中国有色金属学报
中国有色金属学报格式要求
中国有色金属学报格式要求一、引言中国有色金属学报(J o ur na lo fC hi na Non f er ro us Me ta ls)是中国有色金属学会主办的一本国内知名学术期刊,旨在推动有色金属领域研究的发展和交流。
为了确保学术论文的规范与质量,本文库文档将对中国有色金属学报的格式要求进行详细介绍,帮助作者在投稿前对格式有一个清晰的了解。
二、标题和副标题2.1标题格式在投稿时,标题应居中,使用粗体字,字号为14号,采用小写中文宋体字体,不加下划线。
标题之前和之后应各空一行,以实现段落分割。
2.2副标题格式副标题应使用小写中文宋字体,字号为12号,并用加粗的方式进行标识。
副标题之前和之后同样应各空一行。
三、正文格式3.1字体格式正文采用小写中文宋体字体,字号为10.5号。
行距为1.5倍,段前段后均设为0,空一行用于段落分割。
3.2章节标题章节标题使用小写中文宋体字体,字号为12号,加粗。
章节标题之前和之后应各空一行。
3.3正文段落正文段落之间应使用一个空行进行分割,以便于阅读和理解。
四、图表和公式4.1图表编号与标题图表的编号要求以“图1”、“表1”等形式进行标识,并在图表标题之后空一行。
4.2图表格式插入的图表应为黑白图片或表格,不得包含彩色、底纹或图案。
图表中的文字以宋体字体、10.5号居中显示,图表边框线的粗细应适中。
4.3公式格式公式在正文中应居中显示,使用阿拉伯数字进行编号,如(1),在公式之后空一行。
五、参考文献参考文献应按照国际通用的引用格式进行标注,以便读者查阅。
参考文献格式可采用作者-时间(Au th or-Y ea r)制或上标、数字两种形式,并在每条参考文献之后空一行。
六、总结本文库文档简要介绍了中国有色金属学报的格式要求,包括标题和副标题的格式、正文的字体与段落格式、图表和公式的规范以及参考文献的标注方式。
遵守这些要求能够使论文的格式更加规范,提高投稿的质量。
希望作者们在投稿时能够详细阅读和遵守学报的格式要求,以期获得更好的发表机会。
制备过程pH值对FePO4·xH2O及LiFePO4性能的影响(论文)
(School ofMetallurgical Science and Engineering,Central South University,Changsha 410083,China)
Abstract:FeP04+xH20 precursor was synthesized from FeS04‘7H20,H3P04,H202 and NH3‘H20 under various pH value LiFeP04 cathode material wa¥then synthesized by low temperature sintering of the homogeneous mixture of Li2C03, aeetylene black and FeP04.xH20.The effect of the solution pH on the performance of FeP04。xH20 was characterized. The structures of FeP04·xH20 and LiFeP04 were characterized by XRD and SEM.The effect of the solution pH on the electrochemieal performance of LiFeP04 was discussed.The results show that no impurities exist in the FePCI4"xH20 synthesized at pH value ranging in 2 and 5.LiFeP04 made from FeP04‘xH20 precursor synthesized under the condition
后在惰性气氛或还原性气LACOURTtll】在低温合成磷酸盐系列锂离子 电池材料时,探讨过制备过程中pH值对合成的 FeP04.xH20晶体结构的影响;朱柄权等[12】曾用共沉淀 法制备FeP04.xH20前驱体,然后与乙炔黑混合,在 惰性气氛保护下,利用碳热还原反应法制备LiFePO。。 然而,他们并没有考虑溶液pH值对合成FeP04-xH20
中国有色金属学报英文版投稿指南
中国有色金属学报英文版投稿指南全文共3篇示例,供读者参考篇1Submission Guidelines for Journal of China Nonferrous MetalsThank you for considering submitting your research to the Journal of China Nonferrous Metals. Before you submit your work, please carefully read and adhere to the submission guidelines outlined below.1. Scope of the Journal:The Journal of China Nonferrous Metals publishes original research articles, reviews, and communications on all aspects of nonferrous metals, including but not limited to aluminum, copper, lead, zinc, nickel, and titanium. Contributions covering both fundamental and applied research are welcome.2. Manuscript Preparation:- Manuscripts should be written in clear and concise English.- All submissions should be accompanied by a cover letter detailing the significance and novelty of the research.- Authors should follow the journal's formatting guidelines, including referencing style and manuscript structure.- Figures and tables should be included within the manuscript document and also submitted as separate files in high-resolution format.3. Submission Process:- Authors should submit their manuscripts through the journal's online submission system.- Upon submission, authors are required to confirm that their work is original, has not been published previously, and is not under consideration elsewhere.- The corresponding author will receive a confirmation email upon successful submission of the manuscript.4. Peer Review:- All submissions to the Journal of China Nonferrous Metals undergo rigorous peer review by experts in the field.- The review process is double-blind, ensuring the anonymity of both authors and reviewers.- Authors can expect to receive feedback and suggestions from reviewers to improve the quality of their work.5. Publication Ethics:- Authors are expected to adhere to the highest ethical standards in their research and writing.- Plagiarism, self-plagiarism, and data manipulation are strictly prohibited.- Authors should disclose any potential conflicts of interest in their submissions.6. Open Access Policy:- The Journal of China Nonferrous Metals is an open-access journal, meaning that all articles are freely available to readers.- Authors are responsible for covering the costs associated with publishing their work, including article processing charges.We hope that these guidelines will assist you in preparing and submitting your work to the Journal of China Nonferrous Metals. Should you have any questions or require further information, please do not hesitate to contact the editorial office.We look forward to receiving your contributions and contributing to the advancement of knowledge in the field of nonferrous metals.Best regards,Editorial BoardJournal of China Nonferrous Metals篇2Submission Guidelines for China Nonferrous Metals Society English EditionThe China Nonferrous Metals Society (CNMS) publishes the China Nonferrous Metals Society English Edition, a journal dedicated to advancing research in the field of nonferrous metals and materials. The journal welcomes submissions from researchers, academics, and professionals from around the world who are interested in sharing their work and contributing to the advancement of the field. To ensure that the submission process goes smoothly and that all submissions meet the necessary standards, please follow the guidelines outlined below:1. Manuscript Preparation:- Manuscripts should be written in clear and concise English.- The manuscript should be formatted according to the journal's guidelines, including font size, spacing, margins, and references.- Manuscripts should be submitted in Microsoft Word format.- The manuscript should include a title, abstract, keywords, introduction, methodology, results, discussion, conclusions, and references.2. Manuscript Length:- There is no strict word limit for submissions, but manuscripts should typically be between 2000-8000 words.3. Submission Process:- Manuscripts should be submitted through the journal's online submission system.- Authors will need to register an account on the submission system before they can submit their manuscripts.- Authors should ensure that all co-authors have approved the final version of the manuscript before submission.- Authors will be notified of the status of their submission within a reasonable timeframe.4. Review Process:- All submitted manuscripts will undergo a rigorouspeer-review process.- Reviewers will evaluate the quality, significance, and originality of the research presented in the manuscript.- Authors may be required to make revisions based on reviewer comments before their manuscript can be accepted for publication.5. Publication Ethics:- Authors should ensure that their research is original and has not been published elsewhere.- Authors should disclose any conflicts of interest that may arise from their research.- Authors should ensure that their research complies with ethical standards and guidelines.6. Copyright and Permissions:- Authors retain the copyright to their work, but must grant CNMS the right to publish and distribute their manuscript.- Authors are responsible for obtaining permissions for any copyrighted material included in their manuscript.7. Open Access:- The China Nonferrous Metals Society English Edition is an open-access journal, meaning that all articles are freely available to readers.- Authors may be required to pay an article processing charge to cover the costs of publication.By following these guidelines, authors can ensure that their submissions meet the necessary standards for publication in the China Nonferrous Metals Society English Edition. We look forward to receiving your contributions and working together to advance research in the field of nonferrous metals and materials.篇3Submission Guidelines for China Nonferrous Metals Society Journal (English Version)China Nonferrous Metals Society Journal (CNMSJ) is a prestigious academic journal that serves as a platform for researchers, scholars, and industry professionals to publish their latest findings in the field of nonferrous metals. We welcome submissions from both domestic and international authors and aim to promote the exchange of knowledge and ideas in this important field.Submission Types:CNMSJ accepts original research articles, review articles, and short communications related to nonferrous metals and related fields. All submissions should be original, unpublished works that have not been submitted to any other journals for consideration.Submission Process:Authors should submit their manuscripts online through the CNMSJ submission system. The system will guide authors through the submission process and provide instructions on how to format their manuscripts according to the journal's guidelines. Authors can track the progress of their submissions through the system and will receive notifications regarding the status of their manuscripts.Manuscript Preparation:Manuscripts should be prepared according to the following guidelines:1. Title: The title should be concise and descriptive of the main findings of the manuscript.2. Abstract: The abstract should provide a brief overview of the study, including the research objectives, methods, results, and conclusions.3. Keywords: Authors should provide a list of keywords that accurately describe the content of the manuscript.4. Introduction: The introduction should provide background information on the topic of the study and clearly state the research objectives.5. Materials and methods: Authors should provide detailed descriptions of the materials and methods used in the study.6. Results: Authors should present their findings in a clear and concise manner, using tables, figures, and graphs where appropriate.7. Discussion: The discussion should interpret the results of the study and provide insights into the significance of the findings.8. Conclusion: Authors should summarize the main findings of the study and suggest areas for future research.9. References: Authors should cite all relevant sources in the reference list according to the journal's citation style.Review Process:All submitted manuscripts will undergo a rigorouspeer-review process, in which experts in the field will evaluatethe quality and significance of the study. Authors can expect to receive feedback and recommendations for revisions from the reviewers before a final decision on publication is made.Publication Ethics:CNMSJ is committed to upholding the highest standards of publication ethics and expects all authors to adhere to these principles. Authors should ensure that their work is original and free from plagiarism, and that all sources of funding and conflicts of interest are disclosed.We look forward to receiving your submissions and to promoting the advancement of knowledge in the field of nonferrous metals. If you have any questions about the submission process or the journal's guidelines, please contact our editorial office for assistance.。
从镍钼矿冶炼烟尘浸出液中还原硒的热力学及应用
摘 要:分析 SO2 在溶液中的存在形态,并对亚硫酸钠在酸性水溶液中还原硒进行热力学分析。通过实验研究验 证热力学分析结果的正确性,并确定亚硫酸钠还原硒的最优技术参数:还原温度 80 ℃,还原酸度 3.5 mol/L,搅
关键词:硒;亚硫酸钠;还原;热力学;应用
中图分类号:TF843.5
文献标志码:A
Thermodynamics and application of selenium reduction from leaching solution of smelting dust of Ni-Mo ore
HOU Xiao-chuan1, 2, XIAO Lian-sheng1, GAO Cong-jie1, ZHANG Qi-xiu1, ZHANG Gui-qing1, CAO Zuo-ying1, LI Qing-gang1 (1. School of Metallurgical Science and Engineering, Central South University, Changsha 410083, China; 2. Jinchuan Nonferrous Metals Corporation, Jinchang 737100, China)
No
Electrode reaction
ϕ
Θ Mn+
/
M
/V
ϕMn+ / M /V
1 SO42−+4H++2e=H2SO3+H2O
2 H2SeO3+4H++4e=Se+3H2O
有色金属学报影响因子
有色金属学报影响因子
《中国有色金属学报》是一本关注有色金属领域的学术期刊,其影响因子会根据年份和学科领域而有所不同。
根据2022年5月31日的信息,《中国有色金属学报》的影响因子为0.915,在冶金工程技术学科中的WJCI指数为2.128。
此外,根据科睿唯安发布的2021年度《期刊引证报告》,《中国有色金属学报(英文版)》的影响因子为3.752,在冶金与冶金工程领域的79种期刊中,排名由去年的第18位升至第17位,保持Q1区。
需要注意的是,期刊的影响因子并不是评价一本期刊质量的唯一标准,还需要考虑其学科领域、读者群体、审稿流程等因素。
《中国有色金属学报》《中国有色金属学报(英文版)》投稿须知
《中国有色金属学报》《中国有色金属学报(英文版)》投稿须
知
佚名
【期刊名称】《中国有色金属学报》
【年(卷),期】2018(028)001
【摘要】作者投稿时请登录中文版官网点击“中文版在线投稿”项进行中文论文投稿,点击“英文版在线投稿”项进行英文论文投稿,或登录英文版官网进行英文论文投稿。
作者首次投中文稿时请先点击“在线投稿”项进行作者注册,然后根据提示进行相关操作,最好能提供关于个人学术背景、课题研究背景和论文发表情况的简介。
作者投稿在3个月内未收到处理结果时,仅需给编辑部留言声明即可自行改投他刊。
稿件经评审录用后,请作者从官网“下载中心”下载相应版本的论文修改稿模板、保密审查表和版权转让协议进行后续流程。
修改稿电子文件格式请采用Word软件生成的DOC或DOCX文档格式,最好另附一套图片文件。
【总页数】1页(P212)
【正文语种】中文
【相关文献】
1.《中国有色金属学报》《中国有色金属学报(英文版)》投稿须知
2.《中国有色金属学报》《中国有色金属学报(英文版)》投稿须知
3.《中国有色金属学报》《中国有色金属学报(英文版)》投稿须知
4.《中国有色金属学报》《中国有色金属学报(英文版)》投稿须知
5.《中国有色金属学报》《中国有色金属学报(英文版)》投稿须知
因版权原因,仅展示原文概要,查看原文内容请购买。
中国有色金属学报 参考文献英文缩写
中国有色金属学报参考文献英文缩写中国有色金属学报(Journal of Chinese Society for Nonferrous Metals)是中国有色金属学会主办的综合性期刊,专注于有色金属材料和冶金领域的研究和发展。
以下是关于该期刊的几篇参考文献的英文缩写和内容。
1. [Wang et al., 2019] - Wang, Y., Li, X., Zhang, L., & Liu, H. (2019). A new method for oleic acid flotation of oxidized lead-zinc-iron sulfides in the Shizhuyuan polymetallic deposit. Journal of Chinese Society for Nonferrous Metals, 29(7), 1521-1529.- In this study, the authors Wang, Li, Zhang, and Liu propose a new method for flotation of oxidized lead-zinc-iron sulfides in the Shizhuyuan polymetallic deposit using oleic acid. The study provides insights into the potential application of this method in the extraction of valuable metals from complex sulfide ores.2. [Chen et al., 2018] - Chen, J., Zhou, X., Wang, Z., & Lv, G. (2018). Effect of thread pitch on deformation behavior of friction stir extrusion processed AZ31 alloy. Journal of Chinese Society for Nonferrous Metals, 28(3), 614-621.- This study by Chen, Zhou, Wang, and Lv investigates the effect of thread pitch on the deformation behavior of AZ31 alloy in friction stir extrusion processes. The findings suggest that an appropriate thread pitch can improve the extrusion process and enhance the mechanical properties of the AZ31 alloy.3. [Zhang et al., 2017] - Zhang, J., Wang, K., Wei, Y., & Liu, Z. (2017). Synthesis and characterization of hexagonal boron nitride nanosheets via low-temperature solid-state reaction. Journal ofChinese Society for Nonferrous Metals, 27(4), 901-908.- In this research article, Zhang, Wang, Wei, and Liu synthesize and characterize hexagonal boron nitride nanosheets through a low-temperature solid-state reaction. The study provides insights into the preparation and properties of these nanosheets, which have potential applications in various fields, including electronics and coatings.4. [Zhu et al., 2016] - Zhu, L., Liu, S., Deng, Z., & Zhu, Y. (2016). Recovery and separation of tungsten from solution leached by sodium carbonate. Journal of Chinese Society for Nonferrous Metals, 26(2), 443-450.- Zhu, Liu, Deng, and Zhu present a study on the recovery and separation of tungsten from solution leached by sodium carbonate. The research focuses on developing an efficient and economical method for the extraction and purification of tungsten, an important strategic metal, from its leaching solution.5. [Li et al., 2015] - Li, Y., Yi, J., Wang, J., & Xu, Z. (2015). Electrochemical behavior of industrial silicon in NaCl-KCl melts. Journal of Chinese Society for Nonferrous Metals, 25(10), 2777-2784.- Li, Yi, Wang, and Xu investigate the electrochemical behavior of industrial silicon in NaCl-KCl melts. The study examines the anodic dissolution and passivation characteristics of industrial silicon, providing valuable information for the optimization of electrolytic processes in the production of high-purity silicon. These references highlight a range of topics covered in the Journal of Chinese Society for Nonferrous Metals, including mineralprocessing, material synthesis, alloy engineering, and electrochemistry. The journal serves as an important platform for disseminating research findings and promoting advancements in the field of nonferrous metals in China.。
《金属学报》投稿须知
《金属学报》投稿须知《金属学报》是由中国金属学会主办,中国科学院金属研究所承办的科技期刊,创刊于1956年,是我国最早的科技期刊之一,长期以来一直是国际(SCIE、EI等)、国内重要检索系统及数据库收录的核心期刊,先后荣获全国优秀科技期刊一等奖、中国科协优秀科技期刊一等奖、中国科学院优秀科技期刊一等奖、首届中国国家期刊奖及国家"双高期刊"等奖项。
现任主编为柯俊院士,师昌绪院士为名誉主编。
本刊为月刊。
1.征稿范围本刊刊登材料科学与工程及冶金科学技术方面具有创新性、高水平、有重要意义的原始学术论文以及反映学科发展状况的综述和信息性文章。
2.投稿要求和注意事项2.1 来稿应观点明确,论据充分、数据可靠,层次分明,文理通顺。
文题、作者姓名(一 般不超过6人),作者单位及所在城市和邮编、摘要、关键词均需中英文对照。
来稿如 获得有关研究基金或课题资助需提供基金名称及编号(亦需中英文对照)、并提供第 一作者的姓名、性别、出生年、职称、学位以及联系人姓名、职称、电话、传真及E- mail地址。
2.2 摘要内容应包括论文的研究目的、方法及研究结果等。
2.3 文中量、单位及符号的使用应符合国际标准和国家标准。
注意容易混淆的外文字母的 文种、大小写、正斜体及上下角标的正确书写。
2.4 图(含照片)、表和公式应通篇分别编号,图题、表题应有中英文对照。
表格应采用三线表形式,内容以英文表述。
曲线图应直观、简洁,图中文字用英文、量的名称及符号、坐标要准确、清晰( 物理量符号用斜体,单位用正体)并与文中一致,曲线图的尺寸(高*宽)以100× 130mm(分栏)、200×260mm(通栏)为宜,曲线线宽为0.7mm,边框及坐标线宽为 0.4mm左右,标值与目标间的距离为5mm,字体采用Arial,4号字(24磅),应采用计 算机绘图,激光打印机打印。
照片必须清晰,层次分明,应为原始照片或高分辨打印机打印、相纸输出。
河南科技大学校内认定的国内重要学术期刊目录
河南科技大学校内认定的国内重要学术期刊目录供稿:科技处 2003-6-15 浏览人次:6230-------------------------------------------------------------------------------------------------------------------河南科技大学校内认定的国内重要学术期刊目录期刊名称出版单位一、人文、社会科学、语言等类3. 中国农村经济中国社会科学院农村发展研究所二、自然科学类57. 中国科学(A、B、C、D、E辑)中国科学院58. 科学通报中国科学院59. 数学学报中国数学学会60. 应用数学学报中国数学学会61. 计算数学中科院计算与科学工程计算研究所62. 系统科学与数学中科院系统科学研究所63. 运筹学学报中国运筹学会64. 物理学报中国物理学会65. 材料研究学报中国材料研究学会66. 光学学报中国光学学会67. 中国激光中国光学学会68. 化学学报中国化学会、中国科学院上海有机化学研究所69. 高等学校化学学报国家教育部70. 应用化学中国化学会、中国科学院长春应用化学研究所71. 分析化学中国化学会、中国科学院长春应用化学研究所72. 化学通报中国化学会、中国科学院化学研究所73. 色谱中国化学会74. 有机化学中国化学会、中国科学院上海有机化学研究所75. 无机化学学报中国化学会76. 化学物理学报中国物理学会77. 分子催化中国化学会78. 化工学报中国化工学会79. 高分子学报中国化学会80. 力学学报中国力学学会81. 固体力学学报中国力学学会82. 工程力学中国力学学会83. 计算力学学报中国力学学会84. 计量学报中国计量测试学会85. 测绘学报中国测绘学会86. 中国机械工程中国机械工程学会87. 机械工程学报中国机械工程学会88. 振动工程学报中国振动工程学会89. 航空学报中国航空学会90. 航空动力学报中国航空学会91. 空气动力学学报中国空气动力学研究会、中国空气动力研究与发展中心92. 摩擦学学报中国科学院兰化所93. 金属热处理学报中国机械工程学会94. 金属学报中国金属学会95. 钢铁中国金属学会96. 中国稀土学报中国稀土学会97. 中国有色金属学报中国有色金属学会98. 复合材料学报中国复合材料学会99. 功能材料863计划新材料领域功能材料专家组100. 材料科学技术学报(英文)中国金属学会、中国材料研究学会101. 中国腐蚀与保护技术中科院金属腐蚀与防护研究所102. 铁道学报中国铁道学会103.农业机械学报中国农业机械学会104. 农业工程学报中国农业工程学会105. 制冷学报中国制冷学会106. 兵工学报中国兵工学会107. 动力工程中国动力工程学会108. 工程热物理学报中国热物理学会109. 内燃机学报中国内燃机学会110. 内燃机工程中国内燃机学会111. 声学学报中国声学学会112. 中国公路学报中国公路学会113. 中国交通工程中国交通工程学会114. 汽车工程中国汽车工程学会115. 汽车技术中国汽车工程学会,长春汽车研究所116. 电子学报中国电子学会117. 中国电机工程学报中国电机工程学会118. 半导体学报中国电子学会,中科院半导体研究所119. 自动化学报中国自动化学会120. 微波学报中国电子学会121. 电工技术学报中国电工技术学会122. 机器人中国科学院沈阳自动化研究所123. 仪器仪表学报中国仪器仪表学会124. 计算机学报中国计算机学会125. 计算机研究与发展中科院计算机技术研究所,中国计算机学会126. 计算机集成制造系统国家863专家组127. 模式识别与人工智能中国自动化学会、国家智能计算机研究中心128. 信息与控制中科院沈阳自动化研究所129. 系统工程理论与实践中国系统工程学会130. 软件学报中科院软件研究所131. 通信学报中国通信学会132. 电信科学中国通信学会133. 工程图学学报中国工程图学学会134. 计算机辅助设计学报与图形学学报中国计算机学会135. 中文信息学报中国中文信息学会136. 中国图象图形学报中国图象图形学会137. 岩土工程学报中国水利学会等138. 岩石力学与工程学报中国岩石力学与工程学会139. 环境科学学报中国科学院环境科学委员会140. 硅酸盐学报中国硅酸盐学会141. 建筑结构学报中国建筑学会142. 建筑学报中国建筑学会143. 土木工程学报中国土木工程学会144. 城市规划中国城市规划学会145. 中国环境科学中国环境科学学会146. 环境科学中科院环境科学委员会,中科院生态环境研究所147. 环境科学学报中科院环境科学委员会,中科院生态环境研究所148. 中华医学杂志中华医学会149. 中华外科杂志中华医学会150. 药学学报中国药学会151. 中华流行病学杂志中华医学会152. 中国公共卫生学报中华医学会153. 中国免疫学杂志中国免疫学会等154. 中西医结合杂志中国中西医结合研究会155. 中华微生物学和免疫学杂志中华医学会156. 病毒学报中国微生物学会157. 中国生物化学与分子生物学报中国生物化学与分子生物学会158. 中国生物医学工程学报中国生物医学工程学会159. 中华内科杂志中华医学会160. 中国中药杂志中国药学会161. 中华肿瘤杂志中华医学会162. 中华结核和呼吸杂志中华医学会163. 中华心血管病杂志中华医学会164. 中华血液学杂志中华医学会165. 中华妇产科杂志中华医学会166. 中华护理学会中华护理学会167. 中华放射学杂志中华医学会168. 药物分析杂志中国药学会169. 中国药理学报中国药理学会170. 中华神经外科杂志中华医学会171. 中华肾脏病杂志中华医学会172. 中华传染病杂志中华医学会173. 中华显微外科杂志中华医学会174. 中华麻醉学杂志中华医学会175. 中华口腔医学杂志中华医学会176. 中华眼科杂志中华医学会177. 中华预防医学杂志中华医学会178. 中华泌尿外科杂志中华医学会179. 中华病理学杂志中华医学会180. 中华消化杂志中华医学会181. 中华医学检验杂志中华医学会182. 中国地方病学杂志中华医学会地方病学会183. 中华耳鼻咽喉科杂志中华医学会184. 中国药学杂志中国药学会185. 中医杂志中国中医药学会186. 中华儿科杂志中华医学会187. 中国心理卫生杂志中国病理生理学会188. 中国病理生理杂志中国病理生理学会189. 解剖学报中国解剖学会190. 植物学报中国植物学会191. 作物学报中国作物学会192. 生物物理学报中国生物物理学会193. 植物生理学报中国植物生理学会194. 林业科学中国林学会195. 食品科学全国食品科技情报中心站,北京市食品研究所196. 营养学报中国营养学会197. 中国粮油学报中国粮油学会198. 园艺学报中国园艺学会199. 土壤学报中国土壤学会200. 植物分类学报中国植物学会201. 动物学报中国动物学会202. 植物保护学报中国植物保护学会203. 植物营养与肥料学报中国植物营养与肥料学会204. 动物学杂志中国动物学会205. 昆虫学报中国昆虫学会206. 兽类学报中国兽类学会207. 实验生物学报中国细胞生物学会208. 生物学通报中国动物学会209. 自然资源学报中国自然资源学会210. 畜牧兽医学报中国畜牧兽医学会211. 中国农业科学中国农业科学院212. 遗传学报中国遗传学会213. 生物化学与生物物理进展中国生物物理学会214. 微生物学报中国微生物学会215. 生物工程学报中国微生物学会216. 生态学报中国生态学会217. 遗传中国遗传学会218. 生理学报中国生理学会219. 水产学报中国水产学会。
《中国有色金属学报》编辑委员会
《中国有色金属学报》编辑委员会Editorial Committee of The Chinese Journal of Nonferrous Metals主任委员Chairman贾明星JIA Ming-xing副主任委员Vice Chairman黄伯云HUANG Bai-yun邱冠周QIU Guan-zhou学术顾问Advisors(按汉语拼音顺序排列)曹楚南CAO Chu-nan古德生GU De-sheng徐滨士XU Bin-shi陈家镛CHEN Jia-yong金展鹏JIN Zhan-peng左铁镛ZUO Tie-yong陈景CHEN Jing刘业翔LIU Ye-xiang钟掘ZHONG Jue崔崑CUI Kun阮雪榆RUAN Xue-yu朱静ZHU Jing傅恒志FU Heng-zhi王淀佐WANG Dian-zuo委员Members(按汉语拼音顺序排列)柴立元CHAI Li-yuan刘咏LIU Yong易健宏YI Jian-hong陈江华CHEN Jiang-hua刘永长LIU Yong-chang苑世剑YUAN Shi-jian房文斌FANG Wen-bin鲁安怀LU An-huai曾光明ZENG Guang-ming 高焕芝GAO Huan-zhi鲁雄刚LU Xiong-gang曾小勤ZENG Xiao-qin管仁国GUAN Ren-guo聂祚仁NIE Zuo-ren张平祥ZHANG Ping-xiang 关绍康GUAN Shao-kang潘复生PAN Fu-sheng张廷安ZHANG Ting-an桂卫华GUI Wei-hua彭超群PENG Chao-qun张文海ZHANG Wen-hai郭学益GUO Xue-yi彭金辉PENG Jin-hui赵中伟ZHAO Zhong-wei 韩恩厚HAN En-hou邱定蕃QIU Ding-fan钟宏ZHONG Hong韩雅芳HAN Ya-fang覃文庆QIN Wen-qing周克崧ZHOU Ke-song韩跃新HAN Yue-xin孙宝德SUN Bao-de周科朝ZHOU Ke-chao贺跃辉HE Yue-hui孙军SUN Jun周廉ZHOU Lian何季麟HE Ji-lin孙伟SUN Wei周萍ZHOU Ping胡文彬HU Wen-bin屠海令TU Hai-ling周益春ZHOU Yi-chun华林HUA Lin汪旭光WANG Xu-guang赵晓晨ZHAO Xiao-chen 黄小卫HUANG Xiao-wei王华WANG Hua左良ZUO Liang姜涛JIANG Tao王慧远WANG Hui-yuan吕坚LÜJian介万奇JIE Wan-qi王同敏WANG Tong-min王健WANG Jian李贺军LI He-jun魏炳波WEI Bing-bo A.A.Luo李劼LI Jie吴国华WU Guo-hua A.B.Tsepelev李金山LI Jin-shan吴玉程WU Yu-cheng Christopher M.Gourlay李夕兵LI Xi-bing夏天东XIA Tian-dong G.Gottstein李谦LI Qian谢建新XIE Jian-xin H.Y.Sohn李元元LI Yuan-yuan谢锋XIE Feng J.Hirsch梁叔全LIANG Shu-quan徐惠彬XU Hui-bin Jung Il Song刘刚LIU Gang徐盛明XU Sheng-ming P.Somasundaren刘兴军LIU Xing-jun杨斌YANG Bin V.T.Zabolotny。
焊接线能量对TA2焊接接头组织和性能的影响-中国有色金属学报
第 23 卷专辑 1 中国有色金属学报 2013 年 12 月 V ol.23 Special 1 The Chinese Journal of Nonferrous Metals Dec. 2013 文章编号:10040609(2013)S1s018405焊接线能量对 TA2 焊接接头组织和性能的影响刘希林,李 炳,胡光远,晏阳阳,闫飞昊,范金伟(中国船舶重工集团公司第七二五研究所,洛阳 471039)摘 要:研究了焊接线能量对TA2焊接接头组织和性能的影响。
采用不同的焊接线能量焊接22 mm厚TA2焊接 接头,对焊接接头显微硬度、拉伸性能、冲击性能、金相组织以及熔敷金属化学成分等进行分析,得出了焊接线 能量对焊接接头组织和性能的影响规律。
研究表明:对于 22 mm厚的 TA2 合金,如果焊接过程控制合理,焊接 线能量对焊接接头组织和性能的影响很小。
关键词:TA2钛合金;焊接接头;线能量;组织;性能中图分类号:TG 407 文献标志码:AInfluence of weld heat input on microstructure andproperties of welded joint of TA2 titanium alloyLIU Xilin, LI Bing, HU Guangyuan, YAN Yangyang, YAN Feihao, FAN Jinwei(Luoyang Ship Material Research Institute,Luoyang 471039, China)Abstract: The influence of heat input on the structure and performance of weld joint was researched. The Vickers hardness,tensile properties, impact properties, metallurgical structure, and chemical composition of the TA2 welded joint with different weld heat inputs were analysed. The relationship between the properties of the welded joint and the weld heat input during the welding was built. The results show that the weld heat input has little influence on the structure and properties of welded joint of 22mmthick TA2.Key words:TA2 titanium alloy;welded joint;weld heat input;structure;property近年来,随着钛合金原材料成本的下降,钛合金 高的比强度、无磁性、优良的海洋环境适应性能以及 耐特殊介质腐蚀性能等优势逐步凸显出来,钛合金焊 接结构件在舰船建造、海洋石油工程以及化工行业应 用越来越广泛 [1−4] 。
外场应力对Al-Cu合金中θ″相形貌及析出行为的影响
外场应力对Al-Cu合金中θ″相形貌及析出行为的影响傅上;易丹青;刘会群;江勇;王斌;胡湛【期刊名称】《中国有色金属学报(英文版)》【年(卷),期】2014(024)007【摘要】对Al-5Cu铝合金在时效过程中施加弹性加载,并采取透射电镜、热分析研究外应力时效作用下θ"析出相的形态和析出行为.结果表明:在50 MPa的外力作用下,在453 K时效6h后的析出相尺寸是19.83nm,小于其常规时效(453 K,6 h)的尺寸28.79 nm.热分析结果揭示施加应力后时效析出过程得到促进,同时析出激活能结果表明外应力作用使得激活能下降10%.第一性原理计算结果发现,外应力作用使得析出相与基体的界面能下降6%;结合经典形核相变理论分析讨论,临界形核功受到外应力作用下降19%,从而引起了析出相形态和析出行为的改变.【总页数】7页(P2282-2288)【作者】傅上;易丹青;刘会群;江勇;王斌;胡湛【作者单位】中南大学材料科学与工程学院,长沙410083;中南大学有色金属材料科学与工程教育部重点实验室,长沙410083;中南大学材料科学与工程学院,长沙410083;中南大学有色金属材料科学与工程教育部重点实验室,长沙410083;中南大学材料科学与工程学院,长沙410083;中南大学有色金属材料科学与工程教育部重点实验室,长沙410083;中南大学材料科学与工程学院,长沙410083;中南大学有色金属材料科学与工程教育部重点实验室,长沙410083;中南大学材料科学与工程学院,长沙410083;中南大学有色金属材料科学与工程教育部重点实验室,长沙410083;中南大学材料科学与工程学院,长沙410083;中南大学有色金属材料科学与工程教育部重点实验室,长沙410083【正文语种】中文因版权原因,仅展示原文概要,查看原文内容请购买。
有色金属学报英文版模板
Source and hazard identification of heavy metals in soils of Changsha based onTIN model and direct exposure methodCHEN Jian-qun1, WANG Zhen-xing2, WU Xie3, ZHU Jian-jun1,2, ZHOU Wen-bin11. School of Geosciences and Info-physics, Central South University, Changsha 410083, China;2. School of Metallurgical Science and Engineering, Central South University, Changsha 410083, China;3. Jiangxi Provincial Water Conservancy Planning and Designing Institute, Nanchang 330029, ChinaReceived 26 October 2010; accepted 14 January 2011Abstract: A total of 153 soil samples were collected from Changsha City, China, to analyze the contents of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb and Zn. A combination of sampling data, multivariate statistical method, geostatistical analysis, direct exposure method and triangulated irregular network (TIN) model was successfully employed to discriminate sources, simulate spatial distributions and evaluate children’s health risks of heavy metals in soils. The results show that not all sites in Changsha city may be suitable for living without remediation. About 9.0% of the study area provided a hazard index (HI)>1.0, and 1.9% had an HI>2.0. Most high HIs were located in the southern and western areas. The element of arsenic and the pathway of soil ingestion were the largest contribution to potential health risks for children. This study indicates that we should attach great importance to the direct soil heavy metals exposure for children’s health.Key words: soil; heavy metal; geostatistics; health risk; triangulated irregular network (TIN) model; geographic information system (GIS)1 IntroductionChina is the world’s most populous country and its economy is growing at the fastest rate of any major nation. However, its environmental problems are among the most severe of any major country, and are mostly getting worse[1]. In recent years, heavy metal (HM) pollutions in soil have become an important environmental issue in China because of their non-biodegradable nature and long biological half-live for elimination from the body[2]. Excessive accumulation of HMs in soils may pose serious health risks to humans and may exert adverse impacts on the ecosystem itself[3−4].Heavy metal pollutants in soils can enter the human body and pose heath risks through two pathways: 1) soil-food-human body (indirect exposure); and 2) soil-human body (direct exposure). The major public health concern of soil HM exposure for the general population is accumulation over a lifetime and possible renal dysfunction and bone disease through food chain ingestion [5]. Therefore, the indirect soil exposure, including HMs through rice, wheat, vegetable, fruit and other foods, has been given more attention worldwide than the direct soil exposure[6−9]. However, recent studies have shown that the direct soil exposure, including soil ingestion, dermal adsorption and inhalation exposure, is also an important pathway by humans intake HMs and is particularly important for children[10]. Children’s behavior can expose them to more toxic effects of soil HMs. For example, young children prefer to play close to the ground and come into contact with polluted soil outdoors and with contaminated dust on surfaces and carpets indoors. Moreover, the developing structure and function of organs for children may result in higher inhalation rates per unit of body mass than adults[11]. Research has shown that long-term health and development issues can arise from intrauterine and early childhood exposures to HMs, which are often undetectable early on and manifest later in life[12−13].Estimating the source and spatial distribution of pollutants is crucial to quantifying the level of environmental risks[14]. However, due to the high costs and time constraints, the accuracy of the direct analysisFoundation item: Project (50925417) supported by the National Funds for Distinguished Young Scientists, China; Project (50830301) supported by the Key Project of National Natural Science Foundation of ChinaCorresponding author: ZHU Jian-jun; Tel: +86-731-88877024; E-mail: zjj@DOI: 10.1016/S1003-6326(11)60761-9CHEN Jian-qun, et al/Trans. Nonferrous Met. Soc. China 21(2011) 642−651 643of in situ data in field investigation is often dubious and the observations contain considerable uncertainty[15]. Geostatistical methods provide spatial interpolation and assess uncertainties at unsampled locations, which offer an opportunity to improve the accuracy of estimating spatial distribution of pollutants in a cost-effective manner[16−17]. Previous literature has focused on the identification of sources and human health risk assessment in HM contaminated soils[18−19], but rarely applied the geostatistical simulations. Moreover, previous literature always used the geostatistical methods to draw a 2D map for HM spatial distribution[19−20]. Triangulated irregular network (TIN) model is a popular three-dimensional (3D) model for representing surface models in geographic information system (GIS) because it has a simple data structure and can easily be rendered using common graphics hardware[21]. Hence, combining the geostatistical methods with TIN model may be a better approach to represent the spatial distribution patterns and potential human impacts of HMs in soils. Furthermore, previous researches on HMs mostly focused on one pollutant in isolation[22]. However, humans would actually be exposed to a mixture of heavy metals in real environments, which needs to be further studied.Hunan province is regarded as the heartland of Chinese nonferrous mining and is under severe HM pollution stress[23−25]. Changsha City, the capital of Hunan province, is a modern industrial city surrounded by agricultural areas. Some potential HM contamination has accumulated in soils on a large scale because of industrial activities in Changsha, which may greatly exceed accepted standards and may thus pose a severe threat to human health. Moreover, Changsha City is under severe H2SO4-type acid rain pollution[26], which may greatly increase the mobility of HMs and cause groundwater contamination. Thus, it is very necessary to identify the potential pollution sources and to quantify the health risks of soil HMs in Changsha city.Therefore, this study set out to determine spatial patterns in the total concentration of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn) at the field-scale and to identify their possible sources using multivariate analysis and geostatistical methods. Then, their health risks in soils were estimated by the direct exposure method. Finally, the spatial distribution and human health risks of the mixture of heavy metals were simulated by a TIN model.2 Materials and methods2.1 Sampling and laboratory analysesChangsha City has a total area of 11 819.5 km2 and is located in the eastern part of Hunan province (111°53′–114°15′E, 27°51′–28°40′N) (Fig.1). About 6.1×106 people inhabit Changsha city and the annual population growth rate is 1.08% and 44.63% of the population live in urban areas. Changsha City has a subtropical monsoon climate with an annual rainfall of 1 483.6 mm and most rainfall occurs between April to July.The surface soil samples (0−20 cm) were collected using a global positioning system (GPS) to identify its locations (Fig.1). Because of the vast area in Changsha city, the sampling density was one sample per 5 to 10 km2. The moisture soil samples were air-dried and sieved (<0.15 mm) to determine the content of HMs including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb and Zn. Then, soil samples (0.5 g) were digested with a mixture of HNO3 (5 mL) and H2O2 (2 mL) at about 180 °C for about 20 min in a closed-Tefon vessel in a microwave oven to avoid losses of some metals via volatilization. The total contents of Cd, Cu, Ni and Pb in the digested solution were measured by inductively coupled plasma-mass spectrometry (ICP-MS). Cr, Zn and Mn were analyzedFig.1 Location and distribution of sampling pointsCHEN Jian-qun, et al/Trans. Nonferrous Met. Soc. China 21(2011) 642−651 644by inductively coupled plasma-optical emission spectrometry (ICP-OES). In addition, the contents of As and Hg were determined by atomic fluorescence spectrophotometry (AFS). All samples were analyzed in three replicates. The quality control of analytical accuracy was performed by reagent blanks and reference soils. Standard reference materials for soil (GBW 07401) obtained from the China National Center for Standard Reference Materials were digested along with the samples and used for the quality assurance control program.2.2 Statistical methods2.2.1 Principal component analysisPrincipal component analysis (PCA) is a useful multivariate statistical method in environmental studies[27]. In this study, the PCA was used to extract latent information from multidimensional data, to gain the observed correlation matrix, to classify the measured elements into fewer groups, to facilitate the interpretation of the results, and to define natural or anthropogenic origin. The PCA was processed with SPSS (version 16.0).2.2.2 Geostatistical analysisKriging has been widely applied in environment science because of its unbiased character and its advantage in geostatistical techniques relative to other methods (such as the inverse distance weighted method, IDW)[28]. Among the numerous kriging techniques, ordinary kriging and log-normal kriging are widely used and can effectively interpolate values at unsampled locations[2]. For this reason, both of the kriging methods were chosen to detect the spatial structure of HMs and to provide unbiased prediction in the study area. Moreover, contour lines were created by kriging for the TIN model. The geostatistical analysis and maps were produced with ArcGIS (version 9.2). Detailed algorithms of geostatistical theory and kriging can be found in many textbooks and monographs[16, 29].2.3 TIN modelThe TIN data structure was based on two basic elements: points and a series of edges. The points have x, y and z values, and the z values represente health risk values in this study. The edges are used to join the points to form triangles. This triangular mosaic forms a continuous faceted surface, much like a jewel. In addition, TIN’s triangulation method satisfies the Delaunay criterion[30]. The first phase of generating a TIN was to extract the skeleton of contour lines (isolines) from the result of previous geostatistical analysis. Then, possible points on the contour lines were identified by a local geometric operator. Subsequently, these points were linked into new contour lines and automatically connected in a Delaunay triangulation. Finally, compared with the original dense grid, additional support points were added to the resulting model at the points of worst fit, which was used to ensure that the maximum discrepancy between the TIN model and the original model was within a pre-specified tolerance[21, 30].In this study, a TIN model was established using contours created by geostatistical analysis to better assess HM health risks. The TIN model was established with the extension module of 3D Analyst in ArcGIS (version 9.2).2.4 Health risk assessment and direct exposuremethodHealth risks for the local population derived from the exposure to HM pollutants were evaluated after understanding the main sources of HMs. Three pathways were considered to estimate the direct exposure to soil metals: 1) incidental ingestion of soil; 2) inhalation of particulates emitted from soil; and 3) dermal contact with soil. The potential health risk of individual soil HM is characterized using a hazard quotient (HQ), which is the ratio of the chronic daily intake (CDI, mg/(kg·d)) to the reference dose (RfD, mg/(kg·d)). The HQ was calculated using the following equation in the three selected exposure pathways[31].RfDCDICDICDIHQ ingestioninhalationdermal++=××+××××=MPMDPMABSAFSACF(CSRfDATBWEDEFCF)IspCSETIR××××××+×(1) where CS is metal content in soil (mg/kg), which is the analysis result of geostatistical analysis; DPM is the concentration of particulate matter that is respirable in the air (For time spent outdoors, DPM is assumed to be 0.104 mg/m3, which is the annual mean concentration for Changsha City[32]. When indoors, DPM=0.445×0.104 mg/m3 because 44.5% of indoor dust is considered to be derived from outdoor soil[33]); MPM is the HM concentration on airborne particulate matter (assumed equal to CS where dust is derived from the soil[8]. The reference dose (RfD) is an estimate of a daily exposure to the human population. RfDs based on 3×10−4, 1×10−3, 1.5, 4×10−2, 3×10−4, 1.4×10-1 , 2×10−2, 0.035 and 0.3 mg/(kg·d) for As, Cd, Cr, Cu, Hg, Mn, Ni, Pb and Zn, respectively. The RfDs were obtained from Integrated Risk Information System[34], with the exception of lead, in which we used the formula RfD=PTWI/7, where PTWI is provisional tolerable weekly intake (mg/(kg·week))[35−36]. Detailed information of the parameters in Eq.(1) is provided in Table 1.The overall potential risk posed by a mixture of HMs is assessed by the summed HQs calculated for eachCHEN Jian-qun, et al/Trans. Nonferrous Met. Soc. China 21(2011) 642−651645Table 1 Direct soil exposure parametersParameter Value ReferenceBody mass (BW)/kg 15 [31]Exposure duration (ED)/a 6 [31] Averaging time (AT)/d 2 190 [31]Exposure frequency (EF)/(d·a −1) 350[31] Conversion factor (CF)/(kg·mg −1) 10-6 [31] Exposed skin surface area (SA)/cm 2 2 800 [31] Soil-to-skin adherence factor(AF)/(mg·cm −2)0.2 [31] Inhalation rate (IR)/(m 3·d −1) 10.9 [31]Dermal absorption factor (ABS,unitless) of arsenic 3.2% [31] Dermal absorption factor (ABS, unitless) of other metals 1.0% [31]Exposure time (ET) indoor/(h·d −1) 16 [31] Exposure time (ET) outdoor/(h·d −1) 8 [31] Respirable particulate matter concentration indoor (D PM )/(kg·m −3)0.463×10−7[33] Respirable particulate matter concentration outdoor (D PM )/(kg·m −3)0.104×10−6[33] Ingestion rate of soil particle(I sp )/(mg·d −1) 100 [31]HM, which is expressed as a hazard index (HI):n 21HQ HQ HQ HI ++=L (2)3 Results and discussion 3.1 Heavy metals in soil The mean concentrations of all metals were higher than their background values at Changsha City (Table 2). Although the mean concentrations of Cu and Zn were higher than their local background values, the differences between their concentrations and the backgroundcontents were slight. Moreover, Cu and Zn displayed lowcoefficients of variation (CVs) and fairly homogeneousdistributions across the study area, suggesting that there was a major natural source of Cu and Zn in Changsha City. The average concentrations of Cd, Ni, Pb, Hg, Cr,Mn and As were higher than the background values andhad high CVs, indicating that anthropogenic inputs arethe main sources of these HMs in this area. Moreover, the maximum concentrations of Hg, Cd, As and Ni in thesoils exceeded the critical level of the SecondaryEnvironmental Quality Standards for Soil in China by 1.2, 2.4, 3.2 and 6.8 times, and they were 4.1, 10.4, 6.4and 9.6 times higher, respectively, than local background values at the control site. Thus, these metals requireintensive monitoring and essential measures to preventfurther enrichment.3.2 Data transformation The normality of all HMs was checked before PCA and spatial analyses were conducted. Values of skewnessand kurtosis, and the significance level of the One-Sample Kolmogorov-Smirnov Test for normality(K-S p ) are shown in Table 3. It was found that only Cu, Zn, Cr and Hg were in accordance with normal distribution using K-S p (>0.05) before datatransformation, whereas other variables were allpositively skewed. To make the data more normal, alogarithmic transformation was used [38]. Table 3 shows that a logarithmic transformation can produce smallerskewness and kurtosis values for all HMs except for Cu and Zn. Thus, in the following steps, a logarithmic transformation was applied to all HMs except for Cu and Zn.3.3 Principal component analysis PCA was applied to the transformed data matrices and the results are presented in Table4. As indicated inthe results of the rotated component matrix for data in Table 4, three factors were extracted, and Ni, Cr, As and Mn were strongly associated with the first factor (F 1) with similarly high values. Elements such as Pb, Cd and Hg are associated with the second factor (F 2), while thethird factor (F 3) was mostly associated with Cu and Zn.Table 2 Descriptive statistics for HM concentrations (mg·kg −1) in soilStatistical itemCuPbZnCdNiCrHgAsMnMean 27.56 36.5 94.6 0.11 34.4 74.21 0.113 18.98 477 Median 27.00 28.5 95.0 0.067 27.5 69.00 0.100 15.65 270 Minimum 14.00 14.0 31.9 0.006 8.0 20.00 0.003 5.28 23 Maximum 42.60 234.0 170.0 0.73 270.0 228.00 0.367 96.48 1 700 Skewness 0.32 5.22 0.17 2.93 5.28 2.19 1.415 3.79 2.21 Kurtosis 0.08 34.51 0.02 11.95 28.51 5.61 2.57 17.57 5.75 CV/% 23.58 77.75 30.47 81.48 91.33 57.45 61.61 74.92 68.56 Background value *2530940.0728680.0915459* Data from the report of the key scientific research project of the sixth plans[37].CHEN Jian-qun, et al/Trans. Nonferrous Met. Soc. China 21(2011) 642−651646Table 3 Skewness, kurtosis, and significance level of Kolmogorov-Smirnov’s test for normality (K-Sp) of raw data (RD) andlog-transformed data (LD) of soil heavy metal concentrationsParameter CuPbZnCdNiCrHgAsMn Skewness 0.32 5.22 0.17 2.93 5.28 2.19 1.42 3.79 2.21Kurtosis 0.08 34.52 0.02 11.95 28.54 5.60 2.57 17.57 5.75 RDK-S p 0.2670.0030.9300.0030.000 0.0670.085 0.003 0.023Skewness −0.44 1.41 −0.83 0.05 1.49 0.44 −1.74 0.77 −0.15Kurtosis 0.50 4.08 0.93 0.03 6.48 0.68 6.35 2.06 0.54 LDK-S p 0.1030.3610.4580.6980.025 0.7790.292 0.690 0.843 Table 4 Component matrix and rotated component matrix for heavy metal contentsComponent matrix Rotated component matrix ElementF1F2F3F1F2F3 Cu 0.378 −0.249 0.708 0.182 −0.146 0.807 Pb 0.002 0.638 0.111 −0.225 0.604 0.062 Zn 0.358 0.373 0.574 0.021 0.444 0.632 Cd 0.401 0.618 −0.215 0.244 0.719 −0.116Ni 0.903 −0.198 −0.267 0.956 0.097 0.051 Cr 0.752 −0.427 0.161 0.749 −0.182 0.423 Hg 0.653 0.513 −0.049 0.447 0.690 0.128 As 0.829 −0.182 −0.346 0.911 0.092 −0.048Mn 0.755 0.035 0.069 0.643 0.262 0.3053.3.1 Ni, Cr, As and MnThe first factor (F1) was mainly associated with Ni, Cr, As and Mn, which can be considered to be an anthropogenic component. These four elements all displayed a high association with the first factor. According to the earlier discussions, the mean concentrations of Ni and As exceeded their local background values and were moderately enriched in surface soil. The major types of industry in Changsha city are mining, machinery, metallurgy, chemical and production of building materials, some of which have backward technology and serious pollution, particularly the non-ferrous mining industry. There are almost 1 000 mining, 200 metal smelting, 700 chemical material and chemical products industries, 340 printeries and 200 paper mills in the study area. It was found that most of the above industries were related to F1. For example, printery and alloy melting factories often cause Mn and Cr contamination. Additionally, coal mining activities contribute greatly to Mn, Ni, Cr and As pollution in the soils of Changsha city.3.3.2 Pb, Cd and HgThe second factor (F2) included Pb, Cd and Hg. Their CVs were high, suggesting that these factors could be a second anthropogenic component. Moreover, there were some samples with very high Cd and Hg contents whose sources could have been attributed to adjacent industry production. The non-ferrous metal mining, mineral processing and smelting along the Xiangjiang River mainly deal with the ore of lead sulfide, accompanied by Cd, Hg and other metal elements, which caused some soil population and health problems according to previous studies[7, 39−40]. Therefore, the enrichment of F2 in soils is likely due to anthropogenic causes.3.3.3 Cu and ZnThe third factor (F3) mainly included Cu and Zn. In contrast with F1 and F2, F3 can be defined as a natural component because it was found that the mean concentrations of these two elements were very close to the local background values and that their CVs were also very low, suggesting that a natural factor controlled their distribution.3.4 Geostatistical analysis3.4.1 Spatial structure analysis of heavy metalsSoil heavy metals are regionalized variables as they are distributed in geographical space. They have spatial structures with spatial autocorrelation. In this study, geostatistics were used to analyze the spatial structure and visualization for interpretation of the results. The parameters of the semivariogram for each HM are summarized in Table 5.The parameters of nugget variance, sill and range have often been ignored in other similar studies. These parameters cannot only be used to characterize the heterogeneity of the environment but can also help to identify their sources [2]. The term ‘nugget’ in geostatistics can describe the apparent discontinuity near the origin and can represent field variation within theCHEN Jian-qun, et al/Trans. Nonferrous Met. Soc. China 21(2011) 642−651 647Table 5 Best-fitted semivariogram models and parameters of soil heavy metalsElement Model Nugget Partialsill Sill Range/m As Spherical 0.016 0.250 0.2657136 Cd Exponential 0.645 0.237 0.88226497 Cr Exponential0.087 0.193 0.28016576 Cu Spherical 0.018 0.056 0.07532062 Hg Exponential 0.139 0.608 0.747 5436 Mn Spherical 0.360 0.344 0.70428281 Ni Exponential0.132 0.138 0.27011532 Pb Exponential0.052 0.113 0.16514654 Zn Exponential 0.028 0.048 0.07634931minimum sampling spacing[41]. From Table 5, the nugget variances of Cd, Cr, Hg, Mn, Ni and Pb were higher than those of Cu and Zn, suggesting a greater variation for Cd, Cr, Hg, Mn, Ni and Pb at a small-scale. However, the element As revealed a relatively low nugget variance like Cu and Zn, which could be due to the applications of pesticides and phosphate fertilizers in farm land. Furthermore, the sill of As was larger than that of Cu or Zn but was close to that of Cr or Ni (Table 5). The sill indicates the maximum structural variability; thus, a larger sill indicates a higher degree of spatial variance. Therefore, it can be concluded that the spatial variance of As was similar to that of Cr or Ni at a large-scale, and it was similar to that of Cu or Zn at a small-scale, suggesting that both industry and farming could be the source of As in top soil in Changsha city. Although the nugget variance can reflect some information about the spatial variance of environmental variables, this parameter could not be as sensitive or robust as the range value[2]. When comparing the range of nine elements, Cu and Zn are found to have a longer effective range (32 062 m and 34 931 m, respectively) than other HMs, indicating that Cu and Zn have a better spatial structure and less variation caused by extrinsic factors. This is consistent with the earlier discussion of the PCA (Table 4).3.4.2 Spatial distribution of heavy metalsIn order to better understand the distribution patterns of the nine heavy elements, kriging interpolation and TIN models were used to produce 3D maps (Fig.2). The 3D spatial distribution maps of Mn, Ni, Cr and As concentrations show similar distributional trends with high concentrations in the southwest and east areas where the traditional industrial zone is located. This result is consistent with that found in the PCA analysis, indicating that the former discussion on F1 is reasonable.Pb, Cd and Hg also show similar distributional trends and high concentrations of the HMs are mainly found in central and eastern areas. The result is consistent with that observed in the PCA in which Pb, Cd and Hg were associated with the second component (F2). The Xiangjiang River watershed is located in the center area of Changsha city and many non-ferrous metal mining, mineral processing and smelters are located in this region. Moreover, the representative industry cities, Zhuzhou and Xiangtan City, are also located in the upstream portion of the Xiangjiang River. Industrial activities could contribute to the source of Pb, Cd and Hg pollution in the central and southern areas of Changsha city. The eastern area of Changsha City has always been rich in lead, iron, borax, green alum and blue vitriol. In addition, the eastern part of the city also has numerous mining enterprises where the acid mine drainage and flotation wastewater containing Cd, Pb, Al and Hg are the main sources of pollution.In many studies, Pb pollution was primarily related to vehicle sources[42], which were also found in the study area and particularly in the central area. Kriging was further used only in the urban area to better study the relationship between vehicle and Pb distribution for two main reasons: 1) because the smoothing effect of the kriging estimator depends on the local data configuration; and 2) because the inherent smoothing effect tends to overestimate small values and to underestimate large values. Fig.2 also shows that Pb was distributed in the center of the city, mainly in the southern area and along the Xiangjiang River bank, which corresponded well with the spatial distribution of traffic flow. The wider roads along the river and the frequent exchanges of vehicles between both sides of the river lead to a large traffic flow. The southern area had the largest proportion of traffic flow into and out of Changsha city. Therefore, it is reasonable to assume that Pb in the center city comes primarily from vehicles. Furthermore, the distribution map of Pb in the city zone was created only by geostatistical simulation, which was always used by previous studies. By comparing, it was found that the maps created by TIN model not only had better visual effects, but also reflected the characteristics of HM concentration and spatial distribution more clearly.The spatial distribution of Hg represented a litter difference from that of Pb and Cd in F2 and showed a non-point source pollution trend. Hg pollution in urban soils has been found to be universal in China because of the use of coal, which usually causes atmospheric deposition[43−44], over a long time period. Therefore, coal consumption and atmospheric deposition may be the other source of Hg.As shown in Fig.2, the distributional patterns of Cu and Zn were more regular, suggesting that a natural factor plays an important role in controlling their distributions as described in the third component (F3) of the PCA. The location of high Zn concentration isCHEN Jian-qun, et al/Trans. Nonferrous Met. Soc. China 21(2011) 642−651 648Fig.2 Spatial distribution of soil heavy metals (mg·kg−1)similar to that of Pb, which may be caused by lead-zinc mineral resources in the areas. However, in the whole study area, the mean concentration and CVs of Zn are low, which suggests a major natural source.Integrating the above model analysis and the HM source hypothesis, As, Cd, Cr, Hg, Ni, Pb and Mn should mainly be controlled by anthropogenic factors, whereas Cu and Zn should be controlled by natural factors.3.5 Human health risk assessmentAfter understanding the main sources of HMs in Changsha City, we carried out an evaluation of the risk of direct soil HMs exposure to children (Fig.3). An HI greater than 1.0 suggests that the child may experience adverse health effects during his or her lifetime. Fig.3 shows that about 9.0% of the study area provides an HI>1.0, and 1.9% has an HI>2.0. The average HI is 0.6 and the maximum value reaches 3.0. It was also found that high health risks mainly located in the southern and western locations. Therefore, the direct exposure to soil HMs plays an important role in health risks for children in Changsha city, which should be taken into consideration by some of the decision makers and researchers.With respect to the pathway of soil HM exposure, it was found that soil ingestion was the main route for children. The risk of soil ingestion was more than five times that of inhalation and dermal absorption. In addition, there was a large discrepancy of hazard quotients (HQ) among different HMs (Fig.4). The HQ of。
《中国有色金属学报》投稿须知(官方认证)
《中国有色金属学报》投稿须知(官方认证)《中国有色金属学报》是中国科学技术协会主管、中国有色金属学会主办、科学出版社出版的以有色金属材料和冶金学科为主的高技术、基础性学术期刊。
创刊于1991年10月,1991─1999年为季刊,2000─2003年为双月刊,2004年起改为月刊,面向国内外公开发行。
《中国有色金属学报》以繁荣有色金属科学技术、促进有色金属工业发展为办刊宗旨;坚持开展国内外学术交流,及时报道有色金属科技领域的新理论、新技术和新方法。
目前设置的栏目如下:结构材料,功能材料,计算材料学与数值模拟,矿业工程·冶金工程·化学与化工。
从影响因子和总被引频次来看,《中国有色金属学报》已成为我国材料、冶金和金属学领域最有影响力的科技期刊之一。
《中国有色金属学报》是中国科技论文统计与分析数据库和中国科学引文数据的源期刊,已被美国《工程索引》(核心库)、美国《化学文摘》、英国《科学文摘》、日本《科学技术文献速报》、俄罗斯《文摘杂志》、美国《金属文摘》等国际著名检索系统收录。
同时还被《中国学术期刊文摘》、《中国学术期刊(光盘版)》、《万方数据》、美国《工程材料文摘》、英国《矿冶文摘》等国内外其他重要检索系统/数据库收录。
《中国有色金属学报》近年来得到了健康稳定的发展,期刊评价指标持续快速地增高,期刊知名度和影响力大幅度提升。
近10年来,本刊影响因子和总被引频次局国内同类期刊前列。
2002年获中国科协第三届优秀科技期刊三等奖;2003─2009年连续七届被国家科技部中国科技信息研究所评为“百种中国杰出学术期刊”;2004─2008年获第二届、第三届、第四届、第五届、第六届中国科协期刊优秀学术论文奖;2009年被中国期刊协会评为“新中国60年有影响的期刊”。
2006─2008年本刊三次获得了中国科协精品科技期刊工程项目的经费资助,2009年本刊被列为中国科协精品科技期刊B类示范项目,是金属材料、冶金领域惟一被列为B类以上示范项目的学术期刊。
冶金方面科技期刊目录(参考)
冶金方面科技期刊(参考)
其他:
有色矿冶;科技开发动态;矿冶工程;现代材料动态;轻合金加工技术;材料导报;矿业快报;有色设备;有色金属设计;矿产保护与利用;包钢科技;炭素科技;轻合金加工技术;有色金属分析通讯;测控技术;矿产保护与利用;铝加工;有色冶炼;湿法冶金;云南冶金;甘肃有色金属;新疆有色金属;上海有色金属;甘肃冶金;江西冶金;内蒙古科技与经济;材料与冶金学报;哈尔滨理工大学学报;北方工业大学学报;包头钢铁学院学报;昆明理工大学学报;重庆大学学报(自然科学版);广西民族学院学报(自然科学版);贵州工业大学学报(自然科学版);太原理工大学学报;。
中国有色金属学报英文版2010-年第8-期出版计划
中国有色金属学报(英文版)2010年第8期出版计划序号结构材料编辑1 20184流变铸造中初生球形颗粒的粗化....... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ......郭洪民,罗学泉,杨湘杰方京华2 20208Sb对Mg2Si/Al-Si复合材料微观组织及力学性能的影响...... ...... ...... ...... ..........任波,刘忠侠,赵瑞锋,张天清,刘志勇,王明星,翁永刚方京华3 20205Exploring a Rolling Route for Refining Grains of Mg-Li Alloys Containing Sc and Be .......Chun Lin Chu,Chih-Te Chiang,Shyong Lee方京华4 20162泡沫铝填充方管的横向和纵向力学性能和吸能性能研究...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ............张春基方京华5 202222219铝合金水下搅拌摩擦焊接接头的力学性能...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ..............刘会杰,张会杰,黄永宪,于雷方京华6 20157基于正交试验法的熔化极等离子弧焊接. ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ..............白岩,高洪明,吴林,马朝晖,曹能方京华功能材料7 20187 电铸纳米镍药型罩爆轰变形行为...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ..............杨峰,李春华,成生伟,王雷,田文怀李向群8 20128铝和铅对镁活性的影响..... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ..........王乃光,王日初,彭超群,冯艳李向群9 20145Fe-Cr2O3复合镀层对聚丙烯腈基碳纤维的催化石墨化作用. ...... ...... ...... ...... ...... ...... ...........黄振华,周海晖,彭奇龄,陈金华,旷亚非李向群10 20327 Effects of annealing temperature on the microstructure and ferroelectric properties of Bi0.5(Na0.85K0.15)0.5TiO3 thin films...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ..........龚跃球,郑学军,龚伦军,马颖,张大志,戴顺洪,李旭军李向群11 20189 不同氧流量下制备的TiO2薄膜的结构与光学特性性...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... .............周继承,赵保星,荣林艳李向群12 20173 熔体快淬对纳米晶Mg2Ni型合金贮氢性能的影响...... ...... ...... ...... ...... ...... ...... ..........张羊换,赵栋梁,李保卫,郭世海,祁焱,王新林李向群13 20155 Theimprovedhydrogenation properties of Mg- x%(x:20, 30,40)Ti0.9 Zr0.2 Mn1.5 Cr0.3 ...... ...... ...... ...... ...... ...............范美强,孙立贤李向群14 20170 Hydrogen storage performance of LaNi4.25Al0.75 alloy ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ............曹大力李向群15 20159 直流电流对熔融Bi在Cu基底上润湿行为的影响. ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ............徐前刚,刘锡贝,张海峰李向群16 19410 Preparation and characterization of CuO-CoO-MnO/SiO2 nanocomposite aerogels as catalyst carriers ...... ...... ...... ..... 赵越卿,赵海雷李向群计算材料学与数值模拟17 20196 一种描述铁粉压制过程的改进模型与三维模拟...... ...... ...... ...... ...... ...... ...... ...... ...... ....…........宋毅,李元元,周照耀,郑振兴,陈普庆李向群18 20034 材料属性对带横向内筋铝合金构件强旋成形过程影响研究...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...............马飞,扬合,詹梅李向群铝合金6A10高温流变应力建模的一种新方法 ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ....……….李雪松,伍来智,陈军,张鸿冰李向群19 20232矿业工程,冶金工程,化学化工20 20130 干旱区金属硫化矿地下水AMD及重金属污染(西澳BS镍矿)...... ...... ...... ...... ...... ...... ...... ...... ...... ...........雷良奇,宋慈安,王飞李向群21 ICHM-282 Achromobacter sp. CH-1解毒铬渣及选择性回收铬...... ...... ...... ...... ...... ...... ...... ..............柴立元,王云燕,杨志辉,王庆伟,王海鹰李向群22 20158 真空碳热-氯化还原氧化铝法炼铝:热力学计算与实验研究...... ...... ...... ...... ...... .........袁海滨,杨斌,徐宝强,郁青春,冯月斌,戴永年李向群23 20219 Cyanex272-P507协同浸渍树脂吸附萃取重稀土机理研究...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ............廖春发李向群24 ICHM-362 Extraction of cobalt from laterite ores by citric acid in the presence of ammonium bifluoride. ......李光辉,饶明军,李骞,彭志伟,姜涛李向群25 ICHM-088 Co-intensification of Cyanide Leaching Gold by Mercury Ions ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ............李骞李向群26 ICHM-106 Eh-pH diagram of ZnS-H2O system during high pressure leaching of zinc sulfide ...... .........牟望重,张廷安,刘燕,古岩,豆志河,吕国志李向群27 20161 硫酸钴电解液中的离子交换深度除铜...... ...... ...... ...... ...... ...... ...... ...... ...... ...............温俊杰,张启修,张贵清,肖连生,陈家武,曹左英方京华28 20179 Effect of water on the behaviour of Na2B4O7·5H2O and Na2B4O7 in HCl-CH3OH medium .... ...... .... ...... ...... ...... ...............Ismail Girgin方京华29 ICHM-317 Synthesis and electrochemical performance of Li3V2(PO4)3 by optimized sol-gel synthesis routine ...... ...... ...... ...... ..............钟胜奎方京华30 21000 湿化学法大规模制备均一球形密实银粉...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ..............蔡雄辉,安兵,吴丰顺,吴懿平方京华责任编辑:杨兵;袁赛前日期安排:2010-5-25发稿;2010-6-15编完;2010-7-10完一校;2010-7-30发作者校;2010-8-10送印刷。
TC4钛合金紧固件的α污染层-中国有色金属学报
关键词:钛合金;污染层;显微硬度
中图分类号:TG 335.5; TG 146.23
文献标志码:A
α contamination layer of TC4 titanium alloy fasteners
ZHANG Qing-yun, LU Ye-hang, LI Zhong-cheng, LI Wei-qiang (Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China)
由于实际生产过程中,零件热处理后还将进行机
图 1 TC4 钛合金紧固件污染金相照片 Fig.1 Metallograph of contamination layer on TC4 titanium alloy fasteners
固件在 950 ℃真空淬火后头部试样支撑面横断面的金 相照片。从图 1 可见富氧 α 层的组织特征。其中,靠 近支撑面表面的组织细小、α 相含量较多,远离表面 的组织 α 相含量相对减少,而 β 转变组织含量增加。 由图 1 中显微组织的变化可近似估计出富氧 α 层的深 度小于 20 μm。
2 结果与分析
1 实验
选取经 950 ℃、2 h,1.33×10−2 Pa 真空淬火处理
2.1 污染层的显微组织分析 钛合金表面污染层包括富氧 α 固溶体和氧化钛,
其中影响性能的主要是富氧 α 层。图 1 所示为 TC4 紧
通信作者:张庆云; 电话: 010-85701055; E-mail: zhangqingyun990904@
1) 950 ℃真空淬火条件下,TC4 紧固件污染层厚 度一般小于 20 μm。
2) TC4 紧固件表面氧化层的硬度和心部硬度相 近,差值小于 20 HV。疲劳强度等性能参数值也与正 常组织紧固件的相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见结构层次: 并列式——问题归类,并列表达 递进式——时间顺序递进式、空间顺序递进式和推理顺序递进式 分总式——先分别比较分析,再用归纳法得出结论 总分式——先提出中心论点,再用演绎法分别阐述
层次标题是论文逻辑结构的外在显 现,它反映论文中重要的特定内容的逻 辑组合。层次标题的拟定质量关系到文 章的层次结构是否分明和严谨。
容”。
题名的主要作用
) 吸引读者 ) 帮助文献追踪或检索
题名撰写的基本要求
)一般要求是准确得体、简短精炼、便于检 索和容易认读;
)文字要求是结构合理、选词准确、详略得 当、语言正确。
常见问题
□ 大题小做小题大做 □ 题名一般化,不能反映论文特点 □ 题名太长,超过个字 □ 语病较多,明显不通顺 □ 题名像标语口号
摘要的撰写要求
) 尽量包括论文中的主要论点和 重要细节(重要的论证或数据);
) 表达要准确、简洁、清楚;
) 尽量避免引用文献和使用非同 行熟知的缩写;必须避免使用图表;
) 尽量避免使用化学结构式、数
摘要的常见问题
□ 摘要太长 □ 摘要太短 □ 摘要太笼统,未包括目的、方法、结果、结论要素 □ 层次不清,语言不顺 □包含自我评价
关键词的选取方法 ) 根据标题标引关键词 ) 根据摘要标引关键词 ) 根据学科标引关键词
关键词选取中存在的问题 □ 关键词不关键,不能反映主题 □ 外延太大,失去检索意义 □ 以动词、形容词等作关键词,造成关 键词数量庞
杂和检索困难
摘要
摘要是 “以提供文献内容梗概为 目的, 不加评论和补充解释, 简明、确 切地记叙文献重要内容的短文。” 根 据内容的不同, 摘要可分为以下三大类: 报道性摘要、指示性摘要和报道指示性
高水平科技论文 写作、投稿与发表
彭超群
联系电话:
传
真:
发表论文的作用与写作培训的意义 科技论文写作 论文投稿与发表
发表论文的作用与写作培训的意义
科学研究的阶段划分 发表高水平论文的作用 高水平论文的标准 青年作者投稿存在的主要问题 解决办法
科学研究的阶段划分
确定选题 申报课题 获取经费 开展研究 发表论文
核心内容:引言——为什么做 材料与方法——怎样做 结果——做了什么
讨论和结论——有何价值和意义
相关内容:题名、摘要、关键词、致谢、参考文献
结构层次对于作者的目的: ) 通过提供各论文部分的直接入口,便于浏
览; ) 帮助读者锁定有关作者贡献的章节; ) 通过系列标题和次级标题,指导读者快速
了解论文的主要内容。
) 回答题名和摘要中所提出的问题。
引言的基本内容
) 介绍研究背景 ) 提出研究问题,阐明研究目 的 ) 阐述解决问题的思路和方法 ) 指明论文创新点
发表高水平论文的作用
项目结题 申报课题 培养人才 申请学位 晋升职称 申请奖励
高水平论文的标准
被、和收录 论文被引次数大 期刊影响因子高 期刊被国内著名文摘数据库收录
青年作者投稿存在的主要问题
创新意识有待加强 讨论缺乏深度,沦为实验报告
写作欠标准、欠规范 语言不流畅,语法错误较多
解决办法
搞好选题论证 进行标准化、规范化培训 完善投稿须知,提出明确的标准化、
语。
) 不使用俚语、非英语的句子。慎用行话和口
正文
引言 材料与方法 结果与讨论 结论
引言
引言应全面、系统、准确、简练地 回顾前人在该领域、该方向上的相关工 作,从侧面反映论文的创新性以及作者 的学术素养与道德风尚。
引言对于读者的目的
) 提高读者的阅读速度,减少最初的知 识欠缺;
) 提出问题,给出解决方案,并明确主 题范围;
摘要。
摘要对于读者的目的 ) 使题名更为清楚; ) 提供作者科学贡献的细节; ) 帮助读者判断论文是否值得阅读; ) 帮助读者快速了解论文内容梗概;
摘要的基本内容
) 目的: 研究工作的前提、目的和任 务, 所涉及的主题范围;
) 方法: 所用的理论、条件、材 料、手段、装备、程序等;
) 结果: 观察、实验的结果, 数 据, 得到的效果, 性能等;
层次标题的基本要求
) 同一级标题应反映同一层次的内容; ) 同一级标题应讲究“排比”,即结构相同
或相似、意义相关、语气一致; ) 相邻两级层次标题字面上尽可能不重复;
层次标题常见问题
□ 同一级标题词语结构相差较远,意义也不相 关
□ 相邻两级层次标题字面上重复太多或完全重 复
题名
题名是表达论文的特定 内容, 反映研究范围和深度 的最恰当、最简明的逻辑组 合, 即: 题名应“以最少数 量的字词充分表述论文的内
) 句子完整、清晰、简洁;
) 用简单句,为避免单调,改变句子 的长度和结构;
) 用过去时态描述作者的工作,用现 在时态描述结论;
) 正确使用冠词,避免多加冠词,也避免蹩脚地省 略冠词;
) 使用较短的、简单的、具体的、熟悉的词, 不使用华丽的词藻;
) 使用被动语态;
) 构成句子时,动词应靠近主语;
) 避免使用那些既不说明问题,又没有任何含 义的短语;
规范化要求 编辑部搞好初审,提出修改意见
审稿专家把好学术质量关
科技论文写作
•科技论文的结构与层次 •参考文献
•题名
•表格与插图
•关键词Biblioteka •量和单位•摘要•基金项目英文表达
•正文
•语言表达与标点符号
•致谢
科技论文的结构与层次
科技论文需要解决的问题:
提出研究命题 阐明研究方法 得出研究结果 给出研究结论
英文标题的撰写
) 标题中 , , , , , (), , 等,只是增加标题的长度,未提供新的信息, 不宜使用。
) 国际标准化组织规定,标题最好 不要超过个词,且除通用的缩写词和特殊符号 外,标题内不使用缩写词、特殊符号、化学式、 上下角标等。
) 标题通常由名词短语构成,一般
英文摘要的撰写
要写好英文摘要,就要遵循英文摘要写作 规范。其要点如下:
关键词 关键词的作用 关键词的类型 关键词的选取方法 关键词选取中存在的问题
关键词的作用
导读 帮助检索 提高成果利用率
关键词的类型
正式主题词 自由词
关键词与摘要一样,也是论文主题内容的浓缩, 但比摘要更精练,更能揭示论文的主题要点。
关键词通常应具备下述三个特点: )关键性,对全文内容具有串联作用; )便于检索和索引,易于计算机处理; )必须是名词或名词性词组。