蔬菜大棚智能自动控制系统的信息管理系统的系统设计

合集下载

基于PLC的大棚温室控制系统的设计

基于PLC的大棚温室控制系统的设计

基于P L C的大棚温室控制系统的设计精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-基于PLC的温室控制系统的设计摘要随着人们生活水平的提高,由温室大棚种植的反季节蔬菜成为人们越来越离不开的食物,所以温室大棚技术越来越重要,而温度控制是最为重要的一环。

考虑到PLC具有灵活性、操作简单等优点,所以设计出了基于PLC的温度控制系统。

该论文介绍了温室控制系统的构成,包括信息采集部分、智能控制部分以及最后的执行部分。

由于温度的变化因素很多,包括光照、湿度、通风等因素,所以本次设计的系统中包括了升降温系统、补光系统、遮阳系统、加湿系统、CO2系统、通风系统,来综合调整温度的变化保证温度的准确度。

根据设计需要和经济综合因素的考虑选用了西门子S7-200型PLC的控制,这样既能够满足输入与输出控制,又有比较高的性价比。

在设计中给出了控制系统的软硬件设计,并用STEP7软件进行对梯形图的输入、调试与仿真,能够完全符合设计需求。

关键词传感器 PLC 模糊控制器 MCGS组态软件电机Greenhouse Control System Based on PLCABSTRACTWith the improvement of people's living standard anti season vegetables become people are increasingly inseparable from the food, so the greenhouse technology is more and more important, and the temperature control has become the most important part, so the PLC control system of greenhouse based on. Temperature sensor and PLC are the core of the greenhouse control system, they have a direct impact on the working status of the system. Its working process is the when the temperature sensor to collect the signal is transmitted to the fuzzy controller, the fuzzy controller by the signal conversion andcomparative analysis, then the signal transformation output signal to the MCGS configuration software is used to judge the and the signal is transmitted to the PLC, PLC receives the signal and control motor working temperature control. MCGS configuration software where the computer is also a platform for human-computer interaction.Key words Temperature Sensor PLC Fuzzy ControllerMCGS Configuration Software Electric Machinery目录第1章绪论课题背景时代在进步社会在发展人民的生活水平也在不断地提高,而反季节蔬菜已经成为人们餐桌上必不可少的食物,所以以大棚温室为主的农业种植面积不断增大,温室大棚主要就是为植物的生长创造合适的温度环境,但是如何创造合适的温度环境成为摆在人们面前一大难题。

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述随着城市化进程的加快和人们对健康饮食的追求,蔬菜大棚种植逐渐成为一种重要的农业生产模式。

传统的蔬菜大棚种植存在着诸多问题,如耗能高、生产效率低、管理不便等。

为了提高蔬菜大棚的种植效率,降低成本,保证产品的质量和安全,基于PLC的智能蔬菜大棚控制系统应运而生。

本文将针对智能蔬菜大棚控制系统的设计进行简要介绍。

一、智能蔬菜大棚控制系统设计的基本要求1. 实时监测环境参数:包括温度、湿度、光照强度等,以保证蔬菜的生长环境处于最佳状态。

2. 自动控制设备:根据实时监测的环境参数,自动控制通风、灌溉、加热、遮阳等设备,以确保蔬菜大棚的生长条件。

3. 数据采集与存储:实时采集并存储蔬菜生长过程中的相关数据,供后续分析和管理。

4. 远程监控与控制:通过远程网络,管理员工可以远程监控和控制蔬菜大棚的工作状态。

三、智能蔬菜大棚控制系统设计的实现1. PLC控制器的选择PLC控制器是智能蔬菜大棚控制系统的核心部件,可根据具体需求选择适合的PLC型号。

2. 传感器网络的布局与连接根据蔬菜大棚的实际情况,布局传感器网络,实现对环境参数的实时监测。

3. 控制设备的连接与调试将通风、灌溉、加热、遮阳等设备连接至PLC控制器,进行参数设定和调试。

4. 数据采集与存储系统的建立建立数据库系统,实现对蔬菜大棚生产数据的实时采集和存储。

5. 远程监控与控制系统的搭建通过网络搭建远程监控与控制系统,实现对蔬菜大棚的远程监控和控制。

四、智能蔬菜大棚控制系统的优势1. 提高生产效率:智能控制系统可以根据环境参数自动调整控制设备,保证蔬菜大棚的生长环境处于最佳状态,从而提高生产效率。

2. 降低成本:智能控制系统可以有效节约能源和水资源,降低生产成本。

3. 提高产品质量和安全:通过实时监测和远程控制,可以及时发现和处理问题,确保蔬菜的质量和安全。

4. 减轻管理负担:智能控制系统可以降低管理人力成本,提高生产管理效率,减轻管理负担。

设施农业(温室大棚)环境智能监控系统解决方案

设施农业(温室大棚)环境智能监控系统解决方案

设施农业(温室大棚)环境智能监控系统解决方案1、系统简介该系统利用物联网技术,可实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像,通过模型分析,远程或自动控制湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备,保证温室大棚内环境最适宜作物生长,为作物高产、优质、高效、生态、安全创造条件。

同时,该系统还可以通过手机、PDA、计算机等信息终端向农户推送实时监测信息、预警信息、农技知识等,实现温室大棚集约化、网络化远程管理,充分发挥物联网技术在设施农业生产中的作用。

本系统适用于各种类型的日光温室、连栋温室、智能温室。

2、系统组成该系统包括:传感终端、通信终端、无线传感网、控制终端、监控中心和应用软件平台。

620)this.style.width=620;" border=0>(1)传感终端温室大棚环境信息感知单元由无线采集终端和各种环境信息传感器组成。

环境信息传感器监测空气温湿度、土壤水分温度、光照强度、二氧化碳浓度等多点环境参数,通过无线采集终端以GPRS方式将采集数据传输至监控中心,以指导生产。

(2)通信终端及传感网络建设温室大棚无线传感通信网络主要由如下两部分组成:温室大棚内部感知节点间的自组织网络建设;温室大棚间及温室大棚与农场监控中心的通信网络建设。

前者主要实现传感器数据的采集及传感器与执行控制器间的数据交互。

温室大棚环境信息通过内部自组织网络在中继节点汇聚后,将通过温室大棚间及温室大棚与农场监控中心的通信网络实现监控中心对各温室大棚环境信息的监控。

620)this.style.width=620;" border=0>(3)控制终端温室大棚环境智能控制单元由测控模块、电磁阀、配电控制柜及安装附件组成,通过GPRS模块与管理监控中心连接。

根据温室大棚内空气温湿度、土壤温度水分、光照强度及二氧化碳浓度等参数,对环境调节设备进行控制,包括内遮阳、外遮阳、风机、湿帘水泵、顶部通风、电磁阀等设备。

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述随着科技的不断发展,智能化控制系统在农业领域的应用也越来越广泛。

特别是在蔬菜大棚种植领域,智能控制系统可以帮助农民实现精准浇灌、温度控制、光照管理等功能,大大提高了蔬菜生产的效率和质量。

本文将简要介绍基于PLC的智能蔬菜大棚控制系统设计。

一、系统概述智能蔬菜大棚控制系统是一个基于PLC(可编程逻辑控制器)的自动化系统,主要包括传感器、执行机构、控制器等组件。

系统通过实时监测环境参数(如温度、湿度、光照等),并根据农作物的生长需求,实现对大棚内环境的自动化控制,从而提高蔬菜的生长效率和质量。

二、系统设计1. 传感器智能蔬菜大棚控制系统中需要使用多种传感器,用于实时监测大棚内的温度、湿度、光照等参数。

常用的传感器包括温湿度传感器、光照传感器、CO2浓度传感器等。

这些传感器可以将采集到的环境数据反馈给PLC控制器,从而实现对大棚内环境的精准控制。

2. 执行机构智能蔬菜大棚控制系统中的执行机构包括灌溉设备、通风设备、遮阳网等。

这些执行机构可以根据PLC控制器的指令,实现自动化的浇水、通风、遮阳等操作。

比如在温度过高时,PLC控制器可以自动开启通风设备,以降低大棚内的温度;在光照不足时,可以自动展开遮阳网,保证植物的光照需求。

3. PLC控制器PLC控制器是整个智能蔬菜大棚控制系统的核心部件,负责实时监测传感器数据,制定相应的控制策略,并控制执行机构进行操作。

PLC控制器具有高稳定性、可靠性和扩展性,可以灵活应对不同的控制需求。

PLC控制器通过界面操作,可以方便地实现对系统的监控和调整。

三、系统功能智能蔬菜大棚控制系统的主要功能包括:1. 温度控制:根据实时的温度数据,自动控制通风设备的开启和关闭,保持大棚内的适宜温度;2. 湿度控制:根据实时的湿度数据,自动控制灌溉设备的启停,保持大棚内的适宜湿度;3. 光照管理:根据实时的光照数据,自动控制遮阳网的展开和收起,保证植物的光照需求;4. CO2浓度管理:根据CO2浓度数据,自动控制通风设备的开启和关闭,保持大棚内的CO2浓度在适宜范围;5. 安全监控:实时监测大棚内的环境参数,及时发现并处理异常情况,保障大棚内作物的安全生长。

课程设计—蔬菜大棚自动控制系统

课程设计—蔬菜大棚自动控制系统

检测课程设计—蔬菜大棚智能控制系统学院:电气学院专业班级:电仪09—3班姓名:朱学政指导教师:董爱华李良目录1.摘要-----------------------------------------32. 实验所需元器件-------------------------------33. 实验整体结构图-------------------------------44. 传感器简介------------------------------------------------------74.1.1 DS18B20简介----------------------------------------------------74.1.2 DS18B20的性能特点-------------------------------------------74.2.1 DHT11简介-------------------------------------------------------74.2.2 DHT11的性能特点----------------------------------------------84.3 热释电传感器模块简介及特性---------------------------------104.4 光敏电阻传感器原理及特性------------------------------------114.5 ZigBee无线模块简介---------------------------------------------125. 温室大棚控制系统软件设计------------------------125.1.1 下位机软件设计-------------------------------------------------125.1.2 编程软件简介----------------------------------------------------155.2.1 上位机软件设计-------------------------------------------------155.2.2 Microsoft Visual Studio 2008编程软件简介----------------166. 总结-------------------------------------------------------------17附录------------------------------------------------------------------18参考文献----------------------------------------37蔬菜大棚智能控制系统1. 摘要随着单片机和传感技术的迅速发展,自动检测领域发生了巨大变化,温室环境自动监测控制方面的研究有了明显的进展,并且必将以其优异的性能价格比,逐步取代传统的温湿度与光照强度的控制措施。

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述随着人口的不断增长和城市化的加速,对蔬菜的需求越来越大。

传统的农业种植方式受到地域、气候等因素的限制,无法满足人们对高品质蔬菜的需求。

在这种情况下,智能蔬菜大棚被提上了议事日程。

智能蔬菜大棚利用先进的技术对温度、湿度、光照等环境因素进行精准控制,以达到最佳的种植条件,不仅可以提高蔬菜的产量和品质,还可以降低能耗和投入,是一种可持续发展的农业种植方式。

在智能蔬菜大棚中,PLC(可编程逻辑控制器)是至关重要的设备。

PLC是一种专门用于工业自动化控制的计算机,通过输入输出模块与传感器、执行器等设备相连,对整个系统进行监控和控制。

因其可靠性高、操作简单、抗干扰能力强等优点,PLC在智能蔬菜大棚控制系统中得到了广泛应用。

智能蔬菜大棚控制系统的设计一般包括传感器模块、执行器模块、PLC控制器、软件程序等组成部分。

传感器模块负责感知大棚内的环境因素,如温度、湿度、光照等;执行器模块则负责控制大棚内的设备,如灯光、喷灌系统等。

PLC控制器是整个系统的核心,负责接收传感器模块的反馈信号,根据预设的逻辑程序控制执行器模块,以实现对大棚内环境的精准调控。

在设计智能蔬菜大棚控制系统时,首先需要充分了解大棚内的种植环境要求,包括不同蔬菜种类对温湿度、光照等因素的需求。

然后根据这些需求,选择合适的传感器和执行器,并与PLC控制器相连接。

接下来,编写PLC控制程序,通过逻辑判断和控制命令实现对大棚内环境的智能调控。

最后进行系统集成和调试,确保系统能够稳定可靠地运行。

在智能蔬菜大棚控制系统的设计中,需要考虑以下几个方面:1. 灵活性:不同蔬菜种类和生长阶段对环境的需求有所不同,因此系统需要具备一定的灵活性,能够根据实际需要进行调整。

这要求PLC控制程序能够简单易懂、易于修改。

2. 稳定性:智能蔬菜大棚是一种长期运行的系统,稳定性是其设计的重要指标。

PLC控制器需要具备高可靠性和抗干扰能力,能够应对各种突发情况。

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述智能蔬菜大棚控制系统是利用PLC(可编程逻辑控制器)作为核心,通过传感器、执行器等装置对大棚环境进行监测和控制,实现对蔬菜生长环境的精准调控。

本文将针对基于PLC的智能蔬菜大棚控制系统的设计进行简述。

1. 系统结构智能蔬菜大棚控制系统的结构主要包括传感器、执行器、PLC控制器、人机界面(HMI)以及通信网络等组成。

传感器用于感知大棚内部的环境参数,例如温度、湿度、光照等;执行器用于控制大棚内的设备,例如通风系统、灌溉系统等;PLC控制器则是系统的核心,接收传感器的信号并根据预设的控制逻辑进行对环境的调控;人机界面则是用户与系统交互的接口,通过HMI界面用户可以实时监测大棚环境、设置参数以及进行控制操作;通信网络用于实现系统与外部设备的数据交换和远程监控。

2. 控制策略智能蔬菜大棚控制系统的控制策略主要包括温度控制、湿度控制、光照控制、CO2浓度控制、灌溉控制等。

通过传感器感知大棚内的环境参数,并根据预设的控制策略,PLC控制器可以对大棚内部设备进行精准的调控。

例如在温度控制方面,PLC控制器可以根据预设的温度范围,控制通风系统和加热系统的开关,以保持大棚内的温度在适宜的范围内;在灌溉控制方面,根据土壤湿度传感器的反馈,PLC控制器可以控制灌溉系统的开关,保持土壤的适宜湿度。

3. 系统优势基于PLC的智能蔬菜大棚控制系统相较于传统的人工操作具有诸多优势。

系统能够自动化地监测和控制大棚内的环境参数,无需人工持续进行监测和调控,降低了劳动成本。

系统具有精准的控制能力,可以根据蔬菜的生长需求精确调控大棚内的环境,提高了蔬菜的产量和质量。

通过人机界面用户可以远程对大棚进行监控和控制,实现了远程智能化管理。

4. 系统实现基于PLC的智能蔬菜大棚控制系统的实现需要经过系统设计、硬件选型、程序编写、现场调试等多个工程阶段。

在系统设计阶段,需要根据大棚的实际情况和蔬菜的生长需求,确定系统的功能模块和控制策略,并选择合适的传感器、执行器、PLC控制器和人机界面等硬件设备。

基于单片机的智能温室大棚系统设计与实现

基于单片机的智能温室大棚系统设计与实现

基于单片机的智能温室大棚系统设计与实现一、引言随着人们生活水平的不断提高,对蔬菜、花卉等特殊植物栽培需求也逐渐增加。

而传统的温室大棚设施已经无法满足人们对于高产、高效、高品质和节能环保的需求。

设计一个基于单片机的智能温室大棚系统,可以实现对温室环境参数的监测、控制和自动化管理,提高植物种植的生产效率和品质,达到节能环保的目的,对于现代农业发展具有重要意义。

二、系统设计1.硬件设计(1)传感器模块:包括温湿度传感器、光照传感器、土壤湿度传感器和CO2浓度传感器等,用于监测温室内的环境参数。

(2)执行器模块:包括温度控制装置、湿度控制装置、光照调节装置和灌溉装置等,用于对温室内的环境参数进行调节和控制。

(3)显示与通信模块:包括LCD显示屏和WiFi模块,用于显示温室内环境参数和进行远程控制。

三、系统实现1.传感器模块的选择与接入根据系统设计的要求,选择合适的温湿度传感器、光照传感器、土壤湿度传感器和CO2浓度传感器,并将它们与单片机进行连接和接入。

3.数据采集与控制逻辑的实现通过单片机对传感器模块采集的环境参数进行处理和分析,实现温室内环境参数的实时监测和显示,并根据预设的参数进行自动控制。

4.远程控制与通信功能的实现通过WiFi模块实现温室系统与手机、电脑等终端设备的连接,实现远程监控和控制。

四、系统应用1.环境参数实时监测与显示用户可以通过LCD显示屏了解到温室内的温度、湿度、光照、土壤湿度和CO2浓度等环境参数的实时变化情况。

五、系统优势1.节能环保智能温室大棚系统可以根据植物的生长需求,合理利用光照、水分和二氧化碳等资源,减少能源和水资源的浪费,实现节能环保。

2.提高生产效率和品质智能温室大棚系统可以实现对温室内环境参数的精准控制,提高植物种植的生产效率和品质。

智慧农业大棚监控系统的设计与实现

智慧农业大棚监控系统的设计与实现

智慧农业大棚监控系统的设计与实现随着科技的不断发展,智慧农业大棚监控系统的设计与实现已经成为现代农业发展的必然趋势。

智慧农业大棚监控系统可以通过对大棚内环境的实时监测和数据分析,提供更加精准的种植管理方案,有效提高农作物的产量和质量,同时降低生产成本和人力资源的浪费。

智慧农业大棚监控系统的设计主要需要考虑以下几个方面:环境参数监测:为了能够及时了解大棚内的环境情况,需要对大棚内的温湿度、土壤水分、二氧化碳浓度等环境参数进行实时监测。

这些数据可以通过各种传感器采集,再通过数据传输模块传输到控制中心进行数据分析。

数据处理与分析:通过对采集的数据进行处理和分析,可以得出大棚内环境的变化趋势和规律,进而提供更加精准的种植管理方案。

例如,通过对土壤水分和温湿度数据的分析,可以得出大棚内的灌溉需求和通风需求等。

控制系统:根据数据分析结果,控制系统可以自动调节大棚内的环境参数,例如开启或关闭通风窗、灌溉设备等。

控制系统还可以通过智能算法实现自动化种植管理,提高农作物的生长效率和产量。

报警系统:为了确保大棚内的环境参数始终处于最佳状态,需要设置报警系统。

当监测到异常数据时,报警系统会立即发出警报,及时通知农民或管理人员采取相应的措施。

云平台与APP:为了方便远程监控和管理,智慧农业大棚监控系统可以搭载云平台和手机APP,让用户可以通过互联网或移动设备随时随地了解大棚内的环境情况和数据变化趋势,进而实现远程种植管理。

为了实现智慧农业大棚监控系统,需要以下关键技术的支持:传感器技术:传感器技术是实现环境参数监测的关键技术之一。

针对不同的环境参数监测需求,需要选择不同的传感器。

例如,温湿度传感器可以监测空气中的温湿度数据;土壤水分传感器可以监测土壤中的水分含量;二氧化碳浓度传感器可以监测空气中的二氧化碳浓度等。

数据传输技术:为了能够将监测到的数据实时传输到控制中心,需要使用数据传输技术。

常用的数据传输技术包括无线通信、物联网等。

温室大棚自动控制系统设计毕业论文

温室大棚自动控制系统设计毕业论文

温室⼤棚⾃动控制系统设计毕业论⽂温室⼤棚⾃动控制系统设计毕业论⽂⽬录第⼀章绪论 (1)1.1温室⼤棚⾃动控制技术发展的背景 (1)1.2温室⼤棚在国内外的发展概况 (1)1.3温室控制系统研究与开发的意义 (3)第⼆章设计⽅案 (4)2.1⽅案论述 (4)2.1.1系统设计任务 (4)2.2温室⼤棚⾃动控制系统设计⽅案 (5)2.2.1基于PLC为基础的温室⼤棚⾃动控制系统设计 (5)2.2.2基于单⽚机为基础的温室⼤棚⾃动控制系统设计 (6)第三章硬件设计 (8)3.1 PLC的简介 (9)3.1.1 PLC的概述 (9)3.1.2基本结构 (9)3.1.3⼯作原理 (10)3.1.4功能特点 (11)3.1.5选型规则 (12)3.1.6西门⼦S7-200 (15)3.2温度传感器 (16)3.2.1温度控制 (16)3.2.2 DS18B20的主要特性 (17)3.3湿度传感器 (17)3.3.1 湿度定义 (17)3.3.2湿度传感器的分类 (18)3.3.3 TRS-1 ⼟壤⽔分传感器 (19)3.4光照强度传感器 (20)3.4.1光照强度传感器的简介 (20)3.3.2 HA2003 光照传感器 (21)3.5⼆氧化碳浓度传感器 (22)3.5.1 ⼆氧化碳浓度传感器的⼯作原理 (23)3.5.2 GRG5H 型红外⼆氧化碳传感器 (24)3.6 EM 235模拟量输⼊模块 (25)3.7 温室⾃动控制系统的控制量与控制措施 (26)3.7.1 灌溉系统 (26)3.7.2 温度控制 (27)3.7.3 湿度控制 (27)3.7.4 光照强度控制 (27)3.7.5 ⼆氧化碳控制 (27)3.8硬件总体设计 (28)3.8.1 I/O分配表 (28)3.8.2硬件接线图 (28)第四章系统软件设计 (30)4.1 软件结构 (30)4.2温度控制软件设计 (30)4.2.1温度控制原理 (30)4.2.2温度控制流程图 (30)4.2.3温室温度控制梯形图 (32)4.3湿度控制软件设计 (34)4.3.1湿度控制原理 (34)4.3.2湿度控制流程图 (34)4.3.3温室湿度控制梯形图 (36)4.4光照强度控制软件设计 (38)4.4.1光照强度控制原理 (38)4.4.2光照强度控制流程图 (39)4.4.3温室光照强度软件控制流程图 (40)4.5⼆氧化碳浓度控制软件设计 (42)4.5.1⼆氧化碳浓度控制原理 (42)4.5.2⼆氧化碳浓度软件控制流程图 (43)4.5.3温室⼆氧化碳浓度控制流程图 (44)总结 (46)参考⽂献 (47)附录A 外⽂⽂献 (49)附录B中⽂翻译 (61)致谢 (71)第⼀章绪论1.1温室⼤棚⾃动控制技术发展的背景随着农业现代化的发展,设施园艺⼯程因其涉及学科⼴、科技含量⾼、与⼈民⽣活关系密切,已经越来越受到世界各国的重视。

蔬菜大棚智能数据采集系统的设计课案

蔬菜大棚智能数据采集系统的设计课案

学号__1109111055 _毕业论文(设计)课题蔬菜大棚智能数据采集系统的设计学生姓名徐飞院部电气工程学院专业班级自动化一班指导教师杨路二〇一五年五月铜陵学院毕业论文(设计)摘要随着经济的快速发展,人们对蔬菜的需求大幅度提高,大棚蔬菜种植技术在我国迅速发展起来,目前虽然生产规模巨大,但蔬菜大棚设备陈旧,数据采集方式落后,自动化、智能化水平低,不利于蔬菜大棚的推广和蔬菜产量的提高,也不利于我国农业的长远发展。

温度、空气湿度、光照强度、二氧化碳浓度等控制因子是蔬菜大棚种植环境的主要参数,蔬菜的生长速度、品质与这些参数有着密切的关系,有效的控制这此因子可提高蔬菜产量与质量,达到省时省力与增产增收的目标。

本系统以STC89C52单片机为主控芯片,采用了无线通信模块nRF24L01模块,利用DHT11传感器检测温度、湿度、BH1750fvi传感器检测光照强度、红外二氧化碳传感器检测CO2浓度,通过nRF24L01模块进行无线传输采集数据,从而实现了对环境因素的精确采集。

关键字:单片机;STC89C52;无线传输;nRF24L01;DHT11;BH1750fvi徐飞:蔬菜大棚智能数据采集系统设计AbstractWith the rapid development of economy, people of vegetable of the substantial increase in demand, greenhouse vegetable planting technology develops rapidly in our country, at present although the production scale is huge, but vegetable greenhouses obsolete equipment, backward and the way of data collection, automation, intelligent level low adverse in greenhouse vegetable promotion and vegetable yield increase, is not conducive to the long-term development of China's agriculture.Temperature, air humidity, light Zhao intensity and carbon dioxide concentration control factor is the main parameters of greenhouse cultivation environment, vegetable growth speed, quality, and these parameters have close relationship, and effectively control the factor can improve the yield and quality of vegetables, achieve the goal of saving time and increase production.The system to STC89C52 microcontroller as the main control chip, the wireless communication module nRF24L01 module, using DHT11 sensor detects the temperature, humidity, illumination intensity, infrared carbon dioxide sensor for the detection of CO2 concentration BH1750fvi sensor detection and by module nRF24L01 wireless transmission data acquisition, so as to realize the accurate acquisition of environmental factors.Key word: MCU;STC89C52;wireless transmission;nRF24L01;DHT11铜陵学院毕业论文(设计)目录摘要 (I)Abstract (II)第1章绪论........................................................................ - 1 -1.1课题的来源.................................................................. - 1 -1.2 国外研究概况................................................................ - 1 -1.3 中国蔬菜大棚潜在的问题及其需求分析.......................................... - 2 -1.4 本文主要研究工作............................................................ - 2 -第2章系统方案分析与选择论证...................................................... - 3 -2.1 系统方案设计................................................................ - 3 -2.1.1 主芯片选择方案........................................................ - 3 -2.1.2 无线通信模块方案...................................................... - 3 -2.1.3 湿度、温度传感器方案 .................................................. - 4 -2.1.4光照传感器选择方案..................................................... - 4 -2.1.5 气体传感器的选择方案 .................................................. - 4 -2.1.6 显示模块选择方案...................................................... - 5 -2.2 系统最终方案................................................................ - 5 -第3章系统硬件模块设计............................................................ - 6 -3.1 单片机控制模块.............................................................. - 6 -3.1.1主控芯片概述........................................................... - 6 -3.1.2 单片机控制模块电路 .................................................... - 7 -3.2 单片2.4GHz nRF24L01无线模块 .............................................. - 8 -3.2.1 nRF24L01芯片概述...................................................... - 8 -3.2.2 引脚功能及描述........................................................ - 9 -3.2.3 工作模式.............................................................. - 9 -3.2.4 增强型ShockBurstTM工作原理.......................................... - 10 -3.2.5 nRF24L01模块原理图................................................... - 11 -3.3数字湿温度传感器DHT11电路................................................ - 12 -3.3.1 DHT11概述........................................................... - 12 -3.3.2 DHT11电路........................................................... - 13 -3.4光强度传感器BH1750fvi电路 ................................................. - 14 -3.4.1BH1750fvi概述......................................................... - 14 -3.5红外传感器C20电路......................................................... - 14 -3.6 LCD12864电路.............................................................. - 15 -3.7 Max232串口转换电路........................................................ - 16 -3.8 报警电路................................................................... - 16 -第4章系统软件设计............................................................... - 17 -4.1 nRF24L01无线射频模块...................................................... - 17 -4.2 DHT11温湿度数据采集模块................................................... - 22 -4.2.1 DHT11通讯过程....................................................... - 22 -4.2.2 DHT11数据采集流程图................................................. - 23 -4.2.3 DHT11部分代码....................................................... - 23 -4.3 BH1750fvi光照强度数据采集模块.............................................. - 24 -徐飞:蔬菜大棚智能数据采集系统设计4.3.1 BH1750fvi流程图见图.................................................. - 24 -4.3.2 BH1750fvi部分代码.................................................... - 25 -4.4 AMPIRE12864液晶显示器 .................................................... - 26 -4.4.1 LCD12864程序流程图.................................................. - 26 -4.4.2 LCD12864部分代码.................................................... - 27 -4.5 蜂鸣器程序代码............................................................. - 28 -总结与展望........................................................................ - 29 -参考文献.......................................................................... - 30 -致谢.............................................................................. - 31 -铜陵学院毕业论文(设计)插图清单图1 -1 日常生活中蔬菜大棚...................................................... - 1 -图2 -1 系统硬件结构框图........................................................ - 5 -图3 -1 主控芯片管脚分布图...................................................... - 7 -图3 -2 主控芯片的最小系统...................................................... - 8 -图3 -4 AMS117降压电路......................................................... - 8 -图3 -5 nRF24L01引脚封装 ....................................................... - 9 -图3 -6 SPI读操作.............................................................. - 11 -图3 -7 SPI 写操作.............................................................. - 11 -图3 -8 单端50Ω射频输出电路图................................................. - 12 -图3 -9 nRF24L01射频模块与主控芯片管脚连接图................................... - 12 -图3 -10 DHT11管脚封装分布图.................................................. - 13 -图3 -11 DHT11与主控芯片连接电路图............................................ - 13 -图3 -12 BH1750fvi与MCU连接电路图............................................ - 14 -图3 -13 CO2浓度传感器管脚分布图 .............................................. - 15 -图3 -14 AmpireLCD12864电路连接图............................................. - 15 -图3 -15 Max232串口转换电路 ................................................... - 16 -图3 -16 蜂鸣器连接电路图...................................................... - 16 -图4 -1 nRF24L01的PTX和PRX流程图........................................... - 17 -图4 -2 总体框架流程图......................................................... - 18 -图4 -3 nRF24L01的时序图 ...................................................... - 19 -图4 -4 DHT11通讯过程......................................................... - 22 -图4 -5 DHT11程序流程图....................................................... - 23 -图4 -6 BH1750fvi程序流程图.................................................... - 25 -图4 -7 LCD12864程序流程图.................................................... - 27 -徐飞:蔬菜大棚智能数据采集系统设计表格清单表3 -1 主要功能特性............................................................ - 6 -表3 -2 nRF24L01主要特性 ....................................................... - 9 -表3 -3 nRF24L01引脚功能 ....................................................... - 9 -表3 -4 nRF24L01工作模式 ...................................................... - 10 -表3 -5 常用配置寄存器......................................................... - 11 -表3 -6 性能指标和特性......................................................... - 13 -表3 -7 数据包................................................................. - 13 -表3 -8 产品特点............................................................... - 14 -铜陵学院毕业论文(设计)第1章绪论1.1课题的来源我国大棚种植约始于1965年,如今技术设备已经更新好几代,大棚面积也已经稳居世界前列,同时伴随着科技快速发展,使得农作物栽培不受地域、季节限制,蔬菜成为了一年四季人们的餐桌食物,中国的蔬菜大棚也渐渐走向自动化、无人化和信息化。

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述
智能蔬菜大棚控制系统是一种基于PLC(可编程逻辑控制器)的自动化控制系统,旨在实现对蔬菜大棚环境的监测和调控,提高蔬菜的生长环境,并提高生产效率和品质。

该系统主要包括环境监测、水肥控制、温度调控和光照控制等功能。

在环境监测方面,系统通过传感器实时监测大棚内温度、湿度、二氧化碳浓度等参数,并将数据传输到PLC
中进行处理。

水肥控制方面,系统可以通过PLC控制水肥的供给和排水,根据蔬菜的需求
来定时浇水和施肥,确保蔬菜的营养摄取。

温度调控方面,系统通过控制大棚内通风设备、加温设备、降温设备等来维持适宜的温度,保证蔬菜的正常生长。

光照控制方面,系统通
过PLC控制大棚内照明设备的开关和亮度,提供适宜的光照条件,促进蔬菜的光合作用。

系统还可以通过云端平台进行远程监控和控制,实现远程操作和数据查询。

通过手机APP或者电脑浏览器,用户可以随时随地监测大棚内的环境参数和蔬菜生长状况,并可以
进行相应的调控,提高管理效率和决策准确性。

整个系统的设计需要考虑到大棚内的各个环境参数的相互关联性和对蔬菜生长的影响,需要根据蔬菜种类和生长阶段来确定合适的环境条件和控制策略。

系统的安全性和可靠性
也是需要考虑的因素,如防雷击、防火灾等安全措施的设计。

基于PLC的智能蔬菜大棚控制系统通过自动化技术和数据管理手段,可以有效提升蔬
菜生产的质量和产量,降低劳动成本,实现智能化和可持续发展。

蔬菜大棚温度控制系统设计

蔬菜大棚温度控制系统设计

蔬菜大棚温度控制系统设计太原科技大学毕业设计(论文)目录摘要.................................................................................................................................................... ABSTRACT ...................................................................................................................................... 第1章绪论 01.1 选题背景 01.2 国内发展现状及水平 01.3 设计目的及意义 01.4 本章小结 (1)第2章系统功能需求分析及方案选择 (2)2.1 设计要求 (2)2.2 系统的功能需求分析 (2) (2) (4)2.3 工作原理 (3)2.4 控制方案 (3) (3) (5) (4) (5)2.5 系统控制方案的确定 (6)2.6 本章小结 (7)第3章硬件电路设计 (9)3.1主控制器AT89C51单片机电路 (9) (9) (9)3.2 温度采集电路 (10) (10) (11) (12)3.4键盘输入模块电路 (13) (13)3.5 机械控制电路模块 (14) (15) (15)3.6 蜂鸣器报警电路 (16)3.7 电源输入部分 (17)3.8 本章小结 (17)第4章系统软件设计 (19)4.1 系统主程序流程 (19)4.2 DS18B20测温读取子程序 (20)4.3 LCD1602显示子程序 (21)4.4 机械控制子程序 (21)4.5 定时器子程序 (22)4.6 本章小结 (23)第5章系统调试与仿真 (26)5.1 系统调试 (26)5.2 系统仿真 (26)5.3仿真结果 (27)第6章结论 (27)致谢 (29)参考文献 (31)附录 (33)附录1 硬件电路原理图 (33)附录2 元件清单表 (34)附录3 源程序清单 (35)摘要本设计完成了蔬菜大棚温度控制系统的系统设计。

温室大棚自动控制系统的设计

温室大棚自动控制系统的设计

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊目录第1章绪论 (1)1.1选题背景 (1)1.2 国内外发展现状 (2)1.3 课题内容、目的及思路 (3)1.4 设计过程及工艺要求 (5)第2章方案的比较和选择 (6)2.1 湿度传感器的选择 (6)2.2温度传感器的选择 (8)2.3 光照度传感器的选择 (9)第3章系统的总体设计 (10)3.1 确定系统任务 (11)3.2 系统的组成和工作原理 (12)3.3 元件的特性 (15)3.3.1 STC89C52特点 (15)3.3.2 AD0804特点 (16)第4章电路设计 (18)4.1 湿度测量电路 (18)4.2 温度测量电路 (19)4.3 光照度测量电路 (19)4.4 数据显示电路 (20)4.5 复位电路 (21)4.6 键盘电路 (22)4.7继电器控制电路 (22)4.8 电源设计 (23)第5章软件设计 (25)5.1系统概述 (25)5.2 Keil C51单片机软件开发系统的整体结构 (25)5.3 使用独立的Keil仿真器时,注意事项 (26)5.4 Keil C51单片机软件基本操作步骤 (26)5.5 主程序流程图 (26)5.6 参数测量子程序流程图 (28)5.7 键盘扫描子程序流程 (28)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第6章结论 (31)致谢 (32)参考文献 (33)附录 (35)附录1.系统总体电路图 (36)附录2.系统源代码 (36)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第1章绪论1.1选题背景随着改革开放,特别是90年代以来,我国的温室大棚产业得到迅猛的发展,以蔬菜大棚、花卉为主植物栽培设施栽培在大江南北遍地开花,随着政府对城市蔬菜产业的不断投入,在乡镇内蔬菜大棚产业被看作是21世纪最具活力的新产业之一。

蔬菜大棚恒温恒湿控制系统设计

蔬菜大棚恒温恒湿控制系统设计

蔬菜大棚恒温恒湿控制系统设计蔬菜大棚是一种人工控制环境的农业生产设施,可以为蔬菜提供合适的温度和湿度条件,以促进它们的生长和发育。

为了实现蔬菜大棚的恒温恒湿控制,需要设计一个控制系统,该系统能够监测温度和湿度,并根据设定的参数自动调节温度和湿度。

1.温度监测与控制:-温度传感器:安装在大棚内部的合适位置,可以实时监测大棚内的温度变化。

-控温设备:例如水冷却系统、加热系统等,可以根据传感器数据自动控制温度,保持大棚内部的恒温状态。

-温控器:接收传感器数据,根据设定的温度范围进行控制。

2.湿度监测与控制:-湿度传感器:安装在大棚内部的合适位置,可以实时监测大棚内的湿度变化。

-控湿设备:例如加湿器、除湿设备等,可以根据传感器数据自动控制湿度,保持大棚内部的恒湿状态。

-湿度控制器:接收传感器数据,根据设定的湿度范围进行控制。

3.控制系统集成:-控制器:负责接收传感器数据,并根据设定的参数进行调节,控制温度和湿度。

-人机界面:可以通过电脑、手机等设备进行监测和设置,方便农民了解大棚内的状态并进行调节。

以上是蔬菜大棚恒温恒湿控制系统的基本设计要点,可以根据具体情况进行调整和扩展。

在实际应用中,还可以添加其他功能,如自动通风、光照控制等,以提高蔬菜大棚的生产效率和质量。

设计蔬菜大棚恒温恒湿控制系统时1.传感器的选择:选择合适的温度传感器和湿度传感器,具有高精度、快速响应和较小的误差。

2.控制设备的选择:根据大棚的实际情况选择合适的控温和控湿设备,确保能够满足大棚内的需求。

3.控制策略的制定:根据不同蔬菜的生长需求和不同阶段的要求,制定合适的温度和湿度控制策略。

4.系统稳定性的考虑:系统应具有较高的稳定性和可靠性,能够在长期运行中保持良好的控制效果。

5.节能与经济性的平衡:在设计系统时考虑节能和经济性,选择节能设备和控制策略,降低运行成本。

综上所述,蔬菜大棚恒温恒湿控制系统的设计需要考虑温度和湿度的监测与控制,以及控制系统的集成与优化。

蔬菜温室大棚智能控制系统的设计

蔬菜温室大棚智能控制系统的设计

文献标识码 : A
文章编号 :1 6 7 4 ~ 7 7 1 2 ( 2 0 1 3 ) 1 6 — 0 1 0 0 一 叭
器 节 点设 计 等 。 ( 一 )Z i g B e e节 点程 序 设计 。本 系统 软件 开 发 平 台为 T I ,使用 8 0 5 1 C / C + + 编译器对其进 行开发,并且是在 Z - S t a c k 中的 S a m p l e A p工程基础上进行 的各个模 块程序 的设计 与实现 的。 此软件开发平台的优 点在于无需再次实现 Z i g B e e 协议栈 , 应用用户层主要完成节点程序的设计就可以了。在此系统 中, 数据采集节点与数据汇聚节 点共 同组成 了 Z i g B e e节点的硬件


部分, 因此, 在进行应用程序的设计时, 也要分别进行设计实现 。 ( 二) 无线传感器节点设计。 无线传感器节点主要用来采集 温室大棚内的环境数据, 如温度、 湿度、 光线强度及 C 0 2浓度 等 数据采集出来, 将通过数据汇集节点将这些 数据传 送到 D S P控 制平台上。 本系统要求数据采集要定时进行, 这就需要定义一个 周期性扫描函数来实现。除了要对无线传感 节点进行设计外, 还 要对 Z i g B e e汇聚节点的软件进行设计, 还有低功耗程序设计。 ( 三) D S P 监 控平台设计。 D S P监控平 台设计主要包括 D S P 主程序设计、 模糊控制程序设计、 液 晶显示与键盘输入程序设计、 D S P串口程序设计 以及 自动加载程 序设计。 D B P主程 序设计首先 要进行程序的初始化然后通过启动串口中断来进行数据的采集, 数 据采集的时间可 以手动设定, 默认时间为 1 O 分 钟。 数据采集 完成后, 各个子节点的数据被整合到一起 , 得出数据汇总与分析 结果, 对结果进行完模糊化处理后可 以将控制结果输出来。

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述随着科技的发展和人们对健康生活的追求,蔬菜大棚种植技术得到了广泛的应用。

为了提高大棚蔬菜的产量和质量,以及优化生产流程,智能化控制系统逐渐成为蔬菜大棚种植的必备装备之一。

本文将基于PLC的智能蔬菜大棚控制系统进行设计简述,以期为相关领域的从业者提供参考和借鉴。

1.系统组成智能蔬菜大棚控制系统主要由传感器、PLC控制器、执行机构、人机界面(HMI)、数据采集和处理模块等组成。

传感器用于感知大棚内的环境参数,包括温度、湿度、光照强度、CO2浓度等;PLC控制器负责对传感器采集的数据进行分析和处理,控制大棚内的灯光、喷灌、通风等设备的运行;执行机构则是根据PLC的指令,实现对大棚内环境的调控;人机界面用于与操作人员进行交互,展示大棚内各种参数和状态,并提供远程监控和控制的功能;数据采集和处理模块则负责采集、存储和分析大棚内的数据信息,为生产决策提供依据。

2.系统功能智能蔬菜大棚控制系统的主要功能包括自动控温、自动控湿、自动补光、自动喷灌、CO2浓度控制等。

在温度方面,系统能够根据设定的温度范围,自动控制大棚内的加热和通风设备的运行,以维持大棚内的温度在适宜的范围内;在湿度方面,系统通过控制喷雾设备和通风设备的运行,实现大棚内湿度的自动调节;在光照方面,系统能够根据光照传感器采集的数据,自动调节补光灯的亮度和工作时间,以确保蔬菜在充足的光照下生长;在喷灌方面,系统能够根据土壤湿度传感器采集的数据,自动控制喷灌系统的开关,实现对蔬菜的定量喷灌;在CO2浓度控制方面,系统能够根据CO2浓度传感器采集的数据,自动调控通风设备的运行,以保持大棚内的CO2浓度在适宜的范围内。

3.系统设计智能蔬菜大棚控制系统的设计需要充分考虑到大棚内的环境特点和作物的生长需求,同时考虑到系统的稳定性、可靠性和安全性。

在传感器选择上,需要选择精度高、稳定性好的传感器,以保证传感器采集的数据的准确性和可靠性;在PLC控制器的选型上,需要选择适合大棚环境工作的PLC控制器,以及具备丰富的输入输出接口和通信接口,以满足大棚内各种设备的控制需求;在执行机构的选型上,需要选择能够适应大棚环境的执行机构,具备良好的响应速度和稳定性;在人机界面的设计上,需要考虑到操作人员的使用习惯和操作便捷性,以及系统的可视化和易操作性;在数据采集和处理模块的设计上,需要选择存储容量大、计算速度快的设备,并采用合适的数据处理算法,以保证大棚内的数据信息能够及时、准确地被采集和处理。

智慧大棚解决方案

智慧大棚解决方案

智慧大棚解决方案一、背景介绍智慧大棚是一种利用物联网技术和先进的传感器设备,结合农业种植管理技术,实现对大棚环境的监测和控制的系统。

通过智慧大棚解决方案,可以提高农作物的产量和质量,降低生产成本,实现农业的可持续发展。

二、方案概述智慧大棚解决方案主要包括以下几个方面的内容:1. 环境监测系统环境监测系统通过安装各种传感器设备,实时监测大棚内的温度、湿度、光照强度、CO2浓度等环境参数。

通过无线传输技术将数据传输到中央控制系统,实现对大棚环境的全面监测。

2. 智能控制系统智能控制系统根据环境监测数据,通过自动控制设备对大棚内的环境进行调节。

例如,根据温度和湿度数据,控制通风设备和加热设备的开关,保持大棚内的温湿度在适宜的范围内。

通过光照控制系统,可以根据不同作物的需求,自动调节光照强度,提高光合作用效率。

3. 水肥一体化系统水肥一体化系统通过安装水肥一体化设备,实现对水肥的自动供给和调节。

根据作物的需求和土壤的水分含量,自动控制灌溉设备和施肥设备,保持土壤湿度和养分的平衡,提高作物的生长效率。

4. 数据分析与决策支持系统数据分析与决策支持系统采集和分析大棚内的环境监测数据、作物生长数据和生产管理数据,通过数据挖掘和机器学习算法,提供农业专家和农民决策的参考。

例如,根据历史数据温和象数据,预测未来的气候变化,提前采取相应的措施,减少灾害风险。

三、方案优势智慧大棚解决方案具有以下几个优势:1. 提高产量和质量:通过精确的环境控制和水肥管理,可以提高作物的产量和质量,增加农民的收入。

2. 节约资源:智慧大棚解决方案可以根据作物的需求,精确控制水肥的供给,减少浪费,节约资源。

3. 减少劳动力成本:智能控制系统可以自动调节大棚内的环境,减少人工干预,降低劳动力成本。

4. 提高农业可持续发展水平:智慧大棚解决方案可以减少农药和化肥的使用量,降低对环境的污染,促进农业的可持续发展。

四、方案应用场景智慧大棚解决方案适合于各种类型的大棚,包括蔬菜大棚、花卉大棚、水果大棚等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章绪论选题目的和意义中国农业的发展必须走现代化农业这条道路,随着国民经济迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。

现代化农业生产中的重要环节就是对农业生产环境的一些重要参数进行检测和控制。

例如:空气的温度、湿度、二氧化碳含量、土壤的含水量等。

在农业种植问题中,温室环境与生物的生长、发育、能量交换密切相关,进行对监测数据的分析,结合作物生长发育规律,控制环境条件,使作物达到优质、高产、高效的栽培目的。

以蔬菜大棚为代表的现代农业设施在现代化农业生产中发挥着巨大的作用。

大棚内的温度、湿度与二氧化碳含量等参量,直接关系到蔬菜和水果的生长。

国外的温室设施已经发展到比较完备的程度,并形成了一定的标准,但是价格非常昂贵,缺乏与我国气候特点相适应的测试软件。

而当今大多数对大棚温度、湿度、二氧化碳含量的检测与控制都采用人工管理,这样不可避免的有测控精度低、劳动强度大及由于测控不及时等弊端,容易造成不可弥补的损失,结果不但大大增加了成本,浪费了人力资源,而且很难达到预期的效果。

因此,为了实现高效农业生产的科学化并提高农业研究的准确性,推动我国农业的发展,必须大力发展农业设施与相应的农业工程,科学合理地调节大棚内温度、湿度以及二氧化碳的含量,使大棚内形成有利于蔬菜、水果生长的环境,是大棚蔬菜和水果早熟、优质、高效能的重要环节。

目前,随着蔬菜大棚的迅速增多,人们对其性能要求也越来越高,特别是为了提高生产效率,对大棚的自动化程度要求也越来越高。

所以急需一种高效实时的监控设备,能实现大棚的实时监控,迅速了解大棚内的环境状态。

国内外相关研究综述国外状况世界发达国家如荷兰、美国、以色列等大力发展集约化的温室产业,温室内温度、光照、水、气、肥实现了计算机调控,从品种选择、栽培管理到采集收包装形成了一整套的规范化技术体系。

美国是最早发明计算机的国家,也将计算机应用于温室控制和管理最早、最多的国家之一。

美国有发达的设施栽培技术,综合环境控制技术水平非常高。

环境控制计算机主要用来对温室环境(气象环境和栽培环境)进行监测和控制。

以花卉温室为例,温室内监测项目包括室内气温、水温、土壤温度、锅炉温度、管道温度、相对空气湿度、保温幕状况、通风状况,泵的工作状况、二氧化碳浓度、Ec调节池和回流管数值,pH调节池和回流管数值;室外监测控制项目包括大气温度、太阳辐射强度、风向风速、相对湿度等。

温室专家系统的应用给种植者带来了一定的经济效益,提高了决策水平,减轻了技术管理工作量,同时也为种植带来了很大的方便。

以园艺业着称的荷兰从20世纪80年代以来就开始全面开发温室计算机自动控制系统,并不断地开发模拟控制软件。

目前,荷兰自动化智能玻璃温室制造水平处于世界先进水平,拥有玻璃温室万多平方米,占世界四分之一以上,有85﹪的温室用户使用计算机控制温室环境。

荷兰开发的温室计算机控制系统是通过人机交互界面进行参数设置和必要的信息显示,可绘制出设计参数曲线、修正值曲线以及测量的数据曲线,可以从数据库内调出设定的时间段参数以便于必要的数据查询,并能直接对计算机串行口进行操作,完成上位机与下位机之间的通讯。

上位机软件集参数设置、信息显示、控制等功能于一体,同时还能够很好地完成温室灌溉和气候的控制盒管理。

此外,国外温室业正致力于向高科技方向发展。

遥测技术、网络技术、控制局域网已逐渐应用于温室的管理与控制中。

控制要求能在远离温室的计算机控制室就能完成,即远程控制。

另外该网络还连接有几个通讯平台,用户可以在遥远的地方通过形象、直观的图形化界面与这种分布式的控制系统对话,就像在现场操作一样,给人以身临其境之感。

国内状况我国农业计算机的应用开始于20世纪70年代,80年代开始应用于温室控制与管理领域。

20世纪90年代初期,中国农业科学院农业气象研究所和作物花卉研究所,研制开发了温室控制与管理系统,并开发了基于windows操作系统的控制软件;90年代中后期,我国科学家研制开发了温室软硬件控制系统,能对营养液系统、温度、光照、二氧化碳、施肥等进行综合控制,是目前国产化温室计算机控制系统较为典型的研究成果。

在此期间,中国科学院石家庄现代化研究所、中国农业大学、中国科学院上海植物生理研究所等单位也都侧重不同领域,研究温室设施的计算机控制与管理技术。

“九五”期间,国家科技攻关项目和国家自然科学基金均首次增设了工厂化农业研究项目,并且在项目中加大了计算机应用研究力度,其中“九五”国家重大科技产业工程“工厂化高效农业示范工程”中,直接设置了“智能型连栋塑料温室结构及调控的优化设计及实施”的专题。

我国温室存在的主要问题①科技含量和总体发展水平较低。

我国设施栽培起步晚、基础差,没将其作为整体工程问题研究。

从设施设备到栽培技术的生产管理不配套,生产不规范,难以形成大规模商品生产。

②我国现有的温室控制系统仍以控制一个温室为主,没有基于温室群控制系统。

这样降低了生产管理效率。

③温室测控系统的通信仍然采用有线方式。

温室测控系统的通信主要有485总线以及CAN总线等有线方式。

这些有线通信方式不仅使得温室内的信号线和动力线错综复杂,而且导致系统的可靠性降低,安装维护工作量变大,同时也不利于农业机器人等移动设备的作业,难以达到温室生产的“工厂化农业”水平。

④缺少基于农业专家知识的上位机管理系统。

我国目前的温室控制系统中,一些上位机只限于存储数据,没有根据农业专家知识的实时控制管理系统。

⑤设施水平低,抵御自然灾害的能力差。

我国目前部分温室的建筑材料主要是钢材和玻璃。

但没有形成国家统一的标准和工厂系列的产品,且应用率仅占设施栽培面积10﹪,而绝大部分由农民自行建造的塑料日光温室业只能起到一定的保温作用,根本不能实现对温度、湿度、光照等环境因子的调控。

⑥机械化水平低,调控能力差,作业主要依靠人力。

生产管理主要靠经验和单因子定性调控。

设计内容和设计方法本课题主要是设计一种基于伊犁河谷蔬菜大棚智能自动化控制系统的管理信息系统,依靠低功耗的无线射频RF、节水灌溉、物联网和传感器等技术实时监测和控制大棚内的温度、空气湿度、土壤湿度以及光照度等环境参数,通过该控制系统通过手机通信等途径通知用户,再通过用户使用自动化控制系统来控制相关环境参数,从而使生物生长在最适宜的环境下,达到农作物能够增产的效果。

温室是蔬菜栽培生产中必不可少的设施之一,不同种类蔬菜对温度及湿度等生长所需条件的要求也不尽相同,为它们提供一个更适宜其生长的封闭的、良好的生存环境,以提早或延迟花期,最终将会给我们带来巨大的经济效益。

随着现代科技的发展,电子计算机已用于控制温室环境。

该系统可根据需要,通过按键将环境信息输入MCU,根据情况可随时调节环境。

温室环境自动化控制系统在大型现代化温室的利用,是设施栽培高新技术的体现。

研究方法是通过企业系统规划法来设施的,目的是通过这次毕业设计,让我们将课本知识与实践相结合,更加深刻的理解自动控制的信息管理系统的运作模式及意义,也能够将所学知识和技能更多的运用于生活和工作中,学以致用。

第2章基于伊犁河谷蔬菜大棚智能自动控制系统的信息管理系统的系统分析系统分析系统目标本系统基于自动化农业的思想,采用低功耗的无线射频RF、节水灌溉和物联网等技术,根据当地实际情况设计出一个实时监测和控制大棚内的温度、空气湿度、土壤湿度以及光照度等环境参数,并将数据传输到远程终端服务器上位PC机上进行分析、管理及远距离测控,构成多个蔬菜大棚的智能自动化控制信息管理系统,以改善以往管理者应用传统经验对大棚内的农作物进行灌溉、加温、降温、加湿、排湿和采光等人工控制,保证了棚内的湿度、温度、光照强度,具有通风时间、卷帘时间、灯光光照时间的自动控制和系统报警等功能,可自动监测调节农作物环境的温湿度、光照、O2浓度、通风、卷帘升降、滴灌控制、门禁、巡更等参数,通过HMI(自动化成套控制系统)系统显示输出帮助种植者作全面细致的数据分析,将数据通过网络和相关的通讯协议传递给上位数据存储和显示区域,实现远程的数据采集。

并采取可靠的光纤通讯网络实现远程的设备的操作和相关数据的报警提示等。

以及根据目前国家提倡的环保节能的标准对每个大棚都有相关的能源的计量装置,方便了种植者对自己所用资源的调配和对运行参数的维护。

系统要求详细调查概述伊犁河谷的现状(1)基础条件伊犁河谷地处祖国的西北边陲,东西长350公里,南北宽280公里,土地面积平方公里。

光热资源丰富,年日照时数达3150小时,积温丰富,昼夜温差大,降水量是全疆平均水平的2倍,气候湿润。

丰富的水土资源和良好的自然环境十分适宜农作物生长(2)现状①近年来,伊犁州大力无公害、反季节、名特优。

2009年,种植总面积达万公顷,总产量达94万吨。

2008年,新增温室大棚万座,种植面积将达万公顷,总产量达148万吨,设施农产品出口10万吨。

② 2010年上半年,伊宁二类口岸出口水果、万吨,贸易额万美元,与去年同期相比分别增长%和%。

近年来,哈萨克斯坦国内对水果、等农产品的消费需求不断增加。

加之今年以来,在有关部门不断出台优惠措施的前提下,出口企业纷纷把目光投向果蔬出口贸易,对外贸易规模不断扩大。

③近年来,种子管理部门对种子的质量监管更加严格,各种子经营企业名优种子销售比例明显提高。

此外,相关部门也高度重视无公害安全生产技术规程的落实,加大农药安全使用的宣传教育和监管工作,各主要生产乡镇积极举办无公害栽培技术培训班,农民对新技术、新品种的接受能力越来越强,科学种菜水平不断提高。

可行性分析报告(1)系统简述温室智能自动控制系统采用当前比较热门的无线传感器网络技术、ARM嵌入式技术和传感器技术相结合的方式,精准采集温室内部环境的各项指标,驱动相应执行器件(风扇、加湿器、加热器)平稳自动控制温室内部环境的变化。

能根据用户设定的参数即温室内的土壤湿度、土壤温度、时间等参数来自动控制电磁阀和水泵等的自动动作,通过空气温度、空气湿度、二氧化碳等参数来自动控制循环风机、加温设备、二氧化碳发生器等的自动动作。

(2)项目目标目前,随着蔬菜大棚的迅速增多,人们对其性能要求也越来越高,特别是为了提高生产效率,对大棚的自动化程度要求也越来越高。

因此,该项目的目标就是实现温室大棚的智能自动化控制。

蔬菜大棚智能自动化控制的信息管理系统在农业领域中有着广泛的应用。

我们从农产品生产不同的阶段来看,无论是从种植的培育阶段和收获阶段,都可以用物联网智能自动化控制的技术来提高它工作的效率和精细管理。

①在种植准备的阶段,我们可以在温室里面布置很多的传感器,分析实时的土壤信息,来选择合适的农作物。

②在种植和培育阶段,可以用物联网的技术手段采集温度、湿度的信息,进行高效的管理,从而应对环境的变化。

相关文档
最新文档