钢结构设计课后习题答案

合集下载

(参考资料)钢结构设计原理课后习题作业及答案

(参考资料)钢结构设计原理课后习题作业及答案
习题八
4
习题四
图 3-23
2
习题五
一实腹式轴心受压柱,承受轴压力 3500kN(设计值),计算长度 l0x =10m,l0y =5m,截面为焊接
组合工字型,尺寸如图所示,翼缘为剪切边,钢材为Q235,容许长细比
。要求:
(1)验算整体稳定性
(2)验算局部稳定性
习题六
如图所示 工字形简支主梁,Q235F 钢,f =215N/mm2 ,fv =125N/mm2 承受两个次梁传来的集中
习题一
习题二 如图所示梁柱连接节点的角焊缝,图示位置作用有剪力V、轴力N、弯矩M。梁
截面尺寸如图。采用直角角焊缝,设焊角尺寸为hf,求焊缝最不利受力点的应力值。
1
习题三 如图所示柱的牛腿节点处角焊缝,图示位置作用有剪力V、轴力N、弯矩M。采用直角角
焊缝,设焊角尺寸为hf,求焊缝最不利受力点的应力值。
力P =250KN 作用(设计值),次梁作为主梁的侧向支
习题七 某焊接工字形截面柱,截面几何尺寸如图 4-4 所示。柱的上、下端均为铰接,柱高 4.2m,承受
的轴心压力设计值为 1000kN,钢材为 Q235,翼缘为火焰切割边,焊条为 E43 系列,手工焊。试 验算该柱是否安全。

钢结构设计原理课后习题答案

钢结构设计原理课后习题答案
1)截面一f=205N/mm2
解:计算截面几何性质


刚度满足要求。
整体稳定验算
已知截面翼缘为焰切边,对x轴、y轴为b类截面,
梁的强度和刚度满足要求。
5.4如果习题5.3中梁仅在支座处设有侧向支承,该梁的整体稳定是否能满足要求。如果不能,采用何种措施?
解:
1)截面几何性质
对y轴的惯性矩:

2)整体稳定验算:

该梁的整体稳定是不能满足要求。
改进措施:在跨中集中力作用处设一侧向支承。则l0y=5000mm
,查附表3.1
材料已进入弹塑性,需要修正:
2)拉力螺栓验算:
单个螺栓抗拉承载力设计值:
弯矩作用最大受力螺栓所承受的拉力:
满足。
3.14.试验算如图所示拉力螺栓连接的强度,C级螺栓M20,所用钢材为Q235B,若改用M20的8.8级高强度螺栓摩擦型连接(摩擦面仅用钢丝刷清除浮锈)其承载力有何差别?
解:
1.采用普通螺栓连接
查表: , ,
1)力计算
解:
三级焊缝
查附表1.3: ,
不采用引弧板:
,不可。
改用斜对接焊缝:
方法一:按规取θ=56°,斜缝长度:
设计满足要求。
方法二:以θ作为未知数求解所需的最小斜缝长度。此时设置引弧板求解方便些。
3.9条件同习题3.8,受静力荷载,试设计加盖板的对接连接。
解:依题意设计加盖板的对接连接,采用角焊缝连接。
查附表1.3:
∴此加盖板的对接连接,盖板尺寸取-360×460×6mm,焊脚尺寸hf=6mm
3.10.有一支托角钢,两边用角焊缝与柱相连。如图所示,钢材为Q345-A,焊条为E50型,手工焊,试确定焊缝厚度(焊缝有绕角,焊缝长度可以不减去2hf)。已知:外力设计值N=400kN。

钢结构设计原理 课后答案

钢结构设计原理 课后答案

钢结构设计原理课后答案
1. 钢结构设计的原理是基于力学原理,其中包括材料力学和结构力学。

2. 钢材的力学性能是进行钢结构设计的重要基础,包括材料的屈服强度、抗拉强度、弹性模量等。

3. 钢结构设计中的荷载分为静态荷载和动态荷载。

静态荷载包括自重、活载和附加荷载,动态荷载包括地震荷载和风荷载等。

4. 钢结构设计需要满足一系列的设计准则和规范,如国家标准和建筑行业规范等。

5. 钢结构设计过程中需要进行结构分析,包括静力分析和动力分析。

静力分析是通过计算结构的受力和变形情况,确定结构的安全性和稳定性。

动力分析则是针对地震和风荷载等动态荷载进行结构响应计算。

6. 钢结构设计中需要考虑结构的稳定性,包括整体稳定性和构件稳定性。

整体稳定性是指结构整体的稳定性,构件稳定性则是指结构中各个构件的抗侧稳定能力。

7. 钢结构设计中需要考虑结构的承载力,包括构件的强度和刚度。

强度是指结构抵抗外部荷载作用的能力,刚度是指结构抵抗变形的能力。

8. 钢结构设计中需要进行连接设计,包括连接的刚度和强度设
计。

连接的刚度设计需要保证连接的刚度和整个结构的刚度协调,连接的强度设计需要保证连接的强度不低于构件的强度。

9. 钢结构设计中需要考虑构件的施工性能,如可焊性、切割性、螺纹加工等。

施工性能对于结构的质量和施工进度有重要影响。

10. 钢结构设计中需要进行耐久性设计,保证结构在使用寿命
内具有良好的耐久性能,抵抗外界环境和腐蚀等因素的损害。

《钢结构原理与设计第二版》章课后答案.docx

《钢结构原理与设计第二版》章课后答案.docx

4. 1解:N = Y G N GK +Y Q N QK =1.2X |X 315 + 1.4X |X 315 = 420^焊缝质量为三级,用引弧板施焊。

查表得E43焊条的//= 185/V/mm 2,Q235 钢的 / = 215/V/mm 2。

N 420 X103 「北 t> ------ : ■ bf. = ---------- =1135mm 200x185 故取 f = 12mm o4. 2解:N = Y G N GK +Y Q N QK =1.2X O.2A/A +1.4X O.8A/A =l36N k 焊缝质量为二级,f t w =215N/mm 2未用引弧板施焊 l w — 400 — 2x12 = 316mmN = f ;v l w t = i.36N kf t w l w t. 1.36 = 215X376X12 亍山册1.364. 4解: 1)焊脚尺寸仰hf 、> 1 珀匚唤=l-5xV10 = 4.74mm h f[ < 1.2/inin = 1.2x8 = 9.6mm趾部尺寸! h /2 !-5At = 1.5x VlO = 4.74m/n WV^/2 "nin - (1 〜2)= 8-(1 〜2) = 6 〜7mm 为方便备料,取h f i = hf2 = hf = 6mm ,满足上述要求。

2) 轴心力N 的设计值N= Y C >N C .K ^Y Q N QK=1.2X 0」x 180 +1.4x 0.9x 180 = 248.4^按角钢背与趾部侧面角焊缝内力分配系数可知:等边角钢内力分配系 数 勺=0.3— = 0.7 bh对角钢趾部取力矩平衡得:N\b = N®N\=^N = 0.3N = 0.3x248.4 = 74.52RN 1 b N 2=N-N } =0.7^ =0.7X 24&4 = 173.88RN3) 焊缝长度。

钢结构设计原理习题及参考答案

钢结构设计原理习题及参考答案

钢构造设计原理习题及参考答案1单项选择题1.焊接组合梁截面高度h是根据多方面因素确定的,下面哪一项不属于主要影响因素?〔〕A、最大高度B、最小高度C、等强高度D、经济高度答案:C2.焊接的优点不包括〔〕。

A、直接连接方便简单B、节省材料C、构造刚度大,提高焊接质量D、最大化表达钢材料性能答案:D3.轴心压杆计算时满足〔〕的要求。

A、强度,刚度B、强度,刚度,整体稳定C、强度,整体稳定,局部稳定D、强度,整体稳定,局部稳定,刚度答案:D4.对关于钢构造的特点表达错误的选项是〔〕。

A、建筑钢材的塑形和韧性好B、钢材的耐腐蚀性很差C、钢材具有良好的耐热性和防火性D、钢构造更适合于高层建筑和大跨构造答案:C5.轴心受压构件整体稳定的计算公式的物理意义是〔〕。

A、截面平均应力不超过钢材强度设计值B、截面最大应力不超过钢材强度设计值C、截面平均应力不超过构件欧拉临界应力设计值D、构件轴力设计值不超过构件稳定极限承载力设计值答案:D6.对有孔眼等削弱的轴心拉杆承载力,"钢构造设计标准"采用的准则为净截面〔〕。

A、最大应力到达钢材屈服点B、平均应力到达钢材屈服点C、最大应力到达钢材抗拉强度D、平均应力到达钢材抗拉强度答案:B7.下面哪一项不属于钢材的机械性能指标?〔〕A、屈服点B、抗拉强度C、伸长率D、线胀系数答案:D8.Q235与Q345两种不同强度的钢材进展手工焊接时,焊条应采用〔〕。

A.E55型B.E50型C.E43型D.E60型答案:C9.梁受固定集中荷载作用,当局部承压强度不能满足要求时,采用〔〕是比拟合理的措施。

A、加厚翼缘B、在集中荷载作用处设置支承加劲肋C、增加横向加劲肋的数量D、加厚腹板答案:B10.最大弯矩和其他条件均一样的简支梁,当〔〕时整体稳定最差。

A、均匀弯矩作用B、满跨均布荷载作用C、跨中集中荷载作用D、满跨均布荷载与跨中集中荷载共同作用答案:A11.不考虑腹板屈曲后强度,为保证主梁腹板的局部稳定,〔〕。

钢结构原理与设计课后答案

钢结构原理与设计课后答案

钢结构原理与设计课后答案1. What are the advantages of steel structures?Steel structures have several advantages over other construction materials, including:- High strength: Steel has a high strength-to-weight ratio, which means it can withstand heavy loads without being excessively bulky or thick. This allows for more efficient use of space and materials.- Durability: Steel is highly durable and has a long service life. It is resistant to corrosion, fire, and various environmental factors, making it suitable for a wide range of applications.- Flexibility: Steel structures can be easily modified, expanded, or reconfigured to meet changing needs. This flexibility allows for future adaptability and reduces the need for costly renovations or rebuilding.- Speed of construction: Steel structures can be fabricated off-site and assembled quickly on-site, reducing construction time significantly. This can lead to cost savings and faster project completion.- Sustainability: Steel is a highly sustainable material as it is recyclable and can be reused multiple times without losing its properties. Additionally, the use of steel structures can contribute to energy efficiency through integration with other sustainable technologies like solar panels.- Cost-effectiveness: Although steel structures may have higher upfront costs compared to other materials, their long-term benefits in terms of durability, maintenance, and adaptability often make them more cost-effective over the project's lifespan.2. How can steel structures be designed to resist lateral loads? Steel structures can be designed to resist lateral loads through several measures, including:- Bracing: The use of braces, such as cross-bracing or diagonal bracing, can provide stability and resistance against lateral forces. Bracing systems are typically located in the plane of the structure's walls or floors and help transfer the loads to the foundation.- Shear walls: Shear walls are vertical elements that provide resistance against lateral forces. These walls are designed to have high stiffness and strength and are typically placed at the perimeter of the structure or within the interior to create a rigid frame.- Moment-resisting frames: Moment-resisting frames are structural systems designed to resist lateral loads through moment transfer. These frames are typically used in buildings with open floor plans and consist of beams and columns that are capable of flexing under lateral loads.- Damping systems: Damping systems, such as tuned mass dampers or fluid viscous dampers, can be incorporated into steel structures to reduce the effects of lateral forces. These systems dissipate energy and help dampen vibrations caused by earthquakes or wind loads.- Base isolation: Base isolation involves installing flexible materials or bearings between the structure and its foundation to decouple them. This helps absorb and dissipate the energy generated by lateral loads, reducing their impact on the structure.3. What are the design considerations for steel structures in seismiczones?When designing steel structures in seismic zones, several considerations need to be taken into account:- Seismic load analysis: A seismic load analysis must be performed to determine the magnitude and direction of the potential seismic forces that the structure may experience. This analysis considers factors such as the seismic zone, site conditions, and the structure's response characteristics.- Strength and ductility: The design must account for the structure's strength and ductility to ensure that it can withstand the seismic forces without collapsing. Ductility allows the structure to undergo controlled deformations without significant loss of its load-carrying capacity.- Connection design: The connections between structural elements, such as beams and columns, must be designed to have adequate strength and ductility to accommodate the expected seismic forces. Proper detailing of connections is crucial to ensure load transfer and prevent failures during earthquakes.- Redundancy: Redundancy is the provision of multiple load paths within the structure. This ensures that even if one part of the structure fails, the overall integrity is maintained. Redundancy enhances the structure's resilience against seismic forces.- Seismic isolation or energy dissipation: Incorporating seismic isolation or energy dissipation systems can help reduce the impact of seismic forces. These systems are designed to absorb and dissipate energy, thereby protecting the structure from excessive deformations and damage.- Compliance with building codes: Designing steel structures inseismic zones requires compliance with the relevant building codes and seismic design regulations. These codes establish minimum requirements for structural integrity, safety, and performance during seismic events.4. How can steel structures be designed to resist fire?To design steel structures to resist fire, the following considerations need to be made:- Fire-resistant materials: Fire-resistant materials, such as fire-resistant coatings or insulation, can be applied to the steel members to protect them from high temperatures. These materials can delay or prevent the onset of structural failure and maintain the integrity of the steel structure during a fire.- Fire-resistant design: The dimensions and configuration of the steel members should be designed to minimize the potential for failure in case of fire. Adequate strength, stiffness, and fire resistance must be ensured through appropriate section sizes and reinforcement.- Compartmentalization: Building compartments with fire-resistant walls and floors can help contain the spread of fire and limit its impact on the steel structure. These compartments can prevent the fire from reaching critical structural components.- Active fire protection systems: Active fire protection systems, such as sprinklers, fire alarms, and smoke detectors, should be incorporated into the steel structure's design to help detect and suppress fires. These systems can help minimize fire damage and protect occupants.- Adequate egress routes: Proper provision of fire exits and clearevacuation routes should be incorporated into the design to ensure the safe evacuation of occupants in case of fire. These routes should be designed to minimize the risk of structural collapse during emergencies.- Compliance with fire codes and regulations: Steel structures should be designed in compliance with fire codes and regulations, which provide guidelines for fire-resistant materials, evacuation requirements, fire protection systems, and overall safety standards.5. What are the common methods used for steel connection design?Steel connection design involves determining the types and configurations of connections between various steel members. The common methods used for steel connection design include:- Welded connections: Welded connections are created by joining steel members together through the melting and fusion of the steel surfaces. Various types of welds, such as fillet welds or groove welds, can be used depending on the specific requirements and load conditions. Welded connections offer high strength but may require careful detailing for stress concentration and distortion control.- Bolted connections: Bolted connections use bolts to join steel members together. The bolts, along with nuts and washers, provide the clamping force necessary to hold the members in place. Bolted connections are versatile, as they allow for easy disassembly and reassembly. They can be designed as either bearing-type connections or slip-critical connections, depending on the required load transfer mechanism.- Riveted connections: Riveted connections involve using rivets,which are permanent mechanical fasteners, to join steel members. Rivets are inserted into pre-drilled holes and then heated, causing them to expand and secure the connection. Riveted connections were commonly used in the past but have been largely replaced by welded or bolted connections due to ease of fabrication and inspection.- Moment connections: Moment connections are designed to transfer bending moments between steel members, such as beams and columns. These connections allow the transfer of forces without relying solely on shear or axial load resistance. Moment connections increase the overall structural rigidity and can provide continuous load paths, enhancing the structure's resistance to lateral loads.- Splice connections: Splice connections are used to join steel members of the same type, typically to achieve longer spans or accommodate transportation and erection constraints. These connections can be designed as bolted or welded connections, depending on the desired level of stiffness and ease of assembly. Note: The above answers are provided for reference purposes and should be used as a guideline. It is important to consult relevant textbooks, materials, and experts for accurate and comprehensive information on steel structure principles and design.。

钢结构课后答案

钢结构课后答案

钢结构(第三版)戴国欣主编__课后习题答案第三章钢结构的连接3.1试设计双角钢与节点板的角焊缝连接(图3.80)。

钢材为Q235B,焊条为E43型,手工焊,轴心力N=1000KN(设计值),分别采用三面围焊和两面侧焊进行设计。

解:(1)三面围焊确定焊脚尺寸:,,内力分配:焊缝长度计算:,则实际焊缝长度为,取310mm。

,则实际焊缝长度为,取120mm。

(2)两面侧焊确定焊脚尺寸:同上,取,内力分配:,焊缝长度计算:,则实际焊缝长度为:,取390mm。

,则实际焊缝长度为:,取260mm。

3.2 试求图3.81所示连接的最大设计荷载。

钢材为Q235B,焊条为E43型,手工焊,角焊缝焊脚尺寸,。

焊脚尺寸:焊缝截面的形心:则(1)内力分析:V=F,(2)焊缝截面参数计算:(3)应力计算T引起的应力:V引起的应力:(4)3.3 试设计如图3.82所示牛腿与柱的连接角焊缝①、②、③。

钢材为Q235B,焊条为E43型,手工焊。

(1)内力分析:V=F=98KN,(2)焊缝截面参数计算:取焊缝截面的形心:(3)应力计算M引起的应力:V引起的应力:(4)3.4 习题3.3的连接中,如将焊缝②及焊缝③改为对接焊缝(按三级质量标准检验),试求该连接的最大荷载。

(1)内力分析:V=F,(2)焊缝截面参数计算:(3)应力计算M引起的应力:V引起的应力:(4)3.5焊接工字形梁在腹板上设一道拼接的对接焊缝(图3.83),拼接处作用有弯矩,剪力V=374KN,钢材为Q235B钢,焊条用E43型,半自动焊,三级检验标准,试验算该焊缝的强度。

(1)内力分析:V=374KN,(2)焊缝截面参数计算:(3)应力计算腹板和翼缘交接处:折算应力:不满足3.6 试设计图3.81的粗制螺栓连接,F=100KN(设计值),。

(1)内力分析:V=100KN,,(2)参数计算:单个螺栓抗剪承载力(M22),(3)内力计算T引起的应力:V引起的应力:(4)3.7 试设计如图3.84所示:构件钢材为Q235B,螺栓为粗制螺栓。

钢结构设计原理课后思考题答案

钢结构设计原理课后思考题答案

1.钢结构对钢材性能有哪些要求答:较高的强度,较好的变形能力,良好的工艺性能。

2.钢材的塑性破坏和脆性破坏有何区别答:塑性破坏是由于变形过大,超过了材料或构件可能的应变能力而产生的,而且仅在构件的应力达到了钢材的抗拉轻度fu后才发生。

破坏前构件产生较大的塑性变形,断裂后的端口呈纤维状,色泽发暗。

在塑性破坏前,构件发生较人的塑性变形,且变形持续的时间较长,容易及时被发现而采取补救措施,不致引起严重后果。

另外,塑性变形后出现内力重分布,使结构中原先受力不等的部分应力趋于均匀,因而捉高了结构的承载能力。

脆性破坏前塑性变形很小,甚至没有塑性变形,计算应力可能小于钢才的屈服点fy,断裂从应力集中处开始。

冶金和机械加工过程中产生的缺陷,特别是缺口和裂纹,常是断裂的发源地。

破坏前没有任何预兆,无法及时察觉和采取补救措施,而且个别构件的断裂常会引起整体结构塌毁,后果严重,损失较大。

3.刚才有哪几项主要性能,分别可用什么指标来衡量答:屈服点fy.抗拉强度fy,伸长率6, 冷弯性能,冲击韧性4.影响钢材性能的主要性能有哪些答:化学成分的影响。

冶炼、浇注、轧制过程及热处理的影响。

钢材的硬化。

温度的影响。

应力集中的影响。

重复荷载作用的影响。

5.简述化学元素对钢材性能有哪些影响答;碳直接影响钢材的强度、塑性、韧性和可焊性等。

硫和磷降低钢材的塑性。

韧性。

可焊性和疲劳强度。

氧使钢热脆,氮使钢冷脆。

硅和镒是脱氧剂,使钢材的强度提高。

帆和钛是提高钢的强度和抗腐蚀性又不显若降低钢的塑性。

铜能捉高钢的强度和抗腐蚀性能,但对可焊性不利。

6.什么是冷作硬化和时效駛化答:钢材受荷超过弹性范围以后,若重复地卸载加载,将使钢材弹性极限提高,塑性降低,这种现象称为钢材的应变硬化或冷作硬化。

轧制钢材放置•段时间后,强度提高,塑性降低,称为时效破化。

7简述温度对钢材的主要性能有哪些影响答:温度升高,钢材强度降低,应变增人,反之温度降低,钢材强度会略有增加,塑性和韧性却会降低而变脆。

钢结构设计课后习题答案

钢结构设计课后习题答案

1.1、屋盖结构主要组成部分是哪些?它们的作用是什么?A、屋架:支撑于柱或托架,承受屋面板或檩条传来的荷载;b、天窗:屋架跨度较大时,为了采光和通风的需要;C、支撑系统:用于增强屋架的侧向刚度,传递水平荷载和保证屋盖体系的整体稳定。

1.2、屋盖结构中有哪些支撑系统?支撑的作用是什么?(1)a、上弦横向水平支撑b、下弦横向水平支撑c、上弦纵向水平支撑d、下弦纵向水平支撑e、垂直支撑f、系杆(2)a、保证结构的空间整体性b、为弦杆提供适当的侧向支撑点c、承担并传递水平荷载d、保证结构安装时的稳定与方1.3、如何区分刚性系杆和柔性系杆?哪些位置需要设置刚性系杆?答:(1)刚性系杆:能承受压力,柔性系杆:只能承受拉力(2)上弦平面内檩条和大型屋面板可起到刚性系杆作用,因而可在屋架的屋脊和支座节点处设置系杆,当屋架横向支撑设置在第二柱间时所有系杆均为刚性系杆。

1.4实腹式和格构式檩条各适用于哪种情况?其优缺点是什么?答:(1)实腹式檩条常用于跨度为3~6m的情况,构造简单,制造及安装方便(2)桁架式檩条用于跨度较大(>6m)的情况,分为三种形式:A、平面桁架式檩条,受力明确,用料省,但侧向刚度较差,必须设置拉条;B、T形桁架式檩条,整体性差,应沿跨度全长设置钢箍;C、空间桁架式檩条,刚度好,承载力大,不必设置拉条,安装方便,但是构造复杂,适用跨度和荷载较大的情况1.5为什么檩条要布置拉条?答:为了给檩条提供侧向支撑,减小檩条沿屋面坡度方向的跨度,除了侧向刚度较大的空间桁架式和T形桁架式檩条外,在实腹式檩条和平面桁架式檩条之间设置拉条。

1.6三角形、梯形、平行弦桁架各适用于哪些屋盖体系?答:(1)三角形屋架:屋面坡度较大的有檩屋盖结构或中小跨度的轻型屋面结构(2)梯形屋架:用于屋面坡度较小的屋盖结构、工业厂房屋盖结构最常用形式(3)矩形屋架:用于托架或支撑体系中(4)曲拱屋架:用于有特殊要求的房屋中1.7屋架的腹杆有哪些体系?各有什么特征?答:(1)三角形腹杆:单斜杆式,长杆受拉,短杆受压,经济;人字式,腹杆数少,节点少,构造简单;芬克式,腹杆受力合理,可分开运输。

钢结构设计课后习题答案

钢结构设计课后习题答案

钢结构设计课后习题答案钢结构设计课后习题答案在学习钢结构设计的过程中,习题是非常重要的一部分。

通过解答习题,我们可以巩固所学的知识,提高解决问题的能力。

下面,我将为大家提供一些钢结构设计课后习题的答案,希望对大家的学习有所帮助。

1. 习题:计算一根钢梁的最大承载力。

答案:钢梁的最大承载力可以通过计算其弯曲强度和剪切强度来得到。

弯曲强度可以根据梁的几何形状和材料的弹性模量来计算,剪切强度则取决于梁的截面形状和材料的抗剪强度。

根据这些参数,可以使用公式来计算钢梁的最大承载力。

2. 习题:设计一根钢柱的截面尺寸。

答案:设计钢柱的截面尺寸需要考虑到柱的承载能力和稳定性。

首先,根据柱的承载能力要求,可以计算出柱的截面积。

然后,根据柱的稳定性要求,可以计算出柱的截面惯性矩和截面模量。

最后,根据这些参数,可以选择适当的截面形状和尺寸。

3. 习题:计算一根钢桁架的整体刚度。

答案:钢桁架的整体刚度可以通过计算其弹性刚度和刚度矩阵来得到。

弹性刚度可以根据桁架的几何形状和材料的弹性模量来计算,刚度矩阵则取决于桁架的节点连接方式和材料的刚度。

根据这些参数,可以使用矩阵运算来计算钢桁架的整体刚度。

4. 习题:设计一根钢梁的连接节点。

答案:设计钢梁的连接节点需要考虑到节点的强度和刚度。

首先,根据节点的强度要求,可以计算出节点的承载能力。

然后,根据节点的刚度要求,可以计算出节点的刚度系数。

最后,根据这些参数,可以选择适当的连接方式和尺寸。

5. 习题:分析一根钢梁的挠度和变形。

答案:钢梁的挠度和变形可以通过计算其弯曲挠度和剪切变形来得到。

弯曲挠度可以根据梁的几何形状、材料的弹性模量和加载条件来计算,剪切变形则取决于梁的截面形状、材料的抗剪模量和加载条件。

根据这些参数,可以使用公式来计算钢梁的挠度和变形。

通过解答这些习题,我们可以更好地理解和应用钢结构设计的知识。

同时,这些习题也可以帮助我们发现和解决实际工程中的问题。

希望大家能够认真对待这些习题,并不断提高自己的钢结构设计能力。

钢结构设计原理课后习题答案

钢结构设计原理课后习题答案

钢结构设计原理课后习题答案1. 引言。

钢结构是一种重要的结构形式,广泛应用于建筑、桥梁、船舶等领域。

钢结构设计原理是钢结构工程师必须掌握的基础知识,通过课后习题的解答,可以加深对设计原理的理解,提高解决实际问题的能力。

本文将针对钢结构设计原理课后习题进行详细的答案解析,帮助读者更好地掌握相关知识。

2. 钢结构设计原理课后习题答案。

2.1 第一题。

题目,请简要说明弹性模量的概念及其在钢结构设计中的作用。

答案,弹性模量是材料的一项重要力学性能指标,表示了材料在受力作用下的变形能力。

在钢结构设计中,弹性模量可以用来计算结构在受力时的变形情况,帮助工程师预测结构的变形和变形后的性能,从而进行合理的结构设计和优化。

2.2 第二题。

题目,简述钢结构设计中的载荷类型及其特点。

答案,钢结构设计中的载荷类型包括静载荷和动载荷。

静载荷是指结构在静止状态下受到的外部力,如自重、雪荷、风荷等;动载荷是指结构在运动状态下受到的外部力,如地震、风振等。

静载荷和动载荷的特点分别是稳定和不稳定,需要工程师在设计中进行合理的考虑和处理。

2.3 第三题。

题目,简要说明钢结构设计中的安全系数及其确定方法。

答案,安全系数是钢结构设计中非常重要的参数,用于保证结构在使用过程中的安全性。

安全系数的确定方法包括经验法和概率统计法。

经验法是根据历史数据和经验确定安全系数的数值;概率统计法是通过概率统计理论和可靠性设计原理确定安全系数的数值。

工程师需要根据具体情况选择合适的确定方法,并合理确定安全系数的数值。

3. 结语。

通过对钢结构设计原理课后习题的答案解析,我们可以更深入地了解钢结构设计的基本原理和方法。

在实际工程中,工程师需要根据具体情况进行合理的设计和计算,保证结构的安全性和稳定性。

希望本文对读者有所帮助,谢谢阅读!。

钢结构设计原理课后习题答案

钢结构设计原理课后习题答案

钢结构设计原理课后习题答案钢结构设计原理课后习题是帮助学生巩固课堂知识,提高问题解决能力的重要环节。

下面是一份含有答案的钢结构设计原理课后习题答案,供参考。

1. 什么是钢结构设计原理?
答案:钢结构设计原理是指在钢结构设计过程中,基于力学原理和结构力学的基本原理,根据结构的受力状态和要求,确定结构的材料、形状和尺寸等参数,以保证结构的安全、经济和合理。

2. 钢结构设计原理的基本步骤是什么?
答案:钢结构设计原理的基本步骤包括结构计算、材料选择、构件设计、连接设计和整体设计。

3. 钢结构中常见的受力形式有哪些?
答案:钢结构中常见的受力形式有拉力、压力、弯矩、剪力和扭矩等。

4. 什么是结构的安全性?
答案:结构的安全性是指结构在正常使用和预定荷载下,不发生破坏和失效的能力。

5. 结构的安全系数是什么?
答案:结构的安全系数是指结构的承载能力与设计荷载的比值,用于保证结构在设计荷载下的安全性。

6. 钢结构的设计荷载包括哪些?
答案:钢结构的设计荷载包括常规荷载、可变荷载、特殊荷载和地震荷载等。

7. 钢结构的构件设计需要考虑哪些因素?
答案:钢结构的构件设计需要考虑构件的受力状态、截面形状和尺寸、材料强度和连接方式等因素。

8. 钢结构的连接设计需要考虑哪些因素?
答案:钢结构的连接设计需要考虑连接的刚度、强度、可拆卸性和耐久性等因素。

9. 钢结构的整体设计需要考虑哪些因素?
答案:钢结构的整体设计需要考虑结构的稳定性、刚度和振动等因素。

10. 钢结构设计中常用的计算方法有哪些?
答案:钢结构设计中常用的计算方法有弹性计算、塑性计算、稳定性计算和疲劳计算等。

(完整版)钢结构设计原理习题集及答案

(完整版)钢结构设计原理习题集及答案
(2)残余应力:在浇注、轧制和焊接加工过程中,因不同部位钢材的冷却速度不同,或因不均匀加热和冷却而产生。
2.冷加工硬化和时效硬化
答:(1)在冷加工(或一次加载)使钢材产生较大的塑性变形的情况下,卸荷后再重新加载,钢材的屈服点提高,塑性和韧性降低的现象称为冷作硬化;在高温时溶于铁中的少量氮和碳,随着时间的增长逐渐由固溶体中析出,生成氮化物和碳化物,散存在铁素体晶粒的滑动界面上,对晶粒的塑性滑移起到遏制作用,从而使钢材的强度提高,塑性和韧性下降。这种现象称为时效硬化(也称老化);
答:所谓可靠度,就是结构在规定时间内,在规定的条件下,完成预定功能的概率。对于一个结构而言,比较可行的方法是,以可靠指标的计算来代替可靠度的计算。可靠指标β=μz/σz,β与失效概率Pf有确定的一一对应关系,β增大,Pf减小。
2.什么是结构的极限状态?结构的极限状态分为几类,其含义各是什么?
答:整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求,称此特定状态为该功能的极限状态。
2.简述影响钢材脆性断裂的主要因素?如何避免不出现脆性断裂?
答:导致脆性破坏的因素:化学成分;冶金缺陷(偏析、非金属夹杂、裂纹、起层);温度(热防止脆性破坏的发生,应在钢结构的设计、制造和使用过程中注意以下各点:(1)合理设计;(2)正确制造;(3)合理使用。
第二章钢结构的材料
练习题
一、单项选择题
1、在构件发生断裂破坏前,有明显先兆的情况是__ B___的典型特征。
(A)脆性破坏(B)塑性破坏(C)强度破坏(D)失稳破坏
2、钢材的设计强度是根据_ C__确定的。
(A)比例极限(B)弹性极限(C)屈服点(D)极限强度
3、结构工程中使用钢材的塑性指标,目前最主要用_ D__表示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1、屋盖结构主要组成部分是哪些?它们的作用是什么?A、屋架:支撑于柱或托架,承受屋面板或檩条传来的荷载;b、天窗:屋架跨度较大时,为了采光和通风的需要;C、支撑系统:用于增强屋架的侧向刚度,传递水平荷载和保证屋盖体系的整体稳定。

1.2、屋盖结构中有哪些支撑系统?支撑的作用是什么?(1)a、上弦横向水平支撑b、下弦横向水平支撑c、上弦纵向水平支撑d、下弦纵向水平支撑e、垂直支撑f、系杆(2)a、保证结构的空间整体性b、为弦杆提供适当的侧向支撑点c、承担并传递水平荷载d、保证结构安装时的稳定与方1.3、如何区分刚性系杆和柔性系杆?哪些位置需要设置刚性系杆?答:(1)刚性系杆:能承受压力,柔性系杆:只能承受拉力(2)上弦平面内檩条和大型屋面板可起到刚性系杆作用,因而可在屋架的屋脊和支座节点处设置系杆,当屋架横向支撑设置在第二柱间时所有系杆均为刚性系杆。

1.4实腹式和格构式檩条各适用于哪种情况?其优缺点是什么?答:(1)实腹式檩条常用于跨度为3~6m的情况,构造简单,制造及安装方便(2)桁架式檩条用于跨度较大(>6m)的情况,分为三种形式:A、平面桁架式檩条,受力明确,用料省,但侧向刚度较差,必须设置拉条;B、T形桁架式檩条,整体性差,应沿跨度全长设置钢箍;C、空间桁架式檩条,刚度好,承载力大,不必设置拉条,安装方便,但是构造复杂,适用跨度和荷载较大的情况1.5为什么檩条要布置拉条?答:为了给檩条提供侧向支撑,减小檩条沿屋面坡度方向的跨度,除了侧向刚度较大的空间桁架式和T形桁架式檩条外,在实腹式檩条和平面桁架式檩条之间设置拉条。

1.6三角形、梯形、平行弦桁架各适用于哪些屋盖体系?答:(1)三角形屋架:屋面坡度较大的有檩屋盖结构或中小跨度的轻型屋面结构(2)梯形屋架:用于屋面坡度较小的屋盖结构、工业厂房屋盖结构最常用形式(3)矩形屋架:用于托架或支撑体系中(4)曲拱屋架:用于有特殊要求的房屋中1.7屋架的腹杆有哪些体系?各有什么特征?答:(1)三角形腹杆:单斜杆式,长杆受拉,短杆受压,经济;人字式,腹杆数少,节点少,构造简单;芬克式,腹杆受力合理,可分开运输。

(2)梯形屋架:人字式,减少上弦节间短,有利于提高上弦承载力,避免上弦局部受弯,受拉下弦节间长,可减少节点,便于制造;再分式,减少上弦节间长度(3)矩形屋架:人字式,腹杆数少,节点简单K形,桁架高度高时可减少竖杆长度交叉式,常用于承受反复荷载的桁架中,又是斜杆可用柔性杆。

1.8如何选择屋架构件截面?答:选择屋架杆件截面时,应注意选用肢宽而壁薄的角钢;屋架弦杆一般采用等截面,但对于跨度>24m且弦杆内力相差较大的屋架,可在适当节间处改变截面,改变一次为宜。

对轴心受拉杆件由强度要求计算所需的面积,同时应满足长细比要求。

对轴心受压杆件和压弯构件要计算强度、整体稳定、局部稳定和长细比。

根据构件受力按钢结构基本原理中介绍的方法选择截面。

a普通钢屋架的杆件一般采用等肢或不等肢角钢组成的T形截面或十字形截面b对于屋架上弦杆,宜采用两个不等肢角钢短肢相并而成的T形截面形式;当有节间荷载作用时,宜采用不等肢角钢长肢相并T形截面c对于受拉下弦杆,可采用两个等肢角钢或不等肢角钢短肢相并组成的T形截面d对于屋架的支座斜杆及竖杆,可采用两个不等肢角钢长肢相并而成的T形截面e屋架中其他腹杆,宜采用两个等肢角钢组成的T形截面f与竖向支撑相连的竖腹杆宜采用两个等肢角钢组成的十字形截面1.9如何确定屋架节点的节点板厚度?一个桁架的所有节点板厚度是否相同?答:桁架节点板的厚度可根据腹杆(梯形屋架)或弦杆(三角形屋架)的最大内力按表1-1取用,节点板的最小厚度为6mm。

在同一榀屋架中,除支座处节点板比其他节点板厚2mm外,全屋架所有节点板的厚度应相同。

1.10、垫板的作用是什么?答:支座节点的传力路线是:屋架杆件的内力通过连接焊缝传给节点板,然后由节点板和加劲肋把力传给支座底板,最后传给柱子。

1.12为什么在屋架拼接节点要增加拼接角钢?答:为了减轻节点板负担和保证整个屋架平面外的刚度。

1.13用钢管做桁架时,参数β的含义是什么?β的大小对节点承载力有何影响?答:β是支管外径与主管外径之比。

β越大节点承载力越高1.14搭接支管的节点承载力如何随搭接率变化?答:根据Ov的大小,分为三种情况。

25%《Ov<50%,增大;50%《Ov<80%,80%《Ov<100%,分别为一定值。

详情见书。

1.15保证网架结构几何不变的必要条件是什么?充分条件是什么?答:(1)网架为一空间铰接杆系统结构,保证网架结构几何不变的必要条件是:W=3J-m-r≤0 式中,J——网架的节点数;M——网架的杆件数;R ——支座约束链杆数。

当W>0时,网架结构为几何可变体系;当W=0时,网架无多余杆件,如杆件布置合理,为静定结构;当W<0时网架有多余杆件,如杆件布置合理,为超静定结构。

(2)网架结构几何不变的充分条件可通过结构的刚度矩阵进行判断,出现下列条件之一者,该网架结构为几何可变体系。

1)引入边界条件后,总刚度矩阵【K】中对角线上出现零元素,则与之对应的节点为几何可变;2)引入边界条件后,总刚度矩阵行列式【K】=0,该矩阵奇异,结构为几何可变体系;1.16、双层网架的主要形式有哪些?答:双层网架的常用形式有以下几种:平面桁架系网架(两向正交正放网架,两向正交斜放网架,三向网架);四角锥体系网架(正向四角锥网架,抽空四角锥网架,星形四角锥网架);三角锥体系网架;网架结构的支撑;网架高度及网格尺寸。

1.17网架结构的支撑形式主要有哪些?答:(1)在网架四周全部或部分边界节点设置支座,是常用的支撑方式,称为周边支撑(2)。

将整个网架支撑在多个支撑住上,称为点支撑。

(3)平面尺寸大很大的建筑物,除在网架周边设置支撑外,可在内部增设中间支撑,以减小网架杆件内力挠度(即周边支撑与支点支撑结合)。

1.18网架结构的高度和网格尺寸各与哪些因素有关?答:网架结构的高度主要与屋面荷载、跨度和支撑条件有关。

荷载和跨度越大,网架的高度越大;平面接近正方形时高度可取得小一些;狭长矩形平面网架的单向作用明显,高度可取得大一些;圆形平面网架高度可取得小一些;点支撑网架比周边支撑网架高度大一些。

网架的网格尺寸与网架高度和屋面材料有关。

1.19网架结构的节点有哪些形式?设计时要进行哪些计算?答:(1)焊接空心球节点:空心球外径D的确定,空心球径等于或大于300mm,且杆件内力较大,需要提高承载力时,球内可加环肋,空心球径直径为120-900mm时受压受拉承载力验算,空心球的壁厚验算(2)螺栓球节点:钢球直径计算(球内螺栓不相碰的最小直径,满足套筒接触面要求的直径,角度小于30度,保证杆件不相碰的最小直径),高强度螺栓的性能等级的选用,套筒外形尺寸验算,锥头和封板。

(3)焊接钢板节点:节点板厚度(4)焊接钢管节点,(5)杆件直接汇交节点1.20网架结构的支座形式有哪些?各有什么特点?答:(1)平板压力和拉力支座:转动的位移受很大约束,在底板可开设椭圆形孔洞,方便安装,只适用于较小跨度网架(2)单面弧形压力支座和拉力支座:单方向转动未受约束,限制平移,适用于中小跨度网架(3)双面弧形压力支座:在支座和底板间设有弧形块,上下面都是柱面,支座可转动但不能平移。

(4)球铰压力支座,其支座可任意方向转动但不能平移,适用于大跨度网架。

(5)板式橡胶支座:通过橡胶垫的压缩和剪切变形,支座既可以转动也可以平移,助于单行支座,适用于大中跨度网架。

1.21为什么单层网壳的节点应做成刚接的?一般采用什么形式?答:(1)以便传递各杆传来的集中力和弯矩(2)a板节点b焊接空心球节点c螺栓球节点d嵌入式毂式节点e叠合式节点f卡盘螺栓节点2.1单层厂房是由那些结构或构件组成的?这些组成部件的作用是什么?结构组成:a横向框架由柱和它所支承的屋架或屋盖横梁组成,是单层钢结构厂房的主要承重体系,承受结构的自重、风、雪荷载和吊车的竖向与横向荷载,并把这些荷载传递到基础。

b屋盖结构承担屋盖荷载的结构体系,包括横向框架的横梁、托架、中间屋架、天窗架、檩条等。

c支撑体系包括屋盖部分的支撑和柱间支撑等,它一方面与柱、吊车梁等组成单层钢结构厂房的纵向框架,承担纵向水平荷载;另一方面又把主要承重体系由个别的平面结构连成空间的整体结构,从而保证了单层厂房钢结构所必需的刚度和稳定。

d吊车梁和制动梁(或制动桁架)主要承受吊车竖向及水平荷载,并将这些荷载传到横向框架和纵向框架上。

e墙架承受墙体的自重和风荷载。

2.2布置柱网时应考虑哪些因素?A、满足生产工艺流程的要求,包括预期的扩建和工艺设备更新的需求。

B、满足结构上的要求,在保证厂房具有必需的刚度和强度的同时,尽量减少屋架跨度和柱距的类别。

2.3为什么要设置温度缝?横向和纵向温度缝如何处置?(1)为避免结构中产生过大的温度应力,在厂房的纵向或横向的尺度较大时,一般要求在平面布置中设置温度伸缩缝。

(2)a、设置双缝,即在缝的两旁布置两个无任何纵向构件联系的横向框架b、采用单柱温度伸缩缝,即在纵向构件支座处设置滑动支座(节约钢材)c、当厂房宽度较大时,也应该按规范规定布置纵向温度伸缩缝2.4横向框架有哪些类型?如何确定横向框架的主要尺寸?(1)a、刚接框架b、铰接框架(2)根据所采用吊车的工作要求设计2.5厂房柱有哪些类型?各在什么情况下使用?A、等截面柱,b、格构式柱,c、分离式柱使用范围:A、在吊车的吨位很小时可采用等截面或变截面实腹式柱。

B、实腹式柱的构造简单,加工制作费用低,常在厂房高度不超过10m切吊车额定其重量不超过20t时采用。

C、一般采用梯形柱,阶梯形柱下段截面较大时通常采用格构式,而上段可采用实腹式,亦可采用格构式。

D、分离式柱适宜于有位置不高的大吨位吊车和有扩建计划的结构。

2.6厂房有哪些支撑?各有什么作用?(1)柱间支撑,用于将厂房纵向柱列传来的力良好地传到基础上。

上层柱间支撑和下层柱间支撑。

下层柱间支撑是为了减少纵向温度应力的影响;垂直支撑,用于传递屋架纵向垂直方向的力。

(2)水平支撑,分上弦、下弦。

用于屋架上下弦水平方向的力。

(3)联系梁,用于传递纵向的柱根、柱端、屋架端的水平力。

2.7试述柱间支撑的布置、构造和计算特点。

(1)布置:下层柱间支撑一般宜布置在温度区段的中部;上层柱间支撑除了要在下层支撑布置的柱间设置外,还应当在每个温度区段的两端设置。

每列柱顶端均要布置刚性系杆。

(2)构造特点:常见的下层柱间支撑是交叉型的,与柱子的夹角控制在35~55度,下层柱间支撑常见形式采用交叉形,人字形或K字形,柱距较大时可取V形或八字形。

(3)计算特点:①上层柱间支撑承受端部墙传来的风力,下层柱间支撑除承受短墙传来的风力外,还承受起重机的纵向水平荷载。

相关文档
最新文档