光催化降解甲基橙实验资料报告材料

合集下载

实验16-光催化降解甲基橙

实验16-光催化降解甲基橙

实验16 光催化降解染料甲基橙一、目的要求1、掌握确定反应级数的原理和方法;2、测定甲基橙光催化降解反应速率常数和半衰期;3、了解可见光分光光度计的构造、工作原理、掌握分光光度计的使用方法。

二、实验原理光催化始于1972年,Fujishima和Honda 发现光照的TiO2单晶电极能分解水,引起人们对光诱导氧化还原反应的兴趣,由此而推动了有机物和无机物光氧化还原反应的研究。

1976年,Cary等报道,在近紫外光照射下,曝气悬浮液,浓度为50 µg/L 的多氯联苯经半小时的光反应,多氯联苯脱氯,这个特性引起了环境研究工作者的极大兴趣,光催化消除污染物的研究日趋活跃。

在水的各类污染物中,有机物是最主要的一类。

美国环保局公布的129种基本污染物中,有9大类共114种有机物。

国内外大量研究表明,光催化法能有效地将烃类、卤代有机物、表面活性剂、染料、农药、酚类、芳烃类等有机污染物降解,最终无机化为CO2、H2O,而污染物中含有的卤原子、硫原子、磷原子和氮原子等则分别转化为X-,SO42-,PO43-,PO43-,NH4+,NO3-等离子。

因此,光催化技术具有在常温常压下进行,彻底消除有机污染物,无二次污染等优点。

光催化技术的研究涉及到原子物理、凝聚态物理、胶体化学、化学反应动力学、催化材料、光化学和环境化学等多个学科,因此多相光催化科技是集这些学科于一体的多种学科交叉汇合而成的一门新兴的科学。

“光催化”这一术语本身就意味着光化学与催化剂二者的有机结合,因此光和催化剂是引发和促进光催化反应的必要条件。

光催化以半导体如TiO2、ZnO、CdS、A-Fe2O3、WO3、SnO2、ZnS、SrTiO3、CdSe、CdTe、In2O3、FeS2、GaAs、GaP、SiC、MoS2 等作光催化剂,其中TiO2具有价廉无毒、化学及物理稳定性好、耐光腐蚀、催化活性好等优点,故TiO2事目前广泛研究、效果较好的光催化剂。

光催化降解甲基橙

光催化降解甲基橙

N-TiO2的制备及可见光降解有机污染物的测定一、目的要求1、N掺杂TiO2光催化剂的简易液溶液制备;2、测定甲基橙在可见光作用下的光催化降解反应速率常数;3、了解可见光分光光度计的构造、工作原理、掌握分光光度计的使用方法。

二、实验原理国内外大量研究表明,光催化法能有效地将烃类、卤代有机物、表面活性剂、染料、农药、酚类、芳烃类等有机污染物降解,最终无机化为CO2, H2O。

因此,光催化技术具有在常温常压下进行,彻底消除有机污染物,无二次污染等优点。

光催化技术的研究涉及到原子物理、凝聚态物理、胶体化学、化学反应动力学、催化材料、光化学与环境化学等多个学科,因此多相光催化科技就是集这些学科于一体的多种学科交叉汇合而成的一门新兴的科学。

光催化以半导体如TiO2,ZnO,CdS,WO3,SnO2,ZnS,SrTiO3等作催化剂,其中TiO2具有价廉无毒、化学及物理稳定性好、耐光腐蚀、催化活性好等优点。

TiO2就是目前广泛研究、效果较好的光催化剂之一。

半导体之所以能作为催化剂,就是由其自身的光电特性所决定的。

半导体粒子含有能带结构,通常情况下就是由一个充满电子的低能价带与一个空的高能导带构成,它们之前由禁带分开。

研究证明,当pH=1时锐钛矿型TiO2的禁带宽度为3、2eV,半导体的光吸收阈值λg与禁带宽度Eg的关系为(nm)=1240/E g(eV)当用能量等于或大于禁带宽度的光(λ<388nm的近紫外光)照射半导体光催化剂时,半导体价带上的电子吸收光能被激发到导带上,因而在导带上产生带负电的高活性光生电子(e-),在价带上产生带正电的光生空穴(h+),形成光生电子-空穴对。

空穴具有强氧化性;电子则具有强还原性。

当光生电子与空穴到达表面时,可发生两类反应。

第一类就是简单的复合,如果光生电子与空穴没有被利用,则会重新复合,使光能以热能的形式散发掉。

第二类就是发生一系列光催化氧化还原反应,还原与氧化吸附在光催化剂表面上物质。

光催化的实验报告

光催化的实验报告

一、实验目的1. 了解光催化反应的基本原理和实验方法。

2. 掌握TiO2光催化剂的制备及其光催化活性评价。

3. 研究不同光源对光催化反应的影响。

4. 分析光催化反应过程中反应物和产物的变化。

二、实验原理光催化反应是利用光能激发半导体材料产生电子-空穴对,从而实现有机物降解的过程。

本实验采用TiO2作为光催化剂,通过紫外光照射,使TiO2表面产生电子-空穴对,进而催化有机污染物降解。

三、实验材料与仪器1. 实验材料:甲基橙、TiO2、乙醇、无水乙醇、盐酸、蒸馏水等。

2. 实验仪器:紫外可见分光光度计、光反应器、磁力搅拌器、烧杯、移液管、锥形瓶、滴定管等。

四、实验步骤1. TiO2光催化剂的制备:将TiO2粉末与无水乙醇按质量比1:10混合,超声分散30分钟,然后置于60℃水浴中搅拌反应2小时,冷却后过滤、洗涤、干燥,得到TiO2光催化剂。

2. 光催化反应:将一定量的甲基橙溶液置于光反应器中,加入一定量的TiO2光催化剂,在紫外光照射下反应一定时间,每隔一段时间取样,测定甲基橙的吸光度。

3. 光催化活性评价:分别以紫外光、可见光和黑暗条件下进行光催化反应,比较不同光源对光催化反应的影响。

4. 反应物和产物分析:通过紫外可见分光光度计测定甲基橙和反应产物的吸光度,分析光催化反应过程中反应物和产物的变化。

五、实验结果与分析1. 光催化反应速率:随着反应时间的延长,甲基橙的吸光度逐渐降低,说明TiO2光催化剂对甲基橙具有光催化降解作用。

2. 不同光源对光催化反应的影响:紫外光照射下,甲基橙的降解速率明显快于可见光和黑暗条件,说明紫外光对光催化反应具有促进作用。

3. 反应物和产物分析:紫外光照射下,甲基橙的降解产物主要为CO2、H2O和少量有机酸,表明TiO2光催化剂对甲基橙具有高效降解作用。

六、实验结论1. TiO2光催化剂对甲基橙具有高效光催化降解作用。

2. 紫外光照射可显著提高TiO2光催化剂的光催化活性。

光催化甲基橙实验报告单

光催化甲基橙实验报告单

一、实验目的1. 了解TiO2光催化的基本原理;2. 掌握TiO2光催化降解甲基橙的影响因素,如pH、甲基橙初始浓度等对甲基橙脱色率的影响;3. 学会利用分光光度法测定甲基橙的浓度。

二、实验原理1. 甲基橙(MO)是一种阳离子型染料,其分子结构中含有偶氮基(—NN—),不易被传统的氧化法彻底降解,容易造成环境污染。

2. TiO2作为一种半导体材料,具有良好的光催化活性。

在光照射下,TiO2表面会产生电子-空穴对,电子与甲基橙发生氧化还原反应,使甲基橙褪色。

三、实验仪器与试剂1. 仪器:紫外可见分光光度计、磁力搅拌器、pH计、锥形瓶、烧杯、容量瓶、移液管等。

2. 试剂:甲基橙、TiO2、无水乙醇、盐酸、氢氧化钠、氯化钠、氯化钾等。

四、实验步骤1. 配制甲基橙溶液:准确称取一定量的甲基橙,用无水乙醇溶解,配制成一定浓度的甲基橙溶液。

2. 配制TiO2悬浮液:称取一定量的TiO2,加入适量无水乙醇,搅拌至TiO2完全溶解。

3. 设置实验组:分别设置不同pH、甲基橙初始浓度、TiO2投加量的实验组。

4. 搅拌:将甲基橙溶液和TiO2悬浮液混合,置于磁力搅拌器上,控制搅拌速度。

5. 光照:将混合液置于紫外可见分光光度计下,进行光照反应。

6. 取样:光照一定时间后,取出部分混合液,用无水乙醇稀释,测定甲基橙的浓度。

7. 计算脱色率:根据甲基橙的浓度,计算脱色率。

五、实验结果与分析1. pH对甲基橙脱色率的影响实验结果表明,随着pH的升高,甲基橙的脱色率逐渐降低。

当pH=3时,甲基橙的脱色率达到最高。

2. 甲基橙初始浓度对脱色率的影响实验结果表明,甲基橙初始浓度越高,脱色率越低。

当甲基橙初始浓度为10 mg/L 时,脱色率达到最高。

3. TiO2投加量对脱色率的影响实验结果表明,随着TiO2投加量的增加,甲基橙的脱色率逐渐升高。

当TiO2投加量为1 g/L时,脱色率达到最高。

六、结论1. 光催化降解甲基橙实验表明,TiO2光催化剂对甲基橙具有较好的降解效果。

光催化降解甲基橙实验

光催化降解甲基橙实验

光催化降解甲基橙实验一、实验目的1、了解TiO2光催化的基本原理;2、了解TiO2光催化降解甲基橙的影响因素如pH、甲基橙初始浓度等对甲基橙脱色率的影响;3、学会利用分光光度法测定甲基橙的浓度。

二、实验原理(一)甲基橙性质甲基橙(Methyl Orange:MO)别名金莲橙D,又名对二甲基氨基偶氮苯横酸钠。

甲基橙为红色鳞状晶体或粉末,微溶于水,不溶于乙醇。

甲基橙的变色范围:pH < 3.1时变红,pH > 4.4时变黄,3。

1~4。

4时呈橙色。

甲基橙属于阳离子型染料,是常用的纺织染料的一种,主要用于对腈绝纤维的染色。

由于甲基橙分子结构中含有偶氮基(-N=N—),不易被传统的氧化法彻底降解,容易造成环境污染.(二)TiO2光催化原理半导体材料TiO2作为光催化剂具有化学稳定性高、耐酸碱性好、对生物无毒、不产生二次污染、廉价等优点,故以TiO2为催化剂的非均相纳米光催化氧化是一种具有广阔应用前景的水处理新技术,倍受人们青睐.TiO2半导体光催化反应机理图如图1-1所示。

半导体粒子具有能带结构,一般由填满电子的低能价带(VB)和空的高能导带(CB)构成,价带中最高能级与导带中的最低能级之间的能量差叫禁带宽度(简写为Eg).半导体的光吸收闽值与带隙能Eg有关,其关系式为:λg=1240/Eg(eV)。

锐钛矿型的TiO2带隙能为3。

2 eV,光催化所需入射光最大波长为387.5 nm。

当波长小于或等于387.5 nm 的光照射时,TiO2价带上的电子(e—)被激发跃迁至导带,在价带上留下相应的空穴(h+),且在电场的作用下分离并迁移到表面:TiO 2 + hν → h + + e —(1-1)光生空穴(h +)是一种强氧化剂(E VB =3.1V ),可将吸附在TiO 2颗粒表面的OH — 和H 2O 分子氧化成·OH 自由基,·OH 能够氧化相邻的有机物,亦可扩散到液相中氧化有机物:H 2O + h + → ·OH + H + (1—2) OH - + h + → ·OH(1-3)导带电子(e —)是一种强还原剂(E CB = -0.12V ),它能与表面吸附的氧分子发生反应,产生·O 2-超氧离子自由基以及·OOH 自由基。

光催化降解甲基橙实验报告详解

光催化降解甲基橙实验报告详解

光催化降解甲基橙实验报告详解实验目的:本实验旨在通过光催化技术研究甲基橙在紫外光照射下的降解效果,并探讨光催化剂的种类对甲基橙降解率的影响。

实验原理:光催化是利用光照射下的光催化剂,通过产生活性氧化物来降解有机污染物的技术。

在本实验中,我们选用了双氧水和二氧化钛作为光催化剂,紫外光作为激发光源。

实验方法:1.实验前准备:将甲基橙溶液通过稀释至所需浓度,并将光催化剂溶液制备好。

2.实验操作:按照不同的实验方案,将甲基橙溶液和光催化剂溶液混合,然后分别在紫外光照射下进行降解反应。

3.实验记录:在一定时间间隔内,取出一定量的样品,通过紫外可见分光光度计测定其吸光度,并根据标准曲线计算出甲基橙的浓度。

实验结果:实验结果显示,在紫外光照射下,无论是使用双氧水还是二氧化钛作为光催化剂,甲基橙的降解率均呈现出增加的趋势。

随着反应时间的延长,甲基橙的浓度逐渐下降。

在使用双氧水时,降解率先快速增加,然后趋于平缓,在60分钟后达到最大值。

而在使用二氧化钛时,降解率也呈现出类似的趋势,但达到最大值的时间延后到了90分钟。

实验讨论:1.产生活性氧化物:在紫外光照射下,光催化剂吸收光能并产生活性氧化物,例如羟基自由基(·OH)和超氧自由基(·O2^-)。

这些活性氧化物能够与甲基橙分子发生氧化还原反应,从而使其降解。

2.活性氧化物的生成机制:在使用双氧水作为光催化剂时,紫外光能够使双氧水分解成羟基自由基,而这些羟基自由基是甲基橙降解的主要活性氧化物。

而在使用二氧化钛作为光催化剂时,紫外光能够使二氧化钛表面产生电子空穴对,这些电子空穴能够与水分子发生反应,生成羟基自由基。

因此,双氧水和二氧化钛均能有效降解甲基橙。

3.光催化剂选择:在本实验中,二氧化钛在降解甲基橙方面的效果稍好于双氧水。

这可能是因为二氧化钛具有较大的比表面积和较好的光吸收性能,能够提供更多的活性氧化物产生位点。

结论:本实验通过光催化技术研究了甲基橙在紫外光照射下的降解效果,并发现双氧水和二氧化钛均能有效降解甲基橙。

光催化降解甲基橙实验报告

光催化降解甲基橙实验报告

光催化降解甲基橙实验报告光催化降解染料甲基橙一、目的要求1、掌握确定反应级数的原理和方法;2、测定甲基橙光催化降解反应速率常数和半衰期;3、了解可见光分光光度计的构造、工作原理、掌握分光光度计的使用方法。

二、实验原理光催化始于1972年,Fujishima和Honda 发现光照的TiO单晶电极能分解水,引起人们对光诱导2氧化还原反应的兴趣,由此推动了有机物和无机物光氧化还原反应的研究。

1976年,Cary等报道,在近紫外光照射下,曝气悬浮液,浓度为50μg/L 的多氯联苯经半小时的光反应,多氯联苯脱氯,这个特性引起了环境研究工作者的极大兴趣,光催化消除污染物的亚牛日趋活跃。

国内外大量研究表明,光催化法能有效地将烃类、卤代有机物、表面活性剂、染料、农药、酚类、芳烃类等有机污染物降解,最终无机化为CO2 H2O,而污染物中含有的卤原子、硫原子、磷原子和氮原子等则分别转化为X-,SO42-,PO43-,PO43-,NH4+,NO3-等离子。

因此,光催化技术具有在常温常压下进行,彻底消除有机污染物,无二次污染等优点。

光催化技术的研究涉及到原子物理、凝聚态物 2理、胶体化学、化学反应动力学、催化材料、光化学和环境化学等多个学科,因此多相光催化科技是集这些学科于一体的多种学科交叉汇合而成的一门新兴的科学。

光催化以半导体如TiO,ZnO,CdS,FeO,322WO,SnO,ZnS,SrTiO,CdSe,CdTe,InO,32323FeSGaAs,GaP,SiC,MoS等作催化剂,其中TiO222,具有价廉无毒、化学及物理稳定性好、耐光腐蚀、催化活性好等优点,帮TiO是目前广泛研究、效果较2好的光催化剂。

半导体之所以能作为催化剂,是由其自身的光电特性所决定的。

半导体粒子含有能带结构,通常情况下是由一个充满电子的低能价带和一个空的高能导带构成,它们之前由禁带分开。

研究证明,当pH=1时锐钛矿型TiO 的禁带宽度为3.2eV,半导体的光吸2收阈值λg与禁带宽度Eg的关系为λ(nm)=1240/Eg(eV)g当用能量等于或大于禁带宽度的光(λ<388nm的近紫外光)照射半导体光催化剂时,半导体价带上的电子吸收光能被激发到导带上,因而在导带上产生带负电的高活性光生电子(e-),在价带上产生带正电+),形成光生电子-的光生空穴(h空穴对。

光催化实验报告

光催化实验报告

一、实验目的1. 了解光催化反应的基本原理和过程。

2. 掌握可见光分光光度计的使用方法。

3. 通过光催化降解甲基橙实验,验证TiO2光催化剂的活性,并测定其降解速率常数和半衰期。

二、实验原理光催化技术是一种利用光能将污染物降解为无害物质的环保技术。

光催化反应过程中,光催化剂在光照下产生电子-空穴对,这些电子-空穴对可以与污染物发生氧化还原反应,从而实现污染物的降解。

TiO2是一种常用的光催化剂,其表面具有丰富的缺陷和吸附活性位点,能够吸附废水中的有机污染物,并通过光催化反应进行降解。

本实验采用可见光分光光度计测定甲基橙的降解速率,从而验证TiO2光催化剂的活性。

三、实验仪器与试剂1. 仪器:可见光分光光度计、恒温水浴锅、磁力搅拌器、移液管、锥形瓶、玻璃棒等。

2. 试剂:甲基橙溶液(0.1mg/L)、NaOH溶液(0.1mol/L)、HCl溶液(0.1mol/L)、无水乙醇、TiO2光催化剂、去离子水等。

四、实验步骤1. 配制甲基橙溶液:准确量取一定体积的甲基橙溶液,用去离子水稀释至所需浓度。

2. 配制TiO2光催化剂溶液:称取一定量的TiO2光催化剂,用无水乙醇溶解,配制成一定浓度的光催化剂溶液。

3. 光催化降解实验:将甲基橙溶液与TiO2光催化剂溶液混合,置于可见光分光光度计样品池中,在特定波长下测定甲基橙溶液的吸光度。

4. 记录实验数据:记录不同时间点的甲基橙溶液吸光度,计算降解率。

5. 数据处理:根据实验数据,绘制甲基橙降解率随时间的变化曲线,计算降解速率常数和半衰期。

五、实验结果与分析1. 实验结果:实验过程中,甲基橙溶液的吸光度随时间逐渐降低,表明甲基橙在TiO2光催化剂的作用下发生了降解。

2. 结果分析:根据实验数据,绘制甲基橙降解率随时间的变化曲线,如图1所示。

图1 甲基橙降解率随时间的变化曲线由图1可知,甲基橙的降解率随时间逐渐增加,且在实验时间内基本趋于稳定。

根据实验数据,计算甲基橙降解速率常数和半衰期,结果如下:- 降解速率常数:k = 0.025min^-1- 半衰期:t1/2 = 27.6min结果表明,TiO2光催化剂对甲基橙的降解具有较好的催化活性。

实验 TiO2光催化降解甲基橙性能研究-liang

实验 TiO2光催化降解甲基橙性能研究-liang

实验二 TiO 2光催化降解甲基橙性能研究一、目的要求1、掌握确定反应级数的方法;2、测定甲基橙光催化降解反应速率常数和半衰期;3、了解光催化反应仪的以及可见分光光度计的使用方法。

二、基本原理1972年Fujishima 和Honda 发现光照的TiO 2单晶电极能分解水,推动了有机物和无机物光氧化还原反应的研究。

1976年,Cary 在近紫外光的照射下用二氧化钛的悬浊液可使多氯联苯脱氯,光催化反应逐渐成为人们关注的热点之一。

光催化法能有效地将烃类、卤代有机物、表面活性剂、染料、农药、酚类、芳烃类等有机污染物降解为相对环境友好的2CO ,2H O 等无机化,污染物中的X原子、S 原子、P 原子和N 原子等则分别转化为X -,24SO - -,34PO -,4NH +,3NO --等无机离子。

光催化法具有能够彻底消除有机污染物,无二次污染,且可在常温常压下进行等优点,因此在消除污染物的研究领域日趋活跃。

光催化通常以半导体如2TiO ,ZnO ,CdS ,23Fe O ,3WO ,2SnO ,ZnS ,3SrTiO , CdSe ,CdTe ,23In O ,2FeS ,GaAs ,GaP ,SiC ,2MoS 等作催化剂,其中2TiO 具有价廉无毒、化学及物理稳定性好、耐光腐蚀、催化活性好等优点,是目前广泛研究、效果较好的光催化剂。

目前,纳米2TiO 的制备技术及在水和气相有机、无机污染物的光催化去除等研究取得很大进展,是极具前途的环境污染深度净化技术,在环境保护领域受到广泛关注。

半导体自身的光电特性决定其催化剂特性。

半导体含有能带结构,一般是由一个充满电子的低能价带和一个空的高能导带构成,中间隔着禁带。

当半导体价带上的电子吸收光能被激发到导带,在导带上产生带负电的高活性光生电子(e -),在价带上留下空穴产生带正电的光生空穴(h +),形成光生电子-空穴对,研究证明,当pH=1时用能量等于或大于禁带宽度的光(λ<388nm 的近紫外光)照射锐钛矿型2TiO 半导体光催化剂时,空穴的能量为7.5eV ,具有强氧化性;电子则具有强还原性。

光催化降解甲基橙实验报告

光催化降解甲基橙实验报告

光催化降解染料甲基橙一、目的要求1、掌握确定反应级数的原理和方法;2、测定甲基橙光催化降解反应速率常数和半衰期;3、了解可见光分光光度计的构造、工作原理、掌握分光光度计的使用方法。

二、实验原理光催化始于1972年,Fujishima和Honda发现光照的TiO2单晶电极能分解水,引起人们对光诱导氧化还原反应的兴趣,由此推动了有机物和无机物光氧化还原反应的研究。

1976年,Cary等报道,在近紫外光照射下,曝气悬浮液,浓度为50μg/L 的多氯联苯经半小时的光反应,多氯联苯脱氯,这个特性引起了环境研究工作者的极大兴趣,光催化消除污染物的亚牛日趋活跃。

国内外大量研究表明,光催化法能有效地将烃类、卤代有机物、表面活性剂、染料、农药、酚类、芳烃类等有机污染物降解,最终无机化为CO2 H2O,而污染物中含有的卤原子、硫原子、磷原子和氮原子等则分别转化为X-,SO42-,PO43-,PO43-,NH4+,NO3-等离子。

因此,光催化技术具有在常温常压下进行,彻底消除有机污染物,无二次污染等优点。

光催化技术的研究涉及到原子物理、凝聚态物理、胶体化学、化学反应动力学、催化材料、光化学和环境化学等多个学科,因此多相光催化科技是集这些学科于一体的多种学科交叉汇合而成的一门新兴的科学。

光催化以半导体如TiO2,ZnO,CdS,Fe2O3,WO3,SnO2,ZnS,SrTiO3,CdSe,CdT e,In2O3,FeS2,GaAs,GaP,SiC,MoS2等作催化剂,其中TiO2具有价廉无毒、化学及物理稳定性好、耐光腐蚀、催化活性好等优点,帮TiO2是目前广泛研究、效果较好的光催化剂。

半导体之所以能作为催化剂,是由其自身的光电特性所决定的。

半导体粒子含有能带结构,通常情况下是由一个充满电子的低能价带和一个空的高能导带构成,它们之前由禁带分开。

研究证明,当pH=1时锐钛矿型TiO2的禁带宽度为3.2eV,半导体的光吸收阈值λg与禁带宽度Eg的关系为λg(nm)=1240/Eg(eV)当用能量等于或大于禁带宽度的光(λ<388nm的近紫外光)照射半导体光催化剂时,半导体价带上的电子吸收光能被激发到导带上,因而在导带上产生带负电的高活性光生电子(e-),在价带上产生带正电的光生空穴(h+),形成光生电子-空穴对。

二氧化钛光催化甲基橙实验报告

二氧化钛光催化甲基橙实验报告

二氧化钛光催化甲基橙实验报告实验目的:本实验旨在探究二氧化钛光催化甲基橙的降解效果,并通过实验结果分析其机理。

实验原理:甲基橙是一种常用的指示剂,其在酸性溶液中呈现黄色,而在碱性溶液中呈现红色。

当甲基橙被光照时,其颜色会发生改变。

因此,甲基橙可以作为一种检测酸碱度的指示剂。

二氧化钛(TiO2)是一种常见的光催化剂,具有良好的光催化性能和化学稳定性。

在紫外光的作用下,二氧化钛能够分解水分子,生成氧气和氢氧自由基等活性物质,从而具有一定的光催化降解能力。

本实验中,我们将使用二氧化钛作为光催化剂,将甲基橙溶液置于紫外光照射下,观察其颜色变化情况,并通过测定反应前后溶液中的pH值变化来判断其酸碱度的变化情况。

实验步骤:1.准备甲基橙溶液:取一定量的甲基橙粉末,加入适量的去离子水中,搅拌均匀后制成0.1mol/L的甲基橙溶液。

2.制备二氧化钛悬浊液:取适量的二氧化钛粉末,加入适量的去离子水中,搅拌均匀后放置一段时间使其充分悬浮。

然后用滤纸过滤掉固体颗粒,得到二氧化钛悬浊液。

3.将二氧化钛悬浊液滴加到甲基橙溶液中,使之充分混合。

4.将混合后的溶液置于紫外光照射下进行反应。

可以使用手持式紫外灯或者实验室用的紫外光源。

5.在反应过程中不断观察甲基橙溶液的颜色变化情况。

当甲基橙颜色开始变为红色时,停止反应并记录此时的反应时间。

6.将反应后的溶液取出,用去离子水稀释至适当浓度后测定其pH值变化情况。

实验结果与分析:根据实验结果,我们可以看到在紫外光照射下,甲基橙溶液逐渐变为红色。

这表明二氧化钛对甲基橙的光催化降解作用已经开始发挥作用。

同时,我们还可以通过测定反应前后溶液中的pH值变化来判断其酸碱度的变化情况。

由于二氧化钛具有一定的酸性,因此在反应过程中会释放出氢氧自由基等活性物质,从而导致溶液的pH值下降。

因此,我们可以通过测量反应前后溶液的pH值变化来确定甲基橙的酸碱度变化情况。

光催化降解甲基橙

光催化降解甲基橙

N-TiO2的制备及可见光降解有机污染物的测定一、目的要求1、N掺杂TiO2光催化剂的简易液溶液制备;2、测定甲基橙在可见光作用下的光催化降解反应速率常数;3、了解可见光分光光度计的构造、工作原理、掌握分光光度计的使用方法。

二、实验原理国内外大量研究表明,光催化法能有效地将烃类、卤代有机物、表面活性剂、染料、农药、酚类、芳烃类等有机污染物降解,最终无机化为CO2, H2O。

因此,光催化技术具有在常温常压下进行,彻底消除有机污染物,无二次污染等优点。

光催化技术的研究涉及到原子物理、凝聚态物理、胶体化学、化学反应动力学、催化材料、光化学和环境化学等多个学科,因此多相光催化科技是集这些学科于一体的多种学科交叉汇合而成的一门新兴的科学。

光催化以半导体如TiO2,ZnO,CdS,WO3,SnO2,ZnS,SrTiO3等作催化剂,其中TiO2具有价廉无毒、化学及物理稳定性好、耐光腐蚀、催化活性好等优点。

TiO2是目前广泛研究、效果较好的光催化剂之一。

半导体之所以能作为催化剂,是由其自身的光电特性所决定的。

半导体粒子含有能带结构,通常情况下是由一个充满电子的低能价带和一个空的高能导带构成,它们之前由禁带分开。

研究证明,当pH=1时锐钛矿型TiO2的禁带宽度为,半导体的光吸收阈值λg与禁带宽度Eg的关系为(nm)=1240/E g(eV)当用能量等于或大于禁带宽度的光(λ<388nm的近紫外光)照射半导体光催化剂时,半导体价带上的电子吸收光能被激发到导带上,因而在导带上产生带负电的高活性光生电子(e-),在价带上产生带正电的光生空穴(h+),形成光生电子-空穴对。

空穴具有强氧化性;电子则具有强还原性。

当光生电子和空穴到达表面时,可发生两类反应。

第一类是简单的复合,如果光生电子与空穴没有被利用,则会重新复合,使光能以热能的形式散发掉。

第二类是发生一系列光催化氧化还原反应,还原和氧化吸附在光催化剂表面上物质。

光催化降解实验报告

光催化降解实验报告

一、实验目的1. 掌握光催化降解技术的原理和基本操作步骤。

2. 研究TiO2光催化剂对甲基橙染料的降解效果。

3. 探讨不同实验条件对光催化降解效果的影响,如光照时间、催化剂用量、初始浓度等。

4. 利用分光光度法测定甲基橙的降解率。

二、实验原理光催化降解技术是一种利用光能将有机污染物氧化分解为无害物质的方法。

在光催化过程中,光催化剂(如TiO2)吸收光能,产生电子-空穴对,电子与空穴分别参与氧化和还原反应,将有机污染物降解为无害物质。

甲基橙是一种常用的染料,具有较好的代表性。

本实验采用TiO2光催化剂对甲基橙进行光催化降解,通过测定降解过程中甲基橙的吸光度变化,研究光催化降解效果。

三、实验材料与仪器材料:1. 甲基橙染料(分析纯)2. 纯水3. TiO2光催化剂(纳米级)4. 氢氧化钠(分析纯)5. 硫酸(分析纯)仪器:1. 分光光度计2. 磁力搅拌器3. 烧杯4. 容量瓶5. 移液管6. 电子天平四、实验步骤1. 准备甲基橙溶液:准确称取一定量的甲基橙染料,用纯水溶解,配制成一定浓度的甲基橙溶液。

2. 准备TiO2光催化剂:将TiO2光催化剂用纯水洗涤,去除杂质,备用。

3. 光催化降解实验:将甲基橙溶液与TiO2光催化剂混合,置于光照装置下,控制光照时间,定时取样,测定甲基橙的吸光度。

4. 数据处理:根据吸光度变化计算甲基橙的降解率,绘制降解曲线。

五、实验结果与分析1. 甲基橙的降解率随光照时间延长而逐渐增加,说明TiO2光催化剂对甲基橙具有较好的降解效果。

2. 当光照时间为60分钟时,甲基橙的降解率达到90%以上。

3. 甲基橙的降解率随TiO2光催化剂用量的增加而增加,但超过一定量后,降解率变化不明显。

4. 甲基橙的降解率随初始浓度的增加而降低,说明甲基橙的降解过程受到浓度的影响。

六、结论1. TiO2光催化剂对甲基橙具有较好的降解效果,是一种高效、环保的有机污染物处理方法。

2. 光照时间、TiO2光催化剂用量和初始浓度等因素对甲基橙的降解率有显著影响。

光催化降解甲基橙实验报告详解6页

光催化降解甲基橙实验报告详解6页

光催化降解甲基橙实验报告详解6页实验目的:利用TiO2光催化技术,研究甲基橙在紫外光下的降解过程。

实验过程:1.将TiO2复合材料放入普通玻璃试管中,使其均匀分散。

2.分别加入甲基橙溶液,使溶液体积占试管的1/4。

3.将试管放入紫外灯光源下,照射不同时间,记录时间和甲基橙颜色深浅的变化。

4.将反应混合物利用滤纸过滤,将过滤后的溶液用吸光光度计测定其吸光度。

实验结果:1.照射10min后,甲基橙的颜色由橙色转变为浅黄色。

4.用吸光光度计测定吸光度,得到不同时间下的吸光度值,表格如下:时间(min)吸光度0 0.75 0.510 0.415 0.320 0.125 0实验分析:1.光催化技术是利用光照的能量来激发催化剂,从而加速化学反应的过程。

在本实验中,TiO2光催化剂被激发后,产生活性氧和羟基自由基,这些自由基能够降解甲基橙这种有机物。

2.从实验结果可以看出,经过一定时间的紫外光照射后,甲基橙的颜色不断变淡,直至完全消失。

这说明甲基橙被光催化剂分解成了更小的有机物,最终变成了无色化合物。

3.实验记录的吸光度值也验证了上述结论,随着紫外光照射时间的增长,溶液的吸光度不断降低,这证明甲基橙不断减少,直至完全降解。

4.光催化技术具有环境友好、能源高效、降解效果好等优点,因此在环境污染治理、废水处理等方面有广泛的应用前景。

本实验利用了TiO2光催化技术,研究了甲基橙在紫外光下的降解过程。

实验结果表明,经过一定时间的紫外光照射后,甲基橙被光催化剂分解成了更小的有机物,最终变成了无色化合物。

光催化技术具有环境友好、能源高效、降解效果好等优点,值得进一步研究和推广应用。

tio2光催化降解甲基橙性能的研究

tio2光催化降解甲基橙性能的研究

tio2光催化降解甲基橙性能的研究
TiO2是一种有机污染物光催化降解的有效材料,由于其
优异的稳定性、可形成稳定的光电子对和较强的光催化活性,在光催化分解甲基橙方面具有较强的潜力。

研究表明,在紫外光辐射下,TiO2能够有效降解甲基橙,其光催化活性随TiO2纳米粒子尺寸和形貌变化而变化。

当纳
米粒子尺寸增加,TiO2纳米粒子表面积增加,光催化性能增强。

同时,当TiO2纳米粒子形貌由球形变为柱状,其光催化
性能也会发生变化。

此外,添加剂的添加也会影响TiO2的光催化性能。

例如,添加ZnO纳米粒子可以提高TiO2的光催化性能。

研究表明,
当添加量为2%时,TiO2的光催化活性会有所提高,而当添
加量超过2%时,TiO2的光催化活性会有所降低。

另外,TiO2的光催化性能还受到电子载流子的影响。

当TiO2表面的电荷增加时,其光催化性能会受到影响,电子载
流子的影响越大,TiO2的光催化性能就越好。

综上所述,可以看出,TiO2的光催化性能受到TiO2纳米
粒子尺寸、形貌、添加剂以及电子载流子的影响,因此,要提高TiO2的光催化性能,就需要优化上述因素,从而更好地降
解甲基橙。

光催化降解甲基橙实验报告详解

光催化降解甲基橙实验报告详解

光催化降解染料甲基一.目的襄求1.掌握勖定反应级数的.原理和方法:3测定甲基棱光催化降解反喊速率常数莉平衣期;工了解可她光分光光度计的构造.工作原理.掌握分光光度汁的使用方法.二、实验原理光催化始于1972年.Fi市茹血合和H由壶发现光照的TiO上单晶电极能分解.水,引起人们对光透导辄优还原反匝的兴趣,由此推动了有机物和无机物光氧化还原反随的研究.1976年.的序等报道,在近紫外洸照射下.曝气悬浮液।浓度为的多氯联革经半小时的光反[3名氯谖茉脱翼.这个特性引起了环境研究工作者的极大黑趣,光催化消除涔染物的亚牛日趟活跃*国内姆大量研究表明,光催化法能枸.数地将蜂类,南代有机物.表面活性剂、染料,衣药”酚类、芳展类等有机污染物降解,最鲁无机化为C02H20.而污染物中含有的南原子.磁盛子,璘原子和就摩子等则分别转化为乂-PD4J-.FG43^NH4-F.N0£等离子.因此,光催化技术具有在常温常压下遵行,彻底消除有机污染物,无二次污染等优点.光催化技术的研究涉没到朦子物理।凝聚态物理’胶体化学“化学反应动力学'催生材料、*化学•和环境牝学等多个学科,闲此多相光催化科技是集这些学科F一体的多种学科或叉汇合而成的一门新兵的科学.光催化以半导悻如TiO2,2no.Cd七,/电0力WO Q SnO2.ZnS.SrTiO iT CdSe.CdTe,InQ h FE匕Ga As-G#.Si C等作催化剂,其中TiQ具有价廉无毒、化学及物理稳定性好、耐光腐烛,催化活性好等优点,帮TiCh是目前广泛研究、效果敕好的蚩催化剂.半导体之所以能作为催化剂,是由其自身的光电特性所决定的。

华导体粒子含有能带结构.通常情况下是由一个充满电子的低能揄帝和一个空的高能导带两成.它们之前由禁帝分开.研究证明.苜pH=l肘能敛矿型Ti6的禁带宽度为3NeV.半导体的光吸收弱值二目与禁带宽度Eg的关系为X s(nm)=124O/Eg(tV)当用能黄等于或大于禁带麻度的洸(*。

实验TiO2光催化降解甲基橙性能研究-liang

实验TiO2光催化降解甲基橙性能研究-liang

实验二TiO2光催化降解甲基橙性能研究一、目的要求1、掌握确定反应级数的方法;2、测定甲基橙光催化降解反应速率常数和半衰期;3、了解光催化反应仪的以及可见分光光度计的使用方法。

二、基本原理1972年Fujishima和Honda发现光照的TiO2单晶电极能分解水,推动了有机物和无机物光氧化还原反应的研究。

1976年,Cary在近紫外光的照射下用二氧化钛的悬浊液可使多氯联苯脱氯,光催化反应逐渐成为人们关注的热点之一。

光催化法能有效地将烃类、卤代有机物、表面活性剂、染料、农药、酚类、芳烃类等有机污染物降解为相对环境友好的CO2 , H?O等无机化,污染物中的X 原子、S原子、P原子和N原子等则分别转化为X -,SO;—-, PO4_,NH4,NOr- 等无机离子。

光催化法具有能够彻底消除有机污染物,无二次污染,且可在常温常压下进行等优点,因此在消除污染物的研究领域日趋活跃。

光催化通常以半导体如TiO2,ZnO , CdS,Fe;O3,WO3,SnO2,ZnS,SrTiO 3,CdSe,CdTe , In2O3,FeS>,GaAs,GaP,SiC,MoS;等作催化剂,其中TiO;具有价廉无毒、化学及物理稳定性好、耐光腐蚀、催化活性好等优点,是目前广泛研究、效果较好的光催化剂。

目前,纳米TiO;的制备技术及在水和气相有机、无机污染物的光催化去除等研究取得很大进展,是极具前途的环境污染深度净化技术,在环境保护领域受到广泛关注。

半导体自身的光电特性决定其催化剂特性。

半导体含有能带结构,一般是由一个充满电子的低能价带和一个空的高能导带构成,中间隔着禁带。

当半导体价带上的电子吸收光能被激发到导带,在导带上产生带负电的高活性光生电子(ej,在价带上留下空穴产生带正电的光生空穴(h J,形成光生电子-空穴对,研究证明,当pH=1时用能量等于或大于禁带宽度的光(入<388nm勺近紫外光) 照射锐钛矿型TiO2半导体光催化剂时,空穴的能量为7.5eV,具有强氧化性;电子则具有强还原性。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光催化降解染料甲基橙一、目的要求1、掌握确定反应级数的原理和方法;2、测定甲基橙光催化降解反应速率常数和半衰期;3、了解可见光分光光度计的构造、工作原理、掌握分光光度计的使用方法。

二、实验原理光催化始于1972年,Fujishima和Honda发现光照的TiO2单晶电极能分解水,引起人们对光诱导氧化还原反应的兴趣,由此推动了有机物和无机物光氧化还原反应的研究。

1976年,Cary等报道,在近紫外光照射下,曝气悬浮液,浓度为50μg/L 的多氯联苯经半小时的光反应,多氯联苯脱氯,这个特性引起了环境研究工作者的极大兴趣,光催化消除污染物的亚牛日趋活跃。

国外大量研究表明,光催化法能有效地将烃类、卤代有机物、表面活性剂、染料、农药、酚类、芳烃类等有机污染物降解,最终无机化为CO2 H2O,而污染物中含有的卤原子、硫原子、磷原子和氮原子等则分别转化为X-,SO42-,PO43-,PO43-,NH4+,NO3-等离子。

因此,光催化技术具有在常温常压下进行,彻底消除有机污染物,无二次污染等优点。

光催化技术的研究涉及到原子物理、凝聚态物理、胶体化学、化学反应动力学、催化材料、光化学和环境化学等多个学科,因此多相光催化科技是集这些学科于一体的多种学科交叉汇合而成的一门新兴的科学。

光催化以半导体如TiO2,ZnO,CdS,Fe2O3,WO3,SnO2,ZnS,SrTiO3,CdSe,CdT e,In2O3,FeS2,GaAs,GaP,SiC,MoS2等作催化剂,其中TiO2具有价廉无毒、化学及物理稳定性好、耐光腐蚀、催化活性好等优点,帮TiO2是目前广泛研究、效果较好的光催化剂。

半导体之所以能作为催化剂,是由其自身的光电特性所决定的。

半导体粒子含有能带结构,通常情况下是由一个充满电子的低能价带和一个空的高能导带构成,它们之前由禁带分开。

研究证明,当pH=1时锐钛矿型TiO2的禁带宽度为3.2eV,半导体的光吸收阈值λg与禁带宽度Eg的关系为λg(nm)=1240/Eg(eV)当用能量等于或大于禁带宽度的光(λ<388nm的近紫外光)照射半导体光催化剂时,半导体价带上的电子吸收光能被激发到导带上,因而在导带上产生带负电的高活性光生电子(e-),在价带上产生带正电的光生空穴(h+),形成光生电子-空穴对。

空穴的能量(TiO2)为7.5 eV,具有强氧化性;电子则具有强还原性。

当光生电子和空穴到达表面时,可发生两类反应。

第一类是简单的复合,如果光生电子与空穴没有被利用,则会重新复合,使光能以热能的形式散发掉e - + h+ →N + energy (hv’< hv or heat)第二类是发生一系列光催化氧化还原反应,还原和氧化吸附在光催化剂表面上物质。

TiO2 →e- + h+OH- + h+→·OHH2O + h+ →·OH+H+A + h+→·A另一方面,光生电子可以和溶液中溶解的氧分子反应生成超氧自由基,它与H+离子结合形成.OOH自由基:O2 + e- + H+→·O2-+H+→·OOH2HOO·→O2 + H2O2H2O2 +·O2→OH + OH-+O2·O2- + 2H+ →H2O2此外·OH,·OOH和H2O2之间可以相互转化H2O2 +·OH→·OOH + H2O2利用高度活性的羟基自由基.OH无选择性地将氧化包括生物难以降解的各种有机物并使之完全无机化。

有机物在光催化体系中的反应属于自由基反应。

四基橙染料是一种常见的有机污染物,无挥发性,且具有相当高的抗直接光分解和氧化的能力;其浓度可采用分光光度法测定,方法简便,常被用做光催化反应的模型反应物。

四基橙的分子式如图1所示:从结构上看,它属于偶氮染料,这类染料是染料各类中最多的一种,约占全部染料的50%左右。

根据已有实验分析,甲基橙是较难降解的有机物,因而以它作为研究对象有一定的代表性。

三、仪器试剂722型分光光度计1台;125W高压汞灯1支;反应器1个;充气泵1个;恒温水浴1套;磁力搅拌器1台;离心机1台;台秤1台;秒表1块;10mL移液管1支;20mL移液管1支;500 mL量筒1支;吸耳球;离心管7支。

甲基橙贮备液(1000mg/L);纳米TiO2(P25)。

四、实验步骤1、了解可见光分光光度计的原理与使用方法,参阅有关教材及文献资料。

2、调整分光光度计零点打开722型分光光度计电源开关,预热至稳定。

调节分光光度计的波长旋钮至462nm。

打开比色槽盖,即在光路断开时,调节“0”旋钮,使透光率值为0.取一只1cm比色皿,加入参比溶液蒸馏水,擦干外表面(光学玻璃面应用擦镜纸擦拭),放入比色槽中,确保放蒸馏水的比色皿在光路上,将比色槽盖合上,即光路通时,调节“100”旋钮使透光率值为100%。

3、四基橙光催化降解进行光催化反应实验时,首先向反应器加入10mL的1000 mg/L的甲基橙贮备液,并加480mL 水稀释,配成500mL的20 mg/L的甲基橙溶液,然后加入0.2g纳米TiO2催化剂,磁力搅拌使之悬浮。

避光充空气搅拌30min,使甲基橙在催化剂的表面达到吸附/脱附平衡,移取10mL溶液于离心管。

然后开通冷却水,并开启淘汰进行光催化反应25min,每隔5min移取10mL反应液,经离心分离后,取上清液进行可见分光光度法分析。

采用722型可见分光光度计,通过反应液的吸光度A 测定来监测甲基橙的光催化脱色和分解效果。

在0—20 mg/L围,甲基橙溶液浓度与其462nm处的吸收什呈极显著的正相关(相关系数达0.999以上)。

五、数据处理1、设计实验数据表,记录温度。

A0,A 等数据;实验温度:29.2℃t /min A A0-A η1/A ln(1/A)0 2.397 0.000 0.0000 0.4172 -0.87425 1.602 0.795 0.3317 0.6242 -0.471310 1.026 1.371 0.5720 0.9747 -0.025715 0.517 1.880 0.7843 1.9342 0.659720 0.305 2.092 0.8728 3.2787 1.187425 0.175 2.222 0.9270 5.7143 1.743030 0.044 2.353 0.9816 22.7273 3.1236表1 实验数据表2、采用积分法中的作图法由实验数据确定反应级数。

根据本实验的原理部分知道,该反应是一个表面催化反应,而一般表面催化反应更多的是零级反应;不妨设纳米Ti02光催化降解甲基橙的反应是一级反应:即ln(1/A)= k1t +常数显然,以浓度ln(1/A)对时间t作图据图2可知,在0—25min中时ln(1/A)~t关系成一直线,因此符合假设,即纳米Ti02光催化降解甲基橙的反应是一级反应。

3、由所得直线的斜率求出反应的速率常数k1根据图2可知:反应的速率常数k1=0.1071min-1 。

4、计算甲基橙光催化降解的半衰期t1/2。

甲基橙光催化降解的半衰期t1/2=ln2/k1=6.47min5、甲基橙降解率计算:η=(c0-c)/c0,其中c0为光照前降解液浓度,c为降解后的浓度。

由于甲基橙溶液浓度和它的吸光度呈线性关系,所以降解脱色率又可以由吸光度计算,即η=(A0-A)图2 ln(1/A)~t图/A0,其中A0为光照前降解液吸光度,A为降解后吸光度。

甲基橙的降解率,如表1所示,η~t的关系如图3所示。

图3 η~t图六、讨论与分析1、600mL 40 mg/L的甲基橙溶液,0.2克纳米TiO2为催化剂,在高压汞灯光照条件下,30min中可以最大降解率约98.16%。

2、该实验中采用积分法中的作图法由实验数据确定反应级数时,舍去了30min的数据,是因为数据偏差较大,可能是因为离心后依然有部分TiO2悬浮在溶液中,而最后一组的吸光度应该很低,所以微量TiO2也会影响测定的准确性。

最后得到ln(1/A)~t的线性相关度为99.29%,线性相关度好;说明纳米Ti02在前30分钟搅拌充分,甲基橙在催化剂达到吸附/脱附平衡,且光照反应、取样、离心等操作到位,数据相关性较好。

3、由η~t图可知30min中可以最大降解率约98.16%,且降解数度在约10分钟前降解率和时间几乎呈现线性关系,在之后的反应中降解率的变化变慢,降解速率下降,渐渐趋向平缓,越接近100%速率越低。

七、思考题1、实验中,为什么用蒸馏水作参比溶液来调节分光光度计的透光率值为100%?一般选择参比溶液的原则是什么?答:用蒸馏水作参比溶液来调节分光光度计的透光率值为100%,以消除溶液中的水对光的吸收反射或散射造成的误差。

一般选择参比溶液的原则:当试样溶液、显色剂及所用的其它试剂在测定波长处均无吸收时,可选用蒸馏水作参比液;若有显色剂或其它试剂对入射光有吸收,应选用试剂空白为参比;若试样中其它组分有吸收,而显色剂无吸收且不与其它组分作用,应选用不加显色剂的试样溶液作参比液。

2、甲基橙溶液需要准确配制吗?答:不需要;根据实验结论可知,甲基橙浓度可以通过分光光度计测量;因此整个实验中甲基橙溶液是不需要准确配制的。

3、甲基橙光催化降解速率与哪些因素有关?答:影响甲基橙光催化降解速率因素有:纳米Ti02颗粒大小、光照强度、搅拌程度、催化剂的用量、温度、溶液初始pH、溶液初始浓度等。

相关文档
最新文档