电解电容的纹波电流的计算
变频器直流母线电容纹波电流计算方法(一)
变频器直流母线电容纹波电流计算方法(一) 各类电动机是我们发电量的主要消耗设备,而变频器作为电动机的驱动装置成为当前”节能减排”的主力设备之一。
它一方面可以起到节约能源消耗的作用,另一方面也可以实现对原有生产或处理工艺过程的优化。
目前应用最多也最广的是交-直-交电压型变频器,即中间存在直流储能滤波环节,一般采用大容量电解电容器实现此功能。
使用电解电容器的作用主要有以下几个:(1)补偿以电源频率两倍或六倍变化的逆变器所需功率与整流桥输出功率之差;(2)提供逆变器开关频率的输入电流;(3)减小开关频率的电流谐波进入电网;(4)吸收急停状态时所有功率开关器件关断下的电机去磁能量;(5)提供瞬时峰值功率;(6)保护逆变器免受电网瞬时峰值冲击。
电解电容器设计选型所需要考虑的主要因素有以下几个:电容器的电压、电容器量、电容器的纹波电流、电容器的温升与散热、电容器的寿命等等。
这些因素对变频器满足要求的平均无故障时间(mtbf)十分重要。
然而电解电容器的纹波电流的计算如何能明确给出计算依据,这是本文所要解决的问题。
直流母线电容纹波电流的计算纹波电流指的是流过电解电容器的交流电流,它使得电解电容器发热。
纹波电流额定值的确定方法是在额定工作温度下规定一个允许的温升值,在此条件下电容器符合规定的使用寿命要求。
当工作温度小于额定温度时,额定纹波电流可以加大。
但过大的纹波电流会大大缩短电容器的耐久性,当纹波电流超过额定值,纹波电流所引起的内部发热每升高5℃,电容器器的寿命将减少50%。
因此当要求电容器器具有长寿命性能时,控制与降低纹波电流尤其重要。
但在实际设计过程中,电解电容器的纹波电流由于受变频器输入输出各物理量变化以及控制方式等的影响很难直接计算得到,一般多采用根据实际经验估算大小,如每μf电容器要求20ma纹波电流之类的经验值,或者通过计算机仿真来估算[3~6]。
本文根据对变频器电路拓扑与开关调制方式的分析,并借鉴已有文献资料,归纳出一个直接的计算电解电容器纹波电流的方法,供大家参考。
电解电容寿命推算资料
频率1201k 10k 100k 频率因子1 1.32 1.45 1.5频率1201k 10-30k 30-100k 频率因子0.50.80.91Specificatiion Series:GE GE2VM220W20OTWV(Vo)工作电压Cap(uF)容量Dia(Φ)直径Length(L) 高度Rated Temp(To)额定工作温度Life(Lo)额定寿命时间Rated Ripple(Io)额定纹波电流(100kHz)L-F ripple current 低频纹波电流(100Hz) H-F ripple current高频纹波电流(35kHz )Actual Ripple(Ix)实际纹波电流(100kHz)Ambient Temp(Tx)环境温度△To 允许中心温升△Tx实际中心温升L X (hrs)使用时间(小时)L X (year)使用时间(年)3502212.52010512000350175.5281.54508558.330534 3.49SUIT TYPE : SNAP-INSpecificatiion Series:LS LS 450WV-180uF 25X35WV(Vo)工作电压Cap(uF)容量Dia(Φ)直径Length(L) 高度Rated Temp(To)额定工作温度Life(Lo)额定寿命时间Rated Ripple(Io)额定纹波电流(120Hz)L-F ripple current 低频纹波电流(100Hz)H-F ripple current 高频纹波电流(34kHz )Actual Ripple(Ix)实际纹波电流(120Hz)Ambient Temp(Tx)环境温度△To 允许中心温升△Tx 实际中心温升Vo额定电压Vx实际工作电压L X (hrs)使用时间(小时)L X (year)使用时间(年)45018025358530001701.78951034113066.410445039442434 4.84W.V 1201K 10K 100K160~2501 1.32 1.45 1.5315~4501 1.3 1.411.43Actual ripple current and ripple current need to use the product catalog provided by the frequency coefficient into the same frequency, the conversion formula is as followsRD2010-0416-01△Tx=△To×(Ix/Io)∧2技術中心 Benson 制定Frequency correction factor for ripple current (Hz)※To calculate the △TX from the actual r.m.s. ripple of the capacitor. refer to the table below.※已知实际纹波电流时,请用下面的公式计算出△TxWhen "Ix" is known, use the following equation to estimate △Tx即:当已知实际纹波电流"Ix"时, △TX 可用下面计算公式Where :Io =rated r.m.s. ripple GA 系列LS 系列实际纹波电流和额定纹波电流需使用产品目录提供的频率系数转换成相同频率,转换公式如下Life Estimation Formula for the CapacitorsLx = Lo × 2(To-Tx)/10 × 2(△To-△Tx)/5复合频率计算I 复合=sqrt 【(If1/kf1)^2 + (If2/kf2)^2 + … + (Ifn/kfn)^2 】If1—f1频率条件下的纹波电流;If2—f2频率条件下的纹波电流;Ifn —fn 频率条件下的纹波电流;kf1—f1频率的频率校正因子;kf2—f2频率的频率校正因子;kfn —fn 频率的频率校正因子。
变频器直流母线电容纹波电流计算方法
变频器直流母线电容纹波电流计算方法各类电动机是我们发电量的主要消耗设备,而变频器作为电动机的驱动装置成为当前“节能减排”的主力设备之一。
它一方面可以起到节约能源消耗的作用,另一方面也可以实现对原有生产或处理工艺过程的优化。
目前应用最多也最广的是交-直-交电压型变频器,即中间存在直流储能滤波环节,一般采用大容量电解电容器实现此功能。
使用电解电容器的作用主要有以下几个:(1)补偿以电源频率两倍或六倍变化的逆变器所需功率与整流桥输出功率之差;(2)提供逆变器开关频率的输入电流;(3)减小开关频率的电流谐波进入电网;(4)吸收急停状态时所有功率开关器件关断下的电机去磁能量;(5)提供瞬时峰值功率;(6)保护逆变器免受电网瞬时峰值冲击。
电解电容器设计选型所需要考虑的主要因素有以下几个:电容器的电压、电容器量、电容器的纹波电流、电容器的温升与散热、电容器的寿命等等。
这些因素对变频器满足要求的平均无故障时间(mtbf)十分重要。
然而电解电容器的纹波电流的计算如何能明确给出计算依据,这是本文所要解决的问题。
直流母线电容纹波电流的计算纹波电流指的是流过电解电容器的交流电流,它使得电解电容器发热。
纹波电流额定值的确定方法是在额定工作温度下规定一个允许的温升值,在此条件下电容器符合规定的使用寿命要求。
当工作温度小于额定温度时,额定纹波电流可以加大。
但过大的纹波电流会大大缩短电容器的耐久性,当纹波电流超过额定值,纹波电流所引起的内部发热每升高5℃,电容器器的寿命将减少50%。
因此当要求电容器器具有长寿命性能时,控制与降低纹波电流尤其重要。
但在实际设计过程中,电解电容器的纹波电流由于受变频器输入输出各物理量变化以及控制方式等的影响很难直接计算得到,一般多采用根据实际经验估算大小,如每μf电容器要求20ma纹波电流之类的经验值,或者通过计算机仿真来估算[3~6]。
本文根据对变频器电路拓扑与开关调制方式的分析,并借鉴已有文献资料,归纳出一个直接的计算电解电容器纹波电流的方法,供大家参考。
电解电容纹波电流计算
电解电容纹波电流计算电解电容器是一种将电荷存储在电解介质中的被极化的电容器。
在工业和电子设备中,电解电容器广泛应用于滤波、耦合和能量存储等电路中,以平稳和稳定电流的波动。
电解电容器的纹波电流取决于电源的电压纹波和电解电容器的参数。
首先,我们需要了解电源的电压纹波的性质和电解电容器的参数。
电源电压的纹波通常用纹波系数来表示,纹波系数是指电压纹波电压与电源直流电压之比。
对于交流电源,纹波系数通常在1%到10%之间。
电解电容器的参数主要有电容值和额定电压两个重要指标。
电解电容器的电容值决定了其存储电荷的能力,通常以微法(μF)为单位。
额定电压是指电解电容器可承受的最大电压,通常以伏特(V)为单位。
在实际计算中,我们可以通过以下公式来计算电解电容器的纹波电流:Ir=Vr/(2*f*C)其中,Ir表示电解电容器的纹波电流,Vr表示电源电压的纹波电压,f表示电源的工作频率,C表示电解电容器的电容值。
从公式可以看出,电解电容器的纹波电流与电源电压的纹波电压呈线性关系,而与电源的工作频率和电解电容器的电容值呈反比关系。
假设一个电解电容器的电容值为1000μF,额定电压为16V,在一个交流电源频率为50Hz的情况下,如果电源的纹波系数为5%,我们可以通过上述公式来计算纹波电流。
首先,我们需要计算电源电压的纹波电压Vr。
假设电源的直流电压为12V,纹波系数为5%,那么Vr=12V*0.05=0.6V。
将Vr=0.6V,f=50Hz,C=1000μF代入公式中,可以得到:Ir=0.6V/(2*50Hz*1000μF)=0.6V/(2*50*0.001F)=0.6V/0.1A=6A因此,这个电解电容器的纹波电流为6A。
需要注意的是,纹波电流是很重要的电容器参数,尤其对于一些对纹波电流要求较高的电子设备,如音频放大器等。
过高的纹波电流会导致电解电容器温度升高、损耗增加,甚至可能导致电容器破裂。
因此,在设计电子电路时应合理选择电容器参数,同时注意电源电压的纹波系数。
电解电容纹波的测试,计算及判定_ 应用报告
一、前言:铝电解电容的工作状态及工作环境,是影响其寿命的主要因素。
在众多因素中,又以环境温度的高低和 Ripple Current 纹波电流的大小对电容寿命的影响最大。
所以在实际使用中,电解电容Ripple Current有否超规格,电解电容工作温度有否超标准值,是影响电容失效爆浆的最主要原因,特别是在整机测试未对电解电容寿命进行估算计算的情况下,电解电容Ripple Current 的测试,计算及判定,尤为重要。
二、标准测试:1、一次侧Bulk Cap.纹波电流说明:一次侧Bulk Cap.纹波电流通常由基本频率(低频率)和高频(开关频率)电流构成,因此在计算时,要通过合成公式,利用频率系数计算出其在指定频率下的合成有效值。
(如图1所示) R/C(Ripple Current) = Lowf(Low Freq.Current) +Hif(High Freq. Current)一次侧Bulk Cap.是指:一次侧主电解电容;Lowf 是指:低频纹波电流有效值; Hif 是指:高频纹波电流有效值。
图(1)2、二次侧Filter Cap.纹波电流说明:二次侧Filer Cap.纹波电流通常由高频电流构成。
R/C(Ripple Current) = Hif(High Freq. Current) 二次侧Filter Cap.是指二次侧滤波电解电容。
3、温度机种名称: 机种编号: 机种类别: 电路拓扑:输出规格:编写单位:应用类别:材料应用受控日期:201 年 月 日应用编号:AR500XbcEedDFf P应用描述: 电解电容纹波电流的测试,计算及判定Temperature Meas. = Cap. Case 实测值.-----------此处指电容壳温。
三、計算公式 :1、一次侧Bulk Cap.纹波计算:R/C Stress(Ripple Current Stress) = ()()TFHifFLowf222/1/+R/C Stress:纹波电流计算压力值,F1=低频时的纹波系数(120Hz),T= 纹波温度系数,F2=高频时的纹波系数(>10KHz);2、二次侧Filter Cap.纹波计算:R/C Stress(Ripple Current Stress) = ()TF Hif2/F2 =高频时的纹波系数(>10KHz),T = 纹波温度系数;R/C Stress:纹波电流计算压力值。
电解电容纹波电流与频率
电解电容纹波电流与频率电解电容纹波电流与频率1. 引言电解电容器是一种常见的电子元件,用于存储电荷和平滑直流电源中的纹波电压。
在实际应用中,了解电解电容纹波电流与频率之间的关系对优化电路设计和避免电解电容器过载起着重要作用。
本文将探讨电解电容纹波电流与频率之间的关系,并提供一些个人观点和理解。
2. 电解电容器的工作原理电解电容器是由两个电极和介质电解质组成的。
当电解质中通过电流时,电极会发生电化学反应,形成电化学界面,从而使电容器具备存储电荷的能力。
在直流电路中,电解电容器可以平滑纹波电压,通过吸收纹波电流并在需要时释放。
但是,电解电容器也存在一定的限制,包括容量、电压和频率等方面。
3. 电解电容纹波电流的定义与计算电解电容纹波电流是指电容器上产生的交流电流,通常由交流电源中的纹波电压引起。
纹波电流是由电容器对纹波电压变化的响应造成的,其幅度取决于电容器的性能和频率。
计算纹波电流的方法包括根据电容器的容量值和纹波电压的频率进行计算,或者通过实验测量获得。
4. 纹波电流与频率之间的关系纹波电流与频率之间存在着一定的关系。
当频率增加时,纹波电流的幅度往往会增加,因为电容器需要更快地对纹波电压变化做出响应。
而对于相同幅度的纹波电压,频率越低,纹波电流越小。
这是因为频率较低时,电容器有更多的时间来响应纹波电压的变化,从而限制了纹波电流的大小。
5. 影响纹波电流的因素除了频率之外,纹波电流还受到其他因素的影响。
首先是电容器的容量值。
较大的容量值可以存储更多的电荷,从而降低纹波电流的大小。
其次是电解电容器的串联等效电阻。
电解电容器具有一定的等效电阻,会导致纹波电流的增加。
电解电容器的工作温度和负载电流也会对纹波电流产生影响。
6. 个人观点和理解在我看来,电解电容纹波电流与频率之间的关系是一种动态平衡。
在不同频率下,纹波电流的幅度会发生变化,这取决于电容器对纹波电压变化的响应速度。
对于高频率的纹波电压,电容器需要更快地对其进行响应,因此纹波电流的幅度较大。
电解电容寿命计算方法
电解电容寿命计算方法寿命估算(Life Expectancy):电解电容在最高工作温度下,可持续动作的时间。
Lx=Lo*2(To-Ta)/10Lx=实际工作寿命Lo=保证寿命To=最高工作温度(85℃or105℃)Ta= 电容器实际工作周围温度Example:规范值105℃/1000Hrs65℃寿命推估:Lx=1000*2(105-65)/10实际工作寿命:16000Hrs高温负荷寿命(Load Life)将电解电容器在最高工作温度下,印加额定工作电压,经一持续规定完成时间后,须符合下列变化:Δcap:试验前之值的20%以内tanδ:初期特性规格值的200%以下LC :初期特性规格值以下高温放置寿命(Shelf Life):将电解电容器在最高工作温度下,经一持续规定完成时间后,须符合下列变化:Δcap: 试验前之值的20%以内tanδ:初期特性规格值的200%以下LC:初期特性规格值以下高温充放电试验(Charge/Discharge Test)将电解电容器在最高工作温度下,印加额定工作电压,经充电30秒后再放电330秒为一cycle,如此经1,000 cycles 后,须符合下列变化:Δcap : 试验前之值的10%以内tanδ : 初期特性规格值的175%以下LC : 初期特性规格值以下纹波负荷试验(Ripple Life)将电解电容器在最高工作温度下,印加直流电压及最大纹波电流(直流电压+最大涟波电压峰值=额定工作电压),经一持续规定完成时间后,须符合下列变化:Δcap : 试验前之值的20%以内tanδ : 初期特性规格值的200%以下LC : 初期特性规格值以下常用电解电容公式容抗 : XC=1/(2πfC) 【Ω】感抗 : XL=2πfL 【Ω】阻抗: Z=√ESR2+(XL-XC)2 【Ω】纹波电流: IR=√(βA△T/ESR) 【mArms】功率 : P=I2ESR 【W】谐振频率 : fo=1/(2π√LC) 【Hz】。
电解电容纹波及寿命测试方法
Electrolytic Capacitor Ripple Current Derating Test Method and Life TimeEvaluationFrom:郭雪松Date:Oct-27-04一.SPEC1.电解电容零件工程规格书中之Standard Rating表格,其中规定了不同规格的电解电容Rated Ripple Current值,例如:Sharp 机种PWPC C904(滤波电容) 67L215L-820-15N (CNN公司KXG Series)2.此电容用于电源输入端滤波,因此采用120Hz时的Rated Ripple Current规格715mA。
3.而用于评估电解电容Ripple Current之Spec要依据以下公式:SPEC=Spec (component )×频率系数(FM )×温度系数(TM ) 注:FM/TM 取值方法见附表4.OTPV 评估电解电容Ripple Current 的Derating 规格为85%,因此 测试值<SPEC ×85% 时判定OK 。
二.Test Method将电解电容接地端吸开串联一导线,直接用电流计探头测试该导线电流的有效值(rms ),测试时要调整输入电压值(90V ~264V )达到纹波电流最大。
见图示:Irms 三.附表(FM&TM 取值方法):NCC 公司产品为例1.Multiplying Factors on KMG Series (radial lead type ) Frequency MultipliersTemperature Multipliers2. Multiplying Factors on KY Series Frequency MultipliersTemperature Multipliers3. Multiplying Factors on KXG Series Frequency MultipliersTemperature Multipliers*Temperature multipliers shows the guide limits of the maximum available ripple current at each of the temperature,of which the life time at the rated maximum operating temperature is expected. 四.电解电容寿命评估测试方法1.Calculation Formula:电容寿命Life Time= Life(spec)×2(Ts-Tt)/10Life(spec):指spec中标明的寿命值Ts:电容最高使用温度值Tt:电容本体温度测试值2.判定方法:以上计算得出之寿命值与整机MTBF目标值比较,若大于目标值则判定OK。
电解电容高频 纹波电压计算 esr ton
电解电容高频纹波电压计算esr ton
在电子电路中,电解电容常常被用于存储和释放能量。
然而,当电流通过电解电容时,会产生一定的纹波电压。
纹波电压的大小与电解电容的ESR(等效串联电阻)和ton(时间常数)有关。
ESR是电解电容的一个重要参数,它反映了电容内部阻抗的大小。
ESR越高,电容的阻抗越大,纹波电压也越大。
因此,在选择电解电容时,应尽量选择ESR较低的产品,以减小纹波电压对电路的影响。
时间常数ton则是一个与纹波电压相关的参数。
时间常数ton是指在特定频率下,电解电容的ESR与容抗之比。
在计算纹波电压时,需要先确定时间常数ton的大小。
根据纹波电压的计算公式,纹波电压的大小与时间常数ton和输入电压的平方根成正比。
因此,在选择电解电容时,应尽量选择容量较大的产品,以减小纹波电压对电路的影响。
总之,电解电容的选择对于电路的性能至关重要。
在选择电解电容时,应综合考虑ESR、容量、耐压值等因素,以确保电路的正常运行。
同时,对于需要高频应用的场合,应选择高频性能较好的电解电容,以减小纹波电压对电路的影响。
电解电容_额定纹波电流_概述及解释说明
电解电容额定纹波电流概述及解释说明1. 引言1.1 概述在现代电子设备中,电解电容作为一种重要的元件得到了广泛应用。
它不仅具有存储能量的能力,还可以平滑和稳定电流,从而确保电路的正常工作。
然而,在实际使用中,由于各种因素的影响,额定纹波电流成为了一个需要关注和解决的问题。
1.2 文章结构本篇文章将围绕"额定纹波电流"这一主题展开讨论。
首先,我们将介绍电解电容的定义、原理、组成和工作原理,并探讨其应用领域。
接着,我们将详细阐述额定纹波电流的定义、概述以及影响因素,并介绍测量方法和标准。
随后, 我们将深入探讨纹波电流对电解电容的影响以及如何降低额定纹波电流。
最后, 我们将通过实例分析和案例说明来进一步加深对该主题的理解。
1.3 目的本文旨在提供关于额定纹波电流的详细概述和解释说明。
通过对这一主题的深入研究,读者可以更好地了解电解电容和额定纹波电流之间的关系,并学习如何降低纹波电流对电容器性能的影响。
此外,本文还将通过实例分析和案例说明,帮助读者更好地理解相关概念和方法,并为未来应用提供展望。
2. 电解电容:2.1 定义和原理:电解电容是一种用于储存和释放电荷的装置,其基本构造由两个导体层(称为极板)之间夹着一个绝缘层(电解质)组成。
这种电解质通常是无机盐溶液或有机溶剂。
当施加电压到电解电容上时,正负极板上会产生相应的带电离子,从而引起带电分布。
这使得正极板在带有正荷的同时,吸引了等量的负荷,形成了一对等量但反向的正负极。
2.2 组成和工作原理:通常情况下,两个极板由导体材料如铝箔或薄金属片制成,并通过绝缘材料如纸浆、塑料薄膜或氧化铝将它们隔开。
极板中具有较高阳/阴表面积比可以增加其储存能力。
在充放电过程中,当施加直流(DC)信号时,正极板会吸引阴离子并积累在其表面上,而负极板则吸引阳离子。
而在交流(AC)信号下,快速变换的电压会导致电解质内部离子来回运动,从而产生交流纹波电流的效果。
电解电容的纹波电流的计算
电解电容的纹波电流的计算
铝电解电容的在实际应用中的一个重要参数是纹波电流,此电流关系到电解电容的带载温升,在电容寿命计算时候,在不测量电解电容中心点温度的情况下,可以通过此纹波电流来估计电容的设计寿命,铝电解电容常被用在整流模块后以平稳电压。
控制某一纹波电压所需的电容容值为:
功率功率(单位w)
注意:这是应用所需要的最小电容容值。
此外,电容容值有误差,在工作寿命期内,容值会逐步降低,随着温度降低,容值也会降低。
必须晓得主线及功率两端的纹波电流数据。
可以首先排序出来电容的电池时间。
是电网电流的频率。
电容的振动时间则为:
充电电流的峰值为
就是纹波电压(umax–umin)
则充电电流有效值:
接下来排序振动电流峰值和有效值。
最后计算得出:整流模块后纹波电流:
纹波电流的折算方法可以这样:
假定电流在不同频率下的发热功耗相同,则有:
if12xesrf1=if22xesrf2
从而:if2=(esrf1/esrf2)1/2xif1
这里的(esrf1/esrf2)1/2就是频率系数.
如果已知if1的大小,又因为esrf1,esrf2可以测试出来,因此if2的值就能计算出来。
电解电容寿命计算
计算条件: 物料名称:4300-BN1071-A010 保证寿命:105℃5000hrs 额定纹波电流:650mArms/ 105℃,120Hz 使用温度:55 ℃ 实际纹波电流: 600mArms/ 100Hz 周围补正系数: 120Hz 100Hz…0.7
1.纹波发热的计算: 频率修正: 650mArms/120Hz X 0.7 = 455mArms/ 100Hz 发热计算: (600/455)2 x 5 = 8.695
寿命计算(2000小时)
计算条件: 物料名称:4300-BN1071-A000 保证寿命:105℃2000hrs 额定纹波电流:650mArms/ 105℃,120Hz 使用温度:55 ℃ 实际纹波电流: 600mArms/ 100Hz 周围补正系数: 120Hz 100Hz…0.7
1.纹波发热的计算: 频率修正: 650mArms/120Hz X 0.7 = 455mArms/ 100Hz 发热计算: (600/455)2 x 5 = 8.695
使用时间
每天观看时间
2.寿命计算
时间(年)
33 16.5 11 8.3 6.6
Lx Lo 2
To Tx 10
2
ΔT 5 8.695 5
4小时 8小时 12小时 16小时 20小时
5000 2 48000
105 55 10
2
24小时
5.5
注: 55 ℃为电视机使用环境为恶劣条件下的评估值,由此计算在恶劣条件下连续 使用的时间约为48000小时,即5.5年 。若电视机平均每天工作12小时,则使 年限为11年。
使用时间
每天观看时间
2.寿命计算
时间(年)
电解电容器中的纹波电流和额定纹波电流
电解电容器中的纹波电流和额定纹波电流电解电容器中的纹波电流和额定纹波电流电解电容器在使用过程。
加在电解电容器两端的电压随时间波动变化,忽高忽低,电容器就产生充放电,有电荷流动,形成电流,电解电容器上这个高低不停变化的电压,其随时间变化的曲线类似在平静的池塘面投下一块石子,石子在水面激起的一圈圈链漪有波峰也有波谷。
于是人们形象的把电解电容器两端的这种电压称纹波电压,由纹波电压所加在电容器上,电容器就进行充放电,由此在电容器中形成的电流就形象的称之为纹波电流。
电解电容器中的纹波电流I和其两端的纹波电压V及容量C,其上的电量Q有下面的关系:∵ C=Q/V=( dQ/dt)/(dV/dt) dQ/dt=I∴I=C*(dV/dt)电解电容器在使用过程中有一个重要参数:电解电容器的额定纹波电流,该参数不同的厂家有不同的值,就是同一厂家同一规格不同系列的产品,其额定的纹波电流也不一定相同。
它是由电解电容器制造商给出的。
电解电容器中的纹波电流和其额定纹波电流是两个不同的概念。
电解电容器的额定纹波电流的确定,主要是根据该规格电解电容器的用途及使用条件及工作时间(俗称寿命)来和电容器自身的材料性能由电解电容制造商来确定的。
在确定某一规格电解电容器的额定纹波电流需要考虑的因素有以下几点。
1、电解电容器的寿命,它是电解电容器制造商对用户的承诺,简单点讲就是电容器在一定使用条件所能有效工作的时间,也是用户进行电解电容选型的重要观注点之一,这个一般各制造商在其产品手册上都会给出。
2、电解电容的等效串联电阻ESR,ESR大小决定了纹波电流在电解电容器中的发热量的大小。
理论上讲纹波电流在电解电容器中产生的热量(单位时间里):Q-I2*ESR这里I是纹波电流的有效值。
ESR是电容器的等效串联电阻。
3、电解电容在上限温度时,电解电容内部的压力。
当工作时,电解电容工作时所处的环境温度比较高。
由于电解电容器自身的损耗发热,其内部的温度比处的环境温度要高,一般的湿式电解电容器的液态电解液都会产汽化,产生一定的蒸汽压,该蒸汽压和被封在电解电容器内部的空气所产生的压力构成了电解电容内部的总压力,各种分压的大小遵从道尔顿分压定理。
电解电容纹波电流的测试方法
电解电容纹波电流测试方法1、测试工况:被测样机在可能出现的最恶劣的环境下运行(例如:最大制冷/最大制热)。
2、测试设备:示波器以及配套电流探头。
3、测试方法:3.1 简易图示:测试方法说明:经岛专家确认,将电解电容用焊线引出(焊线尽可能的短),然后用电流钳卡在电解电容一个引脚,此时测试的是单个电容的纹波电流值。
3.2 纹波电流有效值计算方法3.3 纹波电流合成计算公式纹波电流通常是由基本频率和高频电流构成。
因此,在计算时要通过合成公式:图1:纹波电流合成公式3.4 测试实例电解电容型号:CD 291 参数:400V/680uF 最大允许纹波电流:2.9A 整机运行状态:最大制冷整机运行电流:7.2AIL 数据计算公式将ΔY=537mV 带入图5 公式计算得:3.79A I(r.m.s):纹波电流合成有效值IL:基本频率纹波电流有效值IH:高频率纹波电流有效值ηL:基本频率纹波电流的频率系数通常取1.0 ηH:高频率纹波电流的频率系数通常取1.4 高频信号低频信号图6 高频纹波电流T1=21us 图7 高频纹波电流T=200us 图8 高频纹波电流IH 数据计算公式将图3 中ΔY=300mV,图6 中T1,图7 中T 带入图8 公式计算IH 得0.9A 将IL/IH 带入公式得I rms =3.8A备注:经岛先生确认,纹波电流测试可用以下两种测试方案方案1:通过波形读取Ip,然后根据公式进行计算;方案2:直接从示波器读取RMS 值,但是此值仅限于“能单独测试直流成分的示波器”而对于只可以测定交流成分的示波器,由于通过电解电容的纹波电流基本是直流电流,不要束缚在负方向没有图像的想法中,实际画面显示的有效值就是将波形按正负方向分开,把它作为交流而得出的结果,也就是说,把Vp-p 的一半左右换算成Vrms 值,显示为Vrms= Vp-p ×1/2 ×0.7,反过来说,图像中,如果显示Vrms=300mV,读取的时候就要读取600mV。
电解电容的纹波电流的计算
电解电容的纹波电流的计算电容器的纹波电流计算是通过电解电容器的纹波电流公式来进行的。
根据电解电容器的特性和工作原理,我们可以将电解电容的纹波电流分为两个部分来计算:直流成分和交流成分。
首先,我们来计算电容器的直流成分。
在电解电容器的工作过程中,当流入电容器时,电解电容器会储存电荷,并将电流平滑化。
这使得电极上的电压保持稳定,称为电解电容器的直流成分。
电容器的直流成分可以通过以下公式计算:I_dc = C × dV/dc其中,I_dc表示电容器的直流成分,C为电容器的电容量,dV/dc表示电容器的电压变化率。
接下来,我们计算电容器的交流成分。
在电容器的工作过程中,由于不可逆化学反应,纹波电流会引起电容器内部的电荷和电流变化。
这种变化是基于电容器的电容特性和电极电解质之间的扩散过程。
电容器的交流成分可以通过以下公式计算:I_ac = I_m × sin(2πft + φ)其中,I_ac表示电容器的交流成分,I_m表示最大纹波电流,f为交流信号的频率,t表示时间,φ表示相位差。
综上所述,电解电容的纹波电流可以表示为直流成分和交流成分之和:I_rms = √(I_dc^2 + I_ac^2)其中,I_rms表示电容器的纹波电流的有效值。
需要注意的是,计算纹波电流时,频率f的选择要根据所使用的电解电容器和实际应用而定。
对于不同的电容器,其纹波电流的公式和计算方法可能会有所不同。
总结起来,计算电解电容的纹波电流需要分别计算直流成分和交流成分,并将两者相加得到最终的纹波电流。
这个过程需要考虑电容器的电容特性、电极电解质之间的扩散过程以及交流信号的频率等因素。
此外,实际应用中还需要根据具体情况选择合适的电容器和计算方法。
铝电解电容器之纹波电流
铝电解电容器之纹波电流
纹波电流即是在电容器内流过的交流电流,英文:rated ripple current。
之所以把它叫电流是因为交流电压迭加在电容器的直流偏压上与水面上面上的波纹很相似。
纹波电
流会使电容器发热,纹波电流额定值的确定办法是在额定工作温度下规定一个允许的
温升值,在此条件下电容器仍符合规使用寿命要求。
通常85℃的电容器允许的最高温升为10℃,即芯包中心最高温度为95℃;一般105℃的产品,允许的最高温升为5℃,芯包中心最温度可到110℃。
实际的芯包最高允许温度因电容种类和制造厂家的不同而有差异。
但过高的温升则会使电容器超过其允许的最高芯包温度而快速失效,而在接近最高芯
包允许温度的条件下工作则会很明显地缩期的使用寿命。
当工作温度小于额定温度时,额定纹波电流可以加大;当工作频率为120HZ之外的其他频率时,额定纹波电流可以进行调整。
过纹波电流会缩短电容器的耐久性,当纹波电流超过额定值,纹波电流引起的内部发热每升高5℃电容器寿命减半。
当要求电容器具有长寿命性能时,降低纹泳文波电流是
必须的。
南通华裕电子有限公司内部文档。
电解电容的纹波电流
电解电容的纹波电流一、电解电容的基本原理电解电容是一种具有极高电容值的电容器,其内部结构由两个金属极板和介质组成。
介质通常采用氧化铝薄膜,金属极板则是铝箔或钽箔。
当两个极板之间施加电压时,介质上会形成一层氧化膜,这层氧化膜就是电解电容的存储介质。
二、纹波电流的概念纹波电流指的是在直流稳压器中,输出端所产生的交流成分。
因为直流稳压器输出端的直流信号还存在着一定的交流成分,这些交流成分就会导致输出端产生纹波现象。
而纹波现象对于某些需要稳定直流信号的应用场合来说是非常不利的。
三、影响纹波电流大小因素1. 电解电容器本身特性:因为不同型号和品牌的电解电容器所具有的特性不同,所以它们对于纹波电流大小也会有影响。
2. 直流稳压器工作状态:当直流稳压器工作在过载或者过热状态时,其输出端的纹波电流也会增大。
3. 输入电压的大小:输入电压越大,直流稳压器输出端的纹波电流也会越大。
四、如何降低纹波电流1. 选择合适的电解电容器:为了降低直流稳压器输出端的纹波电流,我们需要选择具有低ESR(Equivalent Series Resistance)和高容值的电解电容器。
这样可以有效地降低输出端的纹波现象。
2. 增加滤波电容:在直流稳压器输出端并联一个滤波电容可以有效地减小纹波电流。
滤波电容通常采用铝箔或者钽箔制成,其容值大小需要根据具体场合而定。
3. 采用多级滤波:在一些对于直流信号要求非常高的场合,我们可以采用多级滤波来降低纹波现象。
多级滤波通常由多个RC滤波器组成,每个RC滤波器都能够减小一部分纹波成分。
五、总结在直流稳压器应用中,因为输出端存在着一定的交流成分,所以我们需要采取措施来降低其产生的纹波电流。
选择合适的电解电容器、增加滤波电容和采用多级滤波都可以有效地降低纹波现象。
电解电容纹波及寿命测试方法
Electrolytic Capacitor Ripple Current Derating Test Method and Life Time EvaluationFrom:郭雪松Date:Oct-27-04 一.SPEC1.电解电容零件工程规格书中之Standard Rating表格,其中规定了不同规格的电解电容Rated Ripple Current值,例如:Sharp机种PWPC C904(滤波电容) 67L215L-820-15N (CNN公司KXG Series)2.此电容用于电源输入端滤波,因此采用120Hz时的Rated Ripple Current规格715mA。
3.而用于评估电解电容Ripple Current之Spec要依据以下公式:SPEC=Spec(component)×频率系数(FM)×温度系数(TM)注:FM/TM取值方法见附表4.OTPV 评估电解电容Ripple Current的Derating规格为85%,因此测试值<SPEC×85%时判定OK。
二.Test Method将电解电容接地端吸开串联一导线,直接用电流计探头测试该导线电流的有效值(rms),测试时要调整输入电压值(90V~264V)达到纹波电流最大。
见图示:Irms三.附表(FM&TM取值方法):NCC公司产品为例1.Multiplying Factors on KMG Series(radial lead type)Frequency MultipliersTemperature Multipliers2. Multiplying Factors on KY SeriesFrequency MultipliersTemperature Multipliers3. Multiplying Factors on KXG SeriesFrequency MultipliersTemperature Multipliers*Temperature multipliers shows the guide limits of the maximum available ripple current at each of the temperature,of which the life time at the rated maximum operating temperature is expected.四.电解电容寿命评估测试方法1.Calculation Formula:电容寿命Life Time= Life(spec)×2(Ts-Tt)/10Life(spec):指spec中标明的寿命值Ts:电容最高使用温度值Tt:电容本体温度测试值2.判定方法:以上计算得出之寿命值与整机MTBF目标值比较,若大于目标值则判定OK。
电解电容的纹波电流
电解电容的纹波电流一、电解电容简介1.1 电解电容的基本原理电解电容是一种由电解质和两个不同材料的电极组成的被动元件。
其工作原理根据电解原理,当正负电源施加在两个电极上时,电解质会发生电离反应,形成正负离子。
正离子会在电容的负极积聚,而负离子则在正极积聚。
这些离子积累在电极和电解质之间形成一个电场,因此造成了电容的两个极板之间的电势差。
1.2 电解电容的特点电解电容具有较大的电容量和较高的电压稳定性,因此被广泛应用于各种电子设备中。
然而,与其他电容器相比,电解电容器的一个重要特点是其极化特性。
在工作过程中,电解电容器的极板上会形成一层电化学氧化膜,这种膜具有一定的电阻性质,会导致电解电容器的电压降低。
二、纹波电流的概念与特性2.1 纹波电流的定义纹波电流是指在交流电源中,电解电容器输出电流的变化情况。
由于交流电源的特点是频率的周期性变化,因此电流也会出现周期性的变化。
纹波电流是指交流电源的正弦波形电流与电解电容器输出电流之间的差异部分。
2.2 纹波电流的原因纹波电流的产生主要是由于电解电容器的极化特性造成的。
由于电解电容器上的电化学氧化膜的存在,导致了电解电容器的电压降低。
而为了维持交流电源的输出电压,电解电容器会周期性地放出电荷来补充电源输出的功率,从而形成纹波电流。
2.3 纹波电流的特性纹波电流的大小与电解电容器的电容量、负载电流和频率有关。
通常情况下,电容量越大,负载电流越小,纹波电流就越小。
而频率越高,纹波电流也会增大。
同时,纹波电流还会受到电解电容器的ESR(等效串联电阻)的影响。
三、纹波电流的影响与解决方法3.1 纹波电流对电路的影响纹波电流对电路的影响主要表现在两个方面:一是会造成电源电压的纹波;二是会对其他电子元件的工作产生干扰。
电源电压的纹波可能会导致设备工作不稳定,甚至对设备的寿命造成影响。
而纹波电流对其他元件的干扰则可能引起噪音、波形失真等问题。
3.2 解决纹波电流的方法为了解决纹波电流带来的问题,可以采取以下方法: 1. 增大电解电容器的电容量:通过增大电解电容器的电容量,可以降低纹波电流的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铝电解电容的在实际应用中的一个重要参数是纹波电流,此电流关系到电解电容的带载温升,在电容寿命计算时候,在不测量电解电容中心点温度的情况下,
可以通过此纹波电流来估计电容的设计寿命,铝电解电容常被用在整流模块后以平稳电压。
控制某一纹波电压所需的电容容值为:
负载功率(单位 W)
P:
注意:这是应用所需要的最小电容容值。
此外,电容容值有误差,在工作寿命期内,容值会逐步降低,随着温度降低,容值也会降低。
必须知道主线及负载侧的纹波电流数据。
可以首先计算出电容的充电时间。
是电网电流的频率。
f main
电容的放电时间则为:
充电电流的峰值为
是纹波电压( U max– U min)
1 / 1
dU
则充电电流有效值:
接下来计算放电电流峰值和有效值。
最后计算得出:整流模块后纹波电流:
纹波电流的换算方法可以这样:
假定电流在不同频率下的发热功耗相同,则有:
If12xESR f1= If22xESR f2
从而:If2=( ESR f1/ ESR f2)1/2x If1
这里的(ESR f1/ ESR f2)1/2就是频率系数.
如果已知If1的大小,又因为ESR f1,ESR f2可以测试出来,因此If2的值就能计算出来
(注:本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。