《最优化方法》复习题.pdf
《最优化方法》期末试题
作用:①仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。
尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。
②仿真技术有可能对一些难以建立物理模型或数学模型的对象系统,通过仿真模型来顺利地解决预测、分析和评价等系统问题。
③通过系统仿真,可以把一个复杂的系统化降阶成若干子系统以便于分析,并能指出各子系统之间的各种逻辑关系。
④通过系统仿真,还能启发新的策略或新思想的产生,或能暴露出在系统中隐藏着的实质性问题。
同时,当有新的要素增加到系统中时,仿真可以预先指出系统状态中可能会出现的瓶颈现象或其它的问题。
2.简述两个Wardrop 均衡原理及其适用范围。
答:Wardrop提出的第一原理定义是:在道路的利用者都确切知道网络的交通状态并试图选择最短径路时,网络将会达到平衡状态。
在考虑拥挤对行驶时间影响的网络中,当网络达到平衡状态时,每个 OD对的各条被使用的径路具有相等而且最小的行驶时间;没有被使用的径路的行驶时间大于或等于最小行驶时间。
Wardrop提出的第二原理是:系统平衡条件下,拥挤的路网上交通流应该按照平均或总的出行成本最小为依据来分配。
第一原理对应的行为原则是网络出行者各自寻求最小的个人出行成本,而第二原理对应的行为原则是网络的总出行成本最小。
3.系统协调的特点。
答:(1)各子系统之间既涉及合作行为,又涉及到竞争行为。
(2)各子系统之间相互作用构成一个反馈控制系统,通过信息作为“中介”而构成整体(3)整体系统往往具有多个决策人,构成竞争决策模式。
(4)系统可能存在第三方介入进行协调的可能。
6.对已经建立了概念模型的系统处理方式及其特点、适用范围。
答:对系统概念模型有三种解决方式。
1.建立解析模型方式对简单系统问题,如物流系统库存、城市公交离线调度方案的确定、交通量不大的城市交叉口交通控制等问题,可以运用专业知识建立系统的量化模型(如解析数学模型),然后采用优化方法确定系统解决方案,以满足决策者决策的需要,有关该方面的内容见第四、五章。
《最优化方法》课程复习考试.doc
《最优化方法》复习提要 第一章最优化问题与数学预备知识§1.1模型无约束最优化问题 min /(x ), x =(旺,兀2,…心)'w R"・A约束最优化问题疋简(兀)》0,心1,2,・・・,加也(兀)=0,丿=1,2,・・・,") min /(x );s.t. gQ )nO,i = l,2,…,加,hj (x ) = 0,j = \,2,・・・,l ・其中.f (X )称为目标函数,西,兀2,…,暫称为决策变量,S 称为可行域,gQ ) no (心1,2,…,加),勺(兀) = 0。
= 1,2,…丿)称为约束条件. §1. 2多元函数的梯度、Hesse 矩阵及Tayloi •公式定义设f:R“TR,J^R“・如果%维向量〃,VAre R n,有+ Ax) -f(x) = p T\x + 0(||Ax||)・则称/(x )在点元处町微,并称df (x ) = p T\x 为/(x )在点元处的微分.如果/(X )在点元处对丁」=(兀“2,・・・,£)丁的各分量的偏导数。
/(元)d x i都存在,则称/(兀)在点元处一阶可导,并称向量为/(兀)在点元处一阶导数或梯度.定理1设f :R n^R,xeR n・如果/(兀)在点元处可微,则/(兀)在点元处梯度V/(x)存在,并且有#(x) = W)7'Ar .定义 设f:R"TR,J^R“・d 是给定的n 维非零向量,e = 2・如杲 dmin /(兀);即 vS.t. X G S.V/(x)=(df(x)T。
/(可。
/(元)Um /a + 2e )-V (x )久TO2存在,则称此极限为/(x )在点元沿方向d 的方向导数,记作冬学.da定理2设f :R n^R,xeR n.如果/(兀)在点元处可微,则/(兀)在点元处沿任何非零方向d 的方向导数存在,且= VA 元)。
,其中丘=厶~・daa定义 设/(兀)是/?"上的连续函数,xeR n. d 是〃维非零向量.如果3^>0,使得V2w (O0),有/(x + 2J )< (>) /(x ).则称d 为f (兀)在点元处的下降(上 升)方向.定理3设f:R n^R.xeR n,且/(兀)在点元处可微,如果日非零向量de R n9 使得Vf (x )Td < (>) 0,则d 是/(兀)在点元处的下降(上升)方向.定义 设f:R”TR,HeR”・如果/(兀)在点元处对丁自变量x = (x p x 2,---,x /J )7'的 各分量的二阶偏导数£単匕丿・=1,2,…,)都存在,则称函数/(兀)在点元处二阶 U Xj 可导,并称矩阵为/(x )在点元处的二阶导数矩阵或Hesse 矩阵.定义 设h:R" 记/1(兀)=(肉(兀),爲(兀),・・・,饥(兀))7',如果勺• (x ) (i = 1,2,…,加)在点元处对于自变量x =(兀],吃,…£)丁的各分量的偏导数d 2x } 扌/(元) dx }dx 2 巧(元) d 2f(x) 3 x 2d• d 2x 2• d x^d x n L n• •■d 2f(x) ■97(^) • •d 2f(x)d x n d X] d x n d x 2d 2f(x)V 2/(x)丿号⑴(i = 1,2,…,加;J = 1,2,…加 dx f都存在,则称向量函数加对在点元处是一阶可导的,并且称矩阵为/?(%)在点x 处的一阶导数矩阵或Jacobi 矩阵,例2 设aw R",xw R",bw R ,求f (x ) = a Tx-{-h 在任意点兀处的梯度和Hesse 矩阵.解 设0 =(绚卫2,・・・,%)/,兀=(旺,兀2,・・・,£)‘,则/(兀)=工绞母+b ,k=\因。
最优化方法(试题+答案)
1.若 ,则 , .
2.设 连续可微且 ,若向量 满足,则它是 在 处的一个下降方向。
3.向量 关于3阶单位方阵的所有线性无关的共轭向量有.
4.设 二次可微,则 在 处的牛顿方向为.
5.举出一个具有二次终止性的无约束二次规划算法:.
6.以下约束优化问题:
的K-K-T条件为:
.
7.以下约束优化.证明:要证凸规划,即要证明目标函数是凸函数且可行域是凸集。
一方面,由于 二次连续可微, 正定,根据凸函数等价条件可知目标函数是凸函数。
另一方面,约束条件均为线性函数,若任意 可行域,则
故 ,从而可行域是凸集。
2.证明:要证 是 在 处的一个可行方向,即证当 , 时, ,使得 ,
解此线性规划(作图法)得 ,于是 .由线性搜索
得 .因此, .重复以上计算过程得下表:
0
1
1
2
(注:范文素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注。)
2.采用精确搜索的BFGS算法求解下面的无约束问题:
3.用有效集法求解下面的二次规划问题:
4.用可行方向算法(Zoutendijk算法或Frank Wolfe算法)求解下面的问题(初值设为 ,计算到 即可):
参考答案
一、填空题
1. 2. 3. , (答案不唯一)。4.
5. 牛顿法、修正牛顿法等(写出一个即可)
0
1/2
1
2
2
3.解:取初始可行点 求解等式约束子问题
得解和相应的Lagrange乘子
转入第二次迭代。求解等式约束子问题
得解
令
转入第三次迭代。求解等式约束子问题
得解和相应的Lagrange乘子
《最优化方法》复习题.docx
《最优化方法》复习题一、 简述题1、怎样判断一个函数是否为凸函数.(例如:判断函数f(x) =昇+ 2兀內+ 2近一 10州+ 5兀2是否为凸函数)2、 写出几种迭代的收敛条件.3、 熟练掌握利用单纯形表求解线性规划问题的方法(包括大M 法及二阶段法).见书本61页(利用单纯形表求解);69页例题(利用大M 法求解、二阶段法求解); 4、 简述牛顿法和拟牛顿法的优缺点.简述共辘梯度法的基木思想.写岀Goldstein> Wolfe 非精确一维线性搜索的公式。
5、叙述常用优化算法的迭代公式.心=务+吕—%),化-知1仏二务+召一色)(3) Newton —维搜索法的迭代公式:x k+i = x k -G~'g k ・ (4) 推导最速下降法用于问题min/(x) = —++ c 的迭代公式:耳+1 二无一-VfgS k G k gx k(5) Newton 法的迭代公式:x k+] = x k -[V 2/(^)]_l V/*(x A )・ (6) 共轨方向法用于问题min/(x)=丄x rQx+b 1x + c 的迭代公式:2忑+1 =J二、计算题双折线法练习题 课本135页 例3.9.1FR 共辘梯度法例题:课本150页 例4.3.5(1) 0.618法的迭代公式:A- =ak +(1-厂)(勺一务),(2) Fibonacci 法的迭代公式: 伙= 1,2,…,一1)二次规划有效集:课本213页例6.3.2,所有留过的课后习题.三、练习题:1、 设A G R ,iXn是对称矩阵,bwR”,cwR,求/(%) =丄*心+戻兀+ c 在任意点x 处 的梯度和Hesse 矩阵.解 V/*(x) = Ar + /?, V 2/(x) = A ・2、 设0(/) = /(兀 + 力),其屮/:/?" T R 二阶可导,XG R\de R\te R ,试求0"(/)・解 0(/) = W(x + /d) 丁4,矿⑴=dF f(x~Hd)d .3、 证明:凸规划min f(x)的任意局部最优解必是全局最优解.xeS证明 用反证法.设住S 为凸规划问题min /(x)的局部最优解,即存在丘的某xeS个5邻域N s (x),使f(x)<f(x)yxeN 6(x)C\S ・若元不是全局最优解,则存在花S,使/(i) < /(x)・由于/(兀)为S 上的凸函数,因此VA G (0,1),有/(Ax + (1-2)x) < 2/(x) + (1-2)/(x) < f(x)・当2充分接近1时,可使2元+(1 — 2)农 皿(元)「IS,于是/(x)</(2x + (l-/i)x), 矛盾.从而元是全局最优解.min f(x) = 2x t -x 2 +x 3; s.t. 3兀]+ x 2 + x 3 < 60,x l - 2X 2 + 2X 3 <10,%! + x 2 - x 3 < 20, (1)用单纯形法求解该线性规划问题;(2)写出线性规划的对偶问题;解 (1)引进变量兀,兀5,兀6,将给定的线性规划问题化为标准形式:min /(%) = 2x t -x 2 +x 3; s.t. 3x ( + 兀 + 耳 + % = 60,%j - 2X 2 + 2X 3 + 冯=10,所给问题的最优解为x = (0,20,0)r ,最优值为/ = -20・4、已知线性规划:(2)所给问题的对偶问题为:max g(y) = -60^-10^ - 20%;皿_3”_旳_儿52,< _必+2旳_儿S_l,一开_2旳 + %<1,儿力*3»°・5、用0.618法求解min 0(f) = (f-3尸,要求缩短后的区间长度不超过0.2,初始区间取[0,10]・解第一次迭代:取y [0,10],£ = 0.2.确定最初试探点人,“分别为入=^+0.382(^-^,) = 3.82, M =坷+0.618(勺一马)=6・18 .求目标函数值:°(人)=(3.82— 3)2 =0.67, °(“)= (6.18 — 3)2 =10.11.比较目标函数值:0(人)< 0(")・比较 //| —6f| = 6.18 — 0 > 0.2 = E ・第二次迭代:a2 = a x = 0,Z?2= “| = 6.18,/ =人=3.82,。
《最优化方法》复习题(含答案)
附录5 《最优化方法》复习题1、设n n A R ⨯∈是对称矩阵,,n b R c R ∈∈,求1()2TT f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵.解 2(),()f x Ax b f x A ∇=+∇=.2、设()()t f x td ϕ=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ϕ''. 解 2()(),()()T T t f x td d t d f x td d ϕϕ'''=∇+=∇+.3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令()()()()()T TT Tdd f x f x H I d f x f x f x ∇∇=--∇∇∇, 其中I 为单位矩阵,证明方向()p H f x =-∇也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ∇<,从而()()()T T f x p f x H f x ∇=-∇∇()()()()()()()()T TTT T dd f x f x f x I f x d f x f x f x ∇∇=-∇--∇∇∇∇()()()0T T f x f x f x d =-∇∇+∇<,所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ⊆是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ∀≥∀∈的一切凸组合都属于S .证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令11k i i i x x λ+==∑,其中,0,1,2,,1i i x S i k λ∈≥=+,且111k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈,结论成立),记111kii i k y x λλ=+=-∑,有111(1)k k k x y x λλ+++=-+,又1110,1,2,,,111kiii k k i k λλλλ=++≥==--∑,则由归纳假设知,y S ∈,而1k x S +∈,且S 是凸集,故x S ∈.5、设n R S ⊆为非空开凸集,R S f →:在S 上可微,证明:f 为S 上的凸函数的充要条件是2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈.证明 必要性.设f 是S 上的凸函数,则12,x x S ∀∈及(0,1)λ∈,有2121((1))()(1)()f x x f x f x λλλλ+-≤+-,于是121121(())()()()f x x x f x f x f x λλ+--≤-,因S 为开集,f 在S 上可微,故令0λ+→,得12121()()()()T f x x x f x f x ∇-≤-,即2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈.充分性.若有2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈, 则[0,1]λ∀∈,取12(1)x x x S λλ=+-∈,从而11()()()()T f x f x f x x x ≥+∇-,22()()()()T f x f x f x x x ≥+∇-,将上述两式分别乘以λ和1λ-后,相加得1212()(1)()()()((1))T f x f x f x f x x x x λλλλ+-≥+∇+--12()((1))f x f x x λλ==+-,所以f 为凸函数.6、证明:凸规划min ()x Sf x ∈的任意局部最优解必是全局最优解.证明 用反证法.设x S ∈为凸规划问题min ()x Sf x ∈的局部最优解,即存在x 的某个δ邻域()N x δ,使()(),()f x f x x N x S δ≤∀∈.若x 不是全局最优解,则存在x S ∈,使()()f x f x <.由于()f x 为S 上的凸函数,因此(0,1)λ∀∈,有((1))()(1)()()f x x f x f x f x λλλλ+-≤+-<.当λ充分接近1时,可使(1)()x x N x S δλλ+-∈,于是()((1))f x f x x λλ≤+-,矛盾.从而x 是全局最优解.7、设n R S ⊆为非空凸集,R S f →:是具有一阶连续偏导数的凸函数,证明:x 是问题min ()x Sf x ∈的最优解的充要条件是:()()0,T f x x x x S ∇-≥∀∈.证明 必要性.若x 为问题min ()x Sf x ∈的最优解.反设存在x S ∈,使得()()0T f x x x ∇-<,则d x x =-是函数()f x 在点x 处的下降方向,这与x 为问题min ()x Sf x ∈的最优解矛盾.故()()0,T f x x x x S ∇-≥∀∈.充分性.若()()0,T f x x x x S ∇-≥∀∈.反设存在x S ∈,使得()()f x f x <.(())()((1))()f x x x f x f x x f x λλλλλ+--+--=()(1)()()()()0((0,1)f x f x f x f x f x λλλλ+--≤=-<∀,因S 为凸集,f 在S 上可微,故令0λ+→,得()()()()0T f x x x f x f x ∇-≤-<,这与已知条件矛盾,故x 是问题min ()x Sf x ∈的最优解.8、设函数()f x 具有二阶连续偏导数,k x 是()f x 的极小点的第k 次近似,利用()f x 在点k x 处的二阶Taylor 展开式推导Newton 法的迭代公式为 211[()]()k k k k x x f x f x -+=-∇∇.证明 由于()f x 具有二阶连续偏导数,故21()()()()()()()()2T T k k k k k k f x x f x f x x x x x f x x x ϕ≈=+∇-+-∇-.且2()k f x ∇是对称矩阵,因此()x ϕ是二次函数.为求()x ϕ的极小点,可令()0x ϕ∇=,即2()()()0k k k f x f x x x ∇+∇-=,若2()k f x ∇正定,则上式解出的()x ϕ的平稳点就是()x ϕ的极小点,以它作为()f x 的极小点的第1k +次近似,记为1k x +,即211[()]()k k k k x x f x f x -+=-∇∇,这就得到了Newton 法的迭代公式.9、叙述常用优化算法的迭代公式.(1)0.618法的迭代公式:(1)(),().k k k k k k k k a b a a b a λτμτ=+--⎧⎨=+-⎩(2)Fibonacci 法的迭代公式:111(),(1,2,,1)()n k kk k k n k n k k k k k n k F a b a F k n F a b a F λμ---+--+⎧=+-⎪⎪=-⎨⎪=+-⎪⎩.(3)Newton 一维搜索法的迭代公式: 1()()k k k k t t t t ϕϕ+'=-''. (4)最速下降法用于问题1min ()2TT f x x Qx b x c =++的迭代公式: 1()()()()()T k k k k k Tk k f x f x x x f x f x Q f x +∇∇=-∇∇∇ (5)Newton 法的迭代公式:211[()]()k k k k x x f x f x -+=-∇∇. (6)共轭方向法用于问题1min ()2TT f x x Qx b x c =++的迭代公式: 1()T k kk k k Tk kf x d x x d d Qd +∇=-. 10、已知线性规划:123123123123123min ()2;..360,2210,20,,,0.f x x x x s t x x x x x x x x x x x x =-+⎧⎪++≤⎪⎪-+≤⎨⎪+-≤⎪⎪≥⎩(1)用单纯形法求解该线性规划问题的最优解和最优值; (2)写出线性规划的对偶问题; (3)求解对偶问题的最优解和最优值.解 (1)引进变量456,,x x x ,将给定的线性规划问题化为标准形式:123123412351236126min ()2;..360,2210,20,,,,0.f x x x x s t x x x x x x x x x x x x x x x =-+⎧⎪+++=⎪⎪-++=⎨⎪+-+=⎪⎪≥⎩所给问题的最优解为(0,20,0)T x =,最优值为20f =-. (2)所给问题的对偶问题为:123123123123123max ()601020;..32,21,21,,,0.g y y y y s t y y y y y y y y y y y y =---⎧⎪---≤⎪⎪-+-≤-⎨⎪--+≤⎪⎪≥⎩(1) (3)将上述问题化成如下等价问题:123123123123123min ()601020;..32,21,21,,,0.h y y y y s t y y y y y y y y y y y y =++⎧⎪---≤⎪⎪-+-≤-⎨⎪--+≤⎪⎪≥⎩引进变量456,,y y y ,将上述问题化为标准形式:123123412351236126min ()601020;..32,21,21,,,,0.h y y y y s t y y y y y y y y y y y y y y y =++⎧⎪---+=⎪⎪-+-+=-⎨⎪--++=⎪⎪≥⎩ (2)问题(2)的最优解为(0,0,1)T y =,最优值为20h =(最小值). 问题(1)的最优解为(0,0,1)T y =,最优值为20g =-(最大值).11、用0.618法求解 2min ()(3)t t ϕ=-,要求缩短后的区间长度不超过0.2,初始区间取[0,10]. 解 第一次迭代: 取11[,][0,10],0.2a b ε==. 确定最初试探点11,λμ分别为11110.382() 3.82a b a λ=+-=,11110.618() 6.18a b a μ=+-=.求目标函数值:21()(3.823)0.67ϕλ=-=,21()(6.183)10.11ϕμ=-=. 比较目标函数值:11()()ϕλϕμ<. 比较11 6.1800.2a με-=->=. 第二次迭代:212121210, 6.18, 3.82,()()0.67a a b μμλϕμϕλ========.2222220.382()0.382(6.180) 2.36,()(2.363)0.4a b a λϕλ=+-=-==-=.2222()(), 3.82a ϕλϕμμε<-=>.323232320, 3.82, 2.36,()()0.4a a b μμλϕμϕλ========.2333330.382()0.382(3.820) 1.46,()(1.463) 2.37a b a λϕλ=+-=-==-=.3333()(), 3.82 1.46b ϕλϕμλε>-=->. 第四次迭代:434343431.46, 3.82, 2.36,()()0.4a b b λλμϕλϕμ========.444440.618() 1.460.0.618(3.82 1.46) 2.918,()0.0067a b a μϕμ=+-=+-==. 4444()(), 3.82 2.36b ϕλϕμλε>-=->. 第五次迭代:545454542.36, 3.82, 2.918,()()0.0067a b b λλμϕλϕμ========.555550.618() 3.262,()0.0686a b a μϕμ=+-==. 5555()(), 3.262 2.36a ϕλϕμμε<-=->. 第六次迭代:656565652.36, 3.262, 2.918,()()0.0067a a b μμλϕμϕλ========.666660.382() 2.7045,()0.087a b a λϕλ=+-==.6666()(), 3.262 2.7045b ϕλϕμλε>-=->. 第七次迭代:767676762.7045, 3.262, 2.918,()()0.0067a b b λλμϕλϕμ========.777770.618() 3.049,()0.002a b a μϕμ=+-==. 7777()(),b ϕλϕμλε>->. 第八次迭代:878787872.918, 3.262, 3.049,()()0.002a b b λλμϕλϕμ========.888880.618() 3.131,()0.017a b a μϕμ=+-==. 8888()(),a ϕλϕμμε<->.989899982.918, 3.131, 3.049,()()0.002a a b μμλϕμϕλ========.999990.382() 2.999,()0.000001a b a λϕλ=+-==. 9999()(), 3.049 2.918a ϕλϕμμε<-=-<. 故993.0242x λμ+==.12、用最速下降法求解 22112212min ()2243f x x x x x x x =++--,取(0)(1,1)T x =,迭代两次.解 1212()(224,243)T f x x x x x ∇=+-+-, 将()f x 写成1()2TT f x x Qx b x =+的形式,则224,243Q b -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭. 第一次迭代:(0)(0)(1)(0)(0)(0)(0)()()()()()T T f x f x xxf x f x Q f x ∇∇=-∇∇∇ 0(0,3)1013220131/4(0,3)243⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎝⎭=-= ⎪ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭. 第二次迭代:(1)(1)(2)(1)(1)(1)(1)()()()()()T T f x f x xx f x f x Q f x ∇∇=-∇∇∇ 3/2(3/2,0)13/27/40223/21/401/4(3/2,0)240-⎛⎫- ⎪-⎛⎫⎛⎫⎛⎫⎝⎭=-= ⎪ ⎪ ⎪-⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭- ⎪⎪⎝⎭⎝⎭. 13、用FR 共轭梯度法求解222123123123min ()()()()f x x x x x x x x x x =-++-++++-,取(0)11(,1,)22T x =,迭代两次.若给定0.01,ε=判定是否还需进行迭代计算. 解 222123121323()3()2()f x x x x x x x x x x =++-++,再写成1()2T f x x Gx =,622262226G --⎛⎫⎪=-- ⎪ ⎪--⎝⎭,()f x Gx ∇=.第一次迭代:(0)()(0,4,0)T f x ∇=,令(0)0()(0,4,0)T d f x =-∇=-,从(0)x 出发,沿0d 进行一维搜索,即求(0)200min ()21648f x d λλλλ≥+=-+的最优解,得(1)(0)0001/6,(1/2,1/3,1/2)T x x d λλ==+=.第一次迭代:(1)()(4/3,0,4/3)T f x ∇=.2(1)02(0)()29()f x f x α∇==∇, (1)100()(4/3,8/9,4/3)T d f x d α=-∇+=---.从(1)x 出发,沿1d 进行一维搜索,即求(1)10142362214181418min ()(,,)262233923392261423f x d λλλλλλλλ≥⎛⎫- ⎪--⎛⎫ ⎪⎪⎪+=------ ⎪ ⎪ ⎪-- ⎪⎝⎭ ⎪- ⎪⎝⎭的最优解,得(2)(1)1111/24/333,1/38/9(0,0,0)881/24/3T x x d λλ-⎛⎫⎛⎫ ⎪ ⎪==+=+-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.此时(2)(2)()(0,0,0),()00.01T f x f x ε∇=∇=<=.得问题的最优解为(0,0,0)T x =,无需再进行迭代计算.14、用坐标轮换法求解 2212112min ()242f x x x x x x =+--,取(0)(1,1)T x =,迭代一步.解 从点(0)(1,1)T x =出发,沿1(1,0)T e =进行一维搜索, 即求(0)210min ()43f x e λλλλ≥+=--的最优解,得(1)(0)0012,(3,1)T x x e λλ==+=.再从点(1)x 出发,沿2(0,1)T e =进行一维搜索, 即求(1)220min ()227f x e λλλλ≥+=--的最优解,得(2)(1)1121/2,(3,3/2)T x x e λλ==+=.15、用Powell 法求解2212112min ()3f x x x x x x =+--,取(0)(0,0)T x =,初始搜索方向组01(0,1),(1,0)T T d d ==,给定允许误差0.1ε=(迭代两次). 解 第一次迭代:令(0)(0)(0,0)T y x ==,从点(0)y 出发沿0d 进行一维搜索,易得(1)(0)0000,(0,0)T y y d λλ==+=;接着从点(1)y 出发沿1d 进行一维搜索,得(2)(1)11133,(,0)22T y y d λλ==+=由此有加速方向 (2)(0)23(,0)2T d y y =-=.因为23/2d ε=>,所以要确定调整方向.由于 (0)(1)(2)9()0,()0,()4f y f y f y ===-,按(8.4.17)式有(1)(2)()(1)()()max{()()|0,1}j j f y f y f y f y j +-=-=,因此1m =,并且()(1)(1)(2)9()()()()4m m f y f y f y f y +-=-=. 又因(2)(0)(2)0f y y -=,故(8.4.18)式不成立.于是,不调整搜索方向组,并令(1)(2)3(,0)2T x y ==.第二次迭代:取(0)(1)3(,0)2T y x ==,从点(0)y 出发沿0d 作一维搜索,得(1)(0)000333,(,)424T y y d λλ==+=.接着从点(1)y 出发沿方向1d 作一维搜索,得(2)(1)1113153,(,)884Ty y d λλ==+=. 由此有加速方向(2)(0)233(,)84T d y y =-=.因为2d ε=>,所以要确定调整方向.因(0)(1)(2)945189(),(),()41664f y f y f y =-=-=-, 故按(8.4.17)式易知0m =,并且()(1)(0)(1)9()()()()16m m f y f y f y f y +-=-=. 由于(2)(0)45(2)16f y y -=-, 因此(8.4.18)式成立。
最优化方法试卷及答案5套.docx
《最优化方法》1一、填空题:1. _______________________________________________________ 最优化问题的数学模型一般为:_____________________________________________ ,其中___________ 称为目标函数,___________ 称为约束函数,可行域D可以表示为_______________________________ ,若 ________________________________ ,称/为问题的局部最优解,若为问题的全局最优解。
2.设f(x)= 2斤+2“2-兀|+5花,则其梯度为__________ ^x = (l,2)r?6/ = (l,0)r,则f(x)在壬处沿方向d的一阶方向导数为___________ ,几何意义为_____________________________________ ,二阶方向导数为____________________ ,几何意义为_____________________________3.设严格凸二次规划形式为:min /(%) = 2兀]2 + 2x; - 2兀]-x2s.t. 2%! 4- x2 < 1> 0x2 > 0则其对偶规划为_______________________________________________min%(d ) = f (x k +ad k )的最优步长为务=—叫)F.d kT Gd k2. (10分)证明凸规划min/(x ),x G D (其中子(兀)为严格凸函数,D 是凸集)的最优解是唯一的3. (13分)考虑不等式约束问题min /(x )s.t. c i (x ) < 0, Z G / = {1,2,…,加}其中/(x ),6 (兀)a e /)具有连续的偏导数,设X 是约束问题的可行点,若在元处 d 满足巧(计<0,VC,(元)(可则d 是元处的可行下降方向。
最优化计算方法试题
最优化计算方法试题
一、(20分)解释下列概念:
(1)凸集,凸规划;
(2)线性规划的基和基本解;
(3)无约束优化算法的下降搜索方向,举出两种搜索方向;
(4)约束最优化问题的可行解集合或容许解集合;
(5)共轭方向。
二、(10分)解答下列问题
三、(15分)写出下列线性规划的对偶形式,并用单纯形法求解原规划的最优解和最优值。
五、(10分)写出一维搜索0.618法的基本思想和算法步骤或框图。
六、(15分)分别利用外点罚函数法和内点罚函数法求解非线性规划
七、(15分)设A为n阶对称正定矩阵,
(1)写出A共轭向量组的定义;
(2)并证明该向量组必为线性无关向量组;
八、(15分)简述DFP算法的优缺点;并证明矩阵
满足拟牛顿方程。
最优化方法试卷及答案5套.docx
最优化⽅法试卷及答案5套.docx《最优化⽅法》1⼀、填空题:1. _______________________________________________________ 最优化问题的数学模型⼀般为:_____________________________________________ ,其中___________ 称为⽬标函数,___________ 称为约束函数,可⾏域D可以表⽰为_______________________________ ,若 ________________________________ ,称/为问题的局部最优解,若为问题的全局最优解。
2.设f(x)= 2⽄+2“2-兀|+5花,则其梯度为__________ ^x = (l,2)r?6/ = (l,0)r,则f(x)在壬处沿⽅向d的⼀阶⽅向导数为___________ ,⼏何意义为_____________________________________ ,⼆阶⽅向导数为____________________ ,⼏何意义为_____________________________3.设严格凸⼆次规划形式为:min /(%) = 2兀]2 + 2x; - 2兀]-x2s.t. 2%! 4- x2 < 1> 0x2 > 0则其对偶规划为_______________________________________________min%(d ) = f (x k +ad k )的最优步长为务=—叫)F.d kT Gd k2. (10分)证明凸规划min/(x ),x G D (其中⼦(兀)为严格凸函数,D 是凸集)的最优解是唯⼀的3. (13分)考虑不等式约束问题min /(x )s.t. c i (x ) < 0, Z G / = {1,2,…,加}其中/(x ),6 (兀)a e /)具有连续的偏导数,设X 是约束问题的可⾏点,若在元处 d 满⾜巧(计<0,VC,(元)(可则d 是元处的可⾏下降⽅向。
最优化方法-习题
( x2 x1) f ( x 2) f ( x2) f ( x1)
三 、 设 f(x)=
2 1
“充分性” 由 则
x ,x
1
2
的任意性取
x = x 时,f( x )>f( x )
1
T 1 T T Qx b x c, Q Q 0 试 证 : 共 轭 梯 度 法 的 线 性 搜 索 中 2x
3
*
T
f ( x)
x
2
1
2 x 2 2 x1 x2 4 x1 , x R
T
1、 给定问题
x
(1)
(1,1)
解:1)DFC 法 取初始对称矩阵
1 0 H1 0 1
第一次迭代:
x x x 2 x 6 x 14 x x x x 2 s.t. x 2 x 3 x 0, x 0, x 0 取初始点 x (1 ,1,0) ,用简约梯度法求其最优解
T
2) 因为 Q=
2 2 2 2 ,所以 |Q|= 2 6 =8>0 即可知 Q 是非奇异的 2 6 2 2 2 6
=8>0 ,所以 Q 是正定的,故 f(x)是正定的
f ( x1) (2,4,5)
3) 因为|2|>0,
2 d f ( x1) =(1,0,-1) 4 = -3<0 5
2 2
2
一、设 f(x)为定义在区间[a,b]上的实值函数,
2) f(x)=ln(
x1 + x x x 2 )
x1 x2 9 x3 , x1 6 x2 x3 2 , 9 x1 x2 )
最优化方法考试试题
最优化方法考试试题一、选择题(每题2分,共20分)1、下列哪个选项不是最优化方法的常见应用场景?A.生产计划优化B.金融投资组合优化C.图像处理优化D.自然语言处理优化正确答案:D.自然语言处理优化。
2、下列哪个算法不是求解线性规划问题的常用算法?A.单纯形法B.内点法C.外点法D.牛顿法正确答案:D.牛顿法。
3、下列哪个选项不是整数规划问题的特点?A.变量取值必须是整数B.问题复杂度较高,通常需要特殊算法求解C.在实际应用中比线性规划更为广泛D.可以使用与线性规划相同的方法求解正确答案:D.可以使用与线性规划相同的方法求解。
4、下列哪个选项不是梯度下降法的优点?A.简单易行,易于实现B.能较快地收敛到局部最优解C.对初值不敏感,易于找到全局最优解D.对于大规模数据处理效率较高正确答案:C.对初值不敏感,易于找到全局最优解。
5、下列哪个选项不是模拟退火算法的特点?A.基于概率的搜索方法,有一定的随机性B.在解空间内随机搜索,可以跳出局部最优解的陷阱C.可以找到全局最优解,但需要设置退火温度等参数D.对于组合优化问题通常比暴力搜索算法更快找到最优解正确答案:D.对于组合优化问题通常比暴力搜索算法更快找到最优解。
二、填空题(每空2分,共20分)6.最优化方法中,通常使用__________来衡量一个解的好坏。
正确答案:目标函数。
7.在使用单纯形法求解线性规划问题时,__________是算法终止的条件。
正确答案:迭代次数达到预设的上限。
8.整数规划问题中,如果所有变量都有上限和下限的约束,则称为__________规划问题。
正确答案:背包。
9.在使用模拟退火算法求解组合优化问题时,__________是算法终止的条件。
正确答案:达到预定的迭代次数或者解的变化小于某个给定的阈值。
10.最优化方法中,__________是一种启发式搜索方法,通常用于解决组合优化问题。
正确答案:遗传算法。
最优化问题在现实世界中随处可见,从解决日常生活中的最佳路线问题,到企业寻求最大化利润和最小化成本,最优化方法都发挥着至关重要的作用。
最优化方法期末考试复习
最优化理论与方法知识点总结最优化理论与方法知识点总结 (1)一、最优化简介: (2)1.1最优化应用举例 (2)1.2基本概念 (2)1.3向量范数 (3)1.4矩阵范数 (3)1.5极限的定义 (3)1.6方向导数存在性和计算公式 (4)1.7梯度定义 (4)1.8海塞矩阵 (5)1.9泰勒展开式: (5)1.10凸集定义 (5)1.11凸集性质 (5)1.12凸函数定义 (6)1.13凸函数判断 (6)1.14矩阵正定与半正定判断 (6)1.15例题(判断矩阵是否正定) (7)1.16凸优化 (7)二、线性规划 (7)2.1线性规划数学模型的一般形式 (7)2.2解的基本定理 (7)2.3解的分类 (8)2.4图解法 (8)2.5例题(图解法) (8)2.6标准型的化法 (9)2.7例题(化为标准型) (9)2.8单纯形法 (10)2.9例题(单纯形法) (11)三、对偶线性规划 (13)3.1对偶问题 (13)3.2单纯形法解对偶问题 (13)3.3对偶单纯形法求解线性规划问题过程 (14)四、无约束优化 (14)4.1无约束优化概述 (14)4.2搜索区间的确定 (15)4.3区间消去法原理 (16)4.4黄金分割法 (17)4.5插值方法 (17)4.6常见的终止准则 (19)4.7最速下降法 (20)4.8牛顿类方法 (20)4.9例题(牛顿类方法) (21)一、最优化简介:1.1最优化应用举例具有广泛的实用性运输问题,车辆调度,员工安排,空运控制等工程设计,结构设计等资源分配,生产计划等通信:光网络、无线网络,ad hoc等.制造业:钢铁生产,车间调度等医药生产,化工处理等电子工程,集成电路VLSI etc.排版1.2基本概念目标函数和约束函数都是线性的,称之为线性规划问题,而有的模型中含有非线性函数,称之为非线性规划。
在线性与非线性规划中,满足约束条件的点称为可行点,全体可行点组成的集合称为可行集或可行域。
最优化方法测验及答案套
《最优化方法》1一、填空题:1.最优化问题的数学模型一般为:____________________________,其中 ___________称为目标函数,___________称为约束函数,可行域D 可以表示 为_____________________________,若______________________________, 称*x 为问题的局部最优解,若_____________________________________,称*x 为问题的全局最优解。
2.设f(x)= 212121522x x x x x +-+,则其梯度为___________,海色矩阵___________,令,)0,1(,)2,1(T T d x ==则f(x)在x 处沿方向d 的一阶方向导数为___________,几何意义为___________________________________,二阶 方向导数为___________________,几何意义为_________________________ ___________________________________。
3.设严格凸二次规划形式为:012..222)(min 2121212221≥≥≤+--+=x x x x t s x x x x x f则其对偶规划为___________________________________________。
4.求解无约束最优化问题:n R x x f ∈),(min ,设k x 是不满足最优性条件的第k 步迭代点,则:用最速下降法求解时,搜索方向k d =___________ 用Newton 法求解时,搜索方向k d =___________ 用共轭梯度法求解时,搜索方向k d =___________________________________________________________________________。
最优化算法期末试题及答案
最优化算法期末试题及答案一、单项选择题1. 最优化问题是指A. 求解最大或最小值的问题B. 求解平均值的问题C. 求解所有可能解的问题D. 求解线性方程组的问题答案:A2. 线性规划是一种A. 非线性优化方法B. 动态规划方法C. 整数规划方法D. 数值优化方法答案:A3. 如果一个函数在某个点的某个方向的导数存在且小于零,那么该点是一个局部最小值点。
A. 正确B. 错误答案:A4. 梯度下降法是一种常用的最优化算法,其思想是A. 沿函数的梯度方向进行搜索求解最优点B. 随机选择点进行搜索求解最优点C. 寻找函数的驻点作为最优点D. 对目标函数进行二分法搜索找到最优点答案:A5. 遗传算法是一种模拟生物进化过程的优化算法,其基本操作包括A. 选择、交叉、变异B. 排序、选择、交叉C. 选择、突变、淘汰D. 选择、交叉、淘汰答案:D二、填空题1. __________ 是一种求解最优化问题的常用方法。
答案:梯度下降法2. 梯度下降法中的学习率决定了每一次迭代中参数更新的步幅,选择合适的学习率可以使算法收敛更快,但过大或过小的学习率可能导致算法无法收敛或收敛速度过慢。
答案:学习率3. 遗传算法的基本操作中,通过选择操作从种群中选择适应度较高的个体作为下一代的父母。
答案:选择4. 最优化问题可以分为连续型和______________两种类型。
答案:离散型5. 在线性规划中,目标函数和约束条件都是线性的。
答案:是三、问题解答题1. 简述梯度下降法的原理及步骤。
答案:梯度下降法是一种常用的最优化算法,其原理是通过沿着函数的负梯度方向进行搜索,以找到函数的最小值点。
其步骤如下:1) 初始化参数:选择初始点作为搜索的起点。
2) 计算梯度:计算当前点的梯度,即对目标函数求偏导。
3) 更新参数:根据梯度和学习率更新参数,即进行一次梯度下降操作。
4) 判断停止条件:检查是否满足停止条件,如达到最大迭代次数或函数值的变化小于设定阈值。
最优化方法试卷与答案5套
《最优化方法》1一、填空题:1.最优化问题的数学模型一般为:____________________________,其中___________称为目标函数,___________称为约束函数,可行域D 可以表示为_____________________________,若______________________________,称*x 为问题的局部最优解,若_____________________________________,称*x 为问题的全局最优解。
2.设f(x)= 212121522x x x x x +-+,则其梯度为___________,海色矩阵___________,令,)0,1(,)2,1(T T d x ==则f(x)在x 处沿方向d 的一阶方向导数为___________,几何意义为___________________________________,二阶方向导数为___________________,几何意义为____________________________________________________________。
3.设严格凸二次规划形式为:012..222)(min 2121212221≥≥≤+--+=x x x x t s x x x x x f则其对偶规划为___________________________________________。
4.求解无约束最优化问题:n R x x f ∈),(min ,设k x 是不满足最优性条件的第k 步迭代点,则:用最速下降法求解时,搜索方向k d =___________ 用Newton 法求解时,搜索方向k d =___________ 用共轭梯度法求解时,搜索方向k d =___________________________________________________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《最优化方法》复习题
一、简述题
1、怎样判断一个函数是否为凸函数.
(例如:判断函数212
2
212151022)(x x x x x x x f-=是否为凸函数)2、写出几种迭代的收敛条件.
3、熟练掌握利用单纯形表求解线性规划问题的方法(包括大M法及二阶段法).
见书本61页(利用单纯形表求解);
69页例题(利用大M法求解、二阶段法求解);4、简述牛顿法和拟牛顿法的
优缺点.简述共轭梯度法的基本思想.
写出Goldstein、Wolfe非精确一维线性搜索的公式。
5、叙述常用优化算法的迭代公式.
(1)0.618法的迭代公式:(1)(),
().k k k k k
k k k a b a a b aλτμτ=--??=-?
(2)Fibonacci法的迭代公式:111(),(1,2,,1)()
n k k
k k k n k n k k k k k n k F a b a F k n F a b a Fλμ-----? =-??
=-?
?=-??
L.(3)Newton一维搜索法的迭代公式:1
1k k k。