)(1)①证明:∵把BA 顺时针方向旋转60°至BE ,∴=∠=ABE BE BA ,60°, ………………………………1分 在等边△BCD 中,BC DB =∴,︒=∠60DBCFBA FBA DBC DBA ∠+︒=∠+∠=∠∴60, FBA CBE ∠+︒=∠60 ,CBE DBA ∠=∠∴,…………………………………………2分 ∴△BAD ≌△BEC , ∴DA =CE ;…………………………………………………3分②判断:∠DEC +∠EDC =90°.…………………………4分DC DB = ,BC DA ⊥,︒=∠=∠∴3021BDC BDA ,∵△BAD ≌△BEC ,∴∠BCE =∠BDA =30°,……………………………………………………………5分 在等边△BCD 中,∠BCD =60°,∴∠ACE =∠BCE +∠BCD =90°,∴∠DEC +∠EDC =90°.……………………6分 (2)分三种情况考虑:①当点A 在线段DF 的延长线上时(如图1),由(1)可得, 为直角三角形DCE ∆,︒=∠∴90DCE , ︒︒︒=∠-=∠=∠459045DEC EDC DEC 时,当, DEC EDC ∠=∠∴,CE CD =∴,由(1)得DA =CE ,∴CD =DA ,CD BD DBC =∆中,在等边,CD DA BD ==∴ ︒=∠∴60BDC ,BC DA ⊥ ,︒=∠=∠=∠∴3021BDC CDA BDA , ……………………………………………7分DA DB BDA =∆中,在,︒︒=∠=∠∴752-180BDA BAD ,DC DA DAC =∆中,在,︒︒=∠=∠∴752-180ADC DAC ,︒︒︒=+=∠+∠=∠∴1507575DAC BAD BAC . …………………………………8分②当点A 在线段DF 上时(如图2),BE BA B 至顺时针方向旋转为旋转中心,把以︒60 , 60=∠=∴ABE BE BA ,,60=∠=∆DBC BC BD BDC ,中,在等边,ABE DBC ∠=∠∴,ABC ABE ABC DBC ∠∠=∠∠--, EBC DBA ∠=∠即, DBA ∆∴≌CBE ∆,CE DA =∴, …………………………9分 90R =∠∆DFC DFC t 中,在, DF ∴<DC , ∵DA <DF ,DA =CE , ∴CE <DC ,由②可知为直角三角形DCE ∆,∴∠DEC ≠45°. ……………………………10分③当点A 在线段FD 的延长线上时(如图3),同第②种情况可得DBA ∆≌CBE ∆, ECB ADB CE DA ∠=∠=∴,,60=∠=∠∆BCD BDC BDC 中,在等边,BC DA ⊥ ,E DF B CA (第24题答题图1) ED A ED F B C A (第24题答题图2)3021=∠=∠=∠∴BDC CDF BDF ,150180=∠-=∠∴︒BDF ADB , 150=∠=∠∴ADB ECB ,90=∠-∠=∠∴BCD ECB DCE ,︒︒︒=∠-=∠=∠459045DEC EDC DEC 时,当, DEC EDC ∠=∠∴, CE CD =∴,∴AD =CD =BD ,……………………………………………11分 ∵ 150=∠=∠ADC ADB ,152-180=∠=∠∴︒ADB BAD , 152-180=∠=∠︒CDA CAD , 30=∠+∠=∠∴CAD BAD BAC ,.30150 或的度数为综上所述,BAC ∠ …………………12分25.(14分)(1)得)代入()()(把c bx ax y C B A ++=20,2-,0,2,4,0,⎪⎩⎪⎨⎧=+-=++=0240244c b a c b a c ,…………………………2分⎪⎩⎪⎨⎧==-=401:c b a 解得,42+-=∴x y .………………………………4分 (2)① 设直线DA 得解析式为y =kx +d (k ≠0), 把A (0,4),D (-4,0)代入得, ⎩⎨⎧=+-=044d k d ,⎩⎨⎧==41:d k 解得, ∴y =x +4,…………………………………………………………………………6分 设E (m ,m +4),平移后的抛物线的解析式为:4)(2++--=m m x y . 把B (2,0)代入得:04)-2-2=++m m ( 不符合题意,舍去),解得(0521==m m , ∴E (5,9). ……………………………………………………………………8分 ② 如图,连接AB ,过点B 作BL ∥AD 交平移后的抛物线于点G ,连接EG ,∴四边形ABGE 的面积就是图象A ,B 两点间的部分扫过的面积.…………10分 过点G 作GK ⊥x 轴于点K ,过点E 作EI ⊥y 轴于点I ,直线EI ,GK 交于点H . 方法一:由点A (0,4)平移至点E (5,9),可知点B 先向右平移5个单位,再向上平移5个单位至点G . ∵B (2,0),∴点G (7,5),…………………………………………………12分 ∴GK =5,OB =2,OK =7, ∴BK =OK -OB =7-2=5, ∵A (0,4),E (5,9), ∴AI =9-4=5,EI =5, ∴EH =7-5=2,HG =9-5=4,∴GBK EHG AEI AOB IOKH ABGH ∆∆∆∆=S -S -S -S -S S 矩形四边形 3025-8-635521-4221-5521-4221-97==⨯⨯⨯⨯⨯⨯⨯⨯⨯=答:图象A ,B 两点间的部分扫过的面积为30. ……………………………14分(第25题答题图)方法二:b x y BL '+=的解析式为设直线, 02:0,2='+b B )代入得(把点,2-='b ,2-=∴x y ,⎩⎨⎧+--=-=9)5(22x y x y 联立,⎩⎨⎧==02:11y x 解得,⎩⎨⎧==5722y x , ∴点G (7,5), …………………………………………………………………12分 ∴GK =5,OB =2,OK =7, ∴BK =OK -OB =7-2=5, ∵A (0,4),E (5,9), ∴AI =9-4=5,EI =5, ∴EH =7-5=2,HG =9-5=4,∴GBK EHG AEI AOB IOKH ABGH ∆∆∆∆=S -S -S -S -S S 矩形四边形3025-8-635521-4221-5521-4221-97==⨯⨯⨯⨯⨯⨯⨯⨯⨯=答:图象A ,B 两点间的部分扫过的面积为30. ……………………………14分山东省济宁市金乡县2018届九年级数学上学期期末教学质量检测试题说明:请将正确答案按照要求填写在答题卡上. 一、选择题(每小题3分,共30分)1.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )2.在Rt △ABC 中,∠C=90,sinA=,BC=6,则AB=( ) A.4 B.6 C.8 D.103.已知关于x 的一元二次方程 有两个不相等的实数根,则实数k 的取值范围是( ) A.k1 B.k1 C.k-1 D.k-14.已知点A(2,y1)、B(4,y2)都在反比例函数 的图象上,则y1、y2的大小关系为( )A. y1<y2B. y1>y2C. y1=y2D. 无法确定5.如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是( ) A.10B.20C.10D.206.如图,小明要测量河内小鸟B到河边公路l的距离,在A点测得∠BAD=30,在C点测得∠BCD=60,又测得AC=50米,则小岛B到公路l的距离为()米A.25B.25C.D.25+257.小明想测一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米,已知斜坡的坡角为30,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.(6+米B.12米C. (4+米D.10米8.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C 为弧ABO上的一点(不与O、A两点重合),则cosC的值是()A. B. C. D.9.二次函数的图象如图,并且关于x的一元二次方程有两个不相等的实数根,下列结论:;;;,其中,正确的个数有()A.B.C.D.10.在四边形ABCD中,∠B=90,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()二、填空(每小题3分,共15分)11.sin60的值等于 .12.将抛物线向左平移3个单位,再向下平移4个单位,那么得到的抛物丝的表达式为 .13.如图,在平面直角坐标系xOy中,ABC由ABC绕点P旋转得到的,则点P的坐标为 .14.如图,RtABC中,∠ACB=90,AC=2,以点C为圆心,CB的长为半径画弧,与边AB交于点D,将BD绕点D旋转180后点B与点A恰好重合,则图中阴影部分的面积为 .15.如图,在反比例函数的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数的图象上运动,若tan∠CAB=2,则k的值为 .三、解答题(共55分,请将解答过程写在答题卡上)16.(6分)解一元二次方程:17.(6分)如图所示,在四张背面完全相同的纸牌的正面分别画有四个不同的几何图形.将这四张纸牌背面朝上洗匀后摸出一张,不放回,再摸出一张.(1)用树状图(或列表法)表示两次膜牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求膜出的两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.18.(7分)如图,一次函数和反比例函数的图象交于点A(-1,6),B(a,-2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y1>y2时,x的取值范围.19.(8分)如图,小东在教学楼的窗口C处,测得正前方旗杆顶部A点的仰角为37,旗杆底部B的俯角为45,旗杆AB=14米.(1)求教学楼到旗杆的距离;(2)求AC的长度;(参考数据:sin37≈0.60,cos37≈0.80,tan37≈0.75)20.(8分)如图,已知RtABC,∠C=90,D为BC的中点,以AC为直径的⊙O交AB于点E. (1)求证:ED是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.21.(9分)某超市在“元宵节”来临前夕,购进一种品牌元宵,每盒进价是20元,超市规定每盒售价不得少于25元.根据以往销售经验发现:当售价定为每盒25元时,每天可卖出250盒,每盒售价每提高1元,每天要少卖出10盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,第天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种元宵的每盒售价不得高于38元.如果超市想要每天获得不低于2000元的利润,那么超市每天至少销售元宵多少盒?22.(11分)如图:抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且以A、O、D、E为顶点的四边形是平行四边形,求D点的坐标;(3)P是抛物线上第一象限内的动点,过P作PM⊥x轴垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出P点的坐标;若不存在,说明理由.九年级数学上学期期末考试试题注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,全卷共8页,满分120分,考试时间120分钟。
2024年最新人教版初三数学(上册)期末考卷及答案(各版本)
2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。
12. 若一个数的立方根是它自己的相反数,则这个数是______。
13. 若一个数的绝对值等于它的立方,则这个数是______。
14. 若一个数的绝对值等于它的平方,则这个数是______。
15. 若一个数的平方等于它本身,则这个数是______。
16. 若一个数的立方等于它本身,则这个数是______。
17. 若一个数的平方根是它自己的倒数,则这个数是______。
18. 若一个数的立方根是它自己的相反数,则这个数是______。
19. 若一个数的绝对值等于它的立方,则这个数是______。
20. 若一个数的绝对值等于它的平方,则这个数是______。
2024年全新初三数学上册期末试卷及答案(人教版)
2024年全新初三数学上册期末试卷及答案(人教版)一、选择题1. 若a²4a+4=0,则a的值为()A. 2B. 0C. 1D. 22. 下列选项中,哪个不是等腰三角形的性质?A. 底边相等B. 两腰相等C. 底角相等D. 对边相等3. 若一个正方形的边长为5cm,则其对角线的长度为()A. 5cmB. 10cmC. 5√2 cmD. 10√2 cm4. 下列哪个选项是二次函数的一般形式?A. y = ax² + bx + cB. y = ax + bC. y = a/b + cD. y = a² + b² + c²5. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为()A. 3B. 2C. 1D. 4二、填空题6. 若a²4a+4=0,则a的值为________。
7. 下列选项中,哪个不是等腰三角形的性质?________。
8. 若一个正方形的边长为5cm,则其对角线的长度为________。
9. 下列哪个选项是二次函数的一般形式?________。
10. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为________。
答案:一、选择题1. A2. D3. C4. A5. A二、填空题6. 27. D8. 5√2 cm9. A10. 32024年全新初三数学上册期末试卷及答案(人教版)三、解答题11. 已知等差数列的前三项分别为2, 5, 8,求该数列的通项公式。
解答:我们知道等差数列的通项公式为an = a1 + (n 1)d,其中an是第n项,a1是首项,d是公差。
根据题目,首项a1 = 2,公差d = 5 2 = 3。
所以,该数列的通项公式为an = 2 + (n 1)×3。
12. 一个正方形的边长为5cm,求其对角线的长度。
解答:正方形的对角线长度可以通过勾股定理来求解。
设正方形的边长为a,对角线长度为d,则有:d² = a² + a²将a = 5cm代入上式,得:d² = 5² + 5²d² = 50d = √50d = 5√2 cm所以,该正方形的对角线长度为5√2 cm。
2024年全新九年级数学上册期末试卷及答案(人教版)
2024年全新九年级数学上册期末试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 一个三角形的两边长分别为5厘米和8厘米,第三边长为多少厘米?A. 3B. 6C. 10D. 123. 下列哪个图形是等腰三角形?A. △ABCB. △DEFC. △GHID. △JKL4. 下列哪个图形是直角三角形?A. △ABCB. △DEFC. △GHID. △JKL5. 下列哪个图形是等边三角形?A. △ABCB. △DEFC. △GHID. △JKL6. 下列哪个数是合数?A. 2B. 3C. 4D. 57. 一个正方形的边长为6厘米,它的周长是多少厘米?A. 12B. 18C. 24D. 308. 一个长方形的长为8厘米,宽为4厘米,它的面积是多少平方厘米?A. 16B. 24C. 32D. 409. 下列哪个数是偶数?A. 2B. 3C. 5D. 710. 下列哪个数是奇数?A. 2B. 3C. 4D. 6二、填空题(每题2分,共20分)1. 一个等边三角形的边长是5厘米,它的周长是______厘米。
2. 一个正方形的边长是8厘米,它的面积是______平方厘米。
3. 一个长方形的长是10厘米,宽是5厘米,它的周长是______厘米。
4. 一个三角形的两边长分别是6厘米和8厘米,第三边长是______厘米。
5. 一个直角三角形的两条直角边长分别是3厘米和4厘米,它的斜边长是______厘米。
6. 一个等腰三角形的底边长是10厘米,腰长是8厘米,它的周长是______厘米。
7. 一个长方形的长是12厘米,宽是6厘米,它的面积是______平方厘米。
8. 一个正方形的边长是7厘米,它的周长是______厘米。
9. 一个三角形的两边长分别是5厘米和12厘米,第三边长是______厘米。
10. 一个直角三角形的两条直角边长分别是5厘米和12厘米,它的斜边长是______厘米。
最新人教版九年级上册数学期末测试卷及答案
最新人教版九年级上册数学期末测试卷及答案九年级上册数学期末试卷一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是()A。
B。
C。
D。
2.将函数y=2x^2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A。
y=2(x-1)^2-3B。
y=2(x-1)^2+3C。
y=2(x+1)^2-3D。
y=2(x+1)^2+33.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于( )A。
55°B。
70°C。
125°D。
145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( ) A。
4B。
5C。
6D。
35.一个半径为2cm的圆内接正六边形的面积等于()A。
24cm^2B。
63cm^2C。
123cm^2D。
83cm^26.如图,XXX是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A。
35°B。
45°C。
55°D。
75°7.函数y=-2x^2-8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<-2,则()A。
y1<y2B。
y1>y2C。
y1=y2D。
y1、y2的大小不确定8.将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()A。
B。
C。
D。
9.一次函数y=ax+b与二次函数y=ax^2+bx+c在同一坐标系中的图像可能是()A。
B。
C。
D。
10.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是m.(结果不取近似值)A。
人教版九年级上册《数学》期末考试卷及答案【可打印】
人教版九年级上册《数学》期末考试卷及答案【可打印】一、选择题(每题1分,共5分)1. 若x^2 3x + 2 = 0,则x的值为多少?A. 1B. 2C. 1D. 22. 若sin(θ) = 1/2,则θ的值为多少?A. 30°B. 45°C. 60°D. 90°3. 若一个正方形的边长为4cm,则其面积为多少?A. 16cm^2B. 8cm^2C. 12cm^2D. 6cm^24. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则其体积为多少?A. 24cm^3B. 12cm^3C. 6cm^3D. 8cm^35. 若一个等腰三角形的底边长为6cm,腰长为5cm,则其面积为多少?A. 15cm^2B. 10cm^2C. 12cm^2D. 8cm^2二、判断题(每题1分,共5分)1. 一个等边三角形的三个内角都是60°。
()2. 一个正方形的对角线互相垂直且平分。
()3. 一个圆的半径是直径的一半。
()4. 一个长方体的对角线互相垂直。
()5. 一个等腰三角形的底角等于顶角。
()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。
2. 一个正方形的对角线长是边长的______倍。
3. 一个圆的周长是直径的______倍。
4. 一个长方体的体积是长、宽、高的______。
5. 一个等腰三角形的底边长是腰长的______倍。
四、简答题(每题2分,共10分)1. 简述等边三角形的性质。
2. 简述正方形的性质。
3. 简述圆的性质。
4. 简述长方体的性质。
5. 简述等腰三角形的性质。
五、应用题(每题2分,共10分)1. 一个等边三角形的边长为10cm,求其周长。
2. 一个正方形的边长为8cm,求其对角线长。
3. 一个圆的直径为14cm,求其周长。
4. 一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。
5. 一个等腰三角形的底边长为10cm,腰长为8cm,求其周长。
人教版九年级数学上册期末考试试题及答案精选6套
人教版九年上期末测试题01一、细心填一填(每小题3分,共36分) 1、已知式子31+-x x有意义,则x 的取值范围是 2、计算20102009)23()23(+-=3、若关于x 的一元二次方程(a +1)x 2+4x +a 2—1=0的一根是0,则a = 。
4、成语“水中捞月”用概率的观点理解属于不可能事件,请你仿照它写出一个必然事件 。
5、点P 关于原点对称的点Q 的坐标是(—1,3),则P 的坐标是6、已知圆锥的底面半径为9cm,母线长为10cm ,则圆锥的全面积是 cm 27、已知:关于x 的一元二次方程041)(22=++-d x r R x 有两个相等的实数根,其中R 、r 分别是⊙O 1 ⊙O 2的半径,d 为两圆的圆心距,则⊙O 1 与⊙O 2的位置关系是 8、中国象棋中一方16个棋子,按兵种不同分布如下:1个帅,5个兵、士、象、马、车、炮各2个.若将这16个棋子反面朝上放在棋盘中,任取1个是兵的概率是 。
9、如图,过圆心O 和图上一点A 连一条曲线,将OA 绕O 点按同一 方向连续旋转90°, 把圆分成四部分,这四部分面积 .(填“相等”或“不相等”) 二、选择题(每小题3分,共15分)10、下列二次根式中,与35-是同类二次根式的是( )(A ) 18 (B)3.0 (C ) 30 (D )30011、已知关于x 的一元二次方程(m —2)2x 2+(2m +1)x +1=0有两个实数根,则m 的取值范围是( )(A )43>m (B )43≥m (C )43>m 且2≠m (D )43≥m 且2≠m 12、如图:下列四个图案中既是轴对称图形,又是中心对称图形的是( )A B C13、如图,⊿ABC 内接于⊙O,若∠OAB=28°则∠C 的大小为( )(A)62° (B )56° (C)60° (D )28°D19、(7分)在一个不透明的袋子中装有三个完全相同的小球,分别标有数字2,3,4。
人教版九年级上册数学期末考试试卷带答案
人教版九年级上册数学期末考试试题一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.方程x2﹣1=0的解是()A.x1=x2=1B.x1=x2=﹣1C.x=±1D.无实数根3.在下列各点中,抛物线y=3x2经过点()A.(0,﹣1)B.(0,0)C.(0,1)D.(0,2)4.如图,点A,B,C都在圆O上,若∠C=34°,则∠AOB为()A.34∘B.56∘C.60∘D.68∘5.如图,把△OAB绕点O逆时针旋转80°,得到△OCD,则下列结论错误的是()A.BD OB B.AB=CD C.∠AOC=∠BOD D.∠A=∠C6.若关于x的一元二次方程(m+1)x2-2x+1=0有实数根,则实数m的取值范围是()A.m≥0B.m≤0C.m≠1D.m≤0且m≠-17.反比例函数y=kx的图象经过点(﹣3,1),则下列说法错误的是()A.k=﹣3B.函数的图象在第二、四象限C.函数图象经过点(3,﹣1)D.当x>0时,y随x的增大而减小8.如图,已知Rt△ABC中,∠C=90°,∠A=30°,AC=6,以点B为圆心,3为半径作⊙B,则点C与⊙B的位置关系是()A.点C在⊙B内B.点C在⊙B上C.点C在⊙B外D.无法确定9.如图,抛物线y=ax2+bx+c的对称轴为x=﹣1,且经过点(﹣3,0).下列结论:①abc<0;②若(﹣4,y1)和(3,y2)是抛物线上两点,则y1>y2;③a+b+c<0;④对于任意实数m,均有am2+bm+c≥﹣4a.其中正确的结论的个数是()A.1个B.2个C.3个D.4个10.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20°B.25°C.30°D.40°二、填空题11.点A(﹣2,3)关于原点对称的点的坐标是_____.12.抛物线y=x2﹣3x+2与x轴的交点个数是__个.13.已知一个正六边形的外接圆半径为2,则这个正六边形的周长为________.14.如图,正五边形ABCDE内接于⊙O,连接BD,则∠ABD=____°.15.如图,已知⊙O 的半径为1,AB ,AC 是⊙O 的两条弦,且AB =AC ,延长BO 交AC 于点D ,连接OA ,OC ,若AD 2=AB•DC ,则OD =__.16.如图,将△ABC 绕点A 逆时针旋转得到△ADE ,点C 和点E 是对应点,若∠CAE=90°,AB=1,则BD=_________.17.小明从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0abc <;(2)0a b c ++<,(3)42a c b +<,(4)20a b +>,(5)240b ac ->,你认为其中正确信息的是______.三、解答题18.解方程:x 2﹣2x ﹣5=0.19.如图,PA ,PB 是⊙O 的切线,A ,B 为切点,连接OP .求证:OP平分∠AOB.20.在一个不透明的盒子中装有四个球,它们分别印有“我”、“爱”、“白”、“云”字样.这些球的形状、大小、质地等完全相同,即除字样外无其他差别.(1)随机摸出一个球,恰好摸到“爱”字球的概率为;(2)随机摸出一个球后,放回并摇匀,再随机摸出一个.求两次摸到的球中,至少有一次摸到“云”字球的概率.21.在二次函数y=ax2+bx+3(a,b是常数)中,列表表示几组自变量x与函数值y的对应值:x…﹣2﹣1012…y=ax2+bx+c…m03n3…(1)根据以上信息,可得该二次函数的图象开口向,对称轴为;(2)求|m﹣n|的值.22.如图,平面直角坐标系xOy中,点A的坐标为(2,6),直线AB∥y轴,且与x轴交于点B,反比例函数kyx(x>0)的图象经过点A和点P.若⊙P经过点A,且与x轴交于B,C两点.(1)求k的值和点C的坐标;(2)判断⊙P与y轴的位置关系,并说明理由.23.已知抛物线y=ax2+2ax﹣3a(a是常数)与x轴交于A,B两点(点A在点B的左边),与y轴交于点C.顶点D不在第二象限,记△ABC的面积为S1,△ACD的面积为S2.(1)当S 1=3时,求抛物线对应函数的解析式;(2)判断12S S 是否为定值,如果是,请求出这个定值;如果不是,请说明理由;(3)当a 取每一个确定的值时,把抛物线y =ax 2+2ax ﹣3a 向右平移a 个单位后,得到函数y 1的图象.当0≤x≤a+1时,结合图象,求y 1的最大值与最小值的平均数(用含a 的式子表示).24.如图,已知二次函数y =x 2﹣2x+m 的图象与x 轴交于点A 、B ,与y 轴交于点C ,直线AC 交二次函数图象的对称轴于点D ,若点C 为AD 的中点.(1)求m 的值;(2)若二次函数图象上有一点Q ,使得tan ∠ABQ =3,求点Q 的坐标;(3)对于(2)中的Q 点,在二次函数图象上是否存在点P ,使得△QBP ∽△COA ?若存在,求出点P的坐标;若不存在,请说明理由.25.如图,A 、P 、B 、C 是⊙O 上的四点,∠APC=∠CPB=60°,过点C 作CM ∥BP 交PA 的延长线于点M.(1)求证:△ACM ≌△BCP ;(2)若PA=1,PB=2,求△PCM 的面积.26.如图,抛物线242y ax ax =++的顶点A 在x 轴上,经过点A 的直线交该抛物线于点C ,交y 轴于点B ,且点B 是线段AC 的中点,(1)求该抛物线的解析式;(2)求直线AC的解析式.参考答案1.B【分析】根据轴对称图形和中心对称图形的定义,即可求解.【详解】解:A.是轴对称图形,不是中心对称图形,,故本选项不符合题意;B.既是轴对称图形,也是中心对称图形,故本选项符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题主要考查了中心对称图形与轴对称图形,熟练掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可完全重合;中心对称图形是要寻找对称中心,旋转180°后两部分完全重合是解题的关键.2.C【分析】根据解一元二次方程﹣直接开平方法解方程即可.【详解】解:x2﹣1=0,x2=1,∴x1=1,x2=﹣1,故选:C.【点睛】本题主要考查了解一元二次方程﹣直接开平方法,熟练掌握用直接开平方法解一元二次方程是解题的关键.3.B【分析】计算出自变量为0所对应的函数值,然后根据二次函数图象上点的坐标特征进行判断.【详解】解:当x =0时,y =3x 2=0;所以抛物线y =3x 2经过点(0,0).故选:B .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.4.D【分析】由题意直接根据圆周角定理中同圆同弧所对的圆周角等于这条弧所对的圆心角的一半进行分析即可求解.【详解】解:∵∠C=34°,∴∠AOB=2∠C=68°.故选:D .【点睛】本题考查圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.5.A【分析】根据旋转的性质判断即可得解.【详解】解:∵△OAB 绕点O 逆时针旋转80°得到△OCD ,∴∠A =∠C ,∠AOC =∠BOD ,AB =CD ,OB =OD ,则B ,C ,D 选项正确,不符合题意;当90BOD ∠=︒时,BD =∵∠BOD≠90°,∴OB故A 选项错误,符合题意;故选:A .【点睛】本题考查了旋转的性质,勾股定理,掌握旋转的性质是解题的关键.6.D【分析】根据一元二次方程的定义可知10m +≠,再由方程有实数根可得出△0>,联立关于m 的不等式组,求出m 的取值范围即可【详解】解: 关于x 的一元二次方程2(1)210m x x +-+=有实数根,∴1044(1)0m m +≠⎧⎨=-+⎩ ,解得0m且1m ≠-.故选:D .【点睛】本题考查的是根的判别式,解题的关键是要注意10m +≠这一隐含条件.7.D【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】解:A 、反比例函数y =kx的图象经过点(-3,1),∴k=-3×1=-3,故本选项正确,不符合题意;B 、∵k=-3<0,∴此函数图象的两个分支位于二四象限,故本选项正确,不符合题意;C 、∵当x=3时,y=-1,∴此函数图象过点(3,-1),故本选项正确,不符合题意;D 、∵k=-3<0,∴当x >0时,y 随着x 的增大而增大,故本选项错误,符合题意.故选:D .【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.8.C【分析】欲求点C 与⊙B 的位置关系,关键是求出BC ,再与半径3进行比较.若d <r ,则点在圆内;若d =r ,则点在圆上;若d >r ,则点在圆外.【详解】解:∵在Rt △ABC 中,∠C =90°,∠A =30°,∴2AB BC =,有勾股定理得:222AB BC AC -=,即()22226BC BC -=,解得:BC =,∵以点B 为圆心,3为半径作⊙B ,∴r <d ,∴点C 在⊙B 外.故选:C .【点睛】本题主要考查了点与圆的位置关系,含30︒角的直角三角形,勾股定理,熟练掌握直角三角形中,30︒角所对的直角边等于斜边的一半,点与圆的位置关系的判定是解题的关键.9.B【分析】根据开口方向确定a 的符号,根据抛物线与y 轴的交点确定c 的符号,根据对称轴确定b 的符号,判断①;利用二次函数的性质判断②;利用图象得出与x 轴的另一交点,进而得出a+b+c =0,即可判断③,根据函数增减性,判断④.【详解】解:∵二次函数的图象开口向上,∴a >0,∵二次函数的图象交y 轴的负半轴于一点,∴c <0,∵对称轴是直线x =﹣1,12ba∴-=-,∴b =2a >0,∴abc <0,故①正确;∵(﹣4,y 1)关于直线x =﹣1的对称点的坐标是(2,y 1),又∵当x >﹣1时,y 随x 的增大而增大,2<3,∴y 1<y 2,故②错误;∵抛物线的对称轴为x =﹣1,且过点(﹣3,0),∴抛物线与x 轴另一交点为(1,0).∴当x =1时,y =a+b+c =0,故③错误;∵当x =1时,y =a+b+c =0,b =2a ,∴c =﹣3a ,∵抛物线的对称轴为直线x =﹣1,∴当x =﹣1时,y 有最小值,∴am 2+bm+c≥a ﹣b+c (m 为任意实数),∴am 2+bm+c≥﹣4a ,故④正确,故结论正确的有2个.故选:B .【点睛】本题考查的是二次函数图像与系数的关系,掌握二次函数的性质,灵活运用数形结合思想是解题关键,中点把握抛物线的对称性.10.B【分析】直接利用切线的性质得出∠OCD=90°,进而得出∠DOC=50°,进而得出答案.【详解】解:连接OC ,∵DC 是⊙O 的切线,C 为切点,∴∠OCD=90°,∵∠D=40°,∴∠DOC=50°,∵AO=CO ,∴∠A=∠ACO ,∴∠A=12∠DOC=25°.故选:B .【点睛】此题主要考查了切线的性质,正确得出∠DOC=50°是解题关键.11.(2,﹣3)【分析】根据两个点关于原点对称,它们的坐标符号相反求解即可.【详解】解:点P(-2,3)关于原点对称的点的坐标为(2,-3),故答案为(2,-3).【点睛】本题考查了关于原点对称的性质,掌握两个点关于原点对称,它们的坐标符号相反是解决本题的关键.12.2【分析】令x 2﹣3x+2=0,求出24b ac ∆=-的值,判断出其符号即可.【详解】解:令x 2﹣3x+2=0,∵()224341210b ac ∆=-=--⨯⨯=>,∴抛物线y =x 2﹣3x+2与x 轴的交点个数是2.故答案是:2.【点睛】本题主要考查了抛物线与x 轴的交点问题,熟知二次函数y=ax 2+bx+c (a ,b ,c 是常数,0a ≠)的交点与一元二次方程ax 2+bx+c=0根之间的关系是解答此题的关键.13.12.【分析】画出符合题意的图形,先求解正六边形的中心角,AOB ∠证明AOB 是等边三角形,求解2,AB =从而可得答案.【详解】解:如图,由题意得:2,OA OB == 正六边形,ABCDEF 36060,,6AOB AB BC CD DE EF AF ︒∴∠==︒=====AOB ∴ 是等边三角形,2,AB ∴=∴正六边形ABCDEF 的周长是62=12.⨯故答案为:12.【点睛】本题考查的是正多边形与圆的关系,正多边形的中心角,正多边形的半径,等边三角形的判定与性质,掌握正多边形中的基本概念的含义是解题的关键.14.72【分析】根据多边形内角和定理、正五边形的性质求出∠ABC 、CD =CB ,根据等腰三角形的性质求出∠CBD ,计算即可.【详解】∵五边形ABCDE 为正五边形,∴∠ABC =∠C =(52)1805o-⨯=108°,∵CD =CB ,∴∠CBD =1801082︒-︒=36°,∴∠ABD=∠ABC−∠CBD=72°,故答案为72°.【点睛】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n−2)×180°是解题的关键.15.12.【分析】可证△AOB≌△AOC,推出∠ACO=∠ABD,OA=OC,∠OAC=∠ACO=∠ABD,∠ADO=∠ADB,即可证明△OAD∽△ABD;依据对应边成比例,设OD=x,表示出AB、AD,根据AD2=AB•DC,列方程求解即可.【详解】在△AOB和△AOC中,∵AB=AC,OB=OC,OA=OA,∴△AOB≌△AOC(SSS),∴∠ABO=∠ACO,∵OA=OA,∴∠ACO=∠OAD,∵∠ADO=∠BDA,∴△ADO∽△BDA,∴AD OD AO BD AD AB==,设OD=x,则BD=1+x,∴11AD xx AD AB==+,∴OD=,AB=∵DC=AC﹣AD=AB﹣AD,AD2=AB•DC,2,整理得:x2+x﹣1=0,解得:x=x=,因此AD=【点睛】本题考查了圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,利用参数解决问题是数学解题中经常用到的方法.16【详解】∵将△ABC 绕点A 逆时针旋转的到△ADE ,点C 和点E 是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴=故答案为.17.(1)(3)(5)【分析】由图象可知000a b c <>>,,,即可判断(1),将1x =和2x =-分别代入解析式,结合图象即可判断(2)(3),对称轴为直线2b x a=-,结合图象即可判断(4),根据图象与x 轴的交点个数即可判断(5).【详解】解: 抛物线开口向下,且图象与y 轴交于正半轴,00a c ∴<>,,由图象可知对称轴b x 02a=->,0b ∴>,0abc ∴<,故(1)符合题意,由图象可知当1x =时,0y a b c =++>,故(2)不符合题意,由图象可知当2x =-时,420y a b c =-+<,即42a c b +<,故(3)符合题意,由图象可知对称轴12b x a=-<,又00a b <> ,,由图象可知,抛物线与x 轴有两个交点,240b ac ∴->,故(5)符合题意.故答案为:(1)(3)(5).【点睛】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.18.x1=,x 2=1【分析】利用完全平方公式配平方,再利用直接开方法求方程的解即可.【详解】解:x 2﹣2x+1=6,那么(x ﹣1)2=6,即x ﹣1=,则x 1=x 2=1.【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.19.见解析【分析】由切线的性质得出OA ⊥PA ,OB ⊥PB ,证明Rt △OAP ≌Rt △OBP (HL ),由全等三角形的性质得出∠AOP =∠BOP ,则可得出结论.【详解】证明:∵PA ,PB 是⊙O 的切线,∴OA ⊥PA ,OB ⊥PB ,∴∠OAP =∠OBP =90°,在Rt △OAP 和Rt △OBP 中,OP OP OA OB⎧=⎨=⎩,∴Rt △OAP ≌Rt △OBP (HL ),∴∠AOP =∠BOP ,即OP 平分∠AOB .【点睛】本题考查了全等三角形的判定与性质,切线的性质,熟练掌握切线的性质是解题的关键.20.(1)14;(2)716【分析】(1)直接利用概率公式求解即可;(2)先列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率求解即可.【详解】解:(1)随机摸出一个球,恰好摸到“爱”字球的概率为14,故答案为:14;(2)列表如下:我爱白云我(我,我)(爱,我)(白,我)(云,我)爱(我,爱)(爱,爱)(白,爱)(云,爱)白(我,白)(爱,白)(白,白)(云,白)云(我,云)(爱,云)(白,云)(云,云)由表可知,共有16种等可能结果,其中两次摸到的球中,至少有一次摸到“云”字球的有7种结果,所以两次摸到的球中,至少有一次摸到“云”字球的概率为716.【点睛】本题考查了简单概率计算,列举法计算概率,熟练掌握概率计算公式,灵活选择列表法或画树状图法计算概率是解题的关键.21.(1)下,直线x =1;(2)9【分析】(1)观察表格中的数据,得到x =0和x =2时,y 值相等都为3,且x =﹣1时,y =0,可得出抛物线开口方向及对称轴;(2)把三点坐标代入抛物线解析式求出a ,b ,c 的值确定出解析式,进而求出m 与n 的值即可.【详解】解:(1)根据表格信息,可知抛物线开口向下,对称轴为直线x =1;故答案为:下,直线x =1;(2)把(﹣1,0),(0,3),(2,3)代入y =ax 2+bx+c ,得:03423a b c c a b c ⎧-+=⎪=⎨⎪++=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线解析式为y =﹣x 2+2x+3,当x =﹣2时,m =-(-2)2-2×2+3=﹣4﹣4+3=﹣5;当x =1时,n =-12+2×1+3=﹣1+2+3=4;∴|m ﹣n|=|﹣5﹣4|=9.【点睛】本题考查了待定系数法求二次函数的解析式及二次函数的性质,熟练掌握二次函数的相关性质是解题的关键.22.(1)k =12,C (6,0);(2)相离,理由见解析【分析】(1)根据待定系数法求得k ,然后根据题意P 在AB 的垂直平分线上,得出P 的纵坐标为3,代入解析式求得横坐标,同样根据P 是BC 的垂直平分线上D 的点求得C 的坐标;(2)根据勾股定理求得圆的半径,与P 的横坐标比较即可判断.【详解】解:(1)∵反比例函数k y x=(x >0)的图象经过点A ,点A 的坐标为(2,6),∴k =2×6=12,∴反比例函数的解析式为y =12x ,∵⊙P 经过A 、B 点,∴PA =PB ,∴P 在AB 的垂直平分线上,∵直线AB ∥y 轴,∴B (2,0),P 点的纵坐标为3,把y =3代入y =12x 得,3=12x ,则x =4,∴P (4,3),∵⊙P 与x 轴交于B ,C 两点,∴P 是BC 的垂直平分线上的点,∴C (6,0);(2)相离,理由如下:∵P (4,3),B (2,0),∴PB ==,∴⊙P ,∵P 的横坐标为4,4,∴⊙P 与y 轴相离.23.(1)21322y x x =+-;(2)是,2;(3)y 1的最大值与最小值的平均数=323213(01)222(13)27(3)2a a a a a a a a aa ⎧--<≤⎪⎪-⎨⎪--⎪≥⎩<<【分析】(1)由题意得:S 1=12×AB×OC ,即可求解;(2)S2=S梯形ADHO﹣S△CDH﹣S△ACO=3a,而S1=6a,即可求解;(3)分a﹣1≤0、a﹣1>0两种情况,在a﹣1>0前提下还要分两种情况讨论,利用点和对称轴的位置关系,确定函数的最大值和最小值,即可求解.【详解】解:∵y=ax2+2ax﹣3a(a是常数)与x轴交于A,B两点,∴令y=ax2+2ax﹣3a=0,解得x=﹣3或1,令x=0,则y=﹣3a,∴点A、B、C的坐标分别为(﹣3,0)、(1,0)、(0,﹣3a),∴抛物线的对称轴为直线x=﹣1,当x=﹣1时,y=ax2+2ax﹣3a=﹣4a,∴点D的坐标为(﹣1,﹣4a);∵抛物线和x轴有两个交点,且顶点D不在第二象限,则抛物线的顶点在第三象限,且a>0,函数大致图象如下:(1)∵S1=3,S1=12×AB×OC=12×4×3a=6a,∴6a=3,解得:a=12,故抛物线的表达式为y=12x2+x﹣32;(2)是定值2,理由:过点D作DH⊥y轴于点H,则有DH=1,OH=4a,则S 2=S 梯形ADHO ﹣S △CDH ﹣S △ACO =12(1+3)×4a ﹣12×1×(﹣3a+4a )﹣12×3×3a=3a ,由(1)知S 1=6a ,故12SS =2;(3)∵y =ax 2+2ax ﹣3a =a(x+1)2﹣4a ,又∵抛物线y =ax 2+2ax ﹣3a 向右平移a 个单位后,得到函数y 1的图象,∴y 1=a(x ﹣a+1)2﹣4a ,∴平移后的抛物线的对称轴为直线x =﹣1+a ,∵﹣1+a <a+1,故x =a+1在新抛物线对称轴的右侧.①当﹣1+a≤0时,即0<a≤1,此时x =0在x =﹣1+a 的右侧,则当0<a≤1时,抛物线在x =a+1时取得最大值,而在x =0时取得最小值;当x =a+1时,y 1=a(a+1﹣a+1)2﹣4a =0,当x =0时,y 1=a(0﹣a+1)2﹣4a =a 3﹣2a 2﹣3a ,则y 1的最大值与最小值的平均数=12(a 3﹣2a 2﹣3a )=12a 3﹣a 2﹣32a ;②当a﹣1>0时,则此时顶点的横坐标0<a﹣1≤a+1,当x=a﹣1时,y1取得最小值,此时y1=a(a﹣1﹣a+1)2﹣4a=﹣4a,1)若a﹣1﹣0<a+1﹣(a﹣1),即1<a<3时,则当x=a+1时,y1取得最大值,此时y1=a(a+1﹣a+1)2﹣4a=0,则y1的最大值与最小值的平均数=4022a a -+=-,2)若a﹣1﹣0≥a+1﹣(a﹣1),即a≥3时,则当x=0时,y1取得最大值,此时y1=a(0﹣a+1)2﹣4a=a3﹣2a2﹣3a,则y1的最大值与最小值的平均数=3223(4)2a a a a--+-=32272a a a--;综上所述:y1的最大值与最小值的平均数=323213(01) 222(13)27(3)2a a a aa aa a a a⎧--<≤⎪⎪-⎨⎪--⎪≥⎩<<.24.(1)m=﹣3;(2)Q(﹣4,21)或(2,﹣3);(3)不存在,理由见解析【分析】(1)函数的对称轴为:x=1,点C为AD的中点,则点A(-1,0),即可求解;(2)tan∠ABQ=3,点B(3,0),则AQ所在的直线为:y=±3x(x-3),即可求解;(3)分点Q(2,-3)、点Q(-4,21)两种情况,分别求解即可.【详解】(1)设对称轴交x轴于点E,直线AC交抛物线对称轴于点D,函数的对称轴为:x=1,点C为AD的中点,则点A(﹣1,0),将点A的坐标代入抛物线表达式并解得:m=﹣3,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)tan∠ABQ=3,点B(3,0),则AQ 所在的直线为:y =±3(x ﹣3)…②,联立①②并解得:x =﹣4或3(舍去)或2,故点Q (﹣4,21)或(2,﹣3);(3)不存在,理由:△QBP ∽△COA ,则∠QBP =90°①当点Q (2,﹣3)时,则BP 的表达式为:y =﹣13(x ﹣3)…③,联立①③并解得:x =3(舍去)或﹣43,故点P (﹣41339,),此时BP :PQ≠OA :AC ,故点P 不存在;②当点Q (﹣4,21)时,同理可得:点P (﹣21139,),此时BP :PQ≠OA :OB ,故点P 不存在;综上,点P 不存在.25.(1)证明见解析;(2【详解】试题分析:(1)根据圆周角定理由∠APC=∠CPB=60°得∠BAC=∠ABC=60°,则△ABC 是等边三角形,所以BC=AC ,∠ACB=60°,再由CM ∥BP 得到∠PCM=∠BPC=60°,有可判断△PCM 是等边三角形,得到PC=MC ,∠M=60°,易得∠PCB=∠ACM ,然后利用“AAS“可判断△ACM ≌△BCP ≌△ACM ;(2)由△ACM ≌△BCP ≌△ACM 得AM=PB=2,则PM=PA+AM=3,由于△PCM 是等边三角形,于是可根据等边三角形的性质计算其面积.试题解析:(1)∵∠APC=∠CPB=60°,∴∠BAC=∠ABC=60°.∴△ABC 是等边三角形.∴BC=AC ,∠ACB=60°.∵CM ∥BP ,∴∠PCM=∠BPC=60°.又∵∠APC=60°,∴△PCM 是等边三角形.∴PC=MC ,∠M=60°.∵∠BCA-∠PCA=∠PCM-∠PCA ,∴∠PCB=∠ACM.在△ACM 和△BCP 中,{BPC MMPCB MCA CB CA∠=∠∠=∠=,∴△ACM ≌△BCP ≌△ACM (AAS ).(2)∵△ACM ≌△BCP ,∴AM=PB=2.∴PM=PA+AM=1+2=3.∵△PCM 是等边三角形,∴△PCM 的面积=2=44.考点:1.圆周角定理;2.全等三角形的判定和性质;3.等边三角形的判定和性质;4.圆心角、弧、弦的关系.26.(1)21222y x x =++(2)24y x =+【分析】(1)由抛物线242y ax ax =++的顶点A 在x 轴上知△0=,即21680a a -=,解之可得;(2)作CD y ⊥轴,证ΔΔAOB CDB ≅得2CD AO ==,从而求得点C 的坐标,再利用待定系数法求解可得直线解析式.(1)抛物线242y ax ax =++的顶点A 在x 轴上,∴它与x 轴只有一个交点,∴△0=,即21680a a -=,解得:0a =(舍)或12a =,∴抛物线的解析式为21222y x x =++;(2)如图,过C 作CD y ⊥轴于D ,90AOB CDB ∴∠=∠=︒,在21222y x x =++中,令0y =得2x =-,(2,0)A ∴-,2OA =,点B 是线段AC 的中点,AB CB ∴=,在AOB ∆和CDB ∆中, AOBCDBABO CBD AB CB∠=∠⎧⎪∠=∠⎨⎪=⎩,ΔΔ()AOB CDB AAS ∴≅,2∴==CD AO ,在21222y x x =++中,令2x =得8y =,C ∴为(2,8),设直线AC 解析式为y kx b =+,则2028k b k b -+=⎧⎨+=⎩,解得:24k b =⎧⎨=⎩,∴直线AC 解析式为24y x =+.。
2024年最新人教版初三数学(上册)期末试卷及答案(各版本)
2024年最新人教版初三数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列函数中,哪个函数是奇函数?A. y = x^3B. y = x^2C. y = |x|D. y = x^43. 下列哪个图形是正方体?A. 长方体B. 正方体C. 球体D. 圆柱体4. 下列哪个命题是假命题?A. 对顶角相等B. 两直线平行,同旁内角相等C. 两直线平行,内错角相等D. 两直线平行,同旁内角互补5. 下列哪个数是无理数?A. 1/2B. √9C. πD. 0.333二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。
()2. 任何两个实数的积都是实数。
()3. 0是正数。
()4. 1是质数。
()5. 2是偶数。
()三、填空题5道(每题1分,共5分)1. 两个角的和为180°,这两个角互为__________。
2. 两个角的和为90°,这两个角互为__________。
3. 两个角的和为360°,这两个角互为__________。
4. 两个角的和为270°,这两个角互为__________。
5. 两个角的和为__________°,这两个角互为补角。
四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。
2. 请简要说明无理数的定义。
3. 请简要说明实数的定义。
4. 请简要说明函数的定义。
5. 请简要说明奇函数的定义。
五、应用题:5道(每题2分,共10分)1. 计算下列表达式的值:(3/4 + 1/3) ÷ (5/6 1/2)2. 计算下列表达式的值:(2/3)^2 × (3/4)^33. 计算下列表达式的值:√(27) + √(48) √(75)4. 计算下列表达式的值:log2(64) + log2(16) log2(8)5. 计算下列表达式的值:sin(45°) + cos(45°) tan(45°)六、分析题:2道(每题5分,共10分)1. 请分析并解释勾股定理及其应用。
人教版九年级上册数学期末考试试卷附答案
人教版九年级上册数学期末考试试题一、单选题1.用配方法解方程x 2+2x-1=0时,配方结果正确的是()A .()212x +=B .()222x +=C .()213x +=D .()223x +=2.下列二次函数中,其图象的对称轴为x =﹣2的是()A .y =2x 2﹣2B .y =﹣2x 2﹣2C .y =2(x ﹣2)2D .y =(x+2)23.下列标志图中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .4.抛物线223y x x =--与x 轴的两个交点间的距离是()A .-1B .-2C .2D .45.将抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A .y =2x 2+1B .y =2x 2﹣3C .y =2(x ﹣8)2+1D .y =2(x ﹣8)2﹣36.将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为A .110°B .120°C .150°D .160°7.如图,⊙O 的半径为2,点C 是圆上的一个动点,CA ⊥x 轴,CB ⊥y 轴,垂足分别为A 、B ,D 是AB 的中点,如果点C 在圆上运动一周,那么点D 运动过的路程长为()A .4πB .2πC .πD .2π8.如图是二次函数y =ax 2+bx+c (a≠0)图象的一部分,对称轴是直线x =﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b+c >0;④b ﹣4a =0;⑤方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4,其中正确的结论有()A .2个B .3个C .4个D .5个9.如图,ABCD 为正方形,O 为对角线AC,BD 的交点,则△COD 绕点O 经过下列哪种旋转可以得到△DOA ()A .顺时针旋转90°B .顺时针旋转45°C .逆时针旋转90°D .逆时针旋转45°10.已知二次函数y =ax2+bx+c 的图象与x 轴交于A ,B 两点,对称轴是直线x =﹣1,若点A 的坐标为(1,0),则点B 的坐标是()A .(﹣2,0)B .(0,﹣2)C .(0,﹣3)D .(﹣3,0)二、填空题11.一元二次方程()()320x x --=的根是_____.12.抛物线y =(x+2)2+1的顶点坐标为_____.13.从实数﹣1、﹣2、1中随机选取两个数,积为负数的概率是________.14.如图,△DEC 与△ABC 关于点C 成中心对称,AB =3,AC =1,∠D =90°,则AE 的长是_____.15.已知扇形的圆心角为120°,它所对弧长为20πcm ,则扇形的半径为_____.16.若关于x 的函数2y kx 2x 1=+-与x 轴仅有一个公共点,则实数k 的值为___17.已知点P (x 0,m ),Q (1,n )在二次函数y =(x+a )(x ﹣a ﹣1)(a≠0)的图象上,且m <n 下列结论:①该二次函数与x 轴交于点(﹣a ,0)和(a+1,0);②该二次函数的对称轴是x =12;③该二次函数的最小值是(a+2)2;④0<x 0<1.其中正确的是_____.(填写序号)三、解答题18.解方程:2680x x -+=19.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =10cm ,CD =16cm ,求AE 的长.20.已知二次函数2y ax bx =+的图象过点()2,0,()1,6-.(1)求二次函数的关系式;(2)写出它与x 轴的两个交点及顶点坐标.21.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.(1)请直接写出袋子中白球的个数.(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)22.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根?(2)当Rt△ABC的斜边a b和c恰好是这个方程的两个根时,求k的值.23.已知⊙O的直径AB、CD互相垂直,弦AE交CD于F,若⊙O的半径为R,求证:AE•AF =2R2.24.在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;(Ⅱ)不论a取何实数,该抛物线都经过定点H.①求点H的坐标;②证明点H是所有抛物线顶点中纵坐标最大的点.25.ΔABC为等腰三角形,O为底边BC的中点,腰AB与 O相切于点D.求证:AC是 O的切线.26.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?参考答案1.A【分析】先把常数项移到方程右边,再把方程两边同时加上一次项系数一半的平方,然后把方程左边写成完全平方形式即可.【详解】解:∵x2+2x﹣1=0,∴x2+2x=1,∴x2+2x+1=2,∴(x+1)2=2.故选:A.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.2.D【分析】根据二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质逐项分析即可.【详解】A.y=2x2﹣2的对称轴是x=0,故该选项不正确,不符合题意;;B.y=﹣2x2﹣2的对称轴是x=0,故该选项不正确,不符合题意;;C.y=2(x﹣2)2的对称轴是x=2,故该选项不正确,不符合题意;;D.y=(x+2)2的对称轴是x=-2,故该选项正确,符合题意;;故选D【点睛】本题考查了二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质,y=a(x-h)2+k是抛物线的顶点式,其顶点是(h,k),对称轴是x=h.熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键.3.B【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A 、不是轴对称图形,是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、是轴对称图形,不是中心对称图形,不符合题意;D 、不是轴对称图形,也不是中心对称图形,不符合题意.故选B .【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.4.D 【分析】求解得到方程的两个根,用较大根减去小根即可.【详解】令y=0,得2230x x --=,解得123,1x x ==-,∴两个交点间的距离是3-(-1)=4,故选D .【点睛】本题考查了抛物线与x 轴的交点,一元二次方程的解法,正确理解题意,找到合理的解题方法是解题的关键.5.A 【分析】根据二次函数平移的规律“上加下减,左加右减”的原则即可得到平移后函数解析式.【详解】解:抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,得到的抛物线解析式为y =2(x ﹣4+4)2﹣1,即y =2x 2﹣1,再向上平移2个单位长度得到的抛物线解析式为y =2x 2﹣1+2,即y =2x 2+1;故选:A .【点睛】本题考查的是二次函数图象平移变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.6.A 【详解】设C′D′与BC 交于点E ,如图所示:∵旋转角为20°,∴∠DAD′=20°,∴∠BAD′=90°−∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°−70°−90°−90°=110°,∴∠1=∠BED′=110°.故选:A .7.D 【分析】根据题意可知,四边形OACB 是矩形,D 为AB 的中点,连接OC ,可知D 点是矩形的对角线的交点,那么当C 点绕圆O 旋转一周时,D 点也会以OD 长为半径旋转一周,D 点的轨迹是一个以O 为圆心,以OD 长为半径的圆,计算圆的周长即可.【详解】如图,连接OC ,∵CA ⊥x 轴,CB ⊥y 轴,∴四边形OACB 是矩形,∵D 为AB 中点,∴点D 在AC 上,且OD =12OC ,∵⊙O 的半径为2,∴如果点C 在圆上运动一周,那么点D 运动轨迹是一个半径为1圆,∴点D 运动过的路程长为2π•1=2π,故选:D .【点睛】本题考查了动点问题,解决本题的关键是能够判断出D 点的运动轨迹是一个半径为1的圆.8.C 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵22ba-=-,∴b =4a ,ab >0,∴b ﹣4a =0,∴①错误,④正确,∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4,∴②⑤正确,∵当x =﹣3时y >0,即9a ﹣3b+c >0,∴③正确,故正确的有②③④⑤.故选:C .【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用9.C 【详解】试题分析:因为四边形ABCD 为正方形,所以∠COD=∠DOA=90°,OC=OD=OA ,则△COD 绕点O 逆时针旋转得到△DOA ,旋转角为∠COD 或∠DOA .故选C .考点:旋转的性质10.D 【分析】利用点B 与点A 关于直线x=-1对称确定B 点坐标.【详解】解:∵二次函数y =ax 2+bx+c 的图象与x 轴交于A ,B 两点,∴点A 与点B 关于直线x =﹣1对称,而对称轴是直线x =﹣1,点A 的坐标为(1,0),∴点B 的坐标是(﹣3,0).故选D .【点睛】本题考查抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.11.123,2==x x 【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【详解】解:30x -=或20x -=,所以123,2==x x .故答案为123,2==x x .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.12.(﹣2,1)【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【详解】由抛物线的顶点坐标可知,抛物线y =(x+2)2+1的顶点坐标是(﹣2,1).故答案为:(﹣2,1).【点睛】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.13.23【详解】从实数-1、-2、1中随机选取两个数共有以下三种等可能情况:①-1,-2;②-1,1;③-2,1;其中乘积为负数的是②、③两种,∴从实数-1,-2,1中随机选取两个数,积为负数的概率是:23.故答案为23.141,3CD AC DE AB ====,再利用勾股定理即可得.【详解】DEC ∆ 与ABC ∆关于点C 成中心对称ABC DEC∴∆≅∆1,3CD AC DE AB ∴====2AD CD AC ∴=+=90D ∠=︒AE ∴===【点睛】本题考查了中心对称图形的性质、勾股定理,熟记中心对称图形的性质是解题关键.15.30cm .【分析】根据扇形弧长公式代入计算即可解决.【详解】根据题意得12020180rππ⨯⨯=,r =30cm ,故答案为30cm .【点睛】本题考查了扇形弧长公式的应用,解决本题的关键是熟练掌握扇形弧长公式.16.0或-1##-1或0【详解】由于没有交待是二次函数,故应分两种情况:当k=0时,函数y 2x 1=-是一次函数,与x 轴仅有一个公共点.当k≠0时,函数2y kx 2x 1=+-是二次函数,若函数与x 轴仅有一个公共点,则2210kx x +-=有两个相等的实数根,即()224k 10∆=-⋅⋅-=,解得:k 1=-,故答案为:0或-1.17.①②④.【分析】(1)根据二次函数的解析式,求出与x 轴的交点坐标,即可判断①;(2)用与x 轴交点的横坐标相加除以2,即可求证结论②;(3)将二次函数交点式转化为顶点式,得到顶点坐标,即可求证③;(4)讨论P 点分别在对称轴的左侧和右侧两种情况,根据函数的增减性,计算x 0的范围即可.【详解】①∵二次函数y =(x+a )(x ﹣a ﹣1),∴当y =0时,x 1=﹣a ,x 2=a+1,即该二次函数与x 轴交于点(﹣a ,0)和(a+1,0).故①结论正确;②对称轴为:12122x x x +==.故②结论正确;③由y =(x+a )(x ﹣a ﹣1)得到:y =(x ﹣12)2﹣(a+12)2,则其最小值是﹣(a+12)2,故③结论错误;④当P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,由m <n ,得0<x 0≤12;当P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得12<x 0<1,综上所述:m <n ,所求x 0的取值范围0<x 0<1.故④结论正确.故答案是:①②④.【点睛】本题考查了二次函数性质的应用,解决本题的关键是熟练掌握二次函数不同形式解析式之间的相互转化,正确理解掌握二次函数的性质.18.x 1=4,x 2=2【分析】原方程运用因式分解法求解即可【详解】解:2680x x -+=(x -4)(x -2)=0x -4=0或x -2=0∴x 1=4,x 2=2【点睛】本题主要考查了解一元二次方程,灵活选用方法是解答本题的关键19.AE =16cm .【分析】根据垂径定理,计算出CE 的长度,再根据勾股定理计算OE 的长度,两者相加即可解决问题.【详解】∵弦CD ⊥AB 于点E ,CD =16cm ,∴CE =12CD =8cm .在Rt △OCE 中,OC =10cm ,CE =8cm ,∴6OE ===(cm ),∴AE =AO+OE =10+6=16(cm ).【点睛】本题考查了圆中计算问题,解决本题的关键是:①熟练掌握垂径定理及其推论,②熟练掌握勾股定理.20.(1)224y x x=-(2)与x 轴的两个交点坐标分别是:()0,0,()2,0;顶点坐标是()1,2-【分析】(1)把点(2,0),(−1,6)代入二次函数y =ax 2+bx ,得出关于a 、b 的二元一次方程组,求得a 、b 即可;(2)将(1)中解析式转化为两点式或顶点式,即可求得抛物线与x 轴的交点坐标和顶点坐标.(1)解:把点()2,0,()1,6-代入二次函数2y ax bx =+,得4206a b a b +=⎧⎨-=⎩,解得24a b =⎧⎨=-⎩,因此二次函数的关系式224y x x =-;(2)解:∵224y x x =-=2x (x−2),∴该抛物线与x 轴的两个交点坐标分别是(0,0),(2,0).∵224y x x =-=2(x−1)2−2,∴二次函数224y x x =-的顶点坐标(1,−2).21.(1)袋子中白球有2个;(2)59.【分析】(1)设袋子中白球有x 个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【详解】解:(1)设袋子中白球有x 个,根据题意得:213x x =+,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:59.22.(1)见解析;(2)3【分析】(1)根据根的判别式的符号来证明;(2)根据韦达定理得到b+c=2k+1,bc=4k-3.又在直角△ABC 中,根据勾股定理,得(b+c )2﹣2bc 2,由此可以求得k 的值.【详解】(1)证明:∵△=[﹣(2k+1)]2﹣4×1×(4k ﹣3)=4k 2﹣12k+13=(2k ﹣3)2+4,∴无论k 取什么实数值,总有=(2k ﹣3)2+4>0,即△>0,∴无论k 取什么实数值,该方程总有两个不相等的实数根;(2)解:∵两条直角边的长b 和c 恰好是方程x 2﹣(2k+1)x+4k ﹣3=0的两个根,得∴b+c =2k+1,bc =4k ﹣3,又∵在直角△ABC 中,根据勾股定理,得b 2+c 2=a 2,∴(b+c)2﹣2bc2,即(2k+1)2﹣2(4k﹣3)=31,整理后,得k2﹣k﹣6=0,解这个方程,得k=﹣2或k=3,当k=﹣2时,b+c=﹣4+1=﹣3<0,不符合题意,舍去,当k=3时,b+c=2×3+1=7,符合题意,故k=3.23.见解析【详解】连接BE,根据圆周角定理可的∠AEB=90,再有AB⊥CD,公共角∠A,即可证得△AOF∽△AEB,根据相似三角形的对应边成比例即得结果.解:如图,连接BE,∵AB为⊙O的直径∴∠AEB=90°∵AB⊥CD∴∠AOF=90°∴∠AOF=∠AEB=90°又∠A=∠A∴△AOF∽△AEB∴AE•AF=AO•AB∵AO=R,AB=2R所以AE•AF=2R2.24.(Ⅰ)a=﹣1,抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①点H的坐标为(2,6);2②证明见解析.【分析】(I)根据该抛物线与x轴的一个交点为(-1,0),可以求得的值及该抛物线与x轴另一交点坐标;(II)①根据题目中的函数解析式可以求得点H的坐标;②将题目中的函数解析式化为顶点式,然后根据二次函数的性质即可证明点H是所有抛物线顶点中纵坐标最大的点.【详解】(Ⅰ)∵抛物线y=x2﹣2ax+4a+2与x轴的一个交点为(﹣1,0),∴0=(﹣1)2﹣2a×(﹣1)+4a+2,解得,a=﹣12,∴y=x2+x=x(x+1),当y=0时,得x1=0,x2=﹣1,即抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①∵抛物线y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),∴不论a取何实数,该抛物线都经过定点(2,6),即点H的坐标为(2,6);②证明:∵抛物线y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,∴该抛物线的顶点坐标为(a,﹣(a﹣2)2+6),则当a=2时,﹣(a﹣2)2+6取得最大值6,即点H是所有抛物线顶点中纵坐标最大的点.25.见解析.【分析】过点O作OE⊥AC于点E,连结OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论.【详解】证明:过点O作OE⊥AC于点E,连结OD,OA,∵AB与O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是O的半径,∵AC经过O的半径OE的外端点且垂直于OE,∴AC是O的切线。
人教版初三上册《数学》期末考试卷及答案【可打印】
一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。
A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 已知一组数据:1,2,3,4,5,那么这组数据的众数、中位数、平均数分别是()。
A. 3,3,3B. 3,3,3.5C. 3,3,4D. 3,3,4.53. 下列函数中,属于一次函数的是()。
A. y=2x+1B. y=x^2C. y=2/xD. y=3sinx4. 已知正比例函数y=kx(k≠0),当x=2时,y=4,那么k的值为()。
A. 2B. 4C. 2D. 45. 在等腰三角形ABC中,AB=AC,∠A=40°,则∠B的度数是()。
A. 40°B. 70°C. 80°D. 90°二、判断题(每题1分,共5分)1. 任意两个等腰三角形的底边长度相等。
()2. 两条平行线上的任意两个点之间的距离相等。
()3. 当两个数的和为0时,它们互为相反数。
()4. 函数y=2x+1的图像是一条直线。
()5. 正比例函数的图像经过原点。
()三、填空题(每题1分,共5分)1. 若x2y=3,则2x4y=______。
2. 若函数y=kx(k≠0)的图像经过点(1,2),则k=______。
3. 已知等腰三角形ABC中,AB=AC=5,BC=8,则∠B的度数是______。
4. 若一组数据的平均数为5,则这组数据的总和是______。
5. 若两个等腰三角形的底边长度相等,则它们一定全等。
()四、简答题(每题2分,共10分)1. 简述正比例函数的定义。
2. 简述等腰三角形的性质。
3. 简述函数图像平移的规律。
4. 简述求解二元一次方程组的方法。
5. 简述众数、中位数、平均数的定义及区别。
五、应用题(每题2分,共10分)1. 某商店销售一批商品,售价为每件20元,成本为每件15元。
若要使利润率达到50%,则售价应定为多少元?2. 已知函数y=kx(k≠0),若该函数的图像经过点(2,4),求k的值。
2022年人教版数学九年级上册期末考试试卷含答案
2022年人教版数学九年级上册期末考试试题考试范围:第二十一章~第二十五章一、选择题(本大题共10小题,每小题3分,满分30分)1.下列方程中,是关于x的一元二次方程的是()A.1x+x2=1B.212x+-12x=1C.x2+1=0D.2x3-5xy-4y2=02.用配方法解一元二次方程x2-4x=5的过程中,配方正确的是()A.(x+2)2=1B.(x-2)2=1C.(x+2)2=9D.(x-2)2=93.若在某校男生中随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是35,这个35的含义是()A.只发出5份问卷,其中3份是喜欢足球的问卷B.在问卷中,喜欢足球的问卷与总问卷的比为3∶8C.在问卷中,喜欢足球的问卷占总问卷的3 5D.在问卷中,每抽出100份问卷,恰有60份问卷是不喜欢足球4.时钟的分针长5cm,经过45分钟,它的针尖转过的弧长是()A.154πcm B.154πcm C.15πcm D.754πcm5.下列命题错误的是()A.经过三个点一定可以作圆B.三角形的外心到三角形各顶点的距离相等C.同圆或等圆中,相等的圆心角所对的弧相等D.经过切点且垂直于切线的直线必经过圆心6.张华想给他的王老师发短信拜年,可一时记不清王老师手机号码后三位数的顺序,只记得是1,6,9三个数字,则张华一次发短信成功的概率是()A.16B.13C.19D.127.如果关于x的方程(m+2)x2-2(m+1)x+m=0有且只有一个实数根,那么关于x的方程(m+1)x2-2mx+m-1=0的根为()A.-1或-3B.1或3C.-1或3D.没有实数根8.将三角形纸板按如图所示的方式放置在量角器上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB 的大小为()A .28°B .29°C .43°D .67°9.如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为(-1,0),AC =2.将Rt △ABC 先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是()A .(2,2)B .(1,2)C .(-1,2)D .(2,-1)10.二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x =2,下列结论:(1)4a +b =0;(2)9a +c >3b ;(3)8a +7b +2c >0;(4)若点A (-3,y 1)、点B (-12,y 2)、点C (72,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x +1)(x -5)=-3的两根为x 1和x 2,且x 1<x 2,则x 1<-1<5<x 2.其中正确的结论有()A .2个B .3个C .4个D .5个二、填空题(本大题共4小题,每小题5分,共20分)11.一元二次方程x 2-3x -1=0与x 2-x +3=0的所有实数根的和等于.12.已知二次函数y =x 2+(a -b )x -b 的图象如图所示,那么化简|2|a ab b ab 的结果是.13.小明准备了五张形状、大小完全相同的不透明卡片,上面分别写有整数-5,-4,-3,-2,-1,将这五张卡片写有整数的一面向下放在桌面上.从中任意抽取一张,以卡片上的数作为关于x的不等式ax+3>0(其中a≠0)中的系数a,则使该不等式有正整数解的概率是.14.如图,MN是半径为1的☉O的直径,点A在☉O上,∠AMN=30°,B为 AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为.三、解答题(本大题共9小题,共70分)15.(6分)解方程:y2+8y+9=0.16.(6分)已知关于x的方程2x2+kx-1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是-1,求另一个根及k的值.17.(8分)如图,在△ABC中,AB=AC5,BC=2,请将△ABC称为“基本图形”,请你用“基本图形”,借助旋转、平移或轴对称变换,在另一张方格纸中设计一个以点O为对称中心,并且以直线l为对称轴的图案.18.(8分)如图,用边长为1的小正方形地砖铺广场,从中间往外铺,第1层用一块白色地砖,第2层在四周用彩色地砖将第一块围起来,第3层又在四周用白色地砖将第2层围起来,依此铺下去.(1)根据规律填表:层数12345…n…每层所需地砖数181624……(2)若广场一共铺了n层(n>1),则哪种颜色的地砖多,多多少块?19.(8分)如图,点O是等边三角形ABC内一点,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°至△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由.20.(8分)已知关于x的一元二次方程x2+2ax+b2=0.(1)若a≥0,b≥0,方程有实数根,试确定a,b之间的大小关系;(2)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,请你用树状图或表格表示出所有可能出现的结果,并求出使上述方程有实数根的概率.21.(8分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系,当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数解析式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的售价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?22.(8分)如图,AB是☉O的直径,以OA为直径的☉O1与☉O的弦AC相交于D,DE⊥OC,垂足为E.(1)求证:AD=DC;(2)求证:DE是☉O1的切线;(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论.23.(10分)教练对明明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=a(x-4)2+h.(1)在某次比赛中,他第一次投掷后,铅球的最大高度为3m,落地后距离出手点的水平距离为10m,求他的出手高度是多少米?(2)第二次投掷时,他加大了力度,奋力一掷,结果出手点的高度变为2m,铅球行进的最大高度增加了0.6m,求他这次投掷后落地点距离出手点的水平距离.(3)若第三次投掷后,落地点距离出手点的水平距离为12m,他便可以获得冠军,如果出手高度仍为2m,则铅球行进的最大高度为多少?参考答案1.B 2.D3.C4.B5.A 6.A7.B8.A9.A10.B11.312.-113.251415.解:y =864362±-=2827±-,∴y 1=-4,y 2=-4.16.解:(1)2x 2+kx -1=0,Δ=k 2-4×2×(-1)=k 2+8,无论k 取何值,k 2≥0,∴k 2+8>0,即Δ>0,∴方程2x 2+kx -1=0有两个不相等的实数根.(2)设2x 2+kx -1=0的另一个根为x ,则x -1=-2k ,(-1)·x =-12,解得x =12,k =1,∴2x 2+kx -1=0的另一个根为12,k 的值为1.17.解:略.答案不唯一,作图正确即可.18.解:(1)由图可知,第1层有地砖1块,n >1时,第n 层地砖的块数为(2n -1)2-(2n -3)2=8n -8,n =5时,8×5-8=32;故从左到右依次填入:32;8n -8.(2)n 为偶数时,最外层是彩色地砖,彩色地砖多,多8×2n-1=(4n -1)块;n 为奇数时,最外层是白色地砖,白色地砖多,多8×12n -+1=(4n -3)块.19.(1)证明:依题意知△BOC ≌△ADC ,∴∠ACD +∠OCA =∠BCO +∠OCA =60°,且CD =CO ,∴△COD 是等边三角形.(2)是直角三角形,理由如下:∵△COD 是等边三角形,∠ADC =∠BOC =α=150°,∴∠ADO =α-60°=90°,∴△AOD 是直角三角形.20.解:(1)由于关于x 的一元二次方程x 2+2ax +b 2=0有实数根,所以(2a )2-4b 2≥0,有a 2≥b 2.由于a ≥0,b ≥0,所以a ≥b .(2)列表:共有12种情况,其中符合a ≥b 的有9种,则上述方程有实数根的概率是34.21.解:(1)y =-2x +80(20≤x ≤28).(2)根据题意,得(x-20)y=150,则(x-20)(-2x+80)=150,整理,得x2-60x+875=0,(x-25)(x-35)=0,解得x1=25,x2=35(不合题意舍去).答:每本纪念册的售价是25元.(3)由题意可得w=(x-20)(-2x+80)=-2x2+120x-1600=-2(x-30)2+200,此时当x=30时,w最大,又∵售价不低于20元且不高于28元,当x<30时,y随x的增大而增大,∴当x=28时,w最大=-2(28-30)2+200=192.答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.22.(1)证明:连接OD,则∠ADO=90°,∵AC为☉O的弦,OD为弦心距,∴AD=DC.(2)证明:连接O1D,∵D为AC的中点,O1为AO的中点,∴O1D∥OC,又DE⊥OC,∴DE⊥O1D,∴DE与☉O1相切,DE是☉O1的切线.(3)解:是正方形.证明:如果OE=EC,又D为AC的中点,∴DE∥O1O,又O1D∥OE,∴四边形O1OED为平行四边形,又∠DEO=90°,O1O=O1D,∴四边形O1OED为正方形.23.解:(1)由题意知,抛物线y=a(x-4)2+h中h=3,经过点(10,0),则a(10-4)2+3=0,解得a=-112,所以y=-112(x-4)2+3,当x=0时,y=-112×(-4)2+3=53,所以他的出手高度是53m.(2)由题意,抛物线y=a(x-4)2+h中h=3.6,过点(0,2)则a(-4)2+3.6=2,解得a=-110,所以y=-110(x-4)2+3.6.当y=0时,-110(x-4)2+3.6=0,解得x1=10,x2=-2(舍去),所以他这次投掷后落地点距离出手点的水平距离为10m.(3)由题意,抛物线y=a(x-4)2+h经过点(12,0)和(0,2),则221240()()42a ha h⎧⎪⎨⎪⎩-+=,-+=,解得12483ah⎧⎪⎪⎨⎪⎪⎩=-=,所以y=-124(x-4)2+83,当x=4时,y最大值=83,所以铅球行进的最大高度为83m.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级数学上学期期末试卷(第Ⅰ套)(考试时间90分钟;卷面满分120分)姓名_____________ 座号_______________ 成绩__________________一、选择题(每题3分,共30分)1.点M (1,-2)关于原点对应的点的坐标是()A .(-1,2)B .(1,2)C .(-1,-2)D .(-2,1)2.下列图形中,是中心对称图形的是( )A .B .C .D .3.将函数个单位得到的新图象的函数解析式为( )A. B.C. D.4.如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC沿弦AC 翻折交AB 于点D ,连接CD .如果∠BAC=20°,则∠BDC=( )A.80°B.70°C.60°D.50°5.下列事件中,必然发生的事件是( )A .明天会下雨B .小明数学考试得99分C .今天是星期一,明天就是星期二D .明年有370天6.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为()A .-1B . 0C . 1D .-27.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )231y x =-+2()2321y x =--+()2321y x =-++232y x =-232y x =-8.如果关于x 的方程(m ﹣3)7-m2x ﹣x+3=0是关于x 的一元二次方程,那么m 的值为( ) A .±3 B .3 C .﹣3 D .都不对9.如果一个扇形的半径为1,弧长是3π,那么此扇形的圆心角的大小为() A . 300 B . 450 C . 600 D . 90010.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是()A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=二、填空题(每题3分,共24分)11.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为_________。
12.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为_________。
13.已知抛物线y=x 2﹣x ﹣1与x 轴的一个交点为(m ,0),则代数式m 2﹣m+2017的值为________。
14.不透明的袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别. 从袋子中随机取出1个球,则它是红球的概率为_________。
15.已知抛物线y =ax 2+bx +c (a≠0)与x 轴交于A ,B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x =2.则线段AB 的长为_________。
16.如图,将Rt △ABC 绕点A 按顺时针旋转一定角度得到Rt △ADE ,点B 的对应点D 恰好落在BC 边上.若AC =3,∠B =60°,则CD 的长为_________。
第16题图 第17题图 第18题图17.如图,、分别切⊙于点、,点是⊙上一点,且,则_________度。
PA PB O A B E O 60=∠AEB =∠P18.抛物线的图象如图,则它的函数表达式是__________________.当x_________时,y >0.三、简答题(共66分)(6分)19.解方程:(1)x 2+4x ﹣1=0(2)2(3)4(3)0x x x -+-=(10分)20.如图,AB 是⊙O 的直径,C 是半圆O 上的一点,AC 平分∠DAB 如图,AB 是 ⊙O 的直径,C 是半圆O 上的一点,AC 平分∠DAB ,AD ⊥CD ,垂足为D ,AD 交⊙O 于E ,连接CE.(1)判断CD 与⊙O 的位置关系,并证明你的结论;(2)若E 是弧AC 的中点,⊙O 的半径为1,求图中阴影部分的面积。
(9分)21.A 、B 两组卡片共5张,A 中三张分别写有数字2,4,6,B 中两张分别写有3,5.它们除了数字外没有任何区别。
(1)随机地从A 中抽取一张,求抽到数字为2的概率;(2)随机地分别从A 、B 中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果,现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜。
请问这样的游戏规则对甲乙双方公平吗?为什么?(3)如果不公平请你修改游戏规则使游戏规则对甲乙双方公平。
(9分)22、如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.(10分)23.我市“利民快餐店”试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日纯收入.(日纯收入=每天的销售额﹣套餐成本﹣每天固定支出)(1)若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的纯收入不少于800元,则每份套餐的售价应不低于多少元?(2)该店既要吸引顾客,使每天销售量较大,又要有较高的日纯收入.按此要求,每份套餐的售价应定为多少元?此时日纯收入为多少元?(10分)24.如图,二次函数y=-12x2+bx+c的图象经过A(2,0),B(0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.(12分)25.在平面直角坐标系中,已知抛物线y=ax2+bx﹣4经过A(﹣4,0),C(2,0)两点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S 关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,点B是抛物线与y轴交点.判断有几个位置能够使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.人教版九年级数学上册期中试卷(第Ⅰ套)参考答案一、选择题1-5 AAABC 6-10 CDCCB 二、填空题11、-112、2113、201814、9215、816、117、60° 18、y=x 2﹣4x+3<1或x >3三、简答题19、(1)解:∵x 2+4x ﹣1=0∴x 2+4x=1∴x 2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x 1=﹣2+,x 2=﹣2﹣.(2)解:原方程化为:091852=+-x x解得:x 1=3,x 2=3520、解:(1)CD 与圆O 相切理由如下:∵AC 为∠DAB 的平分线, ∴∠DAC=∠BAC ,∵OA=OC ,∴∠OAC=∠OCA ,∴∠DAC=∠OCA ,∴OC ∥AD ,∵AD ⊥CD , ∴OC ⊥CD ,则CD 与圆O 相切;(2)连接EB ,交OC 于F ,∵AB 为直径,得到∠AEB=90°,∴EB ∥CD ,∵CD 与⊙O 相切,C 为切点,∴OC ⊥CD ,∴OC ∥AD ,∵点O 为AB 的中点,∴OF 为△ABE 的中位线,∴OF=21AE=21,即CF=DE=21,在Rt △OBF 中,根据勾股定理得:EF=FB=DC=23,则S 阴影=S △DEC =21×21×23=8321、解:(1)P (抽到数字为2)=1/3;(2)不公平,理由如下.画树状图如下:从树状图中可知共有6个等可能的结果,而所选出的两数之积为3的倍数的机会有4个.∴ P (甲获胜)3264==,而P (乙获胜)31321=-= ∵ P (甲获胜)> P (乙获胜)∴ 这样的游戏规则对甲乙双方不公平.22、解:(1)∵∠ABC 与∠D 都是弧AC 所对的圆周角,∴∠ABC=∠D=60 °(2)∵AB 是⊙O 的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA ⊥AE ,[来源:Z,xx,]∴AE 是⊙O 的切线;(3)如图,连接OC ,∴OB=OC ,∠ABC=60°,∴△OBC 是等边三角形,∵OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC 的长为.ππ381804120=••23、解:(1)①y=400(x ﹣5)﹣600.②依题意得:400(x ﹣5)﹣600≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售价x (元)取整数,∴每份套餐的售价应不低于9元.(2)当5<x≤10时,销量为400(份),x=10,日净收入最大为y=400×10﹣2600=1400 (元)当x >10时,y=(x ﹣5)•[400﹣(x ﹣10)×40]﹣600=﹣40(x ﹣12.5)2+1650, 又∵x 只能为整数,∴当x=12或13时,日销售利润最大,但为了吸引顾客,提高销量,取x=12,此时的日利润为:﹣40(12﹣12.5)2+1650=1640元;答:每份套餐的售价为12元时,日纯收入为1640元.24、解:(1)依题意⎪⎪⎩⎪⎪⎨⎧-=+⨯+⨯-=+⨯+⨯-60021022212c b c b 解方程组得:⎩⎨⎧-==64c b 该二次函数解析式为:y =-12x 2+4x -6 (2)∵该抛物线对称轴为直线4)21(242=-⨯-=-=a b x ∴点C 的坐标为(4,0)∴AC =OC -OA =4-2=2∴S △ABC =12×AC×OB =12×2×6=625、解:(1)将A(﹣4,0),C(2,0)两点代入函数解析式,得解得所以此函数解析式为:y=x2+x﹣4;(2)∵M点的横坐标为m,且点M在这条抛物线上,∴M点的坐标为:(m,m2+m﹣4),∴S=S△AOM+S△OBM﹣S△AOB=×4×(m2+m﹣4)+×4×(﹣m)﹣×4×4=﹣m2﹣2m+8﹣2m﹣8=﹣m2﹣4m=﹣(m+2)2+4,∵﹣4<m<0,当m=﹣2时,S有最大值为:S=﹣4+8=4.答:m=﹣2时S有最大值S=4.(3)∵点Q是直线y=﹣x上的动点,∴设点Q的坐标为(a,﹣a),∵点P在抛物线上,且PQ∥y轴,∴点P的坐标为(a,a2+a﹣4),∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,又∵OB=0﹣(﹣4)=4,以点P,Q,B,O为顶点的四边形是平行四边形,∴|PQ|=OB,即|﹣a2﹣2a+4|=4,①﹣a2﹣2a+4=4时,整理得,a2+4a=0,解得a=0(舍去)或a=﹣4,﹣a=4,所以点Q坐标为(﹣4,4),②﹣a2﹣2a+4=﹣4时,整理得,a2+4a﹣16=0,解得a=﹣2±2,所以点Q的坐标为(﹣2+2,2﹣2)或(﹣2﹣2,2+2).综上所述,Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.。