九年级数学圆知识点归纳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆知识点归纳
一、圆的定义。
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素。
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质。
1、圆的对称性。
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。(2)推论:
➢ 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
➢ 平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距
五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O 的半径为r ,OP=d 。
7、(1
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三
个点的距离相等。
(直角三角形的外心就是斜边的中点。)
8、直线与圆的位置关系。d 表示圆心到直线的距离,r 表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; 直线与圆没有交点,直线与圆相离。
2 9A (x 1,y 1)、B (x 2,y 2)。
则AB=221221)()(y y x x -+-
10、圆的切线判定。
(1)d=r 时,直线是圆的切线。
d = r 直线与圆相切。 d < r (r > 直线与圆相交。
d > r (r < 直线与圆相离。
d = r 点P 在⊙O 上
d < r (r > 点P 在⊙O 内 d > r (r < 点P 在⊙O 外
切点不明确:画垂直,证半径。
(2)经过半径的外端且与半径垂直的直线是圆的切线。
切点明确:连半径,证垂直。
11、圆的切线的性质(补充)。
(1)经过切点的直径一定垂直于切线。
(2)经过切点并且垂直于这条切线的直线一定经过圆心。
12、切线长定理。
(1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个
(2)切线长定理。 ∵ PA 、PB 切⊙O 于点
A 、
B ∴PA=PB ,∠1=∠2。
13、内切圆及有关计算。
(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。
(2)如图,△ABC 中,
AB=5,BC=6,AC=7,⊙O 切△ABC 三边于点D 、E 、F 。
求:AD 、BE 、CF 的长。
分析:设AD=x ,则AD=AF=x ,BD=BE=5-x ,CE=CF=7-x. 可得方程:5-x +7-x=6,解得x=3
(3)△ABC 中,∠C=90°,AC=b ,BC=a ,AB=c 。
求内切圆的半径r 。 分析:先证得正方形ODCE , 12(2)
P 13(2)图 5-x E 6 7-
得CD=CE=r
AD=AF=b -r ,BE=BF=a -r
b -r +a -r=c
得r=2
c b a -+ (4)S △ABC =)(2
1c b a r ++ 14、(补充)
(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。 如图,BC 切⊙O 于点B ,AB 为弦,∠ABC 叫弦切角,∠ABC=∠D 。
(2)相交弦定理。
圆的两条弦AB 与CD 相交于点P ,则PA ·PB=PC ·PD 。
(3)切割线定理。
如图,PA 切⊙O 于点A ,PBC 是⊙O 的割线,则PA 2=PB ·PC 。
(4)推论:如图,PAB 、PCD 是⊙O 的割线,则PA ·PB=PC ·PD 。
15
(1)外离:d >r 1+r 2, 交点有
个;
外切:d=r 1+r 2, 交点有1个;
相交:r 1-r 2 内切:d=r 1-r 2, 交点有1个; 内含:0≤d B (1) C (2) (3)C (4)图 D 相相离 相交两圆的连心线垂直平分公共弦。 相切两圆的连心线必经过切点。 16、圆中有关量的计算。 (1)弧长有L 表示,圆心角用n 表示,圆的半径用R 表示。 L==⨯R n π2360180 R n π (2)扇形的面积用S 表示。 S=36036022R n R n ππ=⨯ S=lR R R n 2 12180=⨯π (3)圆锥的侧面展开图是扇形。 r 为底面圆的半径,a 为母线长。 ✧ 扇形的圆心角α=0360⨯a r ✧ S 侧=πar S 全=πar +πr 2