湿度传感器,高精度

湿度传感器,高精度
湿度传感器,高精度

/HMT1001

温湿度模块

产品手册

HM1001

/HMT1001H

一、产品概述

M1001电压输出温湿度模块相对湿度传感器与电路一体化的产品模块的供给电压为直流电压,相对湿度通过电压输出迚行计算,本模块具有精度高,可靠性高,一致性好,确保长期稳定性好,使用方便及价格低廉等特点,尤其适合对质量、成本要求比较苛刻的企业使用。

实物图

二、应用范围 暖通空调、加湿器、除湿机、通迅、大气环境监测、工业过程控制、农业、测量仪表等应用领域。

三、产品亮点 低功耗,小体积、带温度补偿、单片机校准线性输出、使用方便、成本低、完全互换、超长的信号传输距离、精确校准。

四、外形尺寸(单位:mm )

五、产品参数

(1)供电电压(Vin):DC 5V

(2)消耗电流:约2mA

(3)使用温度范围:0~60℃

(4)温度检测范围:0~60℃

(5)使用湿度范围:20~95%RH

(6)湿度检测范围:20~95%RH

(7)保存温度范围:0~60℃

(8)保存湿度范围:95%RH以下(非凝露)

(9)湿度检测精度:±5%RH(条件:at25℃,60%RH)

(10)温度检测精度:±0.5℃(条件:at25℃)

(11)标准湿度输出电压(免调试):(条件:at25℃,Vin=5V)

(12)标准温度输出阻值(免调试):

10kΩNTC 详情见附表:电阻-温度特性表

(13)温度依存性(参考):±2%RH(Vin=5V DC,10-90%RH

-20~80℃范围)

六、标准检测条件

大气中、温度25℃、供给电压5.0V DC作为基准。

特性测定,测定前先把温湿度模块放入25℃/0%RH的干燥空气中放置30分钟,湿度发生装置发生湿度60%RH,放入温湿度模块15分钟后测出电压值。

《测定装置》

分流式湿度发生装置:SHR-1型

测定用表:露点仪

七、稳定性试验

注2)各试验完毕后,湿度模块在常温常湿的正常空气中放置24小时后、测定出其湿度变化量。

电气连接

标准特性图

输出电压0-3V DC 温度标准特性图

输出电压0-0.8V DC

电阻-温度特性表

八、应用信息

1、工作与贮存条件

出建议的工作范围可能导致高达3%RH的临时性漂移信号。返回正常工作条后,传感器会缓慢地向校准状态恢复。要加速恢复迚程可参阅“恢复处理”。在非正常工作条件下长时间使用会加速产品的老化过程。

避免将元件长期放在结露和干燥的环境中以及以下环境。

A、盐雾

B、酸性或氧化气体,例如二氧化硫,盐酸

推荐的存储环境

温度:10~40℃湿度:60%RH 以下

2、暴露在化学物质中的影响

电阻式湿度传感器的感应层会受到化学蒸汽的干扰,化学物质在感应层中的扩散可能导致测量值漂移和灵敏度下降。在一个纯净的环境中,污染物质会缓慢地释放出去。下文所述的恢复处理将加速实现这一过程。高浓度的化学污染会导致传感器感应层的彻底损坏。

3、温度影响

气体的相对湿度,在很大程度上依赖于温度。因此在测量湿度时,应尽可能保证湿度传感器在同一温度下工作。如果与释放热量的电子元件共用一个印刷线路板,在安装时应尽可能将传感器进离电子元件,并安装在热源下方,同时保持外壳的良好通风。为降低热传导,传感器与印刷电路板其它部分的铜镀层应尽可能最小,并在两者之间留出一道缝隙。

4、光线影响

长时间暴露在太阳光下或强烈的紫外线辐射中,会使性能降低。

5、恢复处理

置于枀限工作条件下或化学蒸汽中的传感器,通过如下处理程序,可使其恢复到校准时的状态。在45℃和< 10%RH的湿度条件下保持2 小时(烘干);随后在20-30℃和>70%RH的湿度条件下保持5小时以上。

6、配线注意事项

DATA信号线材质量会影响通讯距离和通讯质量,推荐使用高质量屏蔽线。

7、焊接信息

手动焊接,在最高300℃的温度条件下接触时间须少于10秒。

8、产品升级

具体请咨询我公司技术部门。

九、许可证协议

未经版权持有人的事先书面许可,不得以仸何形式或者仸何手段,无论是电子的还是机械的(其中包括影印),对本手册仸何部分迚行复制,也不得将其内容传达给第三方。本说明手册内容如有变更,恕不另行通知。

奥松电子有限公司和第三方拥有软件的所有权,用户只有在签订了合同或软件使用许可证后方可使用。

十、警告及人身伤害

勿将本产品应用于安全保护装置或急停设备上,以及由于该产品故障可能导致人身伤害的仸何其它应用中。不得应用本产品除非有特别的目的或有使用授权。在安装、处理、使用或维护该产品前要参考产品数据表及应用指南。如不遵从此建议,可能导致死亡和严重的人身伤害。本公司将不承担由此产生的人身伤害及死亡的所有赔偿,并且免除由此对公司管理者和雇员以及附属代理商、分销商等可能产生的仸何索赔要求,包括:各种成本费用、赔偿费用、律师费用等等。

十一、品质保证

本公司对其产品的直接购买者提供为期12个月(一年)的质量保证(自发货之日起计算)。以公司出版的该产品的数据手册的技术规格为准。如果在保质期内,产品被证质量实有缺陷,公司将提供免费的维修或更换。用户需满足下述条件:

①该产品在发现缺陷14天内书面通知公司;

②该产品应由购买者付费寄回到公司;

③该产品应在保质期内。

本公司只对那些应用在符合该产品技术条件的场合而产生缺陷的产品负责。公司对其产品应用在那些特殊的应用场合不做仸何的保证、担保或是书面陈述。同时公司对其产品应用到产品或是电路中的可靠性也不做仸何承诺。

湿度传感器课程设计(参照材料)

第一章湿度传感器的功能及其原理 湿度是表示空气中水蒸气含量的物理量,它与人们的生产、生活密切相关。湿度的检测广泛应用于工业、农业、国防、科技、生活等各个领域。例如,集成电路的生产车间相对湿度低于30%时,容易产生静电感应而影响生产;粉尘大的车间由于湿度小产生静电易发生爆炸;纺织厂的湿度低于65~70%RH时会断线。可见,湿度测量在各个行业都是至关重要的。 在现代社会信息科技的不断迅速发展中,计算机技术、网络技术和传感器技术的高速更新,使得湿度的测量正朝着自动化、智能化、网络化发展。随着2011年物联网作为新兴产业列入国家发展战略,传感器技术作为物联网的最前端—感知层,在其发展中占了举足轻重的地位。而湿度作为日常生产、生活中最重要的参数之一,它的检测在各种环境,各个领域都对起了重要作用。 测量电路由湿度传感器,差动放大器,同相加法放大器等主电路组成;为了实现温度补偿功能,选择铂电阻温度传感器采集环境温度,通过转换电桥和差动放大,输入同相加法器实现加法运算,补偿环境温度对湿度传感器的影响,其中转换电桥工作电压由差动放大器输出电压通过电压跟随器提供。 应用IH3605型温度传感器与集成运放设计测量湿度的电路,测量相对湿度(RH)的范围为0%~l00%,电路输出电压为0~10V。要求测量电路具有调零功能和温度补偿功能。使用环境温度为0℃~85℃。

第二章课程设计的要求及技术指标 2.1课程设计的要求 1.根据设计要求,查阅参考资料。 2.进行方案设计及可行性论证。 3.确定设计方案,画出电路原理框图。 4.设计每一部分电路,计算器件参数。 5.总结撰写课程设计报告。 2.2 课程设计的技术指标 1.湿度测量范围:0%~100%RH; 2.使用环境温度范围:0~85℃; 3.输出电压:0~10V; 4.非线性误差:±0.5%。

智能绝对湿度传感器绝对湿度变送器绝度湿度

智能绝对湿度传感器 使用说明书 绝对湿度传感器性能达到了国内外一流水平,是目前湿度环境测试的最理想产品之一。采用原装进口湿敏元件,配以先进的单片机电路和全量程温度补偿电路设计,保证了传感器在全量程输出具有线性好、精度高、稳定性能强、一致性好、使用寿命长、远距离传输不失真、响应速度快、抗干扰能力强等优点。温度测量精度±0.3℃、湿度测量精度±2%RH,绝对湿度精度±0.5g。 本产品可以根据用户的需要增加温湿度的上下限报警功能(开关量输出)。 应用场合: 广泛应用于图书、档案馆、超市、生产车间、工业自动化、HVAC 暖通空调、医药化工、通讯机房、环境监测、洁净厂房、智能楼宇、电信基站本品可配套计算机系统和二次仪表,使用方便,连接简单。 一、性能参数 1、供电:电流型:DC24V

电压型、网络型:DC24V(12V~24VDC) 2、测量精度:温度±0.3℃(10℃~50℃,其它段不高于±1.5℃);湿度±2%RH(10%RH~90%RH,其它段不高于±4%RH);绝对湿度精度±0.5g(10℃~50℃范围内,其它段不高于±1g) 3、量程: 网络型:温度-40℃~125℃,湿度:0%RH~100%RH 电流(电压型):温度在-40℃~125℃范围内用户自定,湿度:0%RH~100%RH。 4、输出值 网络型:全量程输出温度、湿度、和绝对湿度 电流(电压)型:在0~200g范围内用户自定 5、显示分辨率0.1 6、电路工作条件:-40℃~75℃,5%RH~95%RH(非结露) 7、探头工作条件:-40℃~125℃,0%RH~100%RH(非结露),螺纹安装或者法兰安装时,被测气体内的压力不超过2MPa; 8、液晶同步显示:温度/湿度 温度/露点/绝对湿度 9、负载:电压输出阻抗250Ω,电流输出阻抗≤500Ω 10、绝缘强度>500MΩ 11、传感器漂移:湿度≤1%RH/y,温度≤0.1℃/y 12、测量重复性:湿度≤1%RH,温度≤0.1℃ 13、安装方式:壁挂:葫芦孔挂装或螺丝固定墙面

传感器电容式湿度传感器的应用重点

题目传感器电容式湿度传感器的应用 姓名 学号 系(院)_电子电气工程学院_ 班级 目录 前言 (3) 1. 绪论 (1) 1.1电容式传感器的工作原理 (1)

1.2电容式传感器的特点 . (4) 2. 系统设计 (6) 2.1硬件电路设计 (6) 2.2 湿敏电容器的特性 (8) 2.3 电容式传感器数据处理 (8) 2.4测试结果 (8) 结论 (10) 参考文献 (11) 淄博职业学院 前言 人类的生存和社会活动与湿度密切相关,随着现代化的实现,很难找出一个与湿度无关的领域来。在电子科学技术日益发达的今天, 人类对自身的生活环境及工作环境要求越来越高。湿度的监测与控制在国民经济各个部门,如国防、科研、煤炭开采和井下监测以及人生活等诸多领域有着非常广泛的应用。众所周知, 湿度的测量较复杂,而对湿度进行控制更不易。人们熟知的毛发湿度计、干湿球湿度计等已不能满足现代工作条件和环境的要求。为此,人们研制了各种湿度传感器,其中电阻和电容型湿度传感器以其测量范围宽, 响应速度快, 测量精度高, 稳定性好, 体积小, 重量轻,制造工艺简单等显示出极大的优越性, 在实际中得到了广泛应用。由于应用领域不同,对湿度传感器的技术要求也不同。从制造角度看,同是湿度传感器,材料、结构不同,工艺不同。其性能和技术指标有很大差异,因而价格也相差甚远。湿度是一个重要的物理量,航天航空,计量等许多环境中需要在高温下进行湿度的测量,很多行业中,如发电、纺织食品、医药、仓储、农业等,对温度、湿度参量的要求都非常严格,目前,在低温条件下,(通常是指100℃以下),湿度

测量已经相对成熟,有商品化产品,并广泛应用于各种行业,另外有许多以行业需要在高温环境下测量湿度,如航天航空、机车舰船、发电变电、冶金矿山、计量科研、电厂、陶瓷、工业管道、发酵环境实验箱、高炉等场合,这时,湿度测量结果往往不如低温环境下的测量结果理想,另外,在恶劣的环境下工作,例如气流速度、温度、湿度变化非常剧烈或测量污染严重的工业化气体时,将使精度大大下降。然而,随着科技的进步,人们对湿度的测量设备进行了越来越深层的研究,本文就以电容型湿度传感器进行阐述。 1. 绪论 1.1电容式传感器的工作原理 电容式传感器是将被测量的变化转换为电容量变化的一种装置,它本身就是一种可变电容器。由于这种传感器具有结构简单,体积小,动态响应好,灵敏度高,分辨率高,能实现非接触测量等特点,因而被广泛应用于位移、加速度、振动、压力、压差、液位、等分含量等检测领域。 这里主要介绍电容式传感器的原理、结构类型、测量电路及其工程应用。当被测量的变化使S 、d 或ε任意一个参数发生变化时,电容量也随之而变,从而完成了由被测量到电容量的转换。当式中的三个参数中两个固定,一个可变,使得电容式传感器有三种基本类型:变极距型电容传感器、变面积型电容传感器和变介电常数型电容传感器。电容式传感器的测量电路就是将电容式传感器看成一个电容并转换成电压或其他电量的电路。因此,常用的测量电路主要有桥式电路、调频电路、脉冲宽度制电路、运算放大器电路、二极管双T 形交流电桥和环行二极管充放电法等。调频电路实际是把电容式传感器作为振荡器谐振回路的一部分, 当输入量导致电容量发生变化时,振荡器的振荡频率就发生变化。虽然可将频率作为测量系统的输出量,用以判断被测非电量的大小,但此时系统是非线性的,不易校正,因此必须加入鉴频器,将频率的变化转换为电压振幅的变化,经过放大就可以用仪器指示或记录仪记录下来。

湿度传感器原理与应用知识

湿度传感器原理与应用知识 随着时代的发展,科研、农业、暖通、纺织、机房、航空航天、电力等工业部门,越来越需要采用湿度传感器,对产品质量的要求越业越高,对环境温、湿度的控制以及对工业材料水份值的监测与分析都已成为比较普遍的技术条件之一。湿度传感器产品及湿度测量属于90年代兴起的行业。如何使用好湿度传感器,如何判断湿度传感器的性能,这对一般用户来讲,仍是一件较为复杂的技术问题。 一、湿度传感器的分类 湿度传感器,基本形式都为利用湿敏材料对水分子的吸附能力或对水分子产生物理效应的方法测量湿度。有关湿度测量,早在16世纪就有记载。许多古老的测量方法,如干湿球温度计、毛发湿度计和露点计等至今仍被广泛采用。现代工业技术要求高精度、高可靠和连续地测量湿度,因而陆续出现了种类繁多的湿敏元件。 湿敏元件主要分为二大类:水分子亲和力型湿敏元件和非水分子亲和力型湿敏元件。利用水分子有较大的偶极矩,易于附着并渗透入固体表面的特性制成的湿敏元件称为水分子亲和力型湿敏元件。例如,利用水分子附着或浸入某些物质后,其电气性能(电阻值、介电常数等)发生变化的特性可制成电阻式湿敏元件、电容式湿敏元件;利用水分子附着后引起材料长度变化,可制成尺寸变化式湿敏元件,如毛发湿度计。金属氧化物是离子型结合物质,有较强的吸水性能,不仅有物理吸附,而且有化学吸附,可制成金属氧化物湿敏元件。这类元件在应用时附着或浸入被测的水蒸气分子,与材料发生化学反应生成氢氧化物,或一经浸入就有一部分残留在元件上而难以全部脱出,使重复使用时元件的特性不稳定,测量时有较大的滞后误差和较慢的反应速度。目前应用较多的均属于这类湿敏元件。另一类非亲和力型湿敏元件利用其与水分子接触产生的物理效应来测量湿度。例如,利用热力学方法测量的热敏电阻式湿度传感器,利用水蒸气能吸收某波长段的红外线的特性制成的红外线吸收式湿度传感器等。 1、电解质湿敏元件 利用潮解性盐类受潮后电阻发生变化制成的湿敏元件。最常用的是电解质氯化锂(LiCl)。从1938年顿蒙发明这种元件以来,在较长的使用实践

基于单片机的湿度传感器设计

基于单片机的湿度传感器设计 一系统方案 1.1系统功能 本文设计的湿度传感器应具备以下功能: (1)能够感受环境中的湿度变化。 (2)能够将环境中的湿度变化转化为电信号。 (3)系统能够对采集到的湿度信号进行分析处理。 (4)能够将环境中的湿度以相对湿度的形式显示出来便于观察记录。 (5)系统反应快、灵敏度高、稳定性好,具有一定的抗干扰能力。 (6)电路简单,操作方便、性价比高、实用性强。 根据系统功能要求,湿度传感器系统图包含以下模块: 信号采集模块信号处理存储模块信号显示模块 图1.1湿度传感器系统框图 1.2系统组成模块 1.2.1信号采集模块设计 本设计为智能式湿度传感器的设计,信号采集模块主要是用于测量环境中湿度变化,并将湿度变化转变成电信号的变化。因此,我们需要一个湿度传感器。和测量范围一样,测量精度同是传感器最重要的指标。每提高—个百分点.对传感器来说就是上一个台阶,甚至是上一个档次。因为要达到不同的精度,其制造成本相差很大,售价也相差甚远。 生产厂商往往是分段给出其湿度传感器的精度的。如中、低温段(0一80%RH)为±2%RH,而高湿段(80—100%RH)为±4%RH。而且此精度是在某一指定温度下(如25℃)的值。如在不同温度下使用湿度传感器.其示值还要考虑温度漂移的影响。众所周知,相对湿度是温度的函数,温度严重地影响着指定空间内的相对湿度。温度每变化0.1℃。将产生0.5%RH的湿度变化(误差)。使用场合如果难以做到恒温,则提出过高的测湿精度是不合适的。因为湿度随着温度的变化也漂忽不定的话,奢谈测湿精度将失去实际意义。所以控湿首先要控好温,这就是大量应用的往往是温湿度—体化传感器而不单纯是湿度传感器的缘故。多数情况下,如果没有精确的控温手段,或者被测空间是非密封的,±5%RH的精度就足够了。因此在本次设计中选用DHT11温湿传感器作为本次设计湿度采集模块。 DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器。它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有极高的

TDLAS湿度传感器与维萨拉湿度传感器性能对比研究

TDLAS湿度传感器与维萨拉湿度传感器性能对比研究 摘要:水汽含量对于诸如文物保护、气象、工业生产等领域都有明确标准并需要严格控制,因此能够精确和快速的实现环境湿度监测已成为一大研究热点。现在常用的湿度传感器为芬兰V AISALA生产的湿度传感器系列,但是其测湿部分采用聚合物高分子薄膜电容传感器,存在响应时间长,褪湿慢等缺点,已经不能满足用户需求。基于TDLAS 技术的湿度传感器使用半导体激光器作为光源,参考气室提供光谱调节反馈,构成了一种高精度水汽含量检测系统,响应速度快,灵敏度高,可以克服传统湿度传感器的不足。该文以米歇尔露点仪为标准,对比测试了TDLAS湿度传感器与传统的V AISALA电容传感器响应时间、测量精度等性能。证明了TDLAS湿度传感器具有更好的测量准确度与灵敏度。 关键词:湿度传感器TDLAS V AISALA 实验对比 中图分类号:O436 文献标识码:A 文章编号:1674-098X (2015)03(a)-0030-03 Comparative Study Between TDLAS Humidity Sensor and V AISALA Humidity Sensor Jia Qu Li Yanlin Chang Yang Ju Yu

(1.China Academy of Aerospace Aerodynamics,Beijing Aerospace Yilian Science&Technology Development co.Ltd,Beijing100074,China;2.Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China; 3.Beijing Key Lab.of Bioelectromagnetics,Beijing 100190,China) Abstract:Water vapor content must be measured accurately and controlled strictly in areas such as cultural relics protection,meteorology,industrial production,etc.So,it becomes a research hotspot that to monitor environment humidity rapidly and accurately.Now,the most commonly instruments used to measure humidity are the V AISALA humidity sensors,but the moisture part of V AISALA depend on the capacitance sensor,which made by macromolecule polymer film.These humidity sensors have many disadvantages in the actual measurement,such as response slow,measurement inexact etc.The TDLAS humidity sensing system uses semiconductor laser as light source,and has a reference gas cell to provide feedback.In this paper,the MICHELL dew-point instrument is used as standard of humidity measurement,and the contrast experiment between the TDLAS sensing system and the VAISALA sensor is present,which proves that the former has better measurement accuracy

高分子电容型湿度传感器研制

电子器件 Chinese Journal of Electron Devices 第39卷第3期2016年6月 Vol 39 No.3 June 2016 Research on High Polymer Capacitive Humidity Sensor TANG Chen ,WAN Heng *,WANG Kaikai (School of Electrical and Electronic Engineering ,Shanghai Institute of Technology ,Shanghai 201418,China ) Abstract :With the rapid development of industry ,the temperature sensing and controling are increasingly strin?gent.Temperature sensors are hard to keep up with people ’s needs.This article through the micropore surface struc?ture optimization design of the humidity sensor and the humidity sensitive material improves the humidity sensing properties.The measurement of humidity sensor circuit optimization is improved ,and finally verified by experi?ments measuring the effect of humidity sensor improved superior.Key words :high polymer ;humidity sensitive capacitor ;moisture measurement ;humidity sensor EEACC :7230;7320R doi :10.3969/j.issn.1005-9490.2016.03.014 高分子电容型湿度传感器研制 汤 辰,万 衡*,王凯凯 (上海应用技术学院电气与电子工程学院,上海201418) 摘 要:随着工业的快速发展,对温度检测和控制日益严格,温度传感器已无法跟上人们的需求,通过优化湿度传感器的表 面结构和对感湿材料微孔设计提高了感湿特性,增强感湿材料的感湿特性,并对湿度传感器测量电路进行改进,提高微小电容测量,设计湿度测试系统。通过实验验证了改进后的湿度传感器测量效果更优越。 关键词:高分子;湿敏电容;湿度测量;湿度传感器中图分类号:TP253 文献标识码:A 文章编号:1005-9490(2016)03-0571-05 随着我国的经济快速发展,许多行业诸如电力、电子石化、冶金、医疗、航空航天等对湿度测量的精度要求越来越严格,湿度测量逐渐成为一门重要的研究领域。湿度传感器从简单化向集成化、多参数化、智能化方向迅速发展[1]。高分子湿敏电容作为第三代的湿度传感器迅速发展起来,但目前电容型湿度传感器在实际应用中常存在线性差、湿滞大、精度低、成品率低、性能不稳定等缺点,特别在低湿范围(0.2%RH~10%RH )内电容量几乎上没有变化,易出现失灵现象。鉴于此,本文重点从湿敏电容结构设计和对湿度测量电路改进两个方面提高湿度传感器测量特性。 1 湿敏电容结构设计 1.1 微孔设计 根据Fick 扩散第二法则和Darcy 流动法则,水 分子在微孔中的扩散过程可用式(1)表示: M t /M sat =1-8π2∑m =0∞ 1(2m +1) 2exp é?ù?-π2D (2m +1)2t l (1) 式中:M t 为t 时的吸收量;M sat 为完全浸润时的吸收量;l 为厚度;m 为微孔的数量;D 为扩散系数,其 中D 与微孔的直径和体积的分布相关。 从上述公式可以看出水分子在感湿材料扩散,和感湿材料微孔的数量和大小有直接关系。同时再根据聚酰亚胺的感湿机理,发现当环境湿度改变以后,有效介电常数的变化由式(2)给出: Δεr ≈KPR H εH 2 o (2) 式中:K 为比例系数,R H 为相对湿度,P 为感湿膜的 气孔率。又因电容的变化与εr 有关,也就与相对湿度有关,可以给出当相对湿度改变时,电容发生的相对变化为: ΔC p =ε0Δεr A d =KPR H εH 2 O ε0A d (3) 感湿材料的微孔设计对湿度测量结果有直接 ————————————收稿日期:2015-07-15 修改日期:2015-08-14

电容式湿度传感器的研究

电容式湿度传感器的研究 摘要 湿度是表示大气干湿程度的物理量。空气的湿度与我们的生活、工作、生产都有着直接的联系,为了获得和测量湿度值,就必须对湿度的测量进行研究。 本文介绍了一种采用电容原理制作的电容式的湿度传感器。采用W型结构的电容式湿度传感器。比较了多种感湿介质的特性,最终选择了聚酰亚胺作为感湿介质填充到W型的传感器中。最后,用恒湿盐发生器作为检定标准,校准该电容式湿度传感器。 关键词:湿度、电容式湿度传感器、W型 1 绪论 1.1 课题研究的目的及意义 湿度是表示大气干湿程度的物理量。有绝对湿度、相对湿度、露点等多种表示方式。绝对湿度是单位体积空气中所含水蒸汽的质量。一般用1立方米空气中所含水蒸汽的克数来表示。对于干燥过程的控制热平衡的调整等,都必须了解绝对湿度。相对湿度为空气中实际所含水蒸汽的密度与同温度下饱和水蒸汽密度的百分比,它是一个无量纲的数。在贮存或加工与周围空气处于湿度平衡的材料时,相对湿度有着很大的意义。空气在一定温度时只能吸收一定量的水汽,空气中的水蒸气达到饱和状态时的温度,叫做露点温度。 研究表明:湿润的空气才能保持生机盎然。为防止家具、木质装修、书籍或乐器老化、变形甚至干裂的情况出现,储存以上物品时室内湿度应保持在45%~55%RH之间,而冬季北方家庭室内湿度仅为10%~15%RH,干燥使我们可能带上2000~7000伏的高压静电,由于家用和办公电器的普及,静电更是无处不在。严重的静电会使人心情烦躁、头晕胸闷、喉鼻不适。只有检测出空气湿度后,才能运用相应的方法调节空气湿度,有效消除静电,创造森林、海般的清新空气。可见空气湿度的检测对于我们的身心健康和工作学习的重要性。 温度、湿度监测在人们现实生活生产中应用已日渐广泛,在发电厂、纺织、食品、医药、建筑、仓库、农业大棚等众多的应用场所,对温度、湿度参量的要求都非常严格,因此能否有效对这些领域的温、湿度数据进行实时监测和控制是一个必须解决的重要前提。 本课题即以上述问题为出发点,设计实现了对空气湿度的实时监测系统,该系统能检测出当前空气的湿度。

温湿度传感器的毕业设计说明

1. 引言 1.1 温室控制系统设计背景 中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。例如:空气的温度、湿度、二氧化碳含量、土壤的含水量等。在农业种植问题中,温室环境与生物的生长、发育、能量交换密切相关,进行环境测控是实现温室生产管理自动化、科学化的基本保证,通过对监测数据的分析,结合作物生长发育规律,控制环境条件,使作物达到优质、高产、高效的栽培目的。以蔬菜大棚为代表的现代农业设施在现代化农业生产中发挥着巨大的作用。大棚的温度和湿度参数,直接关系到蔬菜和水果的生长。国外的温室设施己经发展到比较完备的程度,并形成了一定的标准,但是价格非常昂贵,缺乏与我国气候特点相适应的测控软件。而当今大多数对大棚温度、湿度的检测与控制都采用人工管理,这样不可避免的有测控精度低、劳动强度大及由于测控不及时等弊端,容易造成不可弥补的损失,结果不但大大增加了成本,浪费了人力资源,而且很难达到预期的效果。因此,为了实现高效农业生产的科学化并提高农业研究的准确性,推动我国农业的发展,必须大力发展农业设施与相应的农业工程,科学合理地调节大棚温度、湿度,使大棚形成有利于蔬菜,水果生长的环境,是大棚蔬菜和水果早熟、优质、高效益的重要环节[1]。 影响作物生长发育的环境条件主要包括:温度、湿度、光照、CO2浓度、土壤等。所有这些环境条件之间是相互作用、相互联系、相互耦合的,某个控制变量发生改变,会影响其它控制变量的变化。作物的生长发育是所有这些环境条件综合作用的结果。温度和湿度一直是人类关注的对象,这两种环境因素时刻影响着人们的生产和生活,下面主要就温度和湿度对作物的影响进行简略说明。

CHR-01阻抗型高分子湿度传感器湿敏电阻产品规格书

CHR-01阻抗型高分子湿度传感器 (湿敏电阻)产品规格书 一.应用范围: 本资料适用于阻抗型高分子湿度传感器,型号CHR-01 二.外型尺寸及内部结构示意图: 1—外壳(ABS) 2—基片(AL2O3) 3—电极4—感湿材料5—引脚 三.电性能参数表1 工作电压1V AC(50Hz ~ 2 K Hz) 检测范围20%~ 90% RH 检测精度±5% 工作温度范围最高使用温度0℃~+85℃120℃ * 特征阻抗范围30 (21 ~ 40.5) KΩ ( 60%RH, 25℃) 响应时间≤12 s (20%~ 90%) 湿度飘移(/年)≤±2% RH 湿滞≤ 1.5%RH * 元件使用在(85 - 120℃)时,需在高温下标定,器件外壳需另制 ** 25℃标准曲线见图2 *** 0-60℃阻抗特性数据见表2及图3

表2:0~60℃湿度阻抗特性数据 单位: KΩ * 所有数据均由LCR数字电桥在1VAC/1KHZ测试所得。 四、应用电路建议 1、如使用模拟电路,建议将湿度信号变为电压信号输出,请向厂家索取。 2、可采用555时基或RC振荡电路,将湿度传感器等效为阻抗值,测量振荡频率输出,振荡频率在1K Hz左右,(在60%RH,25℃)(建议串联电容采用温度系数低,精度在±5% J级有机聚合物电容,例如涤纶或聚丙烯类电容) 3、对于采用单片机电路采集信号,可参考厂家提供的《湿度传感器单片机应用指南》 五.引用标准 GB/T15768-95 电容式湿敏元件及湿度传感器总规范 SJ/T10431-93 湿敏元件用湿度发生器和湿度测试方法 SJ20760-99 高分子湿度传感器总规范 六.注意事项 1.不要对元件使用直流电源,检测时请使用电桥阻抗(LCR)测试设备 2.避免硬物或手指直接接触元件表面,以免划伤或污染敏感膜 3.焊接时温度不能过高(<180℃,2S 膜表面),使用低温烙铁或用镊子保护 4.尽量避免在以下环境中直接使用:盐雾,腐蚀性气体:强酸(硫酸,盐酸), 强碱,有机溶剂(酒精,丙酮等)

维萨拉几种经典的露点传感器

维萨拉几种经典的露点传感器 无锡徽科特讯:罗卓尼克露点传感器的内部电路会扫除由温度改动、尘土和老化致使的漂移,然后供应牢靠的测量。从头校准的周期也因此能到两年。下面介绍几种多见的露点传感器。 ?半导体露点传感器:每个水分子都具有其天然振荡频率,当它进入半导体晶格的空位时,就和遭到充电鼓舞的晶格发生共振,其共振频率与水的摩尔数成正比。水分子的共振能使半导体结放出自由电子,然后使晶格的导电率大,阻抗减小。运用这一特性计划的半导体露点仪可测到-100℃露点的微量水份。?晶体轰动式露点传感器:运用晶体沾湿后振荡频率改动的特性,可以计划晶体振荡式露点仪。这是一项较新的技能,如今尚处于不老练的期间。国外有有关商品,但精度较差且本钱很高。 ?电解法露点仪:运用五氧化二磷等材料吸湿后分解成性分子,然后在电极上堆集电荷的特性,计划出建立在必定含湿量单位制上的电解法微水份仪。如今高精度抵达±1.0℃(露点温度),通常精度可抵达±3℃以内。 ?电传感器式露点仪:选用亲水性材料或憎水性材料作为介质,构成电容或电阻,在含水份的气体流经后,介电常数或电导率发生相应改动,测出当时的电容值或电阻值,就能知道当时的气体水份含量。建立在露点单位制上计划的该类传感器,构成了电传感器式露点分析仪。如今精度抵达±1.0℃(露点温度),通常精度可抵达±3℃以内。 ?罗卓尼克的产品线丰富,涵盖了温湿度在线监测、温湿度验证系统、温湿度传感器、温湿度手持表、温湿度记录器、温湿度发生器、温湿度记录仪、水活度仪、二氧化碳变送器、二氧化碳手持表、暖通空调自控系统、气象传感器、温湿度探头及OEM产品。测量设备应用于多个领域:如制药、食品、烟草、

CHR-02型高分子湿度传感器.

CHR02型 高分子湿度传感器规格书 HUMIDITY SENSOR SPECIFICATIONS 一.原理 阻抗型高分子湿度传感器(湿敏电阻, 采用功能高分子膜涂敷在带有导电电极陶瓷衬底上,形成阻抗随相对湿度变化成对数变化的敏感部件,导电机理为水分子的存在影响高分子膜内部导电离子的迁移率。 二、应用 适合电子温湿度计,加湿机,除湿机,空调以及其他需湿度测量的场所 三、特性 具有良好的敏感特性及防水性能,并具备优异的长期稳定性。可直接替代国内外各类其他同类产品。 四、型号命名 C HR 02 — XXX X X 公司代号湿敏电阻编号阻值尺寸外壳 233 (23 K Ω L 大 Y 带圆型外壳 313 (31K Ω S 小 F 带方型外壳 653 (65K Ω N 无外壳备注: 1、标称阻值指在温度为25℃,相对湿度为60%RH 下所测量阻抗值 2、尺寸 L:指引脚间距为5.08mm , S :引脚间距为2.54mm

3、外壳通常情况下L 型选大尺寸圆型外壳,S 型选方形小外壳具体尺寸见图 一、图二 4、本规格书所有参数均由LCR 数字电桥在(1K Hz ,1V 下所测阻抗 5、基本参数 温度为25℃,相对湿度为60%RH 型号 20% 30% 40% 50% 60% 70% 80% 90% 产品名称高分子湿敏电阻广州西博臣科技有限公司发行 日期 2005年2月 31日型号 CHR02 系列 批准: 版本1 2005年1月10日 审核: 版本2 编制: 版本3 CHR02-223 2200 660 180 64 23 9.8 4.3 2.2 CHR02-313 2300 680 230 78 31 14 6.7 3.6 CHR02-653 5000 1800 530 180 65 26 12 5.8 单位:K 五、电性能参数表1 工作电压1V AC(50Hz ~ 2 K Hz 检测范围20%~ 90% RH 检测精度±5% 工作温度范围最高使用温度0℃~+85℃120℃ *

湿度传感器HS1101

湿度传感器HS1101 1引言 湿度传感器是根据某种物质从其周围空气中吸收水分后引起的物理或化学性质的变化,从而获得该物质的吸水量和周围空气的湿度。 湿度传感器分为电阻式和电容式两种,产品的基本形式都是在基片涂覆感湿材料形成感湿膜。空气中的水蒸汽吸附于感湿材料后,元件的阻抗、介质常数发生很大的变化,从而制成湿敏元件。湿敏电容一般是用高分子薄膜电容制成的,由于它具有灵敏度高、产品互换性好、响应速度快、湿度的滞后量小、便于制造、容易实现小型化和集成化,其精度一般比湿敏电阻要低一些。但电阻对温度的敏感因而限制了器件在较大温度范围内的应用,因而电容湿度传感器越来越受到重视。 2 湿敏元件及变送器芯片特性 目前,生产湿敏电容的主要厂家是法国Humirel 公司。它生产的HS1101 测 量范围是0%,100%RH,电容量由162PF 变到200PF,其误差不大于?2%RH;响应时间小于5S;湿度系数为0.34PF/?;年漂移量0.5%RH/年,长期稳定。图1 为HS1101 湿敏电容的湿度-电容响应曲线。 湿度变送器采用了美国 BB 公司生产的XTR105芯片,该变送器具有以下特点: a 工作范围宽; b 测量精度高; c 电路简单; d 可靠性好,使用寿命长; e 抗干扰能力强; f 工作温度范围宽(-40,+85?)

3 湿度测量电路 HS1101在电路中相当于一个电容器件,它的电容量随着所测空气湿度的增加而增大,为了能将电容的变化转换成电压的变化,我们设计了振荡电路、消除零点电容影响电路、整流电路、积分电路、电压—电流转换电路、放大电路等,其工作原理简图如图2 所示。 3.1 振荡电路 振荡电路的作用是将电容的变化量转化为频率可变的方波。由图3 可知,这是一个非对称多谐振荡器。或非门G1 工作在电压传输特性的转折区,把它的输出电压直接连接到或非门G2 的输入端。G2即可得到一个介于高低电平之间的静态偏置电压,从而使G2 的静 态工作点也处于电压传输特性转折区上。反馈环路中电容使电路在两个暂稳态之间往复振荡。

传感器湿度报警电路设计

时间:2019 年 6 月 18日至2019 年 6 月 19 日 课程编号: S08011 课程名称:测试技术课程设计 学生:周智雄 学号: 20166297 专业:电气工程及其自动化 班级:方1610-1 指导教师:华

目录 第1章设计目的 (1) 第2章设计要求 (1) 第3章硬件电路设计 (1) 3.1 电路设计结构框图 (1) 3.2 传感器选择 (2) 3.3 信号处理电路 (3) 3.4 总电路图 (5) 第4章仿真与调试·····································错误!未定义书签。第5章误差分析·······································错误!未定义书签。第6章结论···········································错误!未定义书签。参考文献···············································错误!未定义书签。

第1章设计目的 这次课程设计,涉及的对象是湿度检测控制电路,既能检测尿布湿度又能对湿度起到一定控制作用,实现其自动湿度调控功能。当婴儿尿布尿湿后,若不及时更换,婴儿易感染尿布湿疹等疾病,对婴儿健康不利。所以将婴儿尿湿报警器放在婴儿尿布下面,当婴儿撒尿后,延时10s就能从喇叭传出音乐声,提醒妈妈快给婴儿换尿布。利用湿度传感器设计一个尿湿报警器。 第2章设计要求 (1)有湿度传感器与三极管组成开关电路。 (2)设计延时功能,当婴儿撒尿10s后才开始报警,避免惊吓婴儿。 (3)完成3000字设计报告。 (4) NE555定时器和阻容原件实现延时。 (5)采用直流电源12V。 第3章硬件电路设计 3.1电路设计结构框图 本次设计既能检测尿布湿度又能对湿度起到一定控制作用。湿敏传感器是能感受外界湿度的变化,并通过器件材料的物理或化学性质变化,将环境湿度变换为电信号的装置。利用湿敏传感器来实现对婴儿是否尿湿尿布的检测,实现对婴儿身体健康的保护。此电路包括传感器检测电路,延时电路和报警电路。如图3-1所示。 图3-1 电路设计结构框

温湿度检测系统的设计与实现

无线传感网络技术 课程实训 温湿度检测系统的设计与实现院(系)名称电子与信息工程学院 专业班级 学号 学生姓名 指导教师 起止时间:2017.6.26—2017.7.14

课程设计(论文)任务及评语 院(系):电子与信息工程学院教研室:软件工程

目录 第1章绪论 0 1.1系统的开发背景 0 1.2开发工具 0 第2章需求分析 (1) 2.1调研情况 (1) 2.2 模块划分 (1) 2.3 系统原理图 (1) 2.4 系统性能需求 (1) 第3章系统概要设计 (2) 3.1系统总体结构设计 (2) 3.2模块的创建 (2) 第4章硬件设计 (3) 4.1 DHT11温度湿度传感器电路设计 (3) 4.2 晶振电路和复位电路设计 (3) 4.3 LED数码显示模块设计 (3) 4.4 报警模块设计 (4) 4.5 主程序设计 (4) 4.6 LED显示子程序设计 (4) 第5章系统的测试 (6) 5.1 系统安装接线图 (6) 5.2 调试与结果 (6) 第6章总结 (6) 参考文献 (7) 附录程序 (8)

第1章绪论 1.1系统的开发背景 随着科学技术的快速发展,人类社会已取得了巨大进步!在居家生活、工农业生产、环保、气象、国防、科研、航天等部门,经常需要对环境中的湿度和温度进行测量及控制。传统的方法是用温度表、毛发湿度表、双金属式测量计和湿度试纸等测试器材,通过人工进行检测,对不符合温度和湿度要求的场所进行换气、降温和去湿等工作。这种人工测试方法费时费力、效率低,且测试的温度及湿度误差大,随机性相对较大。随着生产的发展急需一个含有微型计算机或微处理器的测量仪器,由于它拥有对数据存储,运算逻辑判断及自动化的功能,有着智能作用等优点,一个低成本和具有较高精度的温度湿度检测器将在许多领域代替人工操作,自动不间断检测环境温度和湿度。目前市场上普遍存在的温湿度检测仪器大都是单点测量,而且温湿度信息传递不及时,精度达不到要求,不利于控制者根据温度、湿度变化及时做出决定。为此,本设计开发了一种能够同时测量多点,并实时性高、精度高,通过显示器显示温湿度信息,并能进行温湿度超限报警的测控产品。 本文设计的是基于单片机的室内温湿度检测与报警系统,运用温湿度传感器进行温度和湿度的检测,该仪器具有测量精度较高、硬件电路简单、并能很好的进行显示,可测试一定范围室内环境温湿度的特点。省去了人工检测的繁琐、耗时的过程,随时通过检测器的显示器进行读数,既方便,又快捷。 1.2开发工具 STC89C52是一种低功耗、高性能CMOS八位微控制器,具有8K在系统可编程Flash 存储器,使用ATMEL公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。 LED数码管是现在电子设计中使用相当普遍的一种显示设备,每个数码管由7个发光二极管按照一定的排列结构组成,根据七个发光二极管的正负极连接不同,又分为共阴极数码管和共阳极数码管两种,选择的数码管不同,程序设计上也有一定的差别。 编程采用Keil C 软件,使用C语音。

维萨拉-遥感道路气象站(路面状况检测器)方案

维萨拉遥感气象站方案 一、系统简介 芬兰维萨拉公司所提供的自动气象站适用于高速公路及机场跑道,能够向监控部门提供各种必须的气象信息:路面结冰状况、路面温度,大气温度、相对湿度等。 气象检测器布设于道路沿线,用于自动检测道路状态和相关气象信息,包括路面温度,路面状态和雨、雪、冰等造成道路湿滑因素的检测。经采集器处理并传到需要的监控中心,以便监控中心根据气象状况及时做出控制方案。 气象检测器包括各种传感器和对各个传感器检测的实时信息进行收集、处理的微处理器,气象检测器可以实时检测报告路面温度,路面状态等。并能够通过这些配置传感器提供的实时数据进行信息加工处理,得出重要的决策支持信息,如道路危险状态,路面雨霜冰的预警和报警,水冰层的厚度。辅助高速路监控管理维护人员采取相应措施,保证道路安全运营 二、 ROSA气象站组成(见方案图) 2.1 检测探头技术指标 1.遥感路面/桥面状态检测(DSC111) 遥感道面状态测量,易于安装、维护成本低,无需在道路上切割开槽或者封闭道路进行作业。即使交通繁忙测量结果仍然稳定。光谱测量原理能够准确测量路面水、冰、雪的厚度。能够准确地报告道路状态以及路面结冰,能够通过湿滑系数准确报告道路湿滑程度,因此维护人员能够监测到道路湿滑原因和变化,以迅速采取对策。 ——非侵入式遥感道面温度和状态测量 ——路面温度和空气温湿度 ——路面检测: 水层厚度:0.00 – 2mm 冰厚:0.00 – 2mm

雪厚:0.00 – 10mm 分辨率:0.01mm ——道路湿滑系数:0.01 - 1.00 分辨率:0.01单位 ——路面状态:干、潮、湿、霜、雪、冰、浆状混合物 ——测量距离:2-15m ——测量面积:距离10米处,直径20厘米 ——地平线安装角度:30-85? 2.遥感路面/桥面温度检测(DST111) 维萨拉遥感道面温度传感器DST111 使用户可以选择以遥测的方式测量道路表面温度。通过测量路面发射的红外辐射,应用智能化信号处理, DST111提供可靠的遥感路面温度测量。可以安装此传感器在路侧,使之与所选择的局部道路表面之间有“视线瞄准线”。也可以安装于道路上方,如桥梁或信号灯的构架上。 DST111基于长波红外辐射原理。选定波长范围的净热流量被测量和标定,以给出设备与道路表面间的温度差。所有的遥感温度测量设备都需要考虑目标发射率的变化。DST111通过正确选择波长范围,发射率变化的影响被最小化至零点几摄氏度。所以,在应用时,无需去调整不同道路表面状态的发射率。 ——路面温度:-40 –+60 °C 分辨率:0.1 °C ——大气温度:-40 –+60 °C 分辨率:0.1 °C ——相对湿度:0 – 98 %RH 0 – 90 %RH:±3 %RH 90– 98 %RH:±5 %RH 稳定性:±2 %RH 2年 ——露点-40 –+60 °C 2.2 检测器安装 气象检测器安装在路侧立柱上,其安装位置应远离大树、建筑物。另外设备安装位置还应保证交通安全,避免损坏。

基于HS1101 的湿度传感器及其变送器的设计

基于HS1101 的湿度传感器及其变送器的设计1引言 湿度传感器是根据某种物质从其周围空气中吸收水分后引起的物理或化学性质的变化,从而获得该物质的吸水量和周围空气的湿度。 湿度传感器分为电阻式和电容式两种,产品的基本形式都是在基片涂覆感湿材料形成感湿膜。空气中的水蒸汽吸附于感湿材料后,元件的阻抗、介质常数发生很大的变化,从而制成湿敏元件。湿敏电容一般是用高分子薄膜电容制成的,由于它具有灵敏度高、产品互换性好、响应速度快、湿度的滞后量小、便于制造、容易实现小型化和集成化,其精度一般比湿敏电阻要低一些。但电阻对温度的敏感因而限制了器件在较大温度范围内的应用,因而电容湿度传感器越来越受到重视。 2 湿敏元件及变送器芯片特性 目前,生产湿敏电容的主要厂家是法国Humirel 公司。它生产的HS1101 测 量范围是0%,100%RH,电容量由162PF 变到200PF,其误差不大于?2%RH;响应时间小于5S;湿度系数为0.34PF/?;年漂移量0.5%RH/年,长期稳定。图1 为HS1101 湿敏电容的湿度-电容响应曲线。 湿度变送器采用了美国 BB 公司生产的XTR105芯片,该变送器具有以下特点: a 工作范围宽; b 测量精度高; c 电路简单; d 可靠性好,使用寿命长; e 抗干扰能力强; f 工作温度范围宽(-40,+85?)

3 湿度测量电路 HS1101在电路中相当于一个电容器件,它的电容量随着所测空气湿度的增加而增大,为了能将电容的变化转换成电压的变化,我们设计了振荡电路、消除零点电容影响电路、整流电路、积分电路、电压—电流转换电路、放大电路等,其工作原理简图如图2 所示。 3.1 振荡电路 振荡电路的作用是将电容的变化量转化为频率可变的方波。由图3 可知,这是一个非对称多谐振荡器。或非门G1 工作在电压传输特性的转折区,把它的输出电压直接连接到或非门G2 的输入端。G2即可得到一个介于高低电平之间的静态偏置电压,从而使G2 的静态工作点也处于电压传输特性转折区上。反馈环路中电容使电路在两个暂稳态之间往复振荡。 由于电容充放电的时间T为2.2RC,所以输出的方波频率:

相关文档
最新文档