人教版九年级数学上册期末测试卷(带答案)
人教版九年级数学上册期末测试题(附参考答案)
人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。
每小题只有一个选项符合题目要求。
1.方程x2+4x+3=0的两个根为( )A.x1=1,x2=3B.x1=-1,x2=3C.x1=1,x2=-3D.x1=-1,x2=-32.一个口袋里装有4个白球,5个黑球,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽出一个球,抽到白球的概率是( )A.49B.59C.14D.193.将抛物线y=x2向右平移3个单位长度,再向上平移4个单位长度,得到的抛物线是( )A.y=(x-3)2+4 B.y=(x+3)2+4C.y=(x+3)2-4 D.y=(x-3)2-44.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是( )A BC D5.如图,AB切⊙O于点B,连接OA交⊙O于点C,BD∥OA交⊙O于点D,连接CD.若∠OCD=25°,则∠A的度数为( )A.25°B.35°C.40°D.45°6.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.167.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A,B,与y轴交于点C,对称轴为直线x=-1.若点A的坐标为(-4,0),则下列结论正确的是( )A.2a+b=0B.4a-2b+c>0C.x=2是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根D.点(x1,y1),(x2,y2)在抛物线上,当x1>x2>-1时,y1<y2<08.图1是一把扇形纸扇,图2是其完全打开后的示意图,外侧两竹条OA和OB 的夹角为150°,OA的长为30 cm,贴纸部分的宽AC为18 cm,则CD⏜的长为( )A.5π cm B.10π cmC.20π cm D.25π cm9.如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是( )A.144°B.130°C.129°D.108°10.在如图所示的运算程序中,若开始输入x的值为48,我们发现第一次输出的结果为24,第二次输出的结果为12……则第2 023次输出的结果为( )A.6 B.3C.622 021D.322 022二、填空题:本题共6个小题,每小题3分,共18分。
人教版九年级上册数学期末考试卷及答案【完整】
人教版九年级上册数学期末考试卷及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数是( )A .30°B .60°C .30°或150°D .60°或120°4.若实数a 、b 满足a 2﹣8a+5=0,b 2﹣8b+5=0,则1111b a a b --+--的值是( ) A .﹣20 B .2 C .2或﹣20 D .125.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB6.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .1910.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.分解因式:x 3﹣16x =_____________.3.若式子x 1x+有意义,则x 的取值范围是_______. 4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD的周长为_____________.5.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为__________.6.菱形的两条对角线长分别是方程214480x x-+=的两实根,则菱形的面积为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:3213 xx x--=-2.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.3.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、C6、B7、D8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、x(x+4)(x–4).3、x1≥-且x0≠4、10.5、12.6、24三、解答题(本大题共6小题,共72分)1、95 x=2、(1)k≤58;(2)k=﹣1.3、(1)抛物线的解析式为y=﹣13x2+23x+1;(2)点P的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)2(2)略5、()117、20;()22次、2次;()372;()4120人.6、(1)打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)打折后购买这批粽子比不打折节省了3640元.。
人教版数学九年级上册期末考试数学试卷含答案解析
人教版数学九年级上册期末考试试卷一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣12.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0B.x<﹣1或0<x<1C.x≤1或0<x≤1D.﹣1<x<0或x≥17.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为cm.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.参考答案与试题解析一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣1【考点】反比例函数的性质.【分析】如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()【解答】解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.2.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.【考点】概率公式;轴对称图形.【分析】由圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;直接利用概率公式求解即可求得答案.【解答】解:∵圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;∴一次过关的概率是:.故选D.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π【考点】扇形面积的计算.【分析】计算阴影部分圆心角的度数,运用扇形面积公式求解.【解答】解:根据扇形面积公式,阴影部分面积==27π.故选B.【点评】考查了扇形面积公式的运用,扇形的旋转.4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π【考点】圆锥的计算.【专题】压轴题.【分析】圆锥的侧面积为半径为10的半圆的面积.【解答】解:圆锥的侧面积=半圆的面积=π×102÷2=50π,故选C.【点评】解决本题的关键是把圆锥的侧面积转换为规则图形的面积.5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】首先根据mn>0确定反比例函数的图象的位置,然后根据m、n异号确定答案即可.【解答】解:∵mn>0,∴m、n异号,且反比例函数y=的图象位于第一、三象限,∴排除C、D;∵当m>0时则n<0,∴排除A,∵m<0时则n>0,∴B正确,故选B.【点评】本题考查了反比例函数的性质及一次函数的性质,解题的关键是了解两种函数的性质.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0B.x<﹣1或0<x<1C.x≤1或0<x≤1D.﹣1<x<0或x≥1【考点】反比例函数与一次函数的交点问题.【分析】求出≥nx,求出B的坐标,根据A、B的坐标结合图象得出即可.【解答】解:∵﹣nx≥0,∴≥nx,∵反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,∴B点的坐标是(1,3),∴﹣nx≥0的解集是x<﹣1或0<x>1,故选B.【点评】本题考查了一次函数与反比例函数的交点问题,函数的图象的应用,主要考查学生的理解能力和观察图象的能力.7.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm【考点】正多边形和圆.【专题】压轴题.【分析】已知小正方形的面积即可求得边长,在直角△ACE中,利用勾股定理即可求解.【解答】解:如图,圆心为A,设大正方形的边长为2x,圆的半径为R,∵正方形有两个顶点在半圆上,另外两个顶点在圆心两侧,∴AE=BC=x,CE=2x;∵小正方形的面积为16cm2,∴小正方形的边长EF=DF=4,由勾股定理得,R2=AE2+CE2=AF2+DF2,即x2+4x2=(x+4)2+42,解得,x=4,∴R=cm.故选C.【点评】本题利用了勾股定理,正方形的性质求解.8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)【考点】规律型:点的坐标.【专题】压轴题;规律型.【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P1秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2015÷4=503 (3)∴A2015的坐标是(2015,﹣1),故选:B.【点评】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于﹣3.【考点】反比例函数图象上点的坐标特征.【分析】直接把点(﹣1,2)代入双曲线y=,求出k的值即可.【解答】解:∵双曲线y=经过点(﹣1,2),∴2=,解得k=﹣3.故答案为:﹣3.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为10πcm2.【考点】圆锥的计算.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.【点评】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.【考点】概率公式.【分析】设袋中有蓝球m个,根据蓝球概率公式列出关于m的方程,求出m的值即可.【解答】解:设袋中有蓝球m个,则袋中共有球(6+5+m)个,若任意摸出一个绿球的概率是,有=,解得m=9,任意摸出一个蓝球的概率是=0.45.故答案为:0.45【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为3cm.【考点】圆周角定理;垂径定理;解直角三角形.【分析】根据∠CDB=30°,求出∠COB的度数,再利用三角函数求出CE的长.根据垂径定理即可求出CD的长.【解答】解:∵∠CDB=30°,∴∠COB=30°×2=60°.又∵⊙O的半径为cm,∴CE=sin60°=×=,∴CD=×2=3(cm).【点评】此题考查了垂径定理和圆周角定理,利用特殊角的三角函数很容易解答.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是x3<x2<x1.【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】把三个点的坐标代入解析式,分别计算出x1、x2、x3的值,然后比较大小即可.【解答】解:把点P(x1,﹣2)、Q(x2,3)、H(x3,1)代入得x1=,x2=﹣,x3=﹣(a2+1),所以x3<x2<x1.故答案为x3<x2<x1.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为30°或150°.【考点】圆周角定理;等边三角形的判定与性质.【专题】分类讨论.【分析】首先根据题意画出图形,然后在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,易得△AOB是等边三角形,再利用圆周角定理,即可求得答案.【解答】解:如图,首先在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,∵OA=OB=6cm,AB=6cm,∴OA=AB=OB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=30°,∴∠D=180°﹣∠C=150°,∴所对的圆周角的度数为:30°或150°.【点评】此题考查了圆周角定理以及等边三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为+.【考点】扇形面积的计算.【专题】压轴题.【分析】连接OE、AE,根据点C为OC的中点可得∠CEO=30°,继而可得△AEO为等边三角形,求出扇形AOE的面积,最后用扇形AOB的面积减去扇形COD的面积,再减去S空白AEC 即可求出阴影部分的面积.【解答】解:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故答案为:+.【点评】本题考查了扇形的面积计算,解答本题的关键是掌握扇形的面积公式:S=.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)在y=2x+2中令y=0,求得B的坐标,然后求得A的坐标,利用待定系数法求得反比例函数的解析式;(2)根据平行线的性质即可直接求得D的坐标,然后代入反比例函数的解析式判断即可.【解答】解:(1)在y=2x+2中令y=0,则x=﹣1,∴B的坐标是(﹣1,0),∵A在直线y=2x+2上,∴A的坐标是(1,4).∵A(1,4)在反比例函数y=图象上∴k=4.∴反比例函数的解析式为:y=;(2)∵四边形ABCD是平行四边形,∴D的坐标是(2,2),∴D(2,2)在反比例函数y=的图象上.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式,用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【专题】图表型.【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线上y=上的情况数,然后根据概率公式列式计算即可得解.【解答】解:(1)根据题意画出树状图如下:;(2)当x=﹣1时,y==﹣2,当x=1时,y==2,当x=2时,y==1,一共有9种等可能的情况,点(x,y)落在双曲线上y=上的有2种情况,所以,P=.【点评】本题考查了列表法与树状图法,反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)【考点】列表法与树状图法.【专题】计算题.【分析】(1)三个选手机会均等,得到邓紫棋获第一名的概率;(2)假设张杰为第一名,列表得出所有等可能的情况数,找出两人中一个人猜中另一个人却没猜中的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:邓紫棋获第一名的概率为;(2)假设张杰为第一名,列表如下:张韩邓张(张,张)(韩,张)(邓,张)韩(张,韩)(韩,韩)(邓,韩)邓(张,邓)(韩,邓)(邓,邓)所有等可能的情况有9种,两人中一个人猜中另一个人却没猜中的情况有4种,则P=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).【考点】圆周角定理;角平分线的定义;三角形的面积;含30度角的直角三角形;勾股定理;扇形面积的计算.【分析】(1)根据直径所对的圆周角是直角推知∠ACB=90°,然后在直角三角形ABC中利用边角关系、勾股定理来求直径AB的长度;(2)连接OD.利用(1)中求得AB=4可以推知OA=OD=2;然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得阴影部分的面积=S扇形△AOD ﹣S△AOD.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,…(1分)∵∠B=30°,∴AB=2AC,…(3分)∵AB2=AC2+BC2,∴AB2=AB2+62,…(5分)∴AB=4.…(6分)(2)连接OD.∵AB=4,∴OA=OD=2,…(8分)∵CD平分∠ACB,∠ACB=90°,∴∠ACD=45°,∴∠AOD=2∠ACD=90°,…(9分)=OA•OD=•2•2=6,…(10分)∴S△AOD=•π•OD2=•π•(2)2=3π,…(11分)∴S扇形△AOD﹣S△AOD=3π﹣6.…(12分)∴阴影部分的面积=S扇形△AOD【点评】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.解答(2)题时,采用了“数形结合”的数学思想.20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.【考点】反比例函数与一次函数的交点问题;三角形的面积.【专题】计算题.【分析】(1)先将点A(2,3)代入反比例函数和一次函数y=kx+2,求得m、k的值,=18,即可求得x,y的值.(2)可求得点B的坐标,设P(x,y),由S△PBC【解答】解:(1)把A(2,3)代入,∴m=6.∴.(1分)把A(2,3)代入y=kx+2,∴2k+2=3.∴.∴.(2分)(2)令,解得x=﹣4,即B(﹣4,0).∵AC⊥x轴,∴C(2,0).∴BC=6.(3分)设P(x,y),==18,∵S△PBC∴y1=6或y2=﹣6.分别代入中,得x1=1或x2=﹣1.∴P1(1,6)或P2(﹣1,﹣6).(5分)【点评】本题考查了一次函数和反比例函数的交点问题,利用待定系数法求解析式是解此题的关键.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)【考点】扇形面积的计算;全等三角形的判定与性质;圆周角定理;切线的性质;解直角三角形.【专题】几何综合题.【分析】(1)根据切线的性质定理和平行线的性质定理得到OC⊥BD,根据垂径定理得到BE的长,再根据圆周角定理发现∠BOE=60°,从而根据锐角三角函数求得圆的半径;(2)结合(1)中的有关结论证明△DCE≌△BOE,则它们的面积相等,故阴影部分的面积就是扇形OBC的面积.【解答】解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°∵BD∥AC∴∠BEO=∠ACO=90°,∴DE=EB=BD=(cm)∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=∴OB=5,即⊙O的半径长为5cm.(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°又∵∠CED=∠BEO,BE=ED,∴△CDE≌△OBE∴,答:阴影部分的面积为.【点评】本题主要考查切线的性质定理、平行线的性质定理、垂径定理以及全等三角形的判定方法.能够熟练解直角三角形.22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.【考点】切线的判定.【专题】计算题;证明题.【分析】(1)根据切线的判定方法,只需证CD⊥OC.所以连接OC,证∠OCD=90°.(2)易求半径OC的长.在Rt△OCD中,运用三角函数求CD.【解答】(1)证明:连接OC.∵OB=OC,∠B=30°,∴∠OCB=∠B=30°.∴∠COD=∠B+∠OCB=60°.(1分)∵∠BDC=30°,∴∠BDC+∠COD=90°,DC⊥OC.(2分)∵BC是弦,∴点C在⊙O上,∴DC是⊙O的切线,点C是⊙O的切点.(3分)(2)解:∵AB=2,∴OC=OB==1.(4分)∵在Rt△COD中,∠OCD=90°,∠D=30°,∴DC=OC=.(5分)【点评】本题考查了切线的判定,证明经过圆上一点的直线是圆的切线,常作的辅助线是连接圆心和该点,证明直线和该半径垂直.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)将A(3,2)分别代入y=,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;(2)观察图象,得在第一象限内,当0<x<3时,反比例函数的图象在正比例函数的上方;故反比例函数的值大于正比例函数的值;=S△OAC=×|k|=3,可得S矩形OBDC=12,即OC•OB=12,进而可得m、n的值,(3)由S△OMB故可得BM与DM的大小;比较可得其大小关系;(4)先求出A点坐标,再分OA=OP,OA=AP及OP=AP三种情况进行讨论.【解答】解:(1)∵将A(3,2)分别代入y=,y=ax中,得:2=,3a=2,∴k=6,a=,∴反比例函数的表达式为:y=,正比例函数的表达式为y=x.(2)∵,解得,∴C(3,2)观察图象,得在第一象限内,当0<x<3时,反比例函数的值大于正比例函数的值;(3)BM=DM理由:∵MN ∥x 轴,AC ∥y 轴,∴四边形OCDB 是平行四边形,∵x 轴⊥y 轴,∴▱OCDB 是矩形.∵M 和A 都在双曲线y=上,∴BM ×OB=6,OC ×AC=6,∴S △OMB =S △OAC =×|k|=3,又∵S 四边形OADM =6,∴S 矩形OBDC =S 四边形OADM +S △OMB +S △OAC =3+3+6=12,即OC •OB=12,∵OC=3,∴OB=4,即n=4∴m==,∴MB=,MD=3﹣=,∴MB=MD ;(4)如图,∵S △OAC =OC •AC=3,OC=3,∴AC=2,∴A (3,2),∴OA==,∴当OA=OP 时,P 1(,0);当OA=AP 时,∵AC ⊥x 轴,OC=3,∴OC=CP 2=3,∴P 2(6,0);当OP=AP 时,设P 3(x ,0),∵O (0,0),A (3,2),∴x=,解得x=,∴P 3(,0).综上所述,P 点坐标为P 1(,0),P 2(6,0),P 3(,0).【点评】此题考查的是反比例函数综合题及正比例函数等多个知识点,此题难度稍大,综合性比较强,在解答(3)时要注意进行分类讨论,不要漏解.第21页共21页。
新人教版九年级数学上学期期末考试试题 (含答案)(共6套)
九年级数学上学期期末试题★友情提示:① 所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效; ② 试题未要求对结果取近似值的,不得采取近似计算.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答.题卡..的相应位置填涂) 1.在平面直角坐标系中,点M (1,-2)与点N 关于原点对称,则点N 的坐标为 A .(-2, 1) B .(1,-2) C .(2,-1) D .(-1,2) 2.用配方法解一元二次方程0122=-+x x ,可将方程配方为A .()212=+x B .()012=+x C .()212=-x D .()012=-x3.下列事件中,属于随机事件的有① 任意画一个三角形,其内角和为360°; ② 投一枚骰子得到的点数是奇数; ③ 经过有交通信号灯的路口,遇到红灯; ④ 从日历本上任选一天为星期天.A .① ② ③B .② ③ ④C .① ③ ④D .① ② ④ 4.下列抛物线中,顶点坐标为(4,-3)的是A .()342-+=x y B .()342++=x y C .()342--=x y D .()342+-=x y5.有n 支球队参加篮球比赛,共比赛了15场,每两个队之间都只比赛一场,则下列方程中符合题意的是A .()151=-n nB .()151=+n nC .()301=-n nD .()301=+n n6.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是A .袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6C .在“石头、剪刀、布”的游戏中,小宇随机出的是“剪刀”D .掷一枚质地均匀的硬币,落地时结果是“正面向上”7.如果一个正多边形的中心角为60°,那么这个正多边形的边数是 A .4 B .5 C .6 D .78.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xy 1-=的图象上的两点,若x 1<0<x 2,则下列结论正确的是A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<09.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D , 且CO =CD ,则∠PCA =A .30°B .45°C .60°D .67.5°(第6题图)DCB OAP(第9题图)10.如图,在Rt △ABC 和Rt △ABD 中,∠ADB =∠ACB =90°,∠BAC =30°,AB =4,AD =22,连接DC ,将Rt △ABC 绕点B 顺时针旋转一周,则线段DC 长的取值范围是 A .2≤DC ≤4 B .22≤DC ≤4C .222-≤DC ≤22D .222-≤DC ≤222+二、填空题(本大题共6小题,每空4分,共24分.将答案填入答题卡...的相应位置) 11.如图,在平面直角坐标系xOy 中,矩形OABC ,OA =2, OC =1, 写出一个函数()0≠=k xky ,使它的图象与矩形OABC 的边 有两个公共点,这个函数的表达式可以为 . 12.已知关于x 的方程032=++a x x 有一个根为-2,a = .13.圆锥的底面半径为7cm ,母线长为14 cm ,则该圆锥的侧面展开图的圆心角为 °. 14.设O 为△ABC 的内心,若∠A =48°,则∠BOC = °. 15.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF =CD =4 cm ,则球的半径为 cm . 16. 抛物线c bx ax y ++=2(a >0)过点(-1,0)和点(0,-3),且顶点在第四象限,则a 的取值范围是 .C A B Oy x(第11题图)CDAB(第10题图)CEFD(第15题图)三、解答题(本大题共9小题,共86分.在答题卡...的相应位置作答) 17.(每小题4分,共8分)解方程:(1)022=+x x ; (2)01232=-+x x . 18.(8分)已知关于x 的方程 )0(03)3(2≠=+++k x k kx .(1)求证:方程一定有两个实数根;(2)若方程的两个实数根都是整数,k 为正整数,求k 的值.19.(8分)有甲、乙两个不透明的布袋,甲袋中有3个完全相同的小球,分别标有数字0,1和2;乙袋中有3个完全相同的小球,分别标有数字1,2和3,小明从甲袋中随机取出1个小球,记录标有的数字为x ,再从乙袋中随机取出1个小球,记录标有的数字为y ,这样确定了点M 的坐标(x ,y ).(1)写出点M 所有可能的坐标;(2)求点M 在直线3+-=x y 上的概率.20.(8分)如图,直线y =x +2与y 轴交于点A ,与反比例函数()0≠=k xky 的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =2BO ,求反比例函数的解析式.21.(8分)如图,12×12的正方形网格中的每个小正方形的边长都是1,正方形的顶点叫做格点.矩形ABCD 的四个顶点A ,B ,C ,D 都在格点上,将△ADC 绕点A 顺时针方向旋转得到△AD ′C ′,点C 与点C ′为对应点.(1)在正方形网格中确定D ′的位置,并画出△AD ′C ′;(2)若边AB 交边C ′D ′于点E ,求AE 的长.22.(10分)在矩形ABCD 中,AB =8,BC =6,将矩形按图示方式进行分割,其中正方形AEFG 与正方形JKCI 全等,矩形GHID 与矩形EBKL 全等. (1)当矩形LJHF 的面积为43时,求AG 的长; (2)当AG 为何值时,矩形LJHF 的面积最大.(第21题图)L HI K J F EDBC AG (第22题图)23.(10分)如图,点A ,C ,D ,B 在以O 点为圆心,OA 长为半径的圆弧上,AC=CD=DB ,AB 交OC 于点E .求证:AE =CD .24.(12分)如图,在等边△BCD 中,DF ⊥BC 于点F ,点A 为直线DF 上一动点,以B 为旋转中心,把BA 顺时针方向旋转60°至BE ,连接EC .(1)当点A 在线段DF 的延长线上时,① 求证:DA =CE ;② 判断∠DEC 和∠EDC 的数量关系,并说明理由; (2)当∠DEC =45°时,连接AC ,求∠BAC 的度数.25.(14分)如图,在平面直角坐标系xOy 中,二次函数c bx ax y ++=2(0≠a )的图象经过A (0,4),B (2,0),C (-2,0)三点. (1)求二次函数的解析式; (2)在x 轴上有一点D (-4,0),将二次函数 图象沿DA 方向平移,使图象再次经过点B . ① 求平移后图象顶点E 的坐标;② 求图象 A ,B 两点间的曲线部分在平移过程中所扫过的面积.南平市2017-2018学年第一学期九年级期末质量检测数学试题参考答案及评分说明命题教师:蒋剑虹 欧光宇 王颖 曹美兰 说明:(1)解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分150分.(2)对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分. (3)若考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分. (4)评分只给整数分.选择题和填空题不给中间分. 一、选择题(本大题共10小题,每小题4分,共40分)1.D ; 2.A ; 3.B ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B ; 9.D ; 10.D . 二、填空题(本大题共6小题,每小题4分,共24分)11.如:xy 1=(答案不唯一,0<k <2的任何一个数); 12.2; 13.180; 14.114; 15.2.5; 16.0<a <3.三、解答题(本大题共9小题,共86分) 17.(每小题4分,共8分)(第25题图)E DF B CA (第24题图) O ABC DE (第23题图)(1) 解: 0)2(=+x x ……………………………………………………………2分 ∴2,021-==x x .……………………………………………………4分(2)解:1,2,3-===c b a∴ 161-34-22=⨯⨯=∆)(∴64232162±-=⨯±-=x …………………………………………2分∴1,3121-==x x . …………………………………………………4分18.(8分)(1)证明:9634)3(22+-=⋅⋅-+=∆k k k k0)32≥-=k (,……………………………………………………2分∴方程一定有两个实数根. …………………………………………3分(2)解:3,3,=+==c k b k a ,22)3(34)3-=⋅⋅-+=∆∴k k k (,kk k k k k x 2)3(32)3()3(2-±--=-±+-=∴,kx x 3,121-=-=∴ ,………………………………………………6分∵方程的两个实数根都是整数,∴正整数31或=k .…………………………………………………8分19.(8分)解:(1)方法一:列表:从表格中可知,点1,1),(1,2),(1,3),(2,1),(2,2),(2,3).……………………………………………………………3分 方法二:从树形图中可知,点M 坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).……………………………………………………………3分 (2)当x =0时,y=-0+3=3,当x =1时,y=-1+3=2,当x =2时,y=-2+3=1,……………………………………………………6分 由(1)可得点M 坐标总共有九种可能情况,点M 落在直线y =-x +3上(记为事 件A )有3种情况.∴P(A )3193==.…………………………………………8分20.(8分)解: 当x =0时,y =2,∴A (0,2),…………………………………2分∴A O=2,∵AO =2BO ,∴B O=1,………………………………………………4分 当x =1时,y =1+2=3,∴C (1,3), ……………………………………………6分 把C (1,3)代入xky =,解得:3=k xy 3:=∴反比例函数的解析式为…………………………………………………8分 21.(8分)解:(1)准确画出图形;…………………………………………………3分(2)方法一:∵将△ADC 绕点A 顺时针方向旋转得到△AD ′C ′,点C 与点C ′为对应点, ∴△ADC ≌△AD ′C ′,∴AC =AC ′,AD ′=AD =5,CD ′=CD =10,∠AD ′C ′=∠ADC =90°,∠AC ′D ′=∠ACD , ∵AB ∥CD ,∴∠BAC =∠ACD ,∵AB ⊥C C ′,AC =AC ′,∴∠BAC =∠C ′AB ,∴∠AC ′D ′=∠C ′AB ,∴C ′E =AE .…………………………………………………5分 222R E C BE B C BE C t '=+''∆中,在,x AE AB BE x AE -10-,===则设, 222)-105x x =+(,……………………………………………………………………7分425:=x 解得.425的长为答:AE ……………………………8分方法二:以点D 为原点,CD 所在直线为x 轴, AD 所在直线为y 轴,如图2建立平面直角坐标系.∴A (0,5),D ′(-4,2),C ′(-10,10). (4)设直线D ′C ′的解析式为:b kx y +=(k ≠0),∴⎩⎨⎧+-=+-=b k b k 101042,解得:⎪⎩⎪⎨⎧-=-=31034b k , ∴直线D ′C ′的解析式为:31034--=x y , ………………………………6分当y =5时,310345--=x ,解得:425-=x , …………………………7分∴E (425-,5),∴AE =425.………………………………………………8分22.(10分)解:(1) 正方形AEFG 和正方形JKCI 全等,矩形GHID 和矩形EBKL 全等,设AG =x ,DG =6-x ,BE =8-x ,FL=x -(6-x )=2x -6,LJ =8-2x ,(第21题答题图1)方法1: LJ FL S LIHF ⋅=矩形 ,∴43)28)(62(=--x x ………………………………………………………………2分∴415,41321==x x ,∴AG =413或AG =415.………………………………………4分方法2:AEFG DGHI ABCD LIHF S S S S 正方形矩形矩形矩形22--=)6)(8(2248432x x x ----=∴,…………………………………………………2分 ∴415,41321==x x ,∴AG =413或AG =415.………………………………………4分(2)设矩形LJHF 的面积为S ,)28)(62(x x S --=…………………………………………………………………6分482842-+-=x x1)27(42+--=x …………………………………………………………………8分04<-=a , ∴S 有最大值,∴当AG =7 时,矩形LJHF 的面积最大.………………………………………10分2-902ACO ==∠∴︒,…………5分 ACE CAE AEC ACE ∠∠=∠∆︒--180中,在)290(180AOCAOC ∠--∠-=︒︒2-90AOC∠=︒,……………………………………………………………………6分 AEC ACE ∠=∠∴, ………………………………………………………………7分 AE AC =∴, ……………………………………………………………………8分 CD AC = ,CD AE =∴.………………………………………………………10分 方法二:连接OC ,OD ,∵AC=CD=DB ,∴DB CD AC 弧弧弧==,∴BOD COD AOC ∠=∠=∠,……………………………………………………2分 ∴AOC COD DOB COD COB ∠=∠=∠+∠=∠22,∵CAE COB ∠=∠2,∴CAE AOC ∠=∠,………………………………………4分 ∵∠CAO =∠CAE +∠EAO ,∠AEC =∠AOC +∠EAO ,∴∠CAO =∠AEC ,…………………………………………………………………6分 OC OA AOC =∆中,在, ∴∠ACO =∠CAO ,∴∠ACO =∠AEC ,AE AC =∴, ………………………………………………8分 CD AC = ,CD AE =∴…………………………………………………………10分 方法三:连接AD ,OC ,OD , ∵AC=DB ,∴弧AC =弧BD ,∴∠ADC =∠DAB ,…………………………………………………………………2分 ∴CD ∥AB ,∴∠AEC =∠DCO ,…………………………………………………………………4分 ∵AC=CD ,AO=DO , ∴CO ⊥AD ,(第23题答题图)∴∠ACO =∠DCO ,…………………………………………………………………6分 ∴∠ACO =∠AEC ,∴AC =AE ,……………………………………………………8分 ∵AC=CD ,∴AE =CD .……………………………………………………………10分 24.(12分)(1)①证明:∵把BA 顺时针方向旋转60°至BE ,∴=∠=ABE BE BA ,60°, ………………………………1分 在等边△BCD 中,BC DB =∴,︒=∠60DBCFBA FBA DBC DBA ∠+︒=∠+∠=∠∴60, FBA CBE ∠+︒=∠60 ,CBE DBA ∠=∠∴,…………………………………………2分 ∴△BAD ≌△BEC , ∴DA =CE ;…………………………………………………3分②判断:∠DEC +∠EDC =90°.…………………………4分DC DB = ,BC DA ⊥,︒=∠=∠∴3021BDC BDA ,∵△BAD ≌△BEC ,∴∠BCE =∠BDA =30°,……………………………………………………………5分 在等边△BCD 中,∠BCD =60°,∴∠ACE =∠BCE +∠BCD =90°,∴∠DEC +∠EDC =90°.……………………6分 (2)分三种情况考虑:①当点A 在线段DF 的延长线上时(如图1),由(1)可得, 为直角三角形DCE ∆,︒=∠∴90DCE , ︒︒︒=∠-=∠=∠459045DEC EDC DEC 时,当, DEC EDC ∠=∠∴,CE CD =∴,由(1)得DA =CE ,∴CD =DA ,CD BD DBC =∆中,在等边,CD DA BD ==∴ ︒=∠∴60BDC ,BC DA ⊥ ,︒=∠=∠=∠∴3021BDC CDA BDA , ……………………………………………7分DA DB BDA =∆中,在,︒︒=∠=∠∴752-180BDA BAD ,DC DA DAC =∆中,在,︒︒=∠=∠∴752-180ADC DAC ,︒︒︒=+=∠+∠=∠∴1507575DAC BAD BAC . …………………………………8分②当点A 在线段DF 上时(如图2),BE BA B 至顺时针方向旋转为旋转中心,把以︒60 , 60=∠=∴ABE BE BA ,,60=∠=∆DBC BC BD BDC ,中,在等边,ABE DBC ∠=∠∴,ABC ABE ABC DBC ∠∠=∠∠--, EBC DBA ∠=∠即, DBA ∆∴≌CBE ∆,CE DA =∴, …………………………9分 90R =∠∆DFC DFC t 中,在, DF ∴<DC , ∵DA <DF ,DA =CE , ∴CE <DC ,由②可知为直角三角形DCE ∆,∴∠DEC ≠45°. ……………………………10分③当点A 在线段FD 的延长线上时(如图3),同第②种情况可得DBA ∆≌CBE ∆, ECB ADB CE DA ∠=∠=∴,,60=∠=∠∆BCD BDC BDC 中,在等边,BC DA ⊥ ,E DF B CA (第24题答题图1) ED A ED F B C A (第24题答题图2)3021=∠=∠=∠∴BDC CDF BDF ,150180=∠-=∠∴︒BDF ADB , 150=∠=∠∴ADB ECB ,90=∠-∠=∠∴BCD ECB DCE ,︒︒︒=∠-=∠=∠459045DEC EDC DEC 时,当, DEC EDC ∠=∠∴, CE CD =∴,∴AD =CD =BD ,……………………………………………11分 ∵ 150=∠=∠ADC ADB ,152-180=∠=∠∴︒ADB BAD , 152-180=∠=∠︒CDA CAD , 30=∠+∠=∠∴CAD BAD BAC ,.30150 或的度数为综上所述,BAC ∠ …………………12分25.(14分)(1)得)代入()()(把c bx ax y C B A ++=20,2-,0,2,4,0,⎪⎩⎪⎨⎧=+-=++=0240244c b a c b a c ,…………………………2分⎪⎩⎪⎨⎧==-=401:c b a 解得,42+-=∴x y .………………………………4分 (2)① 设直线DA 得解析式为y =kx +d (k ≠0), 把A (0,4),D (-4,0)代入得, ⎩⎨⎧=+-=044d k d ,⎩⎨⎧==41:d k 解得, ∴y =x +4,…………………………………………………………………………6分 设E (m ,m +4),平移后的抛物线的解析式为:4)(2++--=m m x y . 把B (2,0)代入得:04)-2-2=++m m ( 不符合题意,舍去),解得(0521==m m , ∴E (5,9). ……………………………………………………………………8分 ② 如图,连接AB ,过点B 作BL ∥AD 交平移后的抛物线于点G ,连接EG ,∴四边形ABGE 的面积就是图象A ,B 两点间的部分扫过的面积.…………10分 过点G 作GK ⊥x 轴于点K ,过点E 作EI ⊥y 轴于点I ,直线EI ,GK 交于点H . 方法一:由点A (0,4)平移至点E (5,9),可知点B 先向右平移5个单位,再向上平移5个单位至点G . ∵B (2,0),∴点G (7,5),…………………………………………………12分 ∴GK =5,OB =2,OK =7, ∴BK =OK -OB =7-2=5, ∵A (0,4),E (5,9), ∴AI =9-4=5,EI =5, ∴EH =7-5=2,HG =9-5=4,∴GBK EHG AEI AOB IOKH ABGH ∆∆∆∆=S -S -S -S -S S 矩形四边形 3025-8-635521-4221-5521-4221-97==⨯⨯⨯⨯⨯⨯⨯⨯⨯=答:图象A ,B 两点间的部分扫过的面积为30. ……………………………14分(第25题答题图)方法二:b x y BL '+=的解析式为设直线, 02:0,2='+b B )代入得(把点,2-='b ,2-=∴x y ,⎩⎨⎧+--=-=9)5(22x y x y 联立,⎩⎨⎧==02:11y x 解得,⎩⎨⎧==5722y x , ∴点G (7,5), …………………………………………………………………12分 ∴GK =5,OB =2,OK =7, ∴BK =OK -OB =7-2=5, ∵A (0,4),E (5,9), ∴AI =9-4=5,EI =5, ∴EH =7-5=2,HG =9-5=4,∴GBK EHG AEI AOB IOKH ABGH ∆∆∆∆=S -S -S -S -S S 矩形四边形3025-8-635521-4221-5521-4221-97==⨯⨯⨯⨯⨯⨯⨯⨯⨯=答:图象A ,B 两点间的部分扫过的面积为30. ……………………………14分山东省济宁市金乡县2018届九年级数学上学期期末教学质量检测试题说明:请将正确答案按照要求填写在答题卡上. 一、选择题(每小题3分,共30分)1.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )2.在Rt △ABC 中,∠C=90,sinA=,BC=6,则AB=( ) A.4 B.6 C.8 D.103.已知关于x 的一元二次方程 有两个不相等的实数根,则实数k 的取值范围是( ) A.k1 B.k1 C.k-1 D.k-14.已知点A(2,y1)、B(4,y2)都在反比例函数 的图象上,则y1、y2的大小关系为( )A. y1<y2B. y1>y2C. y1=y2D. 无法确定5.如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是( ) A.10B.20C.10D.206.如图,小明要测量河内小鸟B到河边公路l的距离,在A点测得∠BAD=30,在C点测得∠BCD=60,又测得AC=50米,则小岛B到公路l的距离为()米A.25B.25C.D.25+257.小明想测一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米,已知斜坡的坡角为30,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.(6+米B.12米C. (4+米D.10米8.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C 为弧ABO上的一点(不与O、A两点重合),则cosC的值是()A. B. C. D.9.二次函数的图象如图,并且关于x的一元二次方程有两个不相等的实数根,下列结论:;;;,其中,正确的个数有()A.B.C.D.10.在四边形ABCD中,∠B=90,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()二、填空(每小题3分,共15分)11.sin60的值等于 .12.将抛物线向左平移3个单位,再向下平移4个单位,那么得到的抛物丝的表达式为 .13.如图,在平面直角坐标系xOy中,ABC由ABC绕点P旋转得到的,则点P的坐标为 .14.如图,RtABC中,∠ACB=90,AC=2,以点C为圆心,CB的长为半径画弧,与边AB交于点D,将BD绕点D旋转180后点B与点A恰好重合,则图中阴影部分的面积为 .15.如图,在反比例函数的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数的图象上运动,若tan∠CAB=2,则k的值为 .三、解答题(共55分,请将解答过程写在答题卡上)16.(6分)解一元二次方程:17.(6分)如图所示,在四张背面完全相同的纸牌的正面分别画有四个不同的几何图形.将这四张纸牌背面朝上洗匀后摸出一张,不放回,再摸出一张.(1)用树状图(或列表法)表示两次膜牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求膜出的两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.18.(7分)如图,一次函数和反比例函数的图象交于点A(-1,6),B(a,-2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y1>y2时,x的取值范围.19.(8分)如图,小东在教学楼的窗口C处,测得正前方旗杆顶部A点的仰角为37,旗杆底部B的俯角为45,旗杆AB=14米.(1)求教学楼到旗杆的距离;(2)求AC的长度;(参考数据:sin37≈0.60,cos37≈0.80,tan37≈0.75)20.(8分)如图,已知RtABC,∠C=90,D为BC的中点,以AC为直径的⊙O交AB于点E. (1)求证:ED是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.21.(9分)某超市在“元宵节”来临前夕,购进一种品牌元宵,每盒进价是20元,超市规定每盒售价不得少于25元.根据以往销售经验发现:当售价定为每盒25元时,每天可卖出250盒,每盒售价每提高1元,每天要少卖出10盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,第天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种元宵的每盒售价不得高于38元.如果超市想要每天获得不低于2000元的利润,那么超市每天至少销售元宵多少盒?22.(11分)如图:抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且以A、O、D、E为顶点的四边形是平行四边形,求D点的坐标;(3)P是抛物线上第一象限内的动点,过P作PM⊥x轴垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出P点的坐标;若不存在,说明理由.九年级数学上学期期末考试试题注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,全卷共8页,满分120分,考试时间120分钟。
人教版数学九年级上册期末测试卷3套含答案
人教版九年级上册期末试卷(1)一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.(3分)下列方程中,关于x的一元二次方程是( )A.3(x+1)2=2(x+1)B.ﻩC.ax2+bx+c=0D.x2+2x=x2﹣12.(3分)如图,在矩形ABCD中,AB=3,BC=4,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为()A.ﻩB.2 C.D.33.(3分)在一个四边形ABCD中,依次连接各边的中点得到的四边形是菱形,则对角线AC与BD需要满足条件是()A.垂直B.相等ﻩC.垂直且相等ﻩD.不再需要条件4.(3分)已知点A(﹣2,y1)、B(﹣1,y2)、C(3,y3)都在反比例函数y=的图象上,则()A.y1<y2<y3ﻩB.y3<y2<y1ﻩC.y3<y1<y2ﻩD.y2<y1<y35.(3分)学生冬季运动装原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是()A.9%B.8.5%ﻩC.9.5%ﻩD.10%6.(3分)甲、乙两地相距60km,则汽车由甲地行驶到乙地所用时间y(小时)与行驶速度x(千米/时)之间的函数图象大致是()A.ﻩB.ﻩC.ﻩD.7.(3分)二次三项式x2﹣4x+3配方的结果是()A.(x﹣2)2+7B.(x﹣2)2﹣1C.(x+2)2+7 D.(x+2)2﹣18.(3分)函数y=的图象经过(1,﹣1),则函数y=kx﹣2的图象是()A.B.C.ﻩD.9.(3分)如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别是AM,MR的中点,则EF的长随着M点的运动()A.变短ﻩB.变长 C.不变D.无法确定10.(3分)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A.ﻩB.5C.ﻩD.二、你能填得又快又准吗?(共8小题,每题4分,共32分)11.(4分)反比例函数的图象在一、三象限,则k应满足.12.(4分)把一个三角形改做成和它相似的三角形,如果面积缩小到原来的倍,那么边长应缩小到原来的倍.13.(4分)已知一元二次方程(a﹣1)x2+7ax+a2+3a﹣4=0有一个根为零,则a的值为.14.(4分)已知==,则= .15.(4分)如图,双曲线上有一点A,过点A作AB⊥x轴于点B,△AOB 的面积为2,则该双曲线的表达式为 .16.(4分)如图,在Rt △ABC中,∠ACB =90°,CD ⊥AB 于D ,若AD=1,BD=4,则CD = .17.(4分)如图,在梯形A BCD 中,AD ∥B C,A C,BD 交于点O ,S△A OD :S △CO B=1:9,则S△D OC:S△BO C= .18.(4分)如图,在△A BC 中,点D、E 分别在AB 、AC 上,DE ∥B C.若AD =4,DB=2,则的值为 .三、解答题:(共9道题,总分88分)19.(8分)解方程(1)2x 2﹣2x ﹣5=0;(2)(y+2)2=(3y ﹣1)2.20.(8分)已知,如图,AB 和DE 是直立在地面上的两根立柱,AB =5m ,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.21.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.22.(10分)已知甲同学手中藏有三张分别标有数字,,1的卡片,乙同学手中藏有三张分别标有1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.23.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.24.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式的解集(请直接写出答案).25.(10分)某商场礼品柜台元旦期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?、P2是反比例函数(k>0)在第一象限图象上的两点,26.(10分)如图,P1点A1的坐标为(2,0),若△P1OA1与△P2A1A2均为等边三角形.(1)求此反比例函数的解析式;(2)求A2点的坐标.27.(12分)如图,在△ABC中,AB=5,BC=3,AC=4,动点E(与点A,C不重合)在AC边上,EF∥AB交BC于F点.(1)当△ECF的面积与四边形EABF的面积相等时,求CE的长;(2)当△ECF的周长与四边形EABF的周长相等时,求CE的长;(3)试问在AB上是否存在点P,使得△EFP为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.参考答案与试题解析一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.(3分)下列方程中,关于x的一元二次方程是()A.3(x+1)2=2(x+1)B.ﻩC.ax2+bx+c=0 D.x2+2x=x2﹣1【考点】一元二次方程的定义.【分析】一元二次方程有四个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.(4)二次项系数不为0.【解答】解:A、3(x+1)2=2(x+1)化简得3x2+4x﹣4=0,是一元二次方程,故正确;B、方程不是整式方程,故错误;C、若a=0,则就不是一元二次方程,故错误;D、是一元一次方程,故错误.故选:A.【点评】判断一个方程是不是一元二次方程:首先要看是不是整式方程;然后看化简后是不是只含有一个未知数且未知数的最高次数是2.这是一个需要识记的内容.2.(3分)如图,在矩形ABCD中,AB=3,BC=4,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )A.ﻩB.2ﻩC. D.3【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【专题】几何图形问题.【分析】由于AE是折痕,可得到AB=AF,BE=EF,设出未知数,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.【解答】解:设BE=x,∵AE为折痕,∴AB=AF,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,AC===5,∴Rt△EFC中,FC=5﹣3=2,EC=4﹣X,∴(4﹣x)2=x2+22,解得x=.故选A.【点评】本题考查了折叠问题、勾股定理和矩形的性质;解题中,找准相等的量是正确解答题目的关键.3.(3分)在一个四边形ABCD中,依次连接各边的中点得到的四边形是菱形,则对角线AC与BD需要满足条件是( )A.垂直B.相等ﻩC.垂直且相等D.不再需要条件【考点】中点四边形.【分析】因为菱形的四边相等,再根据三角形的中位线定理可得,对角线AC与BD需要满足条件是相等.【解答】解:∵四边形EFGH是菱形,∴EH=FG=EF=HG=BD=AC,故AC=BD.故选B.【点评】本题很简单,考查的是三角形中位线的性质及菱形的性质.解题的关键在于牢记有关的判定定理,难度不大.4.(3分)已知点A(﹣2,y1)、B(﹣1,y2)、C(3,y3)都在反比例函数y=的图象上,则( )A.y1<y2<y3B.y3<y2<y1ﻩC.y3<y1<y2ﻩD.y2<y1<y3【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特点解答即可.【解答】解:∵k>0,函数图象在一,三象限,由题意可知,点A、B在第三象限,点C在第一象限,∵第三象限内点的纵坐标总小于第一象限内点的纵坐标,∴y3最大,∵在第三象限内,y随x的增大而减小,∴y2<y1.故选:D.【点评】在反比函数中,已知各点的横坐标,比较纵坐标的大小,首先应区分各点是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.5.(3分)学生冬季运动装原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是()A.9% B.8.5%C.9.5%ﻩD.10%【考点】一元二次方程的应用.【专题】增长率问题.【分析】设平均每次降价的百分数是x,则第一次降价后的价格是100(1﹣x),第二次降价后的价格是100(1﹣x)(1﹣x),根据“现在的售价是81元”作为相等关系列方程求解.【解答】解:设平均每次降价的百分数是x,依题意得100(1﹣x)2=81,解方程得x1=0.1,x2=1.9(舍去)所以平均每次降价的百分数是10%.故选D.【点评】本题运用增长率(下降率)的模型解题.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”)6.(3分)甲、乙两地相距60km,则汽车由甲地行驶到乙地所用时间y(小时)与行驶速度x(千米/时)之间的函数图象大致是()A.ﻩB.ﻩC.D.【考点】反比例函数的应用.【分析】根据实际意义,写出函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【解答】解:根据题意可知时间y(小时)与行驶速度x(千米/时)之间的函数关系式为:y=(x>0),所以函数图象大致是B.故选B.【点评】主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式从而判断它的图象类型,要注意自变量x的取值范围,结合自变量的实际范围作图.7.(3分)二次三项式x2﹣4x+3配方的结果是()A.(x﹣2)2+7ﻩB.(x﹣2)2﹣1C.(x+2)2+7ﻩD.(x+2)2﹣1【考点】配方法的应用.【分析】在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数﹣4的一半的平方;可将常数项3拆分为4和﹣1,然后再按完全平方公式进行计算.【解答】解:x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1.故选B.【点评】在对二次三项式进行配方时,一般要将二次项系数化为1,然后将常数项进行拆分,使得其中一个常数是一次项系数的一半的平方.8.(3分)函数y=的图象经过(1,﹣1),则函数y=kx﹣2的图象是()A.ﻩB.ﻩC.ﻩD.【考点】一次函数的图象;反比例函数图象上点的坐标特征.【专题】待定系数法.【分析】先根据函数y=的图象经过(1,﹣1)求出k的值,然后求出函数y=kx ﹣2的解析式,再根据一次函数图象与坐标轴的交点坐标解答.【解答】解:∵图象经过(1,﹣1),∴k=xy=﹣1,∴函数解析式为y=﹣x﹣2,所以函数图象经过(﹣2,0)和(0,﹣2).故选A.【点评】主要考查一次函数y=kx+b的图象.当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.9.(3分)如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别是A M,MR的中点,则EF的长随着M点的运动()A.变短ﻩB.变长C.不变ﻩD.无法确定【考点】三角形中位线定理;矩形的性质.【专题】压轴题;动点型.【分析】易得EF为三角形AMR的中位线,那么EF长恒等于定值AR的一半.【解答】解:∵E,F分别是AM,MR的中点,∴EF=AR,∴无论M运动到哪个位置EF的长不变,故选C.【点评】本题考查三角形中位线等于第三边的一半的性质.10.(3分)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )A.B.5ﻩC.ﻩD.【考点】反比例函数综合题.【专题】综合题;压轴题;数形结合.【分析】根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC,设OC=a,AC=b,根据勾股定理和函数解析式即可得到关于a、b的方程组,解之即可求出△ABC的周长.【解答】解:∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=OC+AC,设OC=a,AC=b,则:,解得a+b=2,即△ABC的周长=OC+AC=2.故选:A.【点评】本题考查反比例函数图象性质和线段中垂线性质,以及勾股定理的综合应用,关键是一个转换思想,即把求△ABC的周长转换成求OC+AC即可解决问题.二、你能填得又快又准吗?(共8小题,每题4分,共32分)11.(4分)反比例函数的图象在一、三象限,则k应满足k>﹣2 .【考点】反比例函数的性质.【分析】由于反比例函数的图象在一、三象限内,则k+2>0,解得k的取值范围即可.【解答】解:由题意得,反比例函数的图象在二、四象限内,则k+2>0,解得k>﹣2.故答案为k>﹣2.【点评】本题考查了反比例函数的性质,重点是注意y=(k≠0)中k的取值,①当k>0时,反比例函数的图象位于一、三象限;②当k<0时,反比例函数的图象位于二、四象限.12.(4分)把一个三角形改做成和它相似的三角形,如果面积缩小到原来的倍,那么边长应缩小到原来的倍.【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵改做的三角形与原三角形相似,且面积缩小到原来的倍,∴边长应缩小到原来的倍.故答案为:.【点评】本题考查了相似三角形面积的比等于相似比的平方的性质,熟记性质是解题的关键.13.(4分)已知一元二次方程(a﹣1)x2+7ax+a2+3a﹣4=0有一个根为零,则a 的值为﹣4.【考点】一元二次方程的解;一元二次方程的定义.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;将x=0代入原方程即可求得a的值.【解答】解:把x=0代入一元二次方程(a﹣1)x2+7ax+a2+3a﹣4=0,可得a2+3a﹣4=0,解得a=﹣4或a=1,∵二次项系数a﹣1≠0,∴a≠1,∴a=﹣4.故答案为:﹣4.【点评】本题逆用一元二次方程解的定义易得出a的值,但不能忽视一元二次方程成立的条件a﹣1≠0,因此在解题时要重视解题思路的逆向分析.14.(4分)已知==,则=.【考点】比例的性质.【分析】根据已知比例关系,用未知量k分别表示出a、b和c的值,代入原式中,化简即可得到结果.【解答】解:设===k,∴a=5k,b=3k,c=4k,∴===,故答案为:.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.15.(4分)如图,双曲线上有一点A,过点A作AB⊥x轴于点B,△AOB的面积为2,则该双曲线的表达式为y=﹣.【考点】反比例函数系数k的几何意义.【专题】压轴题;数形结合.=2求出【分析】先根据反比例函数图象所在的象限判断出k的符号,再根据S△AOBk的值即可.【解答】解:∵反比例函数的图象在二、四象限,∴k<0,=2,∴|k|=4,∴k=﹣4,即可得双曲线的表达式为:y=﹣,∵S△AOB故答案为:y=﹣.【点评】本题考查的是反比例系数k的几何意义,即在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.16.(4分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD= 2.【考点】相似三角形的判定与性质.【分析】首先证△ACD∽△CBD,然后根据相似三角形的对应边成比例求出CD 的长.【解答】解:Rt△ACB中,∠ACB=90°,CD⊥AB;∴∠ACD=∠B=90°﹣∠A;又∵∠ADC=∠CDB=90°,∴△ACD∽△CBD;∴CD2=AD•BD=4,即CD=2.【点评】此题主要考查的是相似三角形的判定和性质.17.(4分)如图,在梯形ABCD中,AD∥BC,AC,BD交于点O,S△AOD:S△COB=1:9,则S△DOC :S△BOC=1:3.【考点】相似三角形的判定与性质;梯形.【专题】压轴题.【分析】根据在梯形ABCD中,AD∥BC,AC,易得△AOD∽△COB,且S△AOD:S△COB=1:9,可求=,则S△AOD:S△DOC=1:3,所以S△DOC:S△BOC=1:3.【解答】解:根据题意,AD∥BC∴△AOD∽△COB∵S△AOD:S△COB=1:9∴=则S△AOD:S△DOC=1:3所以S△DOC :S△BOC=3:9=1:3.【点评】本题主要考查了相似三角形的性质,相似三角形面积的比等于相似比的平方.18.(4分)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=4,DB=2,则的值为.【考点】相似三角形的判定与性质.【分析】由AD=3,DB=2,即可求得AB的长,又由DE∥BC,根据平行线分线段成比例定理,可得DE:BC=AD:AB,则可求得答案.【解答】解:∵AD=4,DB=2,∴AB=AD+BD=4+2=6,∵DE∥BC,△ADE∽△ABC,∴=,故答案为:.【点评】此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.三、解答题:(共9道题,总分88分)19.(8分)解方程(1)2x2﹣2x﹣5=0;(2)(y+2)2=(3y﹣1)2.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)利用求根公式计算即可;(2)利用因式分解可得到(4y+1)(3﹣2y)=0,可求得方程的解.【解答】解:(1)∵a=2,b=﹣2,c=﹣5,∴△=(﹣2)2﹣4×2×(﹣5)=48>0,∴方程有两个不相等的实数根,∴x==,即x1=,x2=,(2)移项得(y+2)2﹣(3y﹣1)2=0,分解因式得(4y+1)(3﹣2y)=0,解得y1=﹣,y2=.【点评】本题主要考查一元二次方程的解法,掌握一元二次方程的求根公式是解题的关键.20.(8分)已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.【考点】平行投影;相似三角形的性质;相似三角形的判定.【专题】计算题;作图题.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE 的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.21.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.【解答】解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴ﻩAFBD是矩形.【点评】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.22.(10分)已知甲同学手中藏有三张分别标有数字,,1的卡片,乙同学手中藏有三张分别标有1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.【考点】游戏公平性;根的判别式;列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果;(2)利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平.【解答】解:(1)画树状图得:∵(a,b)的可能结果有(,1)、(,3)、(,2)、(,1)、(,3)、(,2)、(1,1)、(1,3)及(1,2),∴(a,b)取值结果共有9种;(2)∵当a=,b=1时,△=b2﹣4ac=﹣1<0,此时ax2+bx+1=0无实数根,当a=,b=3时,△=b2﹣4ac=7>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4ac=2>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=1时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,当a=,b=3时,△=b2﹣4ac=8>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4ac=3>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=1时,△=b2﹣4ac=﹣3<0,此时ax2+bx+1=0无实数根,当a=1,b=3时,△=b2﹣4ac=5>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=2时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,∴P(甲获胜)=P(△>0)=>P(乙获胜)=,∴这样的游戏规则对甲有利,不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD 及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【考点】平行四边形的判定;等边三角形的性质.【分析】(1)首先由Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又由△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后证得△AFE≌△BCA,继而证得结论;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【解答】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.【点评】此题考查了平行四边形的判定、等边三角形的性质以及全等三角形的判定与性质.注意证得Rt△AFE≌Rt△BCA是关键.24.(10分)如图,已知A (﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式的解集(请直接写出答案).【考点】反比例函数与一次函数的交点问题.【专题】计算题;压轴题;待定系数法.【分析】(1)把A(﹣4,n),B(2,﹣4)分别代入一次函数y=kx+b和反比例函数y=,运用待定系数法分别求其解析式;(2)把三角形AOB的面积看成是三角形AOC和三角形OCB的面积之和进行计算;(3)由图象观察函数y=的图象在一次函数y=kx+b图象的上方,对应的x的范围.【解答】解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx +b 经过A (﹣4,2),B (2,﹣4),∴.解之得.∴一次函数的解析式为y=﹣x ﹣2.(2)∵C 是直线AB 与x 轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB =S△ACO +S △BCO =×2×2+×2×4=6.(3)不等式的解集为:﹣4<x <0或x >2. 【点评】本题考查了用待定系数法确定反比例函数的比例系数k,求出函数解析式;要能够熟练借助直线和y 轴的交点运用分割法求得不规则图形的面积.同时间接考查函数的增减性,从而来解不等式.25.(10分)某商场礼品柜台元旦期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?【考点】一元二次方程的应用.【专题】经济问题;压轴题.【分析】等量关系为:(原来每张贺年卡盈利﹣降价的价格)×(原来售出的张数+增加的张数)=120,把相关数值代入求得正数解即可.【解答】解:设每张贺年卡应降价x 元,现在的利润是(0.3﹣x)元,则商城多售出100x ÷0.1=1000x 张.(0.3﹣x)(500+1000x)=120,解得x1=﹣0.3(降价不能为负数,不合题意,舍去),x2=0.1.答:每张贺年卡应降价0.1元.【点评】考查一元二次方程的应用;得到每降价x元多卖出的贺年卡张数是解决本题的难点;根据利润得到相应的等量关系是解决本题的关键.26.(10分)如图,P1、P2是反比例函数(k>0)在第一象限图象上的两点,点A1的坐标为(2,0),若△P1OA1与△P2A1A2均为等边三角形.(1)求此反比例函数的解析式;(2)求A2点的坐标.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;等边三角形的性质.【分析】(1)首先作P1B⊥OA1于点B,由等边△P1OA1中,OA1=2,可得OB=1,P1B=,继而求得点P1的坐标,然后利用待定系数法即可求得此反比例函数的解析式;(2)首先作P2C⊥A1A2于点C,由等边△P2A1A2,设A1C=a,可得P2C=,OC=2+a,然后把P2点坐标(2+a,)代入,继而求得a的值,则可求得A2点的坐标.【解答】解:(1)作P1B⊥OA1于点B,∵等边△P1OA1中,OA1=2,∴OB=1,P1B=,把P1点坐标(1,)代入,解得:,∴;(2)作P2C⊥A1A2于点C,∵等边△PA1A2,设A1C=a,2则P2C=,OC=2+a,把P2点坐标(2+a,)代入,即:,解得,(舍去),∴OA2=2+2a=,∴A2(,0).【点评】此题考查了待定系数法求反比例函数的解析式以及等边三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.27.(12分)如图,在△ABC中,AB=5,BC=3,AC=4,动点E(与点A,C不重合)在AC边上,EF∥AB交BC于F点.(1)当△ECF的面积与四边形EABF的面积相等时,求CE的长;(2)当△ECF的周长与四边形EABF的周长相等时,求CE的长;(3)试问在AB上是否存在点P,使得△EFP为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.【考点】相似三角形的判定与性质.【专题】压轴题.【分析】(1)因为EF∥AB,所以容易想到用相似三角形的面积比等于相似比的平方解题;(2)根据周长相等,建立等量关系,列方程解答;(3)先画出图形,根据图形猜想P点可能的位置,再找到相似三角形,依据相似三角形的性质解答.【解答】解:(1)∵△ECF的面积与四边形EABF的面积相等∴S△ECF :S△ACB=1:2又∵EF∥AB∴△ECF∽△ACB==∵AC=4,∴CE=;(2)设CE的长为x∵△ECF∽△ACB∴=∴CF=由△ECF的周长与四边形EABF的周长相等,得x+EF+x=(4﹣x)+5+(3﹣x)+EF 解得∴CE的长为;(3)△EFP为等腰直角三角形,有两种情况:①如图1,假设∠PEF=90°,EP=EF由AB=5,BC=3,AC=4,得∠C=90°∴Rt△ACB斜边AB上高CD=设EP=EF=x,由△ECF∽△ACB,得:=即=解得x=,即EF=当∠EFP´=90°,EF=FP′时,同理可得EF=;②如图2,假设∠EPF=90°,PE=PF时,点P到EF的距离为EF设EF=x,由△ECF∽△ACB,得:=,即=解得x=,即EF=综上所述,在AB上存在点P,使△EFP为等腰直角三角形,此时EF=或EF=.【点评】此题考查了相似三角形的性质,有一定的开放性,难点在于作出辅助线就具体情况进行分类讨论.期末试卷(2)一、选择题(每小题3分,共42分)1.(3分)计算a7•()2的结果是()A.aB.a5 C.a6ﻩD.a82.(3分)要使分式有意义,则x的取值范围是()A.x≠1ﻩB.x>1C.x<1D.x≠﹣13.(3分)下列手机屏幕解锁图案中不是轴对称图形的是()A.ﻩB.ﻩC.ﻩD.4.(3分)根据下列已知条件,能唯一画出△ABC的是()A.AB=2,BC=4,AC=7B.AB=5,BC=3,∠A=30°C.∠A=60°,∠B=45°,AC=4 D.∠C=90°,AB=65.(3分)下列各式:,,,,(x﹣y)中,是分式的共有()A.1个ﻩB.2个ﻩC.3个ﻩD.4个6.(3分)若(x+3)(x﹣4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12B.p=﹣1,q=﹣12C.p=7,q=12D.p=7,q=﹣127.(3分)下列能判定△ABC为等腰三角形的是()A.AB=AC=3,BC=6B.∠A=40°、∠B=70°C.AB=3、BC=8,周长为16ﻩD.∠A=40°、∠B=50°8.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.六边形ﻩB.八边形ﻩC.九边形D.十边形9.(3分)如图,四边形ABCD中,BC∥AD,AB=CD,BE=DF,图中全等三角形的对数是()A.5 B.6C.3ﻩD.410.(3分)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠2=65°,则∠1的度数为()A.65°B.25°C.35°D.45°11.(3分)已知y2+10y+m是完全平方式,则m的值是()A.25ﻩB.±25 C.5ﻩD.±512.(3分)如图,若∠A=27°,∠B=50°,∠C=38°,则∠BFE等于()A.65°B.115°C.105°D.75°13.(3分)若分式方程无解,则m的值为()A.﹣2B.0ﻩC.1 D.214.(3分)若m=2100,n=375,则m,n的大小关系为()A.m>nﻩB.m<nﻩC.m=nﻩD.无法确定二、填空题(本大题满16分,每小题4分)15.(4分)计算:=.16.(4分)一个矩形的面积为(6ab2+4a2b)cm2,一边长为2abcm,则它的周长为cm.17.(4分)等腰三角形一个顶角和一个底角之和是100°,则顶角等于.18.(4分)下列图形中对称轴最多的是.。
人教版九年级上册数学期末考试试题含答案
人教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列手机手势解锁图案中,是中心对称图形的是()A .B .C .D .2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是随机事件D .事件①和②都是必然事件3.下列方程中,是一元二次方程的是()A .x +1x=0B .ax 2+bx +c =0C .x 2+1=0D .x ﹣y ﹣1=04.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.抛物线y=(x+2)2-3的对称轴是()A .直线x =2B .直线x=-2C .直线x=-3D .直线x=36.关于反比例函数y =﹣4x的图象,下列说法正确的是()A .经过点(﹣1,﹣4)B .图象是轴对称图形,但不是中心对称图形C .无论x 取何值时,y 随x 的增大而增大D .点(12,﹣8)在该函数的图象上7.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为()A .20°B .25°C .40°D .50°8.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则实数k 的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k≥﹣19.如图,直线y=2x与双曲线2yx在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为()A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)10.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2;④4a+2b+c<0,其中说法正确的()A.①②B.①②③C.①②④D.②③④二、填空题11.点P(4,﹣6)关于原点对称的点的坐标是_____.12.抛物线y=﹣2x2+3x﹣7与y轴的交点坐标为_____.13.已知正六边形的边长为10,那么它的外接圆的半径为_____.14.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.15.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=6x(x>0)和y=﹣8x(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.16.如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则BB'的长为_____.三、解答题17.解方程:x2﹣4x﹣12=0.18.网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.19.在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有1名男生和1名女生获得音乐奖.(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.20.如图,破残的圆形轮片上,弦AB的垂直平分线交 AB于点C,交弦AB于点D.已知CD=c m.12AB=cm,4(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.21.如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CFA度数;(2)求证:AD∥BC.22.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.23.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:DE平分∠BEP;(3)若⊙O的半径为10,CF=2EF,求BE的长.24.如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.25.已知抛物线y=1x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.2(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.参考答案1.B【分析】根据中心对称图形的概念判断即可.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故选B.【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.C【解析】【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【详解】A.该方程不是整式方程,故本选项不符合题意.B.当a=0时,该方程不是关于x的一元二次方程,故本选项不符合题意.C.该方程符合一元二次方程的定义,故本选项不符合题意.D.该方程中含有两个未知数,属于二元一次方程,故本选项不符合题意.故选:C.【点睛】本题考查了一元二次方程的性质和判定,掌握一元二次方程必须满足的条件是解题的关键.4.B【分析】常数项移到方程左边,两边都加上一次项系数一半的平方,最后再把左边写成完全平方式,右边化简即可.【详解】解:∵x2-2x-5=0∴x 2-2x=5∴x 2-2x+1=5+1∴()216x -=.故答案为:B .【点睛】本题考查用配方法解一元二次方程.其关键是化二次项系数为1,算准一项系数一半的平方及用准完全平方公式.当一项系数为负时,用完全平方差公式;当一项系数为正时,用完全平方和公式5.B 【详解】试题解析:在抛物线顶点式方程2()y a x h k =-+中,抛物线的对称轴方程为x =h ,2(2)3y x =+- ,∴抛物线的对称轴是直线x =-2,故选B.6.D 【分析】反比例函数()0ky k x=≠的图象k 0>时位于第一、三象限,在每个象限内,y 随x 的增大而减小;0k <时位于第二、四象限,在每个象限内,y 随x 的增大而增大;在不同象限内,y 随x 的增大而增大,根据这个性质选择则可.【详解】∵当12x =时,4842y =-=-∴点(12,﹣8)在该函数的图象上正确,故A 、B 、C 错误,不符合题意.故选:D .【点睛】本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.7.B 【分析】连接OA ,由切线的性质可得∠OAP=90°,继而根据直角三角形两锐角互余可得∠AOP=50°,再根据圆周角定理即可求得答案.【详解】连接OA ,如图:∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=12∠AOB=25°,故选B.【点睛】本题考查了切线的性质,圆周角定理,正确添加辅助线,熟练掌握切线的性质定理是解题的关键.8.D 【分析】根据根的判别式(240b ac =-≥△)即可求出答案.【详解】当原方程为一元一次方程时,k=0,此时方程y=-2x-1有实数解当原方程为一元二次方程时,由题意可知:440k +≥△=时,方程有实数解∴1k ≥-故选:D .【点睛】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k 的取值范围.9.D 【解析】试题分析:联立直线与反比例解析式得:y 2x{2y x==,消去y 得到:x 2=1,解得:x=1或﹣1.∴y=2或﹣2.∴A (1,2),即AB=2,OB=1,根据题意画出相应的图形,如图所示,分顺时针和逆时针旋转两种情况:根据旋转的性质,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1).故选D .10.B 【分析】根据题意和函数图象,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图象可得,0a >,0b >,0c <,则0abc <,故①正确;∵该函数的对称轴是1x =-,∴12ba-=-,得20a b -=,故②正确;∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y =,故③正确;∵该函数的对称轴是1x =-,过点(﹣3,0),∴2x =和4x =-时的函数值相等,都大于0,∴420a b c ++>,故④错误;故正确是①②③,故选:B .【点睛】本题考查了二次函数的性质,掌握二次函数的图像和性质是解题的关键.11.(﹣4,6)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】点P (4,﹣6)关于原点对称的点的坐标是(﹣4,6),故答案为:(﹣4,6).【点睛】本题考查了一点关于原点对称的问题,横纵坐标取相反数就是对称点的坐标.12.(0,﹣7)【分析】根据题意得出0x =,然后求出y 的值,即可以得到与y 轴的交点坐标.【详解】令0x =,得7y =-,故与y 轴的交点坐标是:(0,﹣7).故答案为:(0,﹣7).【点睛】本题考查了抛物线与y 轴的交点坐标问题,掌握与y 轴的交点坐标的特点(0x =)是解题的关键.13.10【分析】利用正六边形的概念以及正六边形外接圆的性质进而计算.【详解】边长为10的正六边形可以分成六个边长为10的正三角形,∴外接圆半径是10,故答案为:10.【点睛】本题考查了正六边形的概念以及正六边形外接圆的性质,掌握正六边形的外接圆的半径等于其边长是解题的关键.14.5【分析】设共有x 个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:()1102x x -=⨯,把相关数值代入求正数解即可.【详解】设共有x 个飞机场.()1102x x -=⨯,解得15=x ,24x =-(不合题意,舍去),故答案为:5.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.15.7【分析】根据反比例函数比例系数k 的几何意义得到S △OQM =4,S △OPM =3,然后利用S △POQ =S △OQM +S △OPM 进行计算.【详解】解:如图,∵直线l ∥x 轴,∴S △OQM =12×|﹣8|=4,S △OPM =12×|6|=3,∴S △POQ =S △OQM +S △OPM =7.故答案为7.考点:反比例函数系数k 的几何意义.16.π【分析】根据图示知45BAB ∠'=︒,所以根据弧长公式180n r l π=求得 'BB 的长.【详解】根据图示知,45BAB ∠'=︒,∴ 'BB 的长为:454180ππ⨯=.故答案为:π.【点睛】本题考查了弧长的计算公式,掌握弧长的计算方法是解题的关键.17.x 1=6,x 2=﹣2.【解析】试题分析:用因式分解法解方程即可.试题解析:()()620x x -+=,60x =﹣或20x +=,所以1262x x ==-,.18.2017年至2019年“双十一”交易额的年平均增长率为20%.【分析】设2017年至2019年“双十一”交易额的年平均增长率为x ,根据该平台2017年及2019年的交易额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设2017年至2019年“双十一”交易额的年平均增长率为x ,根据题意得:()25001720x -=,解得:10.2==20%x ,2 2.2x =-(舍去).答:2017年至2019年“双十一”交易额的年平均增长率为20%.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.19.(1)25;(2)12【分析】(1)直接根据概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出刚好是一男生一女生的结果数,然后根据概率公式求解.【详解】解:(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是25;故答案为:2 5;(2)画树状图为:共有6种等可能的结果数,其中刚好是一男生一女生的结果数为3,概率31 62 ==所以刚好是一男生一女生的概率为1 2.【点睛】本题考查了概率问题,掌握概率公式以及树状图的画法是解题的关键.20.(1)作图见解析;(2)(1)作图见解析;(2)132 cm;【分析】(1).由垂径定理知,垂直于弦的直径是弦的中垂线,因为CD垂直平分AB,故作AC的中垂线交CD延长线于点O,则点O是弧ACB所在圆的圆心;(2).在Rt△OAD中,由勾股定理可求得半径OA的长即可.【详解】(1)如图点O即为所求圆的圆心.(2)连接OA,设OA=xcm,根据勾股定理得:x2=62+(x-4)2解得:x=132 cm,故半径为:132 cm.【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.21.(1)75°(2)见解析【分析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF =90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=12(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.22.(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.5.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△P AB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=k x,得k=3,∴反比例函数的表达式y=3 x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=5,∴直线AD 的解析式为y =﹣2x +5,令y =0,得x =52,∴点P 坐标(52,0),(3)S △P AB =S △ABD ﹣S △PBD =12×2×2﹣12×2×12=2﹣12=1.5.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.23.(1)见解析;(2)见解析;(3)BE =16.【分析】(1)如图,连接OE .欲证明PE 是⊙O 的切线,只需推知OE ⊥PE 即可;(2)由圆周角定理得到90AEB CED ∠=∠=︒,根据“同角的余角相等”推知34∠=∠,结合已知条件证得结论;(3)设EF x =,则2CF x =,由勾股定理可求EF 的长,即可求BE 的长.【详解】(1)如图,连接OE .∵CD 是圆O 的直径,∴90CED ∠=︒.∵OC OE =,∴12∠=∠.又∵PED C ∠=∠,即1PED ∠=∠,∴2PED ∠=∠,∴=2=90PED OED OED ∠+∠∠+∠︒,即90OEP ∠=︒,∴OE EP ⊥,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)∵AB 、CD 为⊙O 的直径,∴==90AEB CED ∠∠︒,∴34∠=∠(同角的余角相等).又∵1PED ∠=∠,∴4PED ∠=∠,即ED 平分∠BEP ;(3)设EF x =,则2CF x =,∵⊙O 的半径为10,∴210OF x =-,在Rt △OEF 中,222OE OF EF +=,即()22210210x x +-=,解得8x =,∴8EF =,∴216BE EF ==.【点睛】本题考查了圆和三角形的几何问题,掌握切线的性质、圆周角定理和勾股定理是解题的关键.24.(1)y =﹣x 2+2x +3;(2)①S =﹣m 2+3m ,1≤m ≤3;②P (32,3);(3)存在,点P 的坐标为(32,3)或(﹣12﹣).【分析】(1)将点B ,C 的坐标代入2y x bx c =-++即可;(2)①求出顶点坐标,直线MB 的解析式,由PD ⊥x 轴且OD m =知P (m ,﹣2m +6),即可用含m 的代数式表示出S ;②在①的情况下,将S 与m 的关系式化为顶点式,由二次函数的图象及性质即可写出点P 的坐标;(3)分情况讨论,如图2﹣1,当90CPD ∠=︒时,推出3PD CO ==,则点P 纵坐标为3,即可写出点P 坐标;如图2﹣2,当90PCD ∠=︒时,证PDC OCD ∠=∠,由锐角三角函数可求出m 的值,即可写出点P 坐标;当90PDC ∠=︒时,不存在点P .【详解】(1)将点B (3,0),C (0,3)代入2y x bx c =-++,得09333b c =-++⎧⎨=⎩,解得23b c ì=ïí=ïî,∴二次函数的解析式为2y x 2x 3=-++;(2)①∵()222314y x x x =++=--+-,∴顶点M (1,4),设直线BM 的解析式为y kx b =+,将点B (3,0),M (1,4)代入,得304k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线BM 的解析式为=26y x -+,∵PD ⊥x 轴且OD m =,∴P (m ,﹣2m +6),∴()21126322PCD S S PD OD m m m m -++ ====-,即23S m m =-+,∵点P 在线段BM 上,且B (3,0),M (1,4),∴13m ≤≤;②∵2239324S m m m ⎛⎫=-+=--+ ⎪⎝⎭,∵10-<,∴当32m =时,S 取最大值94,∴P (32,3);(3)存在,理由如下:①如图2﹣1,当90CPD ∠=︒时,∵90COD ODP CPD ∠=∠∠=︒=,∴四边形CODP 为矩形,∴3PD CO ==,将3y =代入直线=26y x -+,得32x =,∴P (32,3);②如图2﹣2,当∠PCD =90°时,∵3OC =,OD m =,∴22229CD OC OD m =++=,∵//PD OC ,∴PDC OCD ∠=∠,∴cos PDC cos OCD ∠=∠,∴DC OCPD DC =,∴2DC PD OC = ,∴()29326m m =+-+,解得1 3m -=-(舍去),23m +=-,∴P (3-+12-),③当90PDC ∠=︒时,∵PD ⊥x 轴,∴不存在,综上所述,点P 的坐标为(32,3)或(3-+12-.【点睛】本题考查了二次函数的动点问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.25.(1)y =12x 2﹣x ﹣4;(2)S =﹣(m ﹣2)2+16,S 的最大值为16;(3)点P 的坐标为:(1,﹣)或(1,﹣1).【分析】(1)根据交点式可求出抛物线的解析式;(2)由S=S △OBC +S △OCD +S △ODA ,即可求解;(3)∠BPC=45°,则BC 对应的圆心角为90°,可作△BCP 的外接圆R ,则∠BRC=90°,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,证明△BMR ≌△RNC (AAS )可求出点R (1,-1),即点R 在函数对称轴上,即可求解.【详解】解:(1)∵抛物线y =12x 2+bx+c 与x 轴交于A (4,0)、B (﹣2,0),∴抛物线的表达式为:y =12(x ﹣4)(x+2)=12x 2﹣x ﹣4;(2)设点D (m ,12m 2﹣m ﹣4),可求点C 坐标为(0,-4),∴S =S △OBC +S △OCD +S △ODA =211112444[(4)]2222m m m ⨯⨯+⨯+⨯---=﹣(m ﹣2)2+16,当m =2时,S 有最大值为16;(3)∠BPC =45°,则BC 对应的圆心角为90°,如图作圆R ,则∠BRC =90°,圆R 交函数对称轴为点P ,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,设点R (m ,n ).∵∠BMR+∠MRB =90°,∠MRB+∠CRN =90°,∴∠CRN =∠MBR ,∠BMR =∠RNC =90°,BR =RC ,∴△BMR ≌△RNC (AAS ),∴CN =RM ,RN =BM ,即m+2=n+4,﹣n =m ,解得:m =1,n =﹣1,即点R (1,﹣1),即点R 在函数对称轴上,,则点P的坐标为:(1,﹣)或(1,﹣1).【点睛】本题考查的是二次函数与几何综合运用,涉及圆周角定理、二次函数解析式的求法、图形的面积计算等,其中(3),要注意分类求解,避免遗漏,能灵活运用数形结合的思想是解题的关键,(3)的难点是作出辅助圆.。
人教版九年级数学上册期末测试题附答案
人教版九年级数学上册期末测试题附答案九年级(上)期末数学试卷一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球2.一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是()A.﹣1和1B.1和1C.2和1D.0和13.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.方程2某(某﹣3)=5(某﹣3)的根是()A.某=B.某=3C.某1=,某2=3D.某1=﹣,某2=35.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π7.如图,抛物线y1=﹣某2+4某和直线y2=2某,当y1<y2时,某的取值范围是()A.0<某<2B.某<0或某>2C.某<0或某>4D.0<某<48.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1B.3C.﹣1D.﹣39.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5%B.20%C.15%D.10%10.某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在11.若函数,则当函数值y=8时,自变量某的值是()A.±B.4C.±或4D.4或﹣12.如图为二次函数y=a某2+b某+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.14.同圆的内接正三角形与外切正三角形的周长比是.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是mm.17.将抛物线y=某2﹣2向上平移一个单位后,又沿某轴折叠,得新的抛物线,那么新的抛物线的表达式是.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=某2﹣2某﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:某2﹣3某+2=0.(2)已知:关于某的方程某2+k某﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.20.(1)解方程:+=;(2)图①②均为7某6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.24.如图,在平面直角坐标系某Oy中,直线y=某+2与某轴交于点A,与y轴交于点C,抛物线y=a某2+b某+c的对称轴是某=﹣且经过A,C两点,与某轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:打开电视机,正在播放篮球比赛是随机事件,A不正确;守株待兔是随机事件,B不正确;明天是晴天是随机事件,C不正确;在只装有5个红球的袋中摸出1球,是红球是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是()A.﹣1和1B.1和1C.2和1D.0和1【考点】一元二次方程的一般形式.【分析】根据一元二次方程的一般形式进行选择.【解答】解:一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是﹣1和1.故选:A.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:a某2+b某+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中a某2叫二次项,b某叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.方程2某(某﹣3)=5(某﹣3)的根是()A.某=B.某=3C.某1=,某2=3D.某1=﹣,某2=3【考点】解一元二次方程-因式分解法.【分析】先把方程变形为:2某(某﹣3)﹣5(某﹣3)=0,再把方程左边进行因式分解得(某﹣3)(2某﹣5)=0,方程就可化为两个一元一次方程某﹣3=0或2某﹣5=0,解两个一元一次方程即可.【解答】解:方程变形为:2某(某﹣3)﹣5(某﹣3)=0,∴(某﹣3)(2某﹣5)=0,∴某﹣3=0或2某﹣5=0,∴某1=3,某2=.故选C.【点评】本题考查了运用因式分解法解一元二次方程的方法:先把方程右边化为0,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°【考点】圆周角定理.【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=120°,再根据三角形内角和定理可得答案.【解答】解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠B=÷2=30°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π【考点】圆锥的计算;勾股定理.【专题】压轴题;操作型.【分析】运用公式=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】解:∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB==13,∴母线长l=13,半径r为5,∴圆锥的侧面积是=πlr=13某5某π=65π.故选B.【点评】要学会灵活的运用公式求解.7.如图,抛物线y1=﹣某2+4某和直线y2=2某,当y1<y2时,某的取值范围是()A.0<某<2B.某<0或某>2C.某<0或某>4D.0<某<4【考点】二次函数与不等式(组).【分析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的某的取值范围即可.【解答】解:联立,解得,,∴两函数图象交点坐标为(0,0),(2,4),由图可知,y1<y2时某的取值范围是0<某<2.故选A.【点评】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便.8.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1B.3C.﹣1D.﹣3【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点可得a、b的值,进而得到答案.【解答】解:∵点A(1,a)、点B(b,2)关于原点对称,∴b=﹣1,a=﹣2,a+b=﹣3,故选:D.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.9.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5%B.20%C.15%D.10%【考点】由实际问题抽象出一元二次方程.【分析】设定期一年的利率是某,则存入一年后的本息和是5000(1+某)元,取3000元后余[5000(1+某)﹣3000]元,再存一年则有方程[5000(1+某)﹣3000](1+某)=2750,解这个方程即可求解.【解答】解:设定期一年的利率是某,根据题意得:一年时:5000(1+某),取出3000后剩:5000(1+某)﹣3000,同理两年后是[5000(1+某)﹣3000](1+某),即方程为[5000(1+某)﹣3000](1+某)=2750,解得:某1=10%,某2=﹣150%(不符合题意,故舍去),即年利率是10%.故选D.【点评】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金某(1+利率某期数),难度一般.10.某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在【考点】根与系数的关系.【分析】先由一元二次方程根与系数的关系得出,某1+某2=m,某1某2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.【解答】解:∵某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,∴某1+某2=m,某1某2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程某2﹣m某+m﹣2=0即为某2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.【点评】本题主要考查了一元二次方程根与系数的关系:如果某1,某2是方程某2+p某+q=0的两根时,那么某1+某2=﹣p,某1某2=q.11.若函数,则当函数值y=8时,自变量某的值是()A.±B.4C.±或4D.4或﹣【考点】函数值.【专题】计算题.【分析】把y=8直接代入函数即可求出自变量的值.【解答】解:把y=8代入函数,先代入上边的方程得某=,∵某≤2,某=不合题意舍去,故某=﹣;再代入下边的方程某=4,∵某>2,故某=4,综上,某的值为4或﹣.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.12.如图为二次函数y=a某2+b某+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1B.2C.3D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴某=1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.【解答】解:①由抛物线的开口向下知a<0,故本选项错误;②由对称轴为某==1,∴﹣=1,∴b=﹣2a,则2a+b=0,故本选项正确;③由图象可知,当某=1时,y>0,则a+b+c>0,故本选项正确;④从图象知,抛物线与某轴有两个交点,∴△>0,故本选项错正确;⑤由图象可知,当某=﹣2时,y<0,则4a﹣2b+c<0,故本选项正确;【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.【考点】概率公式.【分析】由小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8,直接利用概率公式求解即可求得答案.【解答】解:∵小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8;∴从这十张卡片中随机抽取一张恰好能被4整除的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.同圆的内接正三角形与外切正三角形的周长比是1:2.【考点】正多边形和圆.【分析】作出正三角形的边心距,连接正三角形的一个顶点和中心可得到一直角三角形,解直角三角形即可.【解答】解:如图所示:∵圆的内接正三角形的内心到每个顶点的距离是等边三角形高的,设内接正三角形的边长为a,∴等边三角形的高为a,∴该等边三角形的外接圆的半径为a∴同圆外切正三角形的边长=2某a某tan30°=2a.∴周长之比为:3a:6a=1:2,故答案为:1:2.【点评】本题考查了正多边形和圆的知识,解题时利用了圆内接等边三角形与圆外接等边三角形的性质求解,关键是构造正确的直角三角形.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.【考点】相似三角形的判定与性质;三角形中位线定理.【分析】由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求得BC=2EF,然后根据相似三角形的性质即可得到结论.【解答】解:∵△ABC中,E、F分别是AB、AC的中点,EF=4,∴EF是△ABC的中位线,∴BC=2EF,EF∥BC,∴△AEF∽△ABC,∴S△AEF:S△ABC=()2=,故答案为:.【点评】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟记三角形的中位线的性质是解题的关键.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是8mm.【考点】相交弦定理;勾股定理.【专题】应用题;压轴题.【分析】根据垂径定理和相交弦定理求解.【解答】解:钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,则下面的距离就是2.利用相交弦定理可得:2某8=AB某AB,解得AB=8.故答案为:8.【点评】本题的关键是利用垂径定理和相交弦定理求线段的长.17.将抛物线y=某2﹣2向上平移一个单位后,又沿某轴折叠,得新的抛物线,那么新的抛物线的表达式是y=﹣某2+1.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=某2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律和关于某轴对称的点的坐标特征得到(0,﹣2)变换后的对应点的坐标为(0,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=某2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向上平移一个单位所得对应点的坐标为(0,﹣1),点(0,﹣1)关于某轴的对称点的坐标为(0,1),因为新抛物线的开口向下,所以新抛物线的解析式为y=﹣某2+1.故答案为【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=某2﹣2某﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.【考点】二次函数综合题.【分析】连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.【解答】解:连接AC,BC,∵抛物线的解析式为y=某2﹣2某﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=某2﹣2某﹣3,解得:某=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AOBO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.【点评】本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:某2﹣3某+2=0.(2)已知:关于某的方程某2+k某﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.【考点】根的判别式;解一元二次方程-因式分解法.【分析】(1)把方程某2﹣3某+2=0进行因式分解,变为(某﹣2)(某﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解;(2)①由△=b2﹣4ac=k2+8>0,即可判定方程有两个不相等的实数根;②首先将某=﹣1代入原方程,求得k的值,然后解此方程即可求得另一个根.【解答】(1)解:某2﹣3某+2=0,(某﹣2)(某﹣1)=0,某1=2,某2=1;(2)①证明:∵a=1,b=k,c=﹣2,∴△=b2﹣4ac=k2﹣4某1某(﹣2)=k2+8>0,∴方程有两个不相等的实数根;②解:当某=﹣1时,(﹣1)2﹣k﹣2=0,解得:k=﹣1,则原方程为:某2﹣某﹣2=0,即(某﹣2)(某+1)=0,解得:某1=2,某2=﹣1,所以另一个根为2.【点评】本题考查了根的判别式,一元二次方程a某2+b某+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.也考查了用因式分解法解一元二次方程.20.(1)解方程:+=;(2)图①②均为7某6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)【考点】利用旋转设计图案;解分式方程;利用轴对称设计图案.【分析】(1)化分式方程为整式方程,然后解方程,注意要验根;(2)可画出一个等腰梯形,则是轴对称图形;(3)画一个矩形,则是中心对称图形.【解答】解:(1)由原方程,得5+某(某+1)=(某+4)(某﹣1),整理,得2某=9,解得某=4.5;(2)如图①所示:等腰梯形ABCD为轴对称图形;;(3)如图②所示:矩形ABDC为轴对称图形;.【点评】此题比较灵活的考查了等腰梯形、矩形的对称性,是道好题.21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是红球的概率为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)设垂直于墙的一边长为某米,则矩形的另一边长为(30﹣2某)米,根据面积为72米2列出方程,求解即可;(2)根据题意列出方程,用根的判别式判断方程根的情况即可.【解答】解:(1)设垂直于墙的一边长为某米,则某(30﹣2某)=72,解方程得:某1=3,某2=12.当某=3时,长=30﹣2某3=24>18,故舍去,所以某=12.答:矩形的长为12米,宽为6米;(2)假设面积可以为120平方米,则某(30﹣2某)=120,整理得即某2﹣15某+60=0,△=b2﹣4ac=152﹣4某60=﹣15<0,方程无实数解,故面积不能为120平方米.【点评】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB 的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.【考点】切线的判定.【分析】(1)连结BD,如图,根据圆周角定理由AB为直径得∠ACB=90°,则可利用勾股定理计算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根据圆周角定理得∠DAB=∠DBA=45°,则△ADB为等腰直角三角形,由勾股定理即可得出AD的长;(2)连结OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性质得∠PEC=∠EAC+∠ACE=∠EAC+45°,加上∠CAB=90°﹣∠ABC,∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,则∠OCE+∠PCE=90°,于是根据切线的判定定理可得PC为⊙O的切线.【解答】解:(1)连结BD,如图1所示,∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=5(cm);(2)PC与圆⊙O相切.理由如下:连结OC,如图2所示:∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.【点评】本题考查了切线的判定、圆周角定理、勾股定理、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握圆周角定理和切线的判定是解决问题的关键.24.如图,在平面直角坐标系某Oy中,直线y=某+2与某轴交于点A,与y轴交于点C,抛物线y=a某2+b某+c的对称轴是某=﹣且经过A,C两点,与某轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据相似三角形的性质,可得关于m的方程,根据自变量与函数值的对应关系,可得M点坐标.【解答】解:(1)当某=0时,y=2,即C(0,2),当y=0时,某+2=0,解得某=﹣4,即A(﹣4,1).由A、B关于对称轴对称,得B(1,0).将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣某2﹣某+2;(2)抛物线上是存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,如图,设M(m,﹣m2﹣m+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2.由勾股定理,得AC==2,BC==.当△ANM∽△ACB时,=,即=,解得m=0(不符合题意,舍),m=﹣4(不符合题意,舍);当△ANM∽△BCA时,=,即=,解得m=﹣3,m=﹣4(不符合题意,舍),当m=﹣3时,﹣m2﹣m+2=2,即M(﹣3,2).综上所述:抛物线存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,点M的坐标(﹣3,2).【点评】本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出B点坐标是解题关键;利用相似三角形的性质得出关于m的方程是解题关键,要分类讨论,以防遗漏.。
人教版九年级(上)期末数学试卷(含答案)
人教版九年级(上)期末数学试卷第I卷(选择题)一、选择题(本大题共16小题,共48.0分。
在每小题列出的选项中,选出符合题目的一项)1.一元二次方程x2+6x+5=0的常数项是( )A. 0B. 1C. 5D. 都不对2.如图所示图形中是中心对称图形的是( )A. 正三角形B. 等腰三角形C. 直角三角形D. 圆3.如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是( )A. ∠D=∠BB. ∠E=∠CC. ADAB =AEACD. ADAB =DEBC4.将抛物线y=−3x2平移,得到抛物线y=−3(x−1)2−2,下列平移方式中,正确的是( )A. 先向左平移1个单位,再向上平移2个单位B. 先向左平移1个单位,再向下平移2个单位C. 先向右平移1个单位,再向上平移2个单位D. 先向右平移1个单位,再向下平移2个单位5.如图,在△ABC中,DE//BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为( )A. 23B. 12C. 34D. 356.下列事件中,是随机事件的是( )第2页,共18页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………A. 太阳从西边升起B. △ABC 中,AB 与AC 的和比BC 大C. 两个负数相乘,积为正D. 两个数相加,和大于其中的一个加数7. 如图,在一块宽为20m ,长为32m 的矩形空地上,修筑宽相等的两条小路,两条路分别与矩形的边平行,如图,若使剩余(阴影)部分的面积为560m 2,问小路的宽应是多少?设小路的宽为xcm ,根据题意得( )A. 32x +20x =20×32−560B. 32×20−20x ×32x =560C. (32−x)(20−x)=560D. 以上都不正确8. 一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是( )A. 摸到红球是必然事件B. 摸到黄球是不可能事件C. 摸到白球与摸到黄球的可能性相等D. 摸到红球比摸到黄球的可能性小9. 如图,已知⊙O 的半径为4,则它的内接正方形ABCD 的边长为( )A. 1B. 2C. 4√2D. 2√210. 如图,在平面直角坐标系xOy 中,点P 为函数y =4x(x <0)图象上任意一点,过点P 作PA ⊥x 轴于点A ,则△PAO 的面积是( )A. 8B. 4C. 2D. −211. 如图,PA ,PB 是⊙O 的切线,A ,B 是切点,若∠P =70°,则∠ABO =( )A. 30°B. 35°C. 45°D. 55°12.下列关于二次函数y=2x2的说法正确的是( )A. 它的图象经过点(−1,−2)B. 它的图象的对称轴是直线x=2C. 当x<0时,y随x的增大而减小D. 当x=0时,y有最大值为013.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC= 150cm,CD=800cm,则树高AB等于( )A. 300cmB. 400cmC. 550cmD. 都不对14.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有白球( )A. 10B. 15C. 20D. 都不对15.如图,若△ABC与△A1B1C1是位似图形,则位似中心的坐标为( )A. (1,0)B. (0,1)C. (−1,0)D. (0,−1)16.如图,△ABC和阴影三角形的顶点都在小正方形的顶点上,则与△ABC相似的阴影三角形为( )A. B. C. D.第II卷(非选择题)二、填空题(本大题共3小题,共12.0分)17.二次函数y=2(x−1)2−5的开口方向______,最小值是______.18.如图,△ABC∽△A′B′C′,AD和A′D′分别是△ABC和△A′B′C′的高,若AD=2,A′D′=3,则△ABD与△A′B′D′的周长之比为______.△ABC与△A′B′C′的面积之比为______.第4页,共18页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………19. 已知一次函数y 1=kx +m(k ≠0)和二次函数y 2=ax 2+bx +c(a ≠0)部分自变量与对应的函数值如下表x … −1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…−159…当y 2=y 1时,自变量x 的取值是______,当y 2>y 1时,自变量x 的取值范围是______.三、解答题(本大题共7小题,共66.0分。
人教版九年级数学上册期末测试题(附参考答案)
人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。
每小题只有一个选项符合题目要求。
1.方程x2-2x-24=0的根是( )A.x1=6,x2=4 B.x1=6,x2=-4C.x1=-6,x2=4 D.x1=-6,x2=-42.一个不透明的袋子中装有2个白球和3个黑球,这些球除了颜色外无其他差别,从中摸出3个球,下列事件属于必然事件的是( )A.至少有1个球是白色球B.至少有1个球是黑色球C.至少有2个球是白色球D.至少有2个球是黑色球3.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.16x2-6x+21,有以下结论:①当x>5时,y随x的增大而4.对于二次函数y=12增大;②当x=6时,y有最小值3;③图象与x轴有两个交点;④图象是由抛物x2向左平移6个单位长度,再向上平移3个单位长度得到的.其中正确结线y=12论的个数为( )A.1 B.2C.3 D.4⏜的长是5.如图,四边形ABCD内接于⊙O,⊙O的半径为3.若∠D=120°,则AC( )πA.πB.23C .2πD .4π6.如图,在△AOB 中,OA =4,OB =6,AB =2√7,将△AOB 绕原点O 旋转90°,则旋转后点A 的对应点A ′的坐标是( )A .(4,2)或(-4,2)B .(2√3,-4)或(-2√3,4)C .(-2√3,2)或(2√3,-2)D .(2,-2√3)或(-2,2√3)7.如图,AB 是O 的直径,ACD CAB ∠=∠ 2AD = 4AC =,则O 的半径为( )A .B .C .D8.如图,四边形ABCD 中,60A ∠=︒ //AB CD DE AD ⊥交AB 于点E ,以点E 为圆心 、DE 为半径且6DE =的圆交CD 于点F ,则阴影部分的面积为( )A .6π-B .12π-C .6πD .12π 9.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A .3(1)6210x x -= B .3(1)6210x -=C .(31)6210x x -=D .36210x =10.如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A ,B 是圆上的两点,O 为圆心,∠AOB =120°,小强从点A 走到点B ,走便民路比走观赏路少走( )A .(6π-6√3)米B .(6π-9√3)米C .(12π-9√3)米D .(12π-18√3)米二、填空题:本题共6个小题,每小题3分,共18分。
人教版九年级上学期数学《期末检测试卷》含答案
15.已知 ,且 ,且 与 周长和为175,则 的周长为_________.
16.在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,则参加聚会的有______名同学.
17.已知 , 是方程 的两个实根,则 ______.
23.如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD.求AC的长和cos∠ADC的值.
24.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.
(1)求该反比例函数的解析式;
(2)若△ABC的面积为6,求直线AB的表达式.
∵188>187, > ,
∴平均数变小,方差变小,
故选A.
点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为 ,则方差S2= [(x1- )2+(x2- )2+…+(xn- )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
5.方程x(x﹣5)=x的解是()
[详解]解:∵∠A=22.5°,
∴∠BOC=2∠A=45°,
∵⊙O的直径AB垂直于弦CD,
∴CE=DE, 为等腰直角三角形,
∴CE=
∴CD=2CE= .
故选:C.
[点睛]本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理,掌握以上知识是解题的关键.
C. 平均数变大,方差变小D. 平均数变大,方差变大
[答案]A
[解析]
人教版九年级上册数学期末检测试卷(含答案)
人教版九年级上册数学期末检测试卷一、选择题(每题3分,共24分) 1. 已知⊙O 的半径为6cm ,点O 到直线l 的距离为7cm ,则直线l 与O 的位置关系是( ) A. 相交 B. 相离 C. 相切 D. 无法确定2. 线段2cm ,8cm 的比例中项为 cm 。
( ) A. 4 B. 4.5 C. ±4 D. ±83. 如图,已知直线a //b//c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F 、AC=3,CE=6,BD=2,DF= ( ) A. 4 B.4.5 C. 3 D. 3.54. 张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 米. ( ) A. 3.2 B. 4.8 C.5.2 D. 5.6第3题图 第8题图5. 把抛物线y =2x ²向左平移2个单位,则平移后抛物线对应的函数表达式是 ( ) A. y=2x ²+2 B. y=2(x-2)² C. y=2x ²+2 D. y=2(x+2)²6. 在△ABC 中,若|21sinA -|+(cosB 22-)²=0,则∠C 的度数是 ( ) A. 45° B. 75° C. 105° D. 120°7. 如下图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )8. 如图,矩形ABCD 的四个顶点分别在直线l3,l4,l2,l1上。
若直线l1∥l2∥l3∥l4且间距相等,AB =5,BC =3,则tan α的值为 ( ) A. 103 B. 53C. 126D. 25二、填空题(每题3分,共24分)9. 二次函数y=(x-1)²+2的顶点坐标为 。
10. 已知扇形的圆心角为120°,半径为2厘米,则这个扇形的弧长为 厘米。
【精选】人教版九年级上册数学期末测试卷(含答案)
【精选】人教版九年级上册数学期末测试卷(含答案)一、选择题(每题1分,共5分)1.若一个正方形的对角线长度为10cm,则其边长为多少cm?A.5cmB.7.07cmC.10cmD.14.14cm2.下列哪个数是无理数?A.√9B.√16C.πD.0.3333.已知三角形ABC中,AB=AC,∠BAC=40°,则∠ABC等于多少度?A.40°B.70°C.80°D.100°4.下列函数中,哪个是增函数?A.y=-xB.y=x^2C.y=2^xD.y=1/x5.若|a|=3,则a的值为?A.3B.-3C.3或-3D.无法确定二、判断题(每题1分,共5分)1.任何有理数都可以表示为分数的形式。
()2.一元二次方程的解可能是两个相等的实数根。
()3.对角线互相垂直的四边形一定是菱形。
()4.两个锐角互余。
()5.平行线的斜率相等。
()三、填空题(每题1分,共5分)1.若一个数的算术平方根是2,则这个数是______。
2.若一个等腰三角形的底边长为8cm,腰长为5cm,则其周长为______cm。
3.若一个正六边形的边长为6cm,则其面积为______cm²。
4.一次函数y=2x+3与y轴的交点坐标为______。
5.若一个等差数列的首项为1,公差为2,则第10项的值为______。
四、简答题(每题2分,共10分)1.简述勾股定理及其应用。
2.什么是无理数?给出一个无理数的例子。
3.什么是等差数列?给出一个等差数列的例子。
4.简述平行线的性质。
5.什么是函数的单调性?给出一个单调递增函数的例子。
五、应用题(每题2分,共10分)1.已知一个等腰三角形的底边长为10cm,腰长为13cm,求其面积。
2.解方程:2x^25x3=0。
3.已知一个等差数列的首项为2,公差为3,求第10项的值。
4.已知一次函数y=3x-2,求其与x轴的交点坐标。
5.已知正方形的对角线长度为10cm,求其面积。
人教版数学九年级上册期末考试试题附答案
人教版数学九年级上册期末考试试卷一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列方程中是一元二次方程的有()①=;②y(y﹣1)=x(x+1);③=;④x2﹣2y+6=y2+x2.A.①②B.①③C.①④D.①③④2.观察下列图形,是中心对称图形的是()A.B.C.D.3.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+4B.y=(x﹣4)2+4C.y=(x+2)2+6D.y=(x﹣4)2+64.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110°D.130°5.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A. B. C. D.6.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x ,列出方程正确的是()A .580(1+x )2=1185B .1185(1+x )2=580C .580(1﹣x )2=1185D .1185(1﹣x )2=5807.10名学生的身高如下(单位:cm )159、169、163、170、166、165、156、172、165、162,从中任选一名学生,其身高超过165cm 的概率是()A .B .C .D .8.二次函数y=a(x+k)2+k(a≠0),无论k 取何值,其图象的顶点都在()A.直线y=x 上B.直线y=-x 上C.x 轴上D.y 轴上9.如图,△ABC 是一张三角形纸片,⊙O 是它的内切圆,点D 、E 是其中的两个切点,已知CD=6cm ,小明准备用剪刀沿着与⊙O 相切的一条直线MN 剪下一块三角形(△CMN ),则剪下的△CMN 的周长是()A .9cmB .12cmC .15cmD .18cm10.如图,正方形ABCD 中,分别以B,D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为()A.πaB.2πaC.21πaD.3a二、填空题(本大题共4小题,每小题5分,共20分)11.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=.12.一个侧面积为16πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为cm.13.如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若A点的坐标为(﹣1,0),则点C的坐标为.14.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是三、解答题(本大题共7小题,共68分)15.用适当的方法解方程:x2=2x+35.16.求出抛物线的开口方向、对称轴、顶点坐标。
人教版九年级上册数学期末测试卷及含答案
人教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图所示,点A,B,C都在圆O上,若∠C=32°,则∠AOB的度数是()A.32°B.60°C.64°D.72°2、学校组织学生去南京进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图②位置时,洗手液从喷口B流出,路线近似呈抛物线状,且喷口B为该抛物线的顶点. 洗手液瓶子的截面图下面部分是矩形CGHD. 小王同学测得:洗手液瓶子的底面直径GH=12cm,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线. 小王在距离台面15.5cm 处接洗手液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是()cmA. B. C. D.3、下列图形中,既是中心对称图形又是轴对称图形的是()A.等腰三角形B.平行四边形C.矩形D.正五边形4、放假了,小明与小颖两家准备从红荷湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,则两家抽到同一景点的概率是()A. B. C. D.5、如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为( )A.4B.C.D.6、图(1)是一个横断面为抛物线形状的拱桥,当水面在图(1)位置时,拱顶(拱桥洞的最高点)离水面2 m,水面宽4 m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x 2B.y=2x 2C.y=﹣0.5x 2D.y=0.5x 27、下列事件是随机事件的是()A.在一个标准大气压下,加热到100℃,水沸腾B.购买一张福利彩票,中奖C.有一名运动员奔跑的速度是30米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红球8、二次函数y=ax2+bx+c(a≠0)的部分图象如图③所示,图象过点(﹣1,0),对称轴为直线x=2,则下列结论中正确的个数有()①4a+b=0;②9a+3b+c<0;③若点A(﹣3,y1),点B(﹣,y2),点C(5,y3)在该函数图象上,则y 1<y3<y2;④若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.A.1个B.2个C.3个D.4个9、下列一元二次方程中,两根之和为-1的是()A.x 2+x+2=0B.x 2-x-5=0C.x 2+x-3=0D.2 x 2-x-1=010、已知是关于的一元二次方程的一个根,则的值是()A.1B.-1C.0D.无法确定11、如图,已知⊙O的半径为 6,弦 AB,CD所对的圆心角分别是∠AOB,∠COD若∠AOB 与∠COD 互补,弦CD=6 ,则弦AB 的长为()A.6B.8C.3D.612、方程 2 x 2 = 4 x 的解是( )A.x= 0B.x= 2C.x1 = 0 ,x2= 2 D.x1=- 2 ,x2= 213、关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2B.0C.1D.2或014、已知一个一元二次方程的二次项系数是3,常数项是1,则这个方程可能是()A. B. C. D.15、如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°二、填空题(共10题,共计30分)16、如图,四边形ABCD内接于⊙O,∠BCD=120°,则∠BOD=________度.17、如图,AC是⊙O的直径,弦BD⊥AC于点E,连接BC过点O作OF⊥BC于点F,若BD=12cm,AE=4cm,则OF的长度是________cm.18、半径为2cm的⊙O中有长为cm的弦AB,则弦AB所对的圆周角度数为________。
新人教版九年级数学上册期末试卷(及参考答案)
新人教版九年级数学上册期末试卷(及参考答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 下列运算正确的是()A. B. C. D.2.已知x+ =6, 则x2+ =()A. 38B. 36C. 34D. 323. 等式成立的x的取值范围在数轴上可表示为()A. B. C. D.4.如图, 数轴上有三个点A、B、C, 若点A、B表示的数互为相反数, 则图中点C对应的数是()A. ﹣2B. 0C. 1D. 45.已知平行四边形ABCD, AC.BD是它的两条对角线, 那么下列条件中, 能判断这个平行四边形为矩形的是()A. ∠BAC=∠DCAB. ∠BAC=∠DACC. ∠BAC=∠ABDD. ∠BAC=∠ADB 6.一个等腰三角形的两条边长分别是方程的两根, 则该等腰三角形的周长是()A. 12B. 9C. 13D. 12或97.如图, 在和中, , 连接交于点, 连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A. 4B. 3C. 2D. 18.如图, 已知∠ABC=∠DCB, 下列所给条件不能证明△ABC≌△DCB的是()A. ∠A=∠DB. AB=DCC. ∠ACB=∠DBCD. AC=BD9.如图, 已知⊙O的直径AE=10cm, ∠B=∠EAC, 则AC的长为()A. 5cmB. 5 cmC. 5 cmD. 6cm10.如图, P为等边三角形ABC内的一点, 且P到三个顶点A, B, C的距离分别为3, 4, 5, 则△ABC的面积为()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: =______________.2. 因式分解: a3-a=_____________.3. 已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方, 则实数k的取值范围是__________.4. 如图, 已知△ABC的周长是21, OB, OC分别平分∠ABC和∠ACB, OD⊥BC于D, 且OD=4, △ABC的面积是__________.5. 如图, 点A, B是反比例函数y= (x>0)图象上的两点, 过点A, B分别作AC⊥x轴于点C, BD⊥x轴于点D, 连接OA, BC, 已知点C(2, 0), BD=2, S△BCD=3, 则S△AOC=__________.6. 现有两个不透明的袋子, 一个装有2个红球、1个白球, 另一个装有1个黄球、2个红球, 这些球除颜色外完全相同. 从两个袋子中各随机摸出1个球, 摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 先化简, 再求值: , 其中.3. 如图①,已知抛物线y=ax2+bx+c的图像经过点A(0, 3)、B(1, 0), 其对称轴为直线l: x=2, 过点A作AC∥x轴交抛物线于点C, ∠AOB的平分线交线段AC于点E, 点P是抛物线上的一个动点, 设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上, 连结PE、PO, 当m为何值时, 四边形AOPE面积最大, 并求出其最大值;(3)如图②, F是抛物线的对称轴l上的一点, 在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在, 直接写出所有符合条件的点P的坐标;若不存在, 请说明理由.4. 如图, 已知P是⊙O外一点, PO交圆O于点C, OC=CP=2, 弦AB⊥OC,劣弧AB的度数为120°, 连接PB.(1)求BC的长;(2)求证: PB是⊙O的切线.5. 某商场服装部分为了解服装的销售情况, 统计了每位营业员在某月的销售额(单位: 万元), 并根据统计的这组销售额的数据, 绘制出如下的统计图①和图②, 请根据相关信息, 解答下列问题:(1)该商场服装营业员的人数为 , 图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6. 某商店在2014年至2016年期间销售一种礼盒. 2014年, 该商店用3500元购进了这种礼盒并且全部售完;2016年, 这种礼盒的进价比2014年下降了11元/盒, 该商店用2400元购进了与2014年相同数量的礼盒也全部售完, 礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同, 问年增长率是多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.C2.C3.B4.C5.C6.A7、B8、D9、B10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1、.2.a(a-1)(a + 1)3.k<44.425、5.6.三、解答题(本大题共6小题, 共72分)1.无解2. .3、(1)y=x2-4x+3.(2)当m= 时,四边形AOPE面积最大,最大值为.(3)P点的坐标为:P1(,),P2(,),P3(,),P4(,).4.(1)2(2)略5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、(1)35元/盒;(2)20%.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.如图,直线y=x﹣1与反比例函数y= 的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).
(1)求反比例函数的解析式;
(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.
(1)若他去买一本笔记本,则他买到A种笔记本的概率是______;
(2)若他两次去买笔记本,每次买一本,且两次所买笔记本品种不同,请用树状图或列表法求出恰好买到A种笔记本和C种笔记本的概率.
20.已知,如图,△ABC中,CD平分∠ACB,DE∥BC,AD:DB=7:5,AC=24,求DE的长.
21.已知:y=2x2﹣ax﹣a2,且当x=1时,y=0,先化简,再求值:(1﹣ )÷ .
【分析】根据定义有一个角是直角的平行四边形叫做矩形.矩形的性质:
1.矩形的四个角都是直角
2.矩形的对角线相等
3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等
4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线).
5.对边平行且相等
6.对角线互相平分,对各个选项进行分析即可.
25.如图①所示,矩形ABCD一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的点P处,折痕与边BC交于点O,连接AP,OP,OA,△PDA的面积是△OCP的面积的4倍.
(1)求证:△OCP∽△PDA;
(2)求边AB的长;
(3)连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.
∵AB=AD=8cm
∴OE=4cm.
故答案为4.
14.如图,已知△ABC和△ADE均为等边三角形,点D在BC边上,DE与AC相交于点F,如果AB=9,BD=3,那么CF的长度为2.
五、解答题
22.如图,一艘渔船位于小岛M的北偏东42°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.
(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(参考数据:参考数据:sin42°≈0.6691,cos42°≈0.7431,tan42°≈0.9044, ≈1.732,结果精确到0.1海里)
3.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为( )
A. B. C. D.
【考点】列表法与树状图法;点的坐标.
【分析】画出树状图,然后确定出在第二象限的点的个数,再根据概率公式列式进行计算即可得解.
A.(20 ﹣1.5)mB.(20 +1.5)mC.31.5mD.28.5m
7.若两个相似三角形的面积比为2:3,那么这两个三角形的周长的比为( )
A.4:9B.2:3C. : D.3:2
8.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是( )
【解答】解:A、因为对角线相等的平行四边形是矩形,所以本选项错误;
B、因为对角线互相平分且相等的四边形是矩形,所以本选项错误;
C、因为矩形的对角线相等且互相平分,所以本选项错误;
D、因为矩形的对角线相等且互相平分,所以本选项正确.
故选:D.
5.小明乘车从广州到北京,行车的平均速度y(km/h)和行车时间x(h)之间的函数图象( )
A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)
二、填空题(每题4分)
9.在Rt△ABC中,∠C=90°,BC=3,AB=12,sinA=______.
10.我们知道,平行光线所形成的投影称为平行投影,当平行光线与投影面______,这种投影称为正投影.
11.已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是______.
【解答】解:根据题意,画出树状图如下:
一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,
所以,P= = .
故选B.
4.下列关于矩形的说法,正确的是( )
A.对角线相等的四边形是矩形
B.对角线互相平分的四边形是矩形
C.矩形的对角线互相垂直且平分
D.矩形的对角线相等且互相平分
【考点】矩形的判定与性质.
【分析】方程整理为一般形式后,找出常数项即可.
【解答】解:方程整理得:2x2+3x﹣5=0,
则常数项为﹣5,
故选A.
2.如图所示的几何体的左视图是( )
A. B. C. D.
【考点】简单几何体的三视图.
【分析】找到从几何体的左边看所得到的图形即可.
【解答】解:从几何体的左边看可得直角三角形 ,
故选:A.
【解答】解:根据题意得:△=b2﹣4(b﹣1)=(b﹣2)2=0,
则b的值为2.
故答案为:2
12.反比例函数y= 的图象,当x>0时,y随x的增大而增大,则k的取值范围是k<3.
【考点】反比例函数的性质.
【分析】先根据当x>0时,y随x的增大而增大判断出k﹣3的符号,求出k的取值范围即可.
【解答】解:∵反比例函数y= 的图象,当x>0时,y随x的增大而增大,
15.某小区2012年屋顶绿化面积为2000平方米,计划2014年屋顶绿化面积要达到2880平方米,如果每年屋顶绿化面积的增长率相同,那么这个增长率是______.
16.如图,Rt△ABO中,∠AOB=90°,∠ABO=30°,点A在第二象限,点B在第一象限,过点A的反比例函数表达式为y=﹣ ,则过点B的反比例函数表达式为______.
A.(20 ﹣1.5)mB.(20 +1.5)mC.31.5mD.28.5m
【考点】解直角三角形的应用-仰角俯角问题.
【分析】作AC⊥BE于点C.则CE=AD,AC=DE.在直角△ABC中选择适当的三角函数求出BC即可得解.
【解答】解:过点A作AC⊥BE于点C.
根据题意有:AC=DE=60,CE=AD=1.5.
∴k﹣3<0,解得k<3.
故答案为:k<3.
13.如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,若AD=8cm,则OE的长为4cm.
【考点】菱形的性质;三角形中位线定理.
【分析】根据已知可得OE是△ABC的中位线,从而求得OE的长.
【解答】解:∵OE∥DC,AO=CO
∴OE是△ABC的中位线
(1)请通过描点画图探究y与x之间的函数关系,并求出函数关系式;
(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?
(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z与市场价格x的函数关系发生改变,而需求数量y与市场价格x的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?
【解答】解:∵两个相似三角形的面积比为2:3,
∴这两个三角形的相似比为 : ,
∴这两个三角形的周长的比为 : ,
故选:C.
8.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是( )
A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)
综上所述,点D′的坐标为(2,10)或(﹣2,0).
故选:C.
二、填空题(每题4分)
9.在Rt△ABC中,∠C=90°,BC=3,AB=12,sinA= .
【考点】锐角三角函数的定义.
【分析】根据正弦的概念计算即可.
【解答】解:sinA= = ,
故答案为: .
10.我们知道,平行光线所形成的投影称为平行投影,当平行光线与投影面垂直,这种投影称为正投影.
A. B.
C. D.
【考点】反比例函数的应用;反比例函数的图象.
【分析】根据时间x、速度y和路程s之间的关系,在路程不变的条件下,得y= ,则y是x的反比例函数,且x>0.
【解答】解:由题意可得:y= (x>0),
故y是x的反比例函数.
故选:B.
6.如图,小强和小明去测量一座古塔的高度,他们在离古塔60m的A处,用测角仪测得古塔顶的仰角为30°,已知测角仪高AD=1.5m,则古塔BE的高为( )
三、解答题
17.计算:2cos30°﹣tan45°﹣ .
18.已知,如图,在△ABC中,点D在AB边上,连接CD,∠1=∠2.
(1)求证:△ACD∽△ABC;
(2)如果AD=2,BD=1,求AC的长.
19.学校旁边的文具店里有A、B、C、D四种笔记本,每种笔记本数量充足,某同学去该店购买笔记本 的图象,当x>0时,y随x的增大而增大,则k的取值范围是______.
13.如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,若AD=8cm,则OE的长为______cm.
14.如图,已知△ABC和△ADE均为等边三角形,点D在BC边上,DE与AC相交于点F,如果AB=9,BD=3,那么CF的长度为______.
①按上面的叙述在图②中画出正确的图象;
②当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.
九年级(上)期末数学试卷