弯曲变形.ppt
合集下载
材料力学第5章弯曲变形ppt课件
qL
4.22kNm
4.22kNm
M
max
32 M
max
76.4MPa
WZ
d 3
例题
20kN m
A
4m
FA
20kN m
A
MA
4m
试求图示梁的支反力
40kN
B
D
2m
2m
B
B1 FB
FB 40kN
B
D
B2
2m
2m
在小变形条件下,B点轴向力较小可忽略不
计,所以为一次超静定.
C
B1 B2
FBBBMF12AA2383qFEqELBqqLI84LI2LLZZ32F35BFF4FEFB83PBPLIEL7Z3L12IZ.218352.k75N5kFkN2PNmEL2IZ2
x
边界条件
A
L2
B
L2
C
y
连续条件
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
全梁仅一个挠曲线方程
C
q
EA
共有两个积分常数 边界条件
L1
A
x
B
EI Z
L
y
例题 5.5
用积分法求图示各梁挠曲线方程时,试问在列各梁 的挠曲线近似微分方程时应分几段;将分别出现几个 积分常数,并写出其确定积分常数的边界条件
q
a
B C LBC
B
2a
FN
B
q2a4
8EIZ
FN 2a3
3EIZ
C
FN
a
D
材料力学第6章弯曲变形
Fb M2 x2 F ( x2 a ) l
M1 EIw1
Fb x1 l
2 x1
" EIw2
Fb M2 x2 F ( x2 a ) l
2 x2 2
EIw1
Fb C1 l 2
x2 a Fb F C2 (i) EIw2 l 2 2
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
工学院
§6.2 挠曲线的微分方程
(o) (p)
CB段 (a x2 l )
Fb 2 3l 2 2 2 l b 3 x ( x a ) 2 2 6l b Fb 2 l 2 2 3 EIw2 l b x x ( x a ) 2 2 6l b 2 EIw2
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
l
2
b
2
3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为: 3 1 Fb 2 2 wmax l b 9 3 EIl
M1 EIw1
Fb x1 l
2 x1
" EIw2
Fb M2 x2 F ( x2 a ) l
2 x2 2
EIw1
Fb C1 l 2
x2 a Fb F C2 (i) EIw2 l 2 2
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
工学院
§6.2 挠曲线的微分方程
(o) (p)
CB段 (a x2 l )
Fb 2 3l 2 2 2 l b 3 x ( x a ) 2 2 6l b Fb 2 l 2 2 3 EIw2 l b x x ( x a ) 2 2 6l b 2 EIw2
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
l
2
b
2
3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为: 3 1 Fb 2 2 wmax l b 9 3 EIl
弯曲变形ppt课件
4
3.
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
工程实例
engineering examples
5
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
2. The predigesting of beams is that the axis of beam represents the beam. 2. 载荷简化
作用于梁上的载荷(包括支座反力)可简化为三种类型:集中力、 集中 力偶和分布载荷
The predigesting of loads involves three types :concentrated forces, concentrated
the beam must be in the same plane.It is called plane bending.
对称弯曲(如下图)—— 典型的平面弯曲。 Symmetrical bending(as shown Fig 9-1 is character plane bending
P1
q
P2
6
4.
常见心律失常心电图诊断的误区诺如承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
平面弯曲:杆发生弯曲变形后,轴线仍然和外力在同一平面内。
If all loads are applied in a plane,then the elastic curve for
3.
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
工程实例
engineering examples
5
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
2. The predigesting of beams is that the axis of beam represents the beam. 2. 载荷简化
作用于梁上的载荷(包括支座反力)可简化为三种类型:集中力、 集中 力偶和分布载荷
The predigesting of loads involves three types :concentrated forces, concentrated
the beam must be in the same plane.It is called plane bending.
对称弯曲(如下图)—— 典型的平面弯曲。 Symmetrical bending(as shown Fig 9-1 is character plane bending
P1
q
P2
6
4.
常见心律失常心电图诊断的误区诺如承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
平面弯曲:杆发生弯曲变形后,轴线仍然和外力在同一平面内。
If all loads are applied in a plane,then the elastic curve for
《弯曲变形》课件2
航空航天器中的弯曲变形控制
总结词
航空航天器中,弯曲变形控制对于确保 飞行器的气动性能和结构稳定性至关重 要。
VS
详细描述
在航空航天领域,弯曲变形控制涉及到飞 机和航天器的整体和局部结构的刚度和稳 定性要求。为了减小弯曲变形,需要采取 一系列的设计和控制措施,如优化结构设 计、加强材料和制造工艺的控制等。这有 助于提高飞行器的性能和安全性。
感谢观看
THANKS
弯曲变形的定义
01
02
03
弯曲变形
物体在受到外力作用时, 其形状发生改变的现象。
弯曲变形的程度
与外力的大小、物体的材 料性质和受力方式等因素 有关。
弯曲变形的特点
物体在受力后发生弯曲, 但内部结构并未发生破坏 或永久性变形。
弯曲变形的应用场景
桥梁工程
桥梁在车辆和风载等外力作用下会发 生弯曲变形,但设计合理的桥梁结构 能够保证安全性和稳定性。
几何方程
描述了物体形状的变化和 应变之间的关系。
弯曲变形的能量平衡方程
应变能
物体因弯曲变形而储存的能量, 与应力和应变有关。
外力势能
物体受到的外力与位移有关,可以 转化为势能。
能量平衡方程
描述了物体在弯曲变形过程中能量 的变化和平衡。
弯曲变形的有限元分析
有限元模型
将物体划分为有限个小的单元 ,每个单元有一定的属性和行
分析
对实验结果进行统计分析,研究弯曲变形的规律和特点。通过对比不同材料和规 格的试样,分析其抗弯性能和影响因素。结合理论分析,探讨弯曲变形的本质和 机理。
06
弯曲变形的实际应用案例
桥梁工程中的弯曲变形控制
总结词
桥梁工程中,弯曲变形控制是确保结构安全和稳定的关键因素。
《材料力学弯曲》课件
定义方式
弯曲应变通常用曲率半径的变化量与原始曲率半径的比值来表示,即 ΔR/R。其中 ΔR 是曲率半径的变化量,R 是原始曲率半径。
弯曲应变的计算
应变计法
通过在物体上粘贴应变片 ,并利用应变计测量应变 值,从而计算出弯曲应变 。
有限元分析法
利用有限元分析软件,建 立物体的有限元模型,通 过模拟受力情况下的变形 过程,计算出弯曲应变。
实验法
通过实验测试物体的弯曲 变形,利用相关公式计算 出弯曲应变。
弯曲应变的分布
应变分布图
通过绘制应变分布图,可以直观地了 解物体在弯曲变形过程中应变的大小 和分布情况。
应变集中
应变梯度
在弯曲变形过程中,物体不同部位上 的应变大小和方向可能不同,形成应 变梯度。
在物体受力点附近区域,应变会集中 增大,可能导致材料疲劳或断裂。
材料力学的重要性
总结词
材料力学在工程设计和实践中具有重要意义。
详细描述
在工程设计和实践中,材料力学是必不可少的学科之一。通过对材料力学的研究 ,工程师可以更好地理解材料的性能,预测其在各种工况下的行为,从而设计出 更加安全、可靠、经济的工程结构。
材料力学的基本假设
总结词
材料力学基于一系列基本假设,这些假设简 化了问题的复杂性,使得分析更为简便。
学习目标
01
02
03
04
掌握材料力学的基本概念、原 理和分析方法。
理解弯曲问题的特点和解决方 法。
能够运用所学知识解决简单的 弯曲问题。
培养分析问题和解决问题的能 力,提高力学素养。
02
材料力学基础
材料力学的定义
总结词
材料力学是一门研究材料在各种 力和力矩作用下的行为的学科。
弯曲应变通常用曲率半径的变化量与原始曲率半径的比值来表示,即 ΔR/R。其中 ΔR 是曲率半径的变化量,R 是原始曲率半径。
弯曲应变的计算
应变计法
通过在物体上粘贴应变片 ,并利用应变计测量应变 值,从而计算出弯曲应变 。
有限元分析法
利用有限元分析软件,建 立物体的有限元模型,通 过模拟受力情况下的变形 过程,计算出弯曲应变。
实验法
通过实验测试物体的弯曲 变形,利用相关公式计算 出弯曲应变。
弯曲应变的分布
应变分布图
通过绘制应变分布图,可以直观地了 解物体在弯曲变形过程中应变的大小 和分布情况。
应变集中
应变梯度
在弯曲变形过程中,物体不同部位上 的应变大小和方向可能不同,形成应 变梯度。
在物体受力点附近区域,应变会集中 增大,可能导致材料疲劳或断裂。
材料力学的重要性
总结词
材料力学在工程设计和实践中具有重要意义。
详细描述
在工程设计和实践中,材料力学是必不可少的学科之一。通过对材料力学的研究 ,工程师可以更好地理解材料的性能,预测其在各种工况下的行为,从而设计出 更加安全、可靠、经济的工程结构。
材料力学的基本假设
总结词
材料力学基于一系列基本假设,这些假设简 化了问题的复杂性,使得分析更为简便。
学习目标
01
02
03
04
掌握材料力学的基本概念、原 理和分析方法。
理解弯曲问题的特点和解决方 法。
能够运用所学知识解决简单的 弯曲问题。
培养分析问题和解决问题的能 力,提高力学素养。
02
材料力学基础
材料力学的定义
总结词
材料力学是一门研究材料在各种 力和力矩作用下的行为的学科。
《平面弯曲变形》课件
平面弯曲变形的应用实 例
桥梁和建筑结构的平面弯曲变形分析
桥梁结构:桥梁 的平面弯曲变形 分析,包括梁、 拱、索等结构
建筑结构:建筑结构 的平面弯曲变形分析, 包括框架、剪力墙、 筒体等结构
变形原因:荷载、 温度、湿度、地 震等外部因素引 起的变形
变形影响:对结构 安全性、稳定性、 耐久性的影响
变形控制:通过设 计、施工、维护等 手段控制变形,保 证结构安全
剪切应力的分布规律:剪切应力在剪切面上分布不均匀,靠近剪切面中心处应力较小, 远离剪切面中心处应力较大
剪切应力的影响因素:剪切力、剪切面形状、材料性质等
剪切应力的应用:在工程设计中,需要考虑剪切应力对结构的影响,以避免结构破坏 或失效。
平面弯曲变形的能量平 衡
弹性势能与动能之间的关系
弹性势能:物体在弹性形变过 程中储存的能量
感谢观看
汇报人:
平面弯曲变形可以分为弹性变形和塑性变形两种类型。
弹性变形是指物体在外力作用下,其形状和尺寸发生变化,但外力消失后,物体可以 恢复到原来的形状和尺寸。
塑性变形是指物体在外力作用下,其形状和尺寸发生变化,但外力消失后,物体不能 恢复到原来的形状和尺寸。
平面弯曲变形的分类
弯曲变形:物体在外力作用下发生弯曲变形 扭转变形:物体在外力作用下发生扭转变形 弯曲-扭转变形:物体在外力作用下同时发生弯曲和扭转变形 弯曲-弯曲变形:物体在外力作用下同时发生弯曲和弯曲变形
平面弯曲变形的稳定性 分析
稳定性分析的基本概念
稳定性分析的目的:确定结构在受力作用下的稳定性 稳定性分析的方法:有限元分析、能量法等 稳定性分析的指标:临界载荷、临界应力等 稳定性分析的应用:结构设计、优化等
稳定性分析的方法和步骤
弯曲变形课件
其余部分被看作为刚体,因此又称为逐段刚化法或 逐段求和法。
注意
迭加法是利用载荷迭加;是分解载荷; 广义迭加法将梁各部份变形对所求截面的挠度和转
角的贡献量进行迭加;是分解梁。
例5. 图示悬臂梁左侧受均布载荷,用迭加法求
自由端的挠度和转角。已知EI为常数。 解:
f B fC θC L 2
2.用迭加法求解静不定梁
变形协调条件和补充方程
fB 0
f B f Bq f BR 0
qL4 RBR L3 0 8EI 3EI
3qL R B 8
当此段梁受到正弯矩时,挠曲轴
为凹曲线,其二阶导数也为正。
当此段梁受到负弯矩时,挠曲轴
为凸曲线,其二阶导数也为负。
挠曲轴近似微分方程
M( x ) v" EI z
6.3 用积分法求弯曲变形 (Beam deflection by integration )
1.挠曲轴近似微分方程的积分
挠度。已知抗弯刚度EI为常数。 解:
Pb RA L
" 1
Pa RB L
Pb AD : EIv x1 (0 x1 a) L
" DB : EIv2
( a x2 L )
Pb x2 P( x2 a) L
Pb EIv x1 (0 x1 a) L Pb 2 v1 ' x1 C 1 2 EIL Pb 3 v1 x1 C 1 x1 D1 6EIL
L 4 L 3 q ( ) q( ) 4 7 qL L 2 2 8EI 6EI 2 384EI
L q ( )3 3 qL θB θC 2 6EI 48EI
《材料力学》第六章-弯曲变形
当载荷P处于梁中点,即b=l/2时,xl=0.5l;
当载荷P移至支座B,即b→0时
x1
l2 0.577l 3
即使在这种极端的情况下,最大挠度的位置距中 点只有0.077l,也就是说点的位置影响甚小,最大挠 度总是发生在梁跨中点的附近。可以认为在工程中 当有一集中力作用在简支梁上时,梁的最大挠度发 生在梁的中点,其结果误差不超过3%。
§6.1 工程中的弯曲变形问题
工程中有些受弯构件在载荷作用下虽能满足强度 要求,但由于弯曲变形过大,刚度不足,仍不能保证 构件的正常工作,成为弯曲变形问题。
出现“爬坡”现象
使齿轮啮合力沿齿宽分布极 不均匀,加速齿轮的磨损。
一、挠度和转角
构件的弯曲变形通常用截面的挠度和转角度量。
梁在横向力作用下发生弯曲变形, y
§6.3 用积分法求弯曲变形
一、积分法求弯曲变形 w Mx
EI
积分
挠曲线近似微分方程
w E 1IM xd x C
积分
转角方程
w E 1IM xd x CD x 挠曲线方程
式中C和D是待定的积分常数,可根据梁的具体条件来确定。
积分法计算梁的变形的步骤: 1.建立梁截面的弯矩方程式M(x); 2.代人挠曲线近似微分方程式,并积分; 3.确定积分常数,得到具体的挠度和转角方程式; 4.求梁任一截面的转角和挠度。
令
w1 10 F 2lx b12-F 6lb l2-b2 0
当a>b时,x1<a,wmax发生在AC段内。
得: x1
l2 -b2 3
wm若求最大转角,求θA、θB,比较大小,取其大者。
当
x1
l2 -b2 3
wmax-
Fb 9
第七章 平面弯曲变形.ppt
P
2
Pl 4
l /2
l /2
ql
m
2
l
m 2
m 2
l
ql 2
ql 2 8
第七章 平面弯曲变形
内力与荷载集度的微分关系 q
A
B
x
lM图Pl源自1 ql2 8M图
Fs图 1
ql 2
1 ql 2
Fs图
1、无荷载分布段(q=0),FS图为水平线,M图为斜直线。
第七章 平面弯曲变形
内力与荷载集度的微分关系
1 、无荷载分布段(q=0),FS图为水平注线:,M图剪为力斜为直零线处。;
M图
Fs图
3 、集中力作用处,Fs图有突变,且突变量等于力值; M图有转折,且指向与荷载相同。
第七章 平面弯曲变形
内力与荷载集度的微分关系 1 、无荷载分布段(q=0),FS图为水平线,M图为斜直线。 2 、均布荷载段(q=常数),FS图为斜直线,M图为抛物线, 且凸向与荷载指向相同。 3 、集中力作用处,Fs图有突变,且突变量等于力值; M图有尖点,且指向与荷载相同。
Pl
M图
Fs图
第七章 平面弯曲变形
第七章 平面弯曲变形
注:内力计算可选
取控制截面结合内
力与荷载集度的微 分关系进行,并绘 制结构的内力图。
第七章 平面弯曲变形
叠加法绘制内力图 ql 2 4
注意: 是竖标相加,
不是图形的简单 拼合。
第七章 平面弯曲变形
1 ql2 16
q
l
q
l
1 ql2 16
各控制 截面弯矩为 多少。
第七章 平面弯曲变形
F1
F2
第七章 平面弯曲变形
材料力学第四版课件 第六章 弯曲变形
)F
ql
3
()
2
24 EI
Fl ()
(q
A
16 EI
3
q
A
ql
Fl
2
( )
24 EI
16 EI
例6.5:图示外伸梁,其抗弯刚度为EI,求B截 面的转角和C截面的挠度.
2
2
l
EIw 2 M 2 F
x F ( x a)
2
转角方程
b x F ( x a) C2 l 2 2
3 3
b x F ( x a) C 2x D 2 挠度方程 EIw 2 F l 6 6
F A a l C b B
(3)确定积分常数 边界条件: 在 x = 0 处, w1 0 在 x = l 处, w2 0 C点的连续条件: 在 x = a 处, w1 w2 , w1 w2 再将边界条件和连续条件分别代入 AC与CB的转角方程与闹曲轴方程中。
F B
当 x 0 时 : q 0, w 0
q
w 1 EI
1 EI
( FLx
1 2
2
1 2
Fx
2
C)
3
(
FLx
1 6
Fx
Cx D )
4.根据边界条件确定积分常数
当 x 0 时 : q 0, w 0
解得
C 0; D 0
5.得到转角方程和挠度方程,计算B截面的 挠度和转角
B
(4) 根据边界条件求积分常数 当x=0 和 x=l 时, w = 0
EIq EIw
EIw ql 12 x
3
ql
3
()
2
24 EI
Fl ()
(q
A
16 EI
3
q
A
ql
Fl
2
( )
24 EI
16 EI
例6.5:图示外伸梁,其抗弯刚度为EI,求B截 面的转角和C截面的挠度.
2
2
l
EIw 2 M 2 F
x F ( x a)
2
转角方程
b x F ( x a) C2 l 2 2
3 3
b x F ( x a) C 2x D 2 挠度方程 EIw 2 F l 6 6
F A a l C b B
(3)确定积分常数 边界条件: 在 x = 0 处, w1 0 在 x = l 处, w2 0 C点的连续条件: 在 x = a 处, w1 w2 , w1 w2 再将边界条件和连续条件分别代入 AC与CB的转角方程与闹曲轴方程中。
F B
当 x 0 时 : q 0, w 0
q
w 1 EI
1 EI
( FLx
1 2
2
1 2
Fx
2
C)
3
(
FLx
1 6
Fx
Cx D )
4.根据边界条件确定积分常数
当 x 0 时 : q 0, w 0
解得
C 0; D 0
5.得到转角方程和挠度方程,计算B截面的 挠度和转角
B
(4) 根据边界条件求积分常数 当x=0 和 x=l 时, w = 0
EIq EIw
EIw ql 12 x
3
《平面弯曲变形》PPT课件
A截面挠度
求图示外伸梁的A截面挠 度和B截面转角。
B截面转角
B3M EIlF 3E paIl
fAw A 1B a
fA
Fpl3 3EI
Fpal a 3EI
24
目录
讨论 叠加法求变形有什么优缺点?
25
目录
10.7.4 梁的刚度校核
刚度条件
fw [f], []
max
max
建筑钢梁的许可挠度:
ll ~
3E
d4 Fla180
64
3E
6F 4 l1 a806 42 013021180
d4 3E 4 3201 69020.5
1111 0 3m 111mm
28
目录
10.8 用变形比较法解简单超静定梁
1.基本概念:
超静定梁:支反力数目大于有效平衡方程数目的梁 多余约束:从维持平衡角度而言,多余的约束 超静定次数:多余约束或多余支反力的数目。 相当系统:用多余约束力代替多余约束的静定系统
2.求解方法:
解除多余约束,建立相当系统——比较变形,列变 形协调条件——由物理关系建立补充方程——利用 静力平衡条件求其他约束反力。
29
目录
7-6
MA A MA A
FAy FAy
A A
A A
MA AA
MA A A
用变形比较法解简单超静定梁 F
B FC
B
C
2a
a
例6 求梁的支反力,梁的抗弯 刚度为EI。
载荷作用的情形,计算各自C截 面的挠度和转角。
ql4
wC1
, 8EI
C1
ql3 6EI
wC1
wC2 wB2 B22l
C2
求图示外伸梁的A截面挠 度和B截面转角。
B截面转角
B3M EIlF 3E paIl
fAw A 1B a
fA
Fpl3 3EI
Fpal a 3EI
24
目录
讨论 叠加法求变形有什么优缺点?
25
目录
10.7.4 梁的刚度校核
刚度条件
fw [f], []
max
max
建筑钢梁的许可挠度:
ll ~
3E
d4 Fla180
64
3E
6F 4 l1 a806 42 013021180
d4 3E 4 3201 69020.5
1111 0 3m 111mm
28
目录
10.8 用变形比较法解简单超静定梁
1.基本概念:
超静定梁:支反力数目大于有效平衡方程数目的梁 多余约束:从维持平衡角度而言,多余的约束 超静定次数:多余约束或多余支反力的数目。 相当系统:用多余约束力代替多余约束的静定系统
2.求解方法:
解除多余约束,建立相当系统——比较变形,列变 形协调条件——由物理关系建立补充方程——利用 静力平衡条件求其他约束反力。
29
目录
7-6
MA A MA A
FAy FAy
A A
A A
MA AA
MA A A
用变形比较法解简单超静定梁 F
B FC
B
C
2a
a
例6 求梁的支反力,梁的抗弯 刚度为EI。
载荷作用的情形,计算各自C截 面的挠度和转角。
ql4
wC1
, 8EI
C1
ql3 6EI
wC1
wC2 wB2 B22l
C2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M (x) < 0
d2y
dx 2 < 0
x
O
7
§4-4 梁的变形挠曲线微分方程及其积分
由弯矩的正负号规定可得,弯矩的符号与挠曲 线的二阶导数符号一致,所以挠曲线的近似微分方 程为:
d2 y M(x) dx2 EIz
由上式进行积分,就可以求出梁横截面的转角 和挠度。
8
§4-4 梁的变形挠曲线微分方程及其积分
弯曲变形
•§4-4 梁的变形挠曲线微分方程及其积分 •§4-5 用叠加法求弯曲变形 •§4-6 简单超静定梁·提高梁的刚度的措施
1
概述
桥式起重机的大梁 2
概述
3
概述
4
§4-4 梁的变形挠曲线微分方程及其积分
1.基本概念
y
x
转角 挠度 y
挠曲线方程:
挠曲线
y y(x)
挠度y:截面形心 在y方向的位移
EI
d 2 y2 dx22
M(x2 )
Fb l
x2
F ( x2
a)
EI dy2 dx2
EIy2
EI ( x2 )
Fb 2l
x2 2
Fb 6l
x3 2
F 6
( x2
a)3
F 2
(
x2
a)2
C2 x2 D2
C2
B B x
FBy
14
§4-4 梁的变形挠曲线微分方程及其积分
积分常数C、D 由梁的位移边界条件和光滑连续
条件确定。
位移边界条件
光滑连续条件
~
AA
~~
~
~
A
A
A A AA
A AA A
~
~
yA 0
yA 0
A 0
~ ~~ ~~
A
A AAA
A
A AA
A
AAA A
~ ~~
~ ~ ~
~
~
yA
-弹簧变形
yAL yAR
AL AR
yAL yAR
x
y 向上为正
转角θ:截面绕中性轴转过的角度。 逆钟向为正
由于小变形,截面形心在x方向的位移忽略不计
挠度转角关系为: tan dy
dx 5
§4-4 梁的变形挠曲线微分方程及其积分
2.挠曲线的近似微分方程
推导弯曲正应力时,得到:
1M
ρ EIz
忽略剪力对变形的影响
1 M(x)
y
F
A
A
DC
FAy x1
x2
a
ymax b
B B x
FBy
15
§4-4 梁的变形挠曲线微分方程及其积分
5)确定转角方程和挠度方程
AC 段: 0 x1 a
y
F
EI1
Fb 2l
x2 1
Fb 6l
(l 2
b2)
A
A
DC
EIy1
Fb 6l
x3 1
Fb 6l
(l 2
b2 )x1
3)列挠曲线近似微分方程并积分
AC 段: 0 x1 a
EI
d 2 y1 dx12
M ( x1 )
Fb l
x1
EI
dy1 dx1
EI ( x1 )
Fb 2l
x2 1
C1
EIy1
Fb 6l
x3 1
C1 x1
D1
CB 段:
a x2 l
y
F
A
A
DC
FAy x1
x2
a
ymax b
10
§4-4 梁的变形挠曲线微分方程及其积分
例1 求梁的转角方程和挠度方程,并求最大转角和最大挠度,
梁的EI已知。
解 1)由梁的整体平衡分析可得:
y
F
FAx 0, FAy F (), M A Fl( ) A x
2)写出x截面的弯矩方程
yB
l
Bx
B
M(x) F(l x) F(x l)
CB 段: a x2 l
FAy x1
x2
a
ymax b
EI 2
Fb 2l
x22
F 2
( x2
a)2
Fb 6l
(l 2
b2 )
B B x
FBy
EIy2
Fb 6l
x23
F 6
( x2
a)3
Fb 6l
(l 2
b2 )x2
16
§7-3 用积分法求梁的变形
6)确定最大转角和最大挠度
x 0, A 0
x 0, yA 0
代入求解
C 1 Fl2 , D 1 Fl3
2
6
5)确定转角方程和挠度方程
y
Ax
yB
l
EI 1 F ( x l)2 1 Fl 2
2
2
EIy 1 F ( x l)3 1 Fl 2 x 1 Fl 3
6
2
6
6)确定最大转角和最大挠度
( x) EIz
6
§4-4 梁的变形挠曲线微分方程及其积分
由数学知识可知:
d2y
1
dx 2
[1 ( dy )2 ]3
dx
略去高阶小量,得ຫໍສະໝຸດ 1 d2y dx2
所以
d2y dx 2
M(x) EIz
y M (x) > 0
M (x) > 0
d2y
dx 2 > 0
x
O
y
M (x) < 0
x l,
max B
Fl2 , 2EI
ymax
yB
Fl 3 3EI
F Bx
B
12
§4-4 梁的变形挠曲线微分方程及其积分
例2 求梁的转角方程和挠度方程,并求最大转角和最大挠度,
梁的EI已知,l=a+b,a>b。
解 1)由梁整体平衡分析得:
FAx
0, FAy
Fb l , FBy
4)由边界条件确定积分常数
位移边界条件
x1 0, y1(0) 0 x2 l, y2(l) 0
光滑连续条件
x1 x2 a, 1(a) 2 (a)
x1 x2 a, y1(a) y2 (a) 代入求解,得
C1
C2
1 6
Fbl
Fb3 6l
D1 D2 0
令 d 0
dx
得,
Fa l
2)弯矩方程
AC 段:
M x1
FAy
x1
Fb l
x1 ,0
x1
a
y
F
A
A
DC
FAy x1
x2
a
ymax b
B B x
FBy
CB 段:
M x2
FAy
x2
F ( x2
a)
Fb l
x2
F ( x2
a),
a x2 l
13
§4-4 梁的变形挠曲线微分方程及其积分
3 用积分法求梁的变形
挠曲线的近似微分方程为:
d2 y M(x) dx 2 EIz
积分一次得转角方程为:
EIz
d2y dx 2
M
(
x)
EI z
dy dx
EI z
M ( x)dx C
再积分一次得挠度方程为:
EIz y M( x)dxdx C x D 9
§4-4 梁的变形挠曲线微分方程及其积分
3)列挠曲线近似微分方程并积分
EI d 2 y M( x) F( x l)
dx 2
积分一次 EI dy EI 1 F(x l)2 C
dx
2
再积分一次
EIy 1 F (x l)3 Cx D
6
11
§4-4 梁的变形挠曲线微分方程及其积分
4)由位移边界条件确定积分常数