机器视觉构成简介及应用
机器人视觉系统介绍
机器人视觉(Robot Vision)简介机器视觉系统的组成机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。
按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。
三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。
所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。
机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。
如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。
机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。
将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。
产品的分类和选择也集成于检测功能中。
下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。
视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。
图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。
数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。
机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。
图像的获取图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成:*照明*图像聚焦形成*图像确定和形成摄像机输出信号1、照明照明和影响机器视觉系统输入的重要因素,因为它直接影响输入数据的质量和至少3 0%的应用效果。
由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。
机器视觉技术简介
机器视觉技术简介机器视觉技术是一种模拟人类视觉的技术,利用计算机和摄像机等设备,使计算机能够接收、处理和解释图像或视频数据。
它结合了图像处理、模式识别、计算机视觉和人工智能等多个学科,被广泛应用于制造业、医疗保健、交通监控、军事安全等领域。
一、机器视觉的基本原理机器视觉的基本原理是通过摄像机采集图像,然后利用图像处理算法对图像进行处理和解读。
首先,摄像机将物体拍摄下来,并将其转换为数字图像。
然后,图像处理算法对图像进行滤波、增强、分割等操作,以提取出图像中的有用信息。
最后,模式识别算法对处理后的图像进行分析和识别,以实现对物体的检测、定位、跟踪等任务。
二、机器视觉的应用领域1. 制造业:机器视觉技术在制造业中常用于产品质量检测、零部件定位、装配验证等任务。
例如,在汽车制造过程中,机器视觉可以检测车身表面的瑕疵,以及零部件的尺寸和位置是否符合要求。
2. 医疗保健:机器视觉技术在医疗保健领域有着广泛的应用,例如医学影像分析、病例诊断和手术辅助等。
通过对医学图像的处理和分析,机器视觉可以帮助医生更准确地诊断疾病,并提供更有效的治疗方案。
3. 交通监控:机器视觉技术在城市交通监控中起到了重要作用。
通过安装摄像头和采用机器视觉算法,可以实现车辆违章检测、交通流量统计和事故预警等功能。
这些技术可以提高道路交通的效率和安全性。
4. 军事安全:机器视觉技术在军事领域的应用日益广泛,如目标识别、目标跟踪和情报分析等。
通过机器视觉系统的帮助,可以实现实时监测和分析敌方目标的动态,提供有效的军事情报支持。
三、机器视觉技术的挑战与发展机器视觉技术虽然在许多领域取得了突破性的进展,但仍面临一些挑战。
首先,图像数据的多样性和复杂性给图像处理和模式识别算法带来了挑战。
其次,计算机硬件性能的提升以及深度学习等人工智能算法的兴起,为机器视觉技术的发展提供了更大的空间。
未来,机器视觉技术有望在更多领域得到应用。
随着人工智能领域的不断发展,机器视觉技术可能会与自动驾驶、智能机器人、增强现实等技术相结合,创造更多的商业和科研价值。
机器视觉的技术和应用
机器视觉的技术和应用机器视觉,又称视觉智能,是指模拟和实现人类视觉的能力,通过使用电子传感器和计算机算法来解析和理解视觉信息,从而实现对图像和视频的分析、处理和理解。
随着计算机和图像处理技术的不断发展,机器视觉技术成为了一个快速发展和广泛应用的新兴领域,在工业、医疗、交通、安防等多个行业都得到了广泛应用和推广。
一、机器视觉技术1、图像采集图像采集是机器视觉技术的基础,它通过相机、摄像机等设备将目标物体采集成数字信号,然后通过特定的图像处理算法将其转化为可供计算机处理的数字图像。
目前图像采集的设备种类繁多,从普通的数码相机、摄像机到高端的医疗影像设备和工业相机,应用领域也非常广泛。
2、图像预处理图像预处理是指将数字图像预处理成为更好的质量和格式,以方便机器视觉算法的使用。
图像预处理包括灰度变换、色彩空间转换、噪声过滤、边缘检测、图像增强等多个方面。
3、特征提取特征提取是指根据目标应用的需要从数字图像中提取出具有代表性的特征,并以数学形式进行表达。
常见的特征包括边缘、颜色、纹理等,通常需要根据具体应用进行设计和选择。
4、图像分割图像分割是将数字图像分割成不同的区域,并且将不同区域分配给不同的对象和结构。
常见的图像分割算法包括基于阈值的分割、基于边缘的分割、基于区域的分割等。
5、目标识别目标识别是指根据图像特征检测和图像分割的结果,将某个特定目标从图像中提取出来,并进行进一步的分析和处理。
目标识别常用的算法包括支持向量机、决策树、深度学习等。
二、机器视觉的应用1、工业应用机器视觉在工业领域的应用广泛,包括自动化生产、质量控制、安全监测等多个方面。
在自动化生产中,机器视觉可以实现对物品的识别、判别和分类,从而实现自动化生产;在质量控制中,机器视觉可以自动检测并判断产品是否符合质量标准,从而提高质量检测的效率和准确性;在安全监测中,机器视觉可以实现对工厂的监控和安全防护,从而保障工业安全。
2、医疗应用机器视觉在医疗领域的应用也十分广泛,包括医学影像分析、疾病诊断、手术辅助等多个方面。
机器视觉的原理及应用
机器视觉的原理及应用
一、机器视觉的原理
机器视觉的核心技术主要包括图像预处理、光学测量、图像处理和模式识别等。
图像预处理是对输入图像进行纠正、校正和增强等操作;光学测量是根据物体的形状和特征来测量物体的尺寸、轮廓等参数;图像处理是根据图像中存在的物体的纹理、色调等特征来进行分析;模式识别技术是把捕获的图像与预先存储的图像进行对比,以确定图像中的内容。
二、机器视觉的应用
1、电子与半导体行业:电子与半导体行业的机器视觉应用主要包括SMT电路板定位、SMT元件类型识别、SMT元件定位、电路板检测等。
这些功能的实现都需要通过机器视觉系统进行自动识别和检测,以提高生产的效率和提高精度。
2、汽车行业:汽车行业也大量采用机器视觉技术,如车架、汽车底盘、发动机部件、外观模型等都需要机器视觉系统进行检测和识别。
机器视觉介绍范文
机器视觉介绍范文
机器视觉(Machine Vision)是一门以机器、计算机和相关的传感器、硬件和软件等技术手段,利用对物体、环境和其他图像信息的自动捕捉、
处理、分析和识别技术,为机器人、机器自动化控制、过程检测、物流检测、无人驾驶、图像识别和计算机图像等提供有力的技术支撑。
机器视觉是由众多技术所组成,包括照明技术、图像传感器技术、图
像取样和采样技术、图像处理技术、特征提取和分析技术以及机器学习等
技术。
机器视觉技术可以提供有效的物体和环境信息,作为决策支持和关
键技术中介,获取机器操作所需的输入和输出信息,为提高自动化系统的
性能和准确性提供有力技术支持。
机器视觉系统的应用范围涵盖了从制造业到日常生活的各领域,主要
应用于智能机器人、自动化系统、机器人定位、机器人追踪、机器人控制
系统、检测与质检、计算机安全等。
其中,在制造业中,机器视觉作为自
动化控制及检测的关键技术,不仅可以提高工业生产的效率和质量,而且
可以减少劳动成本,提高生产率,延长产品使用寿命。
在日常生活中,机器视觉也扮演着重要角色。
机器视觉技术及其应用研究
机器视觉技术及其应用研究随着计算机科学技术的不断进步,机器视觉技术已经成为了一种实现自动检测和识别的重要技术。
它的应用可以涵盖多个领域,例如工业生产、医疗、教育等。
在本文中,我们将探究机器视觉技术的原理及其在不同领域中的应用。
一、机器视觉技术的原理机器视觉技术的原理主要是指利用计算机对图像进行处理和分析的过程。
通俗地说,机器视觉技术是一种通过计算机,将图像转化为数字信息,并通过计算机分析这些数字信息,来实现对图片的检测、识别和分类等处理过程。
机器视觉技术主要由以下几个步骤构成:1. 采集图像:利用摄像头等设备采集实际场景中的图像。
2. 图像预处理:对采集的图像进行过滤、去噪、增强等处理。
3. 特征提取和特征匹配:利用算法从图像中提取出关键特征,并通过特定的匹配算法将图像与机器已有的模板进行比对。
4. 图像分类和识别:将提取的特征与机器已有的模板进行对比,从而实现对图像的分类和识别。
二、机器视觉技术的应用1. 工业生产领域中的应用在工业生产领域,机器视觉技术广泛应用于零件检测、产品排序、自动识别等方面。
例如,在一条生产线上,机器视觉技术可以通过相机对生产的零件进行检测,实现产品流水线自动化和质检,从而提高生产效率,降低人工成本。
2. 医疗领域中的应用医疗领域是机器视觉技术的又一大应用领域,可以应用于医学图像分析、疾病诊断等方面。
例如,在CT扫描中,机器视觉技术可实现对影像图像的分析,提高诊断的准确性和速度,为患者提供快速、有效的医疗服务。
3. 教育领域中的应用机器视觉技术在教育领域中的应用主要涉及教学模式创新、学生评估等方面。
例如,在教育评估中,机器视觉技术可以通过人脸识别和表情分析技术,从而判断学生在学习上的表现和情感状态,实现教育评估自动化,提高效率和准确性。
三、总结总的来说,机器视觉技术的应用范围十分广泛,从工业生产到医疗、教育,都可以找到其应用的踪迹。
但是,机器视觉技术的性能和稳定性仍然需要进一步提高,并且在实际应用中,还需要考虑数据处理和隐私保护等问题。
机器视觉的基本原理和应用
机器视觉的基本原理和应用1. 什么是机器视觉?机器视觉(Machine Vision)是一种使用摄像机和计算机技术来模拟和实现人类视觉的技术。
它通过捕捉、处理和分析图像来获取和理解信息。
机器视觉系统可以在不同的环境下进行图像识别、目标检测和测量等任务。
2. 机器视觉的基本原理机器视觉的基本原理包括图像获取、图像处理和图像分析。
2.1 图像获取图像获取是机器视觉的第一步,它使用摄像机或其他图像采集设备来获取物体的图像。
图像采集的质量和分辨率对后续的图像处理和分析非常重要。
2.2 图像处理图像处理是对获取到的图像进行预处理和增强,以提取特征并改善图像质量。
它包括图像去噪、图像平滑、图像增强和图像压缩等操作。
2.3 图像分析图像分析是机器视觉的核心部分,它使用图像处理技术和模式识别算法来理解和解释图像信息。
图像分析可以包括目标检测、目标识别、图像分类和测量等任务。
3. 机器视觉的应用机器视觉在各个领域都有广泛的应用。
以下是机器视觉的一些主要应用领域:3.1 工业自动化机器视觉在工业自动化中起着重要的作用。
它可以用于产品质量控制、生产线监测和机器人导航等任务。
通过机器视觉技术,可以实现对产品的外观、尺寸和位置的快速检测和测量,提高生产效率和质量。
3.2 医学影像诊断机器视觉在医学影像诊断中有广泛的应用,如X射线图像分析、病理图像处理和医学图像分类等任务。
通过机器视觉技术,可以帮助医生快速准确地诊断疾病,提高医疗效率和准确性。
3.3 交通安全机器视觉在交通安全领域有重要的应用,如车牌识别、交通流量监测和智能交通系统等任务。
通过机器视觉技术,可以实现对车辆和行人的识别和跟踪,提高交通安全和管理效率。
3.4 农业领域机器视觉在农业领域中有广泛应用,如农作物的识别和分类、果实的检测和采摘等任务。
通过机器视觉技术,可以实现农作物的自动化种植和采摘,提高农业生产效率和质量。
3.5 安防监控机器视觉在安防监控中有重要的应用,如视频监控和人脸识别等任务。
机器视觉系统详述
右图中,绿色背景 采用红色光源提高 对比度 (灰阶图像)
光源
代码 R G B V W IR UV
颜色 红 绿 蓝 紫 白 红外 紫外
波长(nm) 625(600~720) 517(510~530) 465(430~480) 400 色温:5500k
应用 背景为黑色的透明软板孔位定位、绿色线路 板检测、透光膜厚度测量等。 红色背景产品检测、银色背景产品检测等。
• 特殊要求,需要用到红外或紫外相机情况
镜头--如何选择镜头
•
定焦与变焦 变焦镜头
工作距离不变的情况下获得不同的放大倍率
镜头--如何选择镜头
•
远心镜头与标准工业镜头
远心镜头
• 精密测量系统
CCTV镜头
• 一般工业测量、缺陷检测,对物体成像的放大倍率没有严格要求
远心镜头
CCTV镜头
镜头--如何选择镜头
目录
1 2
机器视觉系统构成 成像系统核心器件选型方法
3 4
5
机器视觉系统设计步骤 应用案例
飞行捕捉和相机丢帧解决办法
机器视觉系统构成
机 器 (Machine)
1、机器视觉系统介绍
+
视 觉 (Vision)
机械
运动
控制
视(硬件)
觉(软件)
机器视觉是一个系统的概念,运 用现代先进的控制技术、计算机 技术及传感技术,表现为光机电 的结合。
镜头
镜头畸变
畸变是镜头放大倍率随着视场变化而变化的现象。
测量应用,畸变越小越好
畸变可以通过软件进行校正
镜头
镜头景深
对于理想的光学系统,像平面对应一个理想物平面。实际光学
系统,能清晰成像的最远物面到理想物平面的距离称为远景深 度,能清晰成像的最近物面到对准平面的距离称为近景深度, 远景深度和近景深度的和就是光学系统的景深。
【机器视觉培训】机器视觉系统概论
机器视觉系统概论一、机器视觉系统构成1.机器视觉的概念机器视觉就是用机器代替人眼来做测量和判断。
机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
美国制造工程师协会(SME Society of Manufacturing Engineers)机器视觉分会和美国机器人工业协会(RIA Robotic Industries Association)的自动化视觉分会对机器视觉下的定义为:“机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置”。
在现代工业自动化生产中,涉及到各种各样的检验、生产监视及零件识别应用,例如零配件批量加工的尺寸检查,自动装配的完整性检查,电子装配线的元件自动定位,IC上的字符识别等。
通常人眼无法连续、稳定地完成这些带有高度重复性和智能性的工作,其它物理量传感器也难有用武之地。
由此人们开始考虑利用光电成像系统采集被控目标的图像,而后经计算机或专用的图像处理模块进行数字化处理,根据图像的像素分布、亮度和颜色等信息,来进行尺寸、形状、颜色等的判别。
这样,就把计算机的快速性、可重复性,与人眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉的概念。
1机器视觉系统的特点是提高生产的柔性和自动化程度。
在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来代替人工视觉;同时在大批量工业生产过程中,用于人工视觉检查产品质量的效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。
而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。
正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。
机器视觉上的原理与应用
机器视觉上的原理与应用
机器视觉是一种模仿人类视觉感知和认知的技术,通过计算机系统和相机等设备从图像或者视频中提取特征、分析和处理图像,实现对图像信息的理解和识别。
机器视觉的基本原理包括图像获取、图像处理和图像分析三个步骤:
1. 图像获取:利用相机或者其他图像采集设备获取静态图像或者连续视频流。
2. 图像处理:对获取的图像进行预处理,包括去噪、增强、边缘检测等操作,以提高后续分析的准确性。
3. 图像分析:基于图像的特征和模式,采用计算机视觉算法进行特征提取、对象检测、目标跟踪、图像分类等操作,以实现对图像内容的认知和理解。
机器视觉的应用广泛,包括但不限于以下领域:
1. 工业制造:机器视觉可应用于质量检测、产品排序、装配线监控等方面,提高生产线的自动化和效率。
2. 自动驾驶:机器视觉可通过图像处理和分析实现车辆的识别、行人检测、交通标志识别等功能,为自动驾驶系统提供感知和决策支持。
3. 安防监控:机器视觉可用于视频监控系统,实现对异常事件的检测和报警,提高安全性和警戒能力。
4. 医疗诊断:机器视觉可应用于医疗影像分析,辅助医生进行癌症筛查、疾病诊断等工作。
5. 农业领域:机器视觉可用于感知和识别作物状态、病虫害检测、自动化农业操作等方面,提高农业生产的效率和产量。
总之,机器视觉充分利用计算机和图像处理技术,使计算机系统能够实现对图像信息的感知、识别和理解,在多个领域都有着广泛的应用前景。
机器视觉的五大典型架构和应用案例
机器视觉的五大典型架构和应用案例如今,随着工业4.0的到来,机器视觉技术在工业自动化中逐渐起着十分重要的地位,机器视觉技术的不断创新,推动了工业自动化、智慧安防以及人工智能等行业的进步,机器视觉技术的发展为这项技术所能应用的领域也带来了更多发展潜力与机会。
大家都说人类感知外界信息的80%是通过眼睛获得的,图像包含的信息量是最巨大的。
那么机器视觉技术的出现,就是为机器设备安上了感知外界的眼睛,使机器具有像人一样的视觉功能,从而实现各种检测、判断、识别、测量等功能。
今天,咱们就来感受一下机器视觉技术的魅力。
机器视觉的五大典型架构1.照明还记得当初在参加一场有关机器视觉技术会议的时候,一位技术大牛特意强调了机器视觉中关于照明的重要性。
据了解,照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。
光源可分为可见光和不可见光。
常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。
可见光的缺点是光能不能保持稳定,如何使光能在一定的程度上保持稳定,是实践过程中急需要解决的问题。
另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。
照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。
其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。
前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。
结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。
频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。
2.镜头镜头相当于人类眼球的存在,它在机器视觉系统中主要负责光束调制,并完成信号传递。
据了解,目前为止市面上大多数的镜头都能够满足机器视觉应用的需求,但是更专业的机器视觉系统可能需要定制的镜头和涂层。
幸运的是,许多具有内部生产能力的镜头制造商,已经准备好定制镜头来满足这些应用需求。
当然,这些定制镜头会比较昂贵,因此它们通常仅用于那些对成本不敏感的特定成像系统中(例如军事应用),或是大批量消费产品的生产线中。
机器视觉技术的原理和应用
机器视觉技术的原理和应用随着科技的不断发展,机器视觉技术的应用越来越广泛,它已经渗透到许多领域,如工业制造、医疗行业、农业等。
本文将从机器视觉技术的原理入手,详细介绍这项技术的应用。
一、机器视觉技术的原理机器视觉是一种用于构建计算机系统的技术,它模仿人类的视觉系统,通过相机或传感器捕获图像,然后使用软件来处理和分析这些图像,最终提取出需要的信息。
机器视觉技术主要包括以下几个部分:1.图像采集图像采集是机器视觉技术的第一步,它使用相机或传感器来捕获图像,将二维图像转换为数字信号。
2.预处理预处理是为了将原始图像转化为计算机可以处理的数字形式。
预处理主要包括去噪、平滑、滤波等操作。
去噪可以去除噪声和其他干扰,平滑可以平滑图像中的不规则线条和峰值,滤波可以使图像更加锐利。
3.特征提取特征提取是机器视觉技术的核心,它是从图像中提取相关信息的过程。
提取特征的方法包括边缘检测、形态学处理、直方图等。
4.分类和识别最后一步是分类和识别,将特征与已知的信息进行比较,从而识别出物体或进行分类。
这通常使用机器学习和人工智能算法完成。
二、机器视觉技术的应用1.工业制造机器视觉技术在工业制造中的应用非常普遍。
工业制造常用的机器视觉应用包括质量控制、零件检测、装配等。
在制造过程中,机器视觉技术可以帮助检测、分析、测量零件和成品的尺寸、几何形状、表面品质和颜色等特征。
2.医疗行业机器视觉技术在医疗行业中的应用也越来越多,主要应用包括医学影像分析和辅助诊断。
通过机器视觉技术,医疗工作者可以迅速获取患者的影像信息,并进行分析、诊断。
3.农业机器视觉技术在农业领域中广泛应用,主要应用于作物生长监测和营养状况诊断、作物病虫害监测和识别、作物收获等。
农业机器视觉技术可以实现作物自动化管理和检测,从而提高农业生产的效率和品质。
4.安防监控机器视觉技术在安防监控中也广泛应用。
从摄像头中获取图像和视频,通过机器视觉技术对图像进行分析和处理,可以实现无人值守的安防监控系统。
机器视觉的组成
机器视觉的组成
机器视觉是一种将计算机视觉(Computer Vision)、图像处理(Image Processing)、模式识别(Pattern Recognition)、机器学习(Machine Learning)和人工智能(Artificial Intelligence)等技术相结合的先进技术。
主要组成部分包括以下几个方面:
1.图像采集:包括摄像头、扫描仪、激光雷达等设备,用于采集目标对象的图像或者特征。
2.图像处理:对采集到的图像进行色彩变换、噪声处理、边缘检测、滤波等一系列处理操作。
3.特征提取:从处理后的图像中提取对象的关键特征,如形状、纹理、颜色、边缘等。
4.特征匹配:将特征与已有的模板进行比对,找到最相似的匹配结果。
5.目标跟踪:通过不断识别目标特征,实现对象在视频序列中的自动追踪。
6.检测和识别:利用机器学习和深度学习的算法,对目标进行检测和识别,如人脸识别、车辆识别、物体捕获等。
7.应用:机器视觉在工业、医疗、安防、交通、智能家居等领域都有广泛应用。
机器视觉技术与应用
机器视觉技术与应用随着科技的不断进步,机器视觉技术得到了广泛的应用。
机器视觉是一门涵盖计算机、数字图像处理以及人工智能等多学科交叉的技术,通过利用摄像机等装置获取现实世界的图像信息,进行处理和分析,得到有关物体形态、运动、轮廓、颜色、纹理、位置和状态等应用信息。
下面分别从技术和应用两个方面,谈一谈机器视觉技术及其应用的现状。
一、机器视觉技术机器视觉技术主要分为以下几个方面:1.图像采集。
图像采集是机器视觉技术的基础,主要包括光源、摄像机、镜头和图像采集卡等组成。
其作用是获取目标物体的图像信息,为后续的处理提供保障。
2.图像预处理。
图像预处理是对图像进行预处理和优化的步骤,主要包括图像滤波、边缘检测和图像增强等技术。
通过这些处理,可以让图像质量更好,从而更好地提取目标物体的特征信息。
3.目标检测。
目标检测是机器视觉技术的核心,是指通过特定算法和模型,自动识别目标物体出现的位置、状态和属性等信息。
目前广泛使用的检测算法有Haar、HOG、YOLO等。
4.目标跟踪。
目标跟踪是指在目标被检测出来之后,对目标的移动轨迹进行跟踪。
其难点主要在于相机的移动和非刚性目标的形变等问题。
5.目标识别。
目标识别是指根据目标的外观、形状等信息,将目标与已知物体进行匹配和识别。
其广泛应用于无人驾驶和智能家居等领域。
二、机器视觉应用机器视觉技术在各个领域都得到了广泛应用:1.自动驾驶。
机器视觉技术可用于无人驾驶的自动驾驶车辆中,为车辆提供障碍物检测、车道偏移检测、交通信号灯识别和行人识别等功能。
2.工业检测。
机器视觉技术可用于工业电子、制造业、半导体等领域的自动检测和质量控制。
3.安防监控。
机器视觉技术可用于安防监控中,实现对人、车、物、关键区域的行为、活动的自动识别,进行智能安防监控。
4.医疗诊断。
医学影像对于医学诊断、治疗等已经成为非常重要的工具。
可以利用机器视觉技术对医学影像进行自动分析和诊断。
5.智能家居。
机器视觉技术可以用于智能家居领域,实现智能识别人体姿态识别、情感识别等功能。
机器视觉技术及其应用
机器视觉技术及其应用随着人工智能技术的发展,机器视觉技术得到了越来越广泛的应用。
机器视觉是通过计算机对图像、视频进行分析、识别和处理的一项技术。
它可以让计算机像人一样“看”到世界,从而实现自动化、智能化生产和服务。
一、机器视觉技术基础机器视觉技术基础包括图像处理和模式识别两部分。
图像处理是指使用计算机对图像进行处理和增强,以得到更好的图像质量。
常见的图像处理方法包括图像滤波、边缘检测和图像分割等。
模式识别是指使用计算机对图像进行分类、识别和重构。
常见的模式识别方法包括特征提取、模型训练和分类器构建等。
二、机器视觉技术应用机器视觉技术广泛应用于制造、医疗、金融和安防等领域。
以下是其中的几个应用案例。
1.制造在制造领域,机器视觉技术可以用于产品质量检查和自动化生产。
例如,智能相机可以对产品进行检测和分类,并自动调整生产线。
此外,机器视觉还可以用于无人机、机器人等智能装备的视觉导航和目标识别。
2.医疗在医疗领域,机器视觉技术可以用于影像分析、病理学分析和手术辅助等。
例如,计算机可以通过对影像进行分析和识别,帮助医生进行疾病诊断和治疗。
3.金融在金融领域,机器视觉技术可以用于身份认证和风险控制。
例如,ATM和手机银行可以通过人脸识别技术验证用户身份。
此外,机器视觉还可以对大规模数据进行分析,帮助金融机构预测市场趋势和风险。
4.安防在安防领域,机器视觉技术可以用于智能监控和人脸识别。
例如,安防摄像头可以通过实时视频分析、目标跟踪和异常检测等技术,实现对建筑物、城市和边境的无人值守监控。
三、机器视觉技术发展趋势机器视觉技术的发展趋势主要有以下几个方向。
1.深度学习深度学习是一种可以自动获取特征的机器学习技术。
它可以让机器视觉更具智能化和自学习能力。
例如,深度学习可以用于图像识别、自然语言处理和语音识别等。
2.可穿戴设备通过将摄像头和计算机融合在一起,可以实现智能可穿戴设备。
这种设备可以将环境信息转换为数字信息,提供更多更丰富的服务。
简述机器视觉系统的构成及其作用
简述机器视觉系统的构成及其作用
1机器视觉
机器视觉是人工智能的重要分支,是一项研究用计算机进行自动数字图像处理的技术。
它包括采集、分析、处理和识别原始图像的算法,是一种可以自动识别和分类特定的目标的技术。
2机器视觉系统
机器视觉系统是一种使用计算机实现机器视觉的系统。
它主要由三个组件组成:传感器、处理器和机械体。
传感器负责采集图像数据,如摄像头、扫描仪,可以从电子、机械或光学源中获取信号;处理器用于执行图像处理算法,提取有用的特征;机械体用于将处理器的指令转换为机械动作,实现在目标上的操作或装配。
3用途
机器视觉系统可以用来实现自动检测和识别,如:测量、监控、跟踪、寻路、识别等。
它在自动检测中有着广泛的应用,可以用来检测零件出厂时的位置和尺寸、分类、检测零件缺陷,实现自动检测生产线上送料以及部件更换等任务,简化工作流程,提高生产效率,节省原材料和人力,是全自动化生产的重要组成部分。
4优势
机器视觉具有运行快速、能够连续多时间运行等特点,而且基于计算机技术,可以用许多受控条件来测量物体和监控过程,准确性
高,可以不受人类的影响而精准完成测量和检测的任务,减少误差,能够准确控制质量,从而保证产品质量。
总结来说,机器视觉系统是一种由传感器、处理器和机械体组成的计算机数字图像处理技术,它具有准确性高、运行快速等特点,主要应用于自动检测、测量和监控等工作,可以大大提高生产效率,减低生产成本,是全自动化生产的重要组成部分。
机器视觉及其应用
将目标物体成像在图像传感器 的感光面上,决定着图像的清 晰度和质量。
图像处理系统
对图像进行预处理、特征提取、 识别和分类等操作,实现机器 视觉的功能。
光源
提供合适的光照条件,使被检 测物体与背景形成明显的对比 度,有助于提高图像质量。
图像传感器
将光学信号转换为电信号,进 而转换为数字信号,供计算机 处理。
数据加密与安全存储
采用高级加密算法对图像数据进行加密,确保数据在传输和存储过程中的安全 性。同时,建立完善的数据存储管理制度,防止数据泄露和未经授权的访问。
隐私保护
在采集和处理图像数据时,应充分考虑用户隐私,遵循相关法律法规,避免侵 犯个人隐私。可以采用模糊处理、匿名化等技术手段,对图像中的敏感信息进 行保护。
技术发展趋势
深度学习技术
随着深度学习理论的不断完善,其在机器视觉中的应用将更加广泛, 进一步提高图像识别、目标检测、语义分割等任务的准确率。
3D视觉技术
随着传感器技术的发展,3D视觉技术在机器视觉领域的应用将逐渐 普及,实现更复杂场景下的三维重建和物体识别。
计算成像技术
通过计算成像技术,可以实现超分辨率、去噪、增强等效果,提高图 像质量,为机器视觉提供更丰富的视觉信息。
物流分拣
利用机器视觉识别物品特征,实现 快速、准确的物流分拣。
农业自动化
智能识别
通过机器视觉技术,实现农作物生长状况、病虫 害等智能识别。
精准施肥
根据土壤状况和作物需求,利用机器视觉技术实 现精准施肥。
自动化采摘
利用机器视觉技术,实现水果、蔬菜等农产品的 自动化采摘。
医疗诊断
医学影像分析
通过机器视觉技术,对医学影像进行自动分析和诊断,提高诊断 准确率。
机器视觉的基本原理及应用
机器视觉的基本原理及应用机器视觉是配备有传感视觉仪器(如自动对焦相机或传感器)的检测机器,主要研究计算机来模拟认得视觉功能从客观事物图像中提取信息,进行处理并加以理解,最终用于实际检测,测量和控制。
其中光学检测仪器占有比重非常高,可用于检测出各种产品的缺陷,或者用与判断并选择出物体,或者用来测量尺寸等,应用在自动化生产线上对物料进行校准与定位。
是计算机视觉中最具有产业化的部分,主要大量应用于工厂自动化检测及机器人产业等。
机器视觉的基本原理机器视觉系统是指用电脑来实现人的视觉功能,也就是用电脑来实现对客观的三维世界的识别。
按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。
三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。
所谓三维理解是指对被观察物件的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。
机器视觉的系统机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。
系统可再细分为主端电脑(Host Computer)影像撷取卡(Frame Grabber)与影像处理器影像摄影机(CCTV镜头、显微镜头)照明设备(高周波萤光灯源、LED光源、Halogen卤素灯光源、闪光灯源、其他特殊光源)影像显示器(LCD)机构及控制系统(PLC、精密桌台、PC-Base控制器、伺服运动机台)机器视觉的特点(1)机器视觉是一项综合技术,其中包括数字图像处理技术,机械工程技术,控制技术,电光源照明技术,光学成像技术,传感器技术,模拟与数字视频技术,计算机硬件技术,人机接口技术等这些技术在机器视觉中式并列关系,相互协调应用才能构成一个成功的工业机器视觉应用系统。
(2)机器视觉更强调实用性,要求能够适应工业生产中恶劣的环境,要有合理的性价比,要有通用的工业接口,能够由普通工作来操作,有较高的容错能力和安全性,不会破坏工业产品,必须有较强的通用性和可移植性。
机器视觉构成简介及应用
机器视觉构成简介及应⽤机器视觉构成简介及应⽤⼈类认识外界信息的80%来⾃于视觉,⽽机器视觉就是⽤机器代替⼈眼来做测量和判断,机器视觉的最终⽬标就是使计算机像⼈⼀样,通过视觉观察和理解世界,具有⾃主适应环境的能⼒。
作为⼀个新兴学科,同时也是⼀个交叉学科,机器视觉是通过对相关的理论和技术进⾏研究,从⽽建⽴由图像或多维数据中获取“信息”的⼈⼯智能系统,其特点是可提⾼⽣产的柔性和⾃动化程度。
⽬前机器视觉技术已经在很多⼯业制造领域得到了应⽤,并逐渐进⼊我们的⽇常⽣活。
⼀.机器视觉简介机器视觉就是⽤机器代替⼈眼来做测量和判断。
机器视觉主要利⽤计算机来模拟⼈的视觉功能,再现于⼈类视觉有关的某些智能⾏为,从客观事物的图像中提取信息进⾏处理,并加以理解,最终⽤于实际检测和控制。
机器视觉是⼀项综合技术,其包括数字处理、机械⼯程技术、控制、光源照明技术、光学成像、传感器技术、模拟与数字视频技术、计算机软硬件技术和⼈机接⼝技术等,这些技术相互协调才能构成⼀个完整的⼯业机器视觉系统机器视觉强调实⽤性,要能适应⼯业现场恶劣的环境,并要有合理的性价⽐、通⽤的通讯接⼝、较⾼的容错能⼒和安全性、较强的通⽤性和可移植性。
其更强调的是实时性,要求⾼速度和⾼精度,且具有⾮接触性、实时性、⾃动化和智能⾼等优点,有着⼴泛的应⽤前景。
⼀个典型的⼯业机器⼈视觉应⽤系统包括光源、光学成像系统、图像捕捉系统、图像采集与数字化模块、智能图像处理与决策模块以及控制执⾏模块。
通过CCD或CMOS摄像机将被测⽬标转换为图像信号,然后通过A/D 转换成数字信号传送给专⽤的图像处理系统,并根据像素分布、亮度和颜⾊等信息,将其转换成数字化信息。
图像系统对这些信号进⾏各种运算来抽取⽬标的特征,如⾯积、数量、位置和长度等,进⽽根据判别的结果来控制现场的设备动作。
机器视觉⼀般都包括以下四个过程:⼆.机器视觉的发展历史机器视觉是在20 世纪50 年代从统计模式识别开始,当时的⼯作主要集中在⼆维图像分析、识别和理解上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器视觉构成简介及应用人类认识外界信息的80%来自于视觉,而机器视觉就是用机器代替人眼来做测量和判断,机器视觉的最终目标就是使计算机像人一样,通过视觉观察和理解世界,具有自主适应环境的能力。
作为一个新兴学科,同时也是一个交叉学科,机器视觉是通过对相关的理论和技术进行研究,从而建立由图像或多维数据中获取“信息”的人工智能系统,其特点是可提高生产的柔性和自动化程度。
目前机器视觉技术已经在很多工业制造领域得到了应用,并逐渐进入我们的日常生活。
一.机器视觉简介机器视觉就是用机器代替人眼来做测量和判断。
机器视觉主要利用计算机来模拟人的视觉功能,再现于人类视觉有关的某些智能行为,从客观事物的图像中提取信息进行处理,并加以理解,最终用于实际检测和控制。
机器视觉是一项综合技术,其包括数字处理、机械工程技术、控制、光源照明技术、光学成像、传感器技术、模拟与数字视频技术、计算机软硬件技术和人机接口技术等,这些技术相互协调才能构成一个完整的工业机器视觉系统机器视觉强调实用性,要能适应工业现场恶劣的环境,并要有合理的性价比、通用的通讯接口、较高的容错能力和安全性、较强的通用性和可移植性。
其更强调的是实时性,要求高速度和高精度,且具有非接触性、实时性、自动化和智能高等优点,有着广泛的应用前景。
一个典型的工业机器人视觉应用系统包括光源、光学成像系统、图像捕捉系统、图像采集与数字化模块、智能图像处理与决策模块以及控制执行模块。
通过CCD或 CMOS摄像机将被测目标转换为图像信号,然后通过 A/D 转换成数字信号传送给专用的图像处理系统,并根据像素分布、亮度和颜色等信息,将其转换成数字化信息。
图像系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置和长度等,进而根据判别的结果来控制现场的设备动作。
机器视觉一般都包括以下四个过程:二.机器视觉的发展历史机器视觉是在20 世纪 50 年代从统计模式识别开始,当时的工作主要集中在二维图像分析、识别和理解上。
从 20 世纪70 年代才真正开始发展,并涌现出了主动视觉理论框架、基于感知特征群岛物体识别理论框架等新的概念、方法及理论。
Marr 视觉计算机理论是视觉研究迄今较为完善的理论,其使视觉研究有了一个较为明确的体系.Marr视觉理论从计算视觉理论出发,将立体视觉分为自上而下的三个阶段,即早期的二维视觉数据获取、中期的要素处理和后期三维信息的形成和表达。
经历这单个阶段即可完成二维到三维的转换工作.早期阶段的“要素图”(primarysketch)是由二维图像中的点、直线、曲线和纹理等特征组成,早期阶段的处理是从图像中获取这些特征。
中期阶段的处理是处理特征要素的位置和相互关系,从而完成对物体的识别、运动分析和形状恢复等操作,该阶段处理的结果仅仅是对空间场景的二维半描述。
如若要完成对空间场景的真正三维描述,还需第三阶段的后期视觉处理,将物体自身坐标统一到一个世界坐标系中。
作为立体视觉的基础理论,Marr理论具有极其重要的指导作用,但Marr理论自身有缺陷,如单向性(视觉处理只能从前至后处理)、被动性(视觉处理只能是给什么图像处理什么图像)、目的单一性(视觉处理的目标一般只是恢复空间场景中的物体形状和位置)等。
经过几十年的发展,许多学者纷纷提出了Marr理论的改进框架,如在框架前增加图像拾取模块,使其能根据分析要求和分析结果自主获取图像;增加反馈环节,使视觉处理结果能反向指导图像获取环节,前后互动;增加高层指导模块和视觉目的模块,使整个视觉处理按照视觉目的的要求,在高层指导模块的指导下完成不同的视觉处理操作,实现其功能多样化.总之,改进的Marr理论框架使立体视觉趋于自动化、智能化和多功能化。
三.机器视觉相关技术1、图像采集技术——机器视觉的基础图像采集部分一般由光源、镜头、数字摄像机和图像采集卡构成。
采集过程可简单描述为在光源提供照明的条件下,数字摄像机拍摄目标物体并将其转化为图像信号,最后通过图像采集卡传输给图像处理部分。
在设计图像采集部分时,要考虑到多方面的问题,主要是关于数字摄像机、图像采集卡和光源方面的问题。
(1)光源照明照明是影响机器视觉系统输入的重要因素,其直接影响输入数据的质量和应用效果。
到目前为止,还未有哪种机器视觉照明设备能通用各种应用,因此在实际应用中,需针对应用选择相应的照明设备以满足特定需求。
在光源照明方案选择过程中,应尽可能地突出物体特征,在物体需要检测的部分与不重要部分之间尽量产生明显的区域,增加对比度,同时还应保证足够的整体亮度,而物体位置的变化不应影响成像的质量。
照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。
其中,背向照明是指将被测物放在光源和摄像机之间,以提高图像的对比度。
前向照明是光源和摄像机位于被测物的同侧,其优点是便于安装。
结构光照明是将光栅或线光源等投射到被测物上,并根据其产生的畸变,解调出被测物的三维信息。
频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。
东莞市奥普泰克光源科技有限公司(前东莞市奥普泰克光电科技有限公司)成立于2002年,是一家集研发、生产、销售为一体的高新技术产业公司,公司致力于光、机、电一体化仪器产品的研发与生产,研发生产的各款视觉光源被行业内销售商及自动化领域检测系统广泛使用,为了在机器视觉光源领域争取更大的发展同时也便于更专注于“机器视觉光源”的生产销售,2009年公司更名为“东莞市奥普泰克光源科技有限公司”。
经过多年发展,公司拥有了一支强大的机器视觉产品研发团队;本着严谨的服务态度和与时俱进的创新精神,产品远销台湾,东南亚及北美地区,在机器视觉,自动化领域享有良好声誉。
服务范围:机器视觉光源生产销售,视觉自动化检测系统的研发推广…(2)光学摄像头光学摄像头的任务就是进行光学成像,一般在测量领域都又专门的用于测量的摄像镜头,因为其对成像质量有着关键性的作用。
摄像头需要注意的一个问题是畸变。
这个就需要使用相应的畸变校正方法,目前也开发出了很多自动畸变自动校正系统。
(3)CCD 摄像机及图像采集卡CCD( Charge Coupled Device) 摄像机及图像采集卡共同完成对目标图像的采集与数字化。
目前 CCD,CMOS等固体器件的应用技术,线阵图型敏感器件,像元尺寸不断减小,阵列像元数量不断增加,像元电荷传输速率也得到大幅提高。
在基于PC机的机器视觉系统中,图像采集卡是控制摄像机拍照来完成图像的采集与数字化,并协调整个系统的重要设备。
图像采集卡直接决定了摄像头的接口为:黑白、彩色、模拟、数字等形式。
2、图像处理与分析——机器视觉的核心用于机器视觉的图像处理与分析方法的核心是,解决目标的检测识别问题。
为此,提出方法的思想中心是如何获得可正确描述目标物与非目标物的特征。
当所需要识别的目标比较复杂时,就需要通过几个环节,从不同的侧面综合来实现。
对目标进行识别提取的时候,首先是要考虑如何自动地将目标物从背景中分离出来。
目标物提取的复杂性一般就在于目标物与非目标物的特征差异不是很大,在确定了目标提取方案后,就需要对目标特征进行增强。
增强方法有颜色特征的增强、累计特征的增强等。
经过特征增强后,最后就是目标物的提取了。
这里也有很多不同的方法,比如伪目标删除方法、自适应阈值方法、逐步骤类方法、多信息融合方法等。
随着计算机技术、微电子技术以及大规模集成电路的发展,图像信息处理工作越来越多地借助硬件完成,如 DSP 芯片、专用的图像信号处理卡等。
软件部分主要用来完成算法中并不成熟又较复杂或需不断完善改进的部分。
这一方面提高了系统的实时性,同时又降低了系统的复杂度。
四.机器视觉的发展现状及应用目前,最先进的机器视觉技术仍然由欧美、日本等国家掌握,发达国家针对工业现场的应用开发出了相应的机器视觉软硬件产品。
中国目前正处于由劳动密集型向技术密集型转型的时期,对提高生成效率、降低人工成本的机器视觉方案有着旺盛的需求,中国正在成为机器视觉技术发展最为活跃的地区之一。
长三角和珠三角成为国际电子和半导体技术的转移地,同时也就成为了机器视觉技术的聚集地。
许多具有国际先进水平的机器视觉系统进入了中国,国内的机器视觉企业也在与国际机器视觉企业的良性竞争中不断茁壮成长,许多大学和研究所都在致力于机器视觉技术的研究。
在国外,机器视觉主要应用在半导体及电子行业,其中,半导体行业占40% ~ 50%。
例如,PCB 印刷电路、SMT表面贴装、电子生产加工设备等。
此外机器视觉还在质量检测的各方面及其他领域均有着广泛应用。
(1)在工业检测方面近几十年来,在工业检测中利用视觉系统的非接触、速度快、精度合适、现场抗干扰能力强等突出的优点,使机器视觉技术得到了广泛的应用,取得了巨大的经济与社会效益。
(2)自动视觉识别检测目前已经用于产品外形和表面缺陷检验,如木材加工检测、金属表面视觉检测、二极管基片检查、印刷电路板缺陷检查、焊缝缺陷自动识别等。
这些检测识别系统属于二维机器视觉,技术已经较为成熟,其基本流程是用一个摄像机获取图像,对所获取的图像进行处理及模式识别,检测出所需的内容(3)在医学上的应用在医学领域,机器视觉主要用于医学辅助诊断。
首先采集核磁共振、超声波、激光、X射线、γ射线等对人体检查记录的图像,再利用数字图像处理技术、信息融合技术对这些医学图像进行分析、描述和识别,最后得出相关信息,对辅助医生诊断人体病源大小、形状和异常,并进行有效治疗发挥了重要的作用。
不同医学影像设备得到的是不同特性的生物组织图像,如X射线反映的是骨骼组织,核磁共振影像反映的是有机组织图像,而医生往往需要考虑骨骼有机组织的关系,因而需要利用数字图像处理技术将两种图像适当地叠加起来,以便于医学分析。
(4)交通监控领域中的应用智能交通监控领域中,在重要的十字路口安放摄像头,就可以利用摄像头的快速拍照功能,实现对违章、逆行等车牌的车牌进行自动识别、存贮,以便相关的工作人员进行查看。
(5)在桥梁检测领域中的应用人工检测法和桥检车法都是依靠人工用肉眼对桥梁表面进行检测,其速度慢,效率低,漏检率高,实时性差,影响交通,存在安全隐患,很难大幅应用;无损检测包括激光检测、超声波检测以及声发射检测等多种检测技术,它们仪器昂贵,测量范围小,不能满足日益发展的桥梁检测要求;智能化检测有基于导电性材料的混凝土裂缝分布式自动检测系统和智能混凝土技术,也有最前沿的基于机器视觉的检测方法。
导电性材料技术虽然使用方便,设备简单,成本低廉,但是均需要事先在混凝土结构上涂刷或者埋设导电性材料进行检测,而且智能混凝土技术还无法确定裂缝位置、裂缝宽度等一系列问题距实用化还有较长的距离;而基于机器视觉的检测方法是利用CCD相机获取桥梁表观图片,然后运用计算机处理后自动识别出裂缝图像,并从背景中分离出来然后进行裂缝参数的计算的方法,它具有便捷、直观、精确、非接触、再现性好、适应性强、灵活性高、成本低廉的优点,能解放劳动力,排除人为干扰,具有很好的应用前景。