实变函数与泛函分析
实变函数与泛函分析
实变函数与泛函分析
实变函数是指在数学中,变量和函数值都是实数的函数。
泛函分析是一门数学分支,主要研究实变函数的性质和分析。
泛函分析的基本概念包括:
1.函数的连续性:指函数在某个区间内,对于任意两个不同的自变量值,函数值之差都可以被任意给定的常数δ所代替,即函数在该区间内是连续的。
2.函数的可导性:指函数在某个区间内,对于任意一个自变量值,都存在一个导数,即函数在该区间内是可导的。
3.函数的可积性:指函数在某个区间内,对于任意两个自变量值,都存在一个积分,即函数在该区间内是可积的。
泛函分析还研究了一些其他概念,如复合函数、反函数、单调函数、奇偶性函数、周期函数、级数等。
泛函分析的研究方法包括函数的几何表示、函数的微积分学表示、函数的数学分析表示等。
泛函分析是一门广泛应用的数学分支,在工程、物理、化学、经济学等领域都有广泛的应用。
实变函数与泛函分析
开 G n , 集 E 使 G n 且 m ( G 得 n E ) 1 n
令O
n 1
Gn
,则 O为 G型集, EO 且
m ( O E ) m ( G n E ) 1 n ,n 1 ,2 ,3 , L
故m(OE)0
例: 设E为[0,1]中的有理数全体, 试各写出一个与E只相差一 零测度集的G 型集或 F 型集。
可测集可由 G 型集去掉一零集, 或 F 型集添上一零集得到。
(2).若E可测,则存在 F 型集H, 使 H E 且 m (EH )0
(1).若E可测,则存在G 型集 O, 使 E O 且 m (O E )0
(2).若E可测,则存在 F 型集H, 使 H E 且 m (EH )0
证明:若(1)已证明,由Ec可测可知
(2)若 E可测 , 0 则 ,闭F 集 , 使F 得 E且 m(EF)
(1)若 E可测 , 则 0,开G 集 , (2)若 E可测 , 0 则 ,闭F 集 , 使E 得 G且 m(GE) 使F 得 E且 m(EF)
证明:若(1)已证明,由Ec可测可知
0 , 开 G , 集 E c 使 G 且 m ( G 得 E c )
令 O n 1 G n , 则 O 为 G 型 集 , E O 且
m ( O E ) m ( G n E ) 1 n ,n 1 ,2 ,3 ,
故m(OE)0 从 而 E O (O E ) 为 可 测 集
例:设E为[0,1]中的有理数全体, 试各写出一个与E只相差一小
测度集的开集和闭集。E{r1,r2,r3,}
取F=G c,则F为闭集 FE
且 m (EF )m (E F c)
m (E (c)c F c)m (F cE c)m (G E c)
实变函数与泛函分析电子版15~36页
第 16页定义1 设,A B 为两个非空集合,如果有某一法则ϕ,使每个x A ∈有唯一确定的y B ∈和它对应,则称ϕ为A到B内的映射,记为:A B ϕ→.当映射ϕ使y和x对应时,y 称为x 在映射ϕ下的像,记作(x)y ϕ=,也可表示为:xy ϕ.对于任一固定的y,称适合关系(x)y ϕ=的x 的全体是元素y 在ϕ之下的原像,集合A称为映射ϕ的定义域,记为()βϕ,设C是A的子集,C中所有元素的像的全体,记为(c)ϕ,称它是C在ϕ之下的像,(A)ϕ称为映射ϕ的值域,记为()ϕℜ。
定义2 设A和B是两非空集合,若存在从集合A到B上的一一映射ϕ ,即满足:⑴ 单设:对任意x,y A ∈,若(x)(y)ϕϕ=,则x=y ;⑵ 满射:对任意y B ∈,存在x A ∈,使得(x)y ϕ=.则称A和B对等,记为A B ,规定φφ。
例 1我们可给出有限集合的一个不依赖于元素个数概念的定义,集合A称为有限集合,如果A=φ或者A 和正整数的某截段{1,2,......n}对等。
例 2 { 正奇数全体 }{ 正偶数全体 },事实上,只要令(x)x 1ϕ=+ 即可。
例 3{ 正整数全体}{ 正偶数全体},这只需令(x)2x ϕ=,第17页X 是整数。
例4 区间(0,1)和全体实数R 对等,只需对每个(0,1)x ∈,令(x)t a n (x )2πϕπ=-。
例5 设A与B是两个同心圆周(图1.4),显然A~B。
事实上,对A上每一点x 与同心圆的圆心的连线与B相交且交与一点,值得注意的是,若将此圆的两周展开为线段时,则这两条线段的长度并不相同。
这告诉我们,一个较长的线段并不例4表明,无限长的“线段”也不比有限比另一个较短线段含有“更多的点”。
长的线段有“更多的点”。
例 3和例4说明一个无限集可以和它的一个真子集对等(可以证明,这一性质正是无限极的特征,常用来作为无限极的定义)。
这一性质对于有限集来说显然不能成立,由此可以看到有限集和无限极之间的诧异。
实变函数与泛函分析
(2) Hilbert旅馆问题
1, 2, 3, 4, 5, 6,… a1, a2, a3, a4, a5, a6, …
问下列情况是否能把新来的人安排下:
1 又来了有限个人{b1, b2, b3, … ,bn}
2 每个人带一个亲戚{b1, b2, b3, …, bn, …}
3 每个人带无限多个亲戚(亲戚可排个队) 4 又来了[0,1]个人
(1) Achilles追龟
0(甲)
甲的速度为1,乙的速度为1/2
½(乙)
3/4
7/8 15/16 1
n1
1 2n
1 2
1 22
1 2n
1
问题:时间由时刻组成,每一时刻,甲、乙都在一确定点上由于 甲、乙跑完相应路程所用时间一样,故甲、乙所用“时刻数”一 样,从而跑过的点的“个数”也一样。
当前您浏览的位置是第十八页,共二十页。
当前您浏览的位置是第六页,共二十页。
(2) Riemann可积的充要条件
xi-1 xi
f(x)在[a,b]上Riemann可积
xi-1 xi
b
n
n
b
a
f
( x)dx
lim ||T ||0
i 1
M ixi
lim
||T ||0
i 1
mi xi
a
f (x)dx
其中: M i sup{ f (x) : xi1 x xi} mi inf{ f (x) : xi1 x xi}
如不按面额大小分类,而是按从钱袋取出的先后次序来计 算总数,那就是Ri等理科教学》,2000.1)
0
1
当前您浏览的位置是第十六页,共二十页。
3.Lebesgue积分构思产生的问题
实变函数与泛函分析基础ppt课件
证明:不妨设f单调增,对任意a∈R
令Ia inf{ x | f (x) a}
由f单调增知下面的集合为可测集
E { [ f a]
E [ I a ,) 当I a {x| f ( x)a} E ( I a ,) 当I a {x| f ( x)a}
a
1
/ I a x1 x2
10
⒊可测函数的等价描述
定理1:设f(x)是可测集E上的广义实函数,则 f(x)在E上可测
16
⑵可测函数类关于四则运算封闭
即:若f(x),g(x)是E上的可测函数,
则f(x)+g(x) , f(x) -g(x) , f(x)g(x) , f(x)/g(x)
仍为E上的可测函数。
a-g(x) r f(x)
证明:先证: a
R, E[
f
ga]
E[ f
可测,
a g ]
猜想:E[ f ag] rQ(E[ f r] E[agr] )。
可测集E上的连续函数f(x)定为可测函数
证明:任取x∈E[f>a], 则f(x)>a,由连续性假设知,
对 f (x) a, x 0, 使得f (O(x,x ) E) O( f (x), ) (a,)
即O( x,x ) E E[ f a]
令G O xE[ f a] ( x,x )
1 , n
)
E[ f
为可测集。
]
12
注:重要方法:将集合分解为某些集合
的并、交、差等,从而利用已知条件。
如:用分解法证明:
f , g均为E上可测函数,则E[ f g]为E上可测集。
事实上,E[
f
g]
(
rQ
E[
给想学实变函数和泛函分析的一点建议
给想学实变函数和泛函分析的一点建议首先,本人学过到目前为止除了最优化理论其它还没用过,但是最大的收获是数学的一些研究方法,下面是正文不知在哪看过,希望对学弟学妹们有用。
有点长~实变函数和泛函分析在经济学中的用处非常大。
首先,实变函数是研究L积分理论的,这种L积分使积分理论得以应用的函数范围大大推广了,实际上除了数学家刻意构造出来的奇异函数,一般的函数,特别是我们在分析实际问题时遇到的函数,都是L可积的。
因此L积分的理论可以用于我们分析实际问题时遇到的所有函数。
L积分的理论中哪些内容是极其重要的呢?从应用的角度来讲,最有价值的就是测度理论和积分的三个相互等价控制收敛定理。
测度论使的概率论变得更加威力强大,可以解决很多以前被认为是古怪的无法分析的问题。
也使很多概率理论变得更加严格。
比如无限可分事件的概率以及用西格玛域来阐述的条件概率等等。
没有测度论就无法分析连续鞅等等。
另外,积分收敛定理解决了积分运算与极限运算互换的问题,使得很多极限问题变得可以计算。
所以支持大样本统计理论的概率极限理论就建立起来了。
如果搞懂了实变函数,你对统计,计量,金融工程等问题的研究就可以一枪刺到底,从基本概念的学习开始可以一路畅通的达到对前沿理论的深刻理解。
没有实变函数的基础,学计量,统计和金融工程就是隔靴挠痒。
再看泛函分析,泛函分析是建立在实变函数的基础上的。
为什么这么说呢?其实就分析的问题的思路来讲,泛函和实变还是有很大差别的,但是泛函研究的是函数空间,研究函数空间中的收敛和连续等拓扑概念必须依赖范数的定义,而函数空间的范数的定义依赖于积分理论,所以实变函数就成了泛函的基础。
所以一般都是先学实变,再学泛函。
当然,也有先学直接学泛函的,这时就只能直接的接受积分定义的范数概念,或者干脆只从抽象范数的角度来研究,不去管范数的具体形式。
从理解泛函本身的理论来讲并没有什么不妥,只是在用泛函解决实际问题时就有麻烦,因为研究实际问题就要给出具体的范数定义,没有实变函数的积分理论就不行了。
实变函数论泛函分析课件
02 实变函数的定义与性质
实变函数的定义
01
02
03
定义域
实变函数的定义域是实数 集的一个子集,可以是有 限或无限的。
值域
实变函数的值域是实数集 的一个子集,可以是有限 或无限的。
函数表达式
实变函数可以表示为从定 义域到值域的映射关系, 通常用符号 f(x) 表示。
实变函数的性质
单调性
如果对于任意 x1<x2,都有 f(x1)≤f(x2),则称 f(x) 在其定义
微积分的应用
介绍微积分在各个领域的应用,如物理学、工程学、经济学等。
微积分的进一步发展
介绍微积分的进一步发展,如变分法、最优控制等。
04 泛函分析的基本概念
泛函的定义与性质
定义
泛函是将函数空间的每一个元素作为自变量,其值是实数或 复数的函数。
性质
泛函是定义在函数空间上的,它具有连续性、可加性、线性 等性质。
么该空间是自完备的。
共鸣定理
在赋范线性空间中,如果存在 一个与所有单位球相交的集合,
那么该空间是自完备的。
开映射定理
如果X和Y是赋范线性空间,T 是X到Y的开映射,那么T是满
射。
闭图像定理
如果X和Y是赋范线性空间,T 是X到Y的连续线性映射,那
么T的像集是闭的。
05 泛函分析的应用领域
微分方程的求解
分析中的某些问题。
应用领域
实变函数论和泛函分析 在许多应用领域都有交 叉,如 质
线性性质
对于任意实数k和函数f,g,有 $k(f+g)=(kf)+(kg)$, $(kf)+(kg)=(k+k)(f)$。
连续性质
如果f_n(x)是函数空间中的收敛序列, 那么$f_n(x)$的极限函数也是连续的。
实变函数与泛函分析-实变与泛函_ch3
3.1 距离空间的定义及例子 University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
3.3 距离空间的完备性和稠密性
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
教学大纲_实变函数与泛函分析
教学大纲_实变函数与泛函分析实变函数与泛函分析是高级数学中的一门重要课程,主要涉及实变函数的性质及其应用,以及泛函分析中的函数空间与算子的概念和性质。
本教学大纲旨在培养学生对实变函数与泛函分析的基本理论和方法的理解与应用能力。
一、课程目标通过本课程的学习,学生应该能够:1.了解实变函数的定义、性质和基本的分析方法;2.掌握实数的完备性和实变函数的连续性、可微性等基本概念与定理;3.熟悉重要的实变函数序列收敛的理论和方法;4.理解一元多项式空间及其上的内积、范数等概念;5.了解泛函分析的基本概念,如线性算子、单射、满射、闭算子等;6.掌握泛函分析中重要的泛函空间和赋范向量空间的性质与应用。
二、教学内容1.实变函数的性质与基本分析方法(12学时)1.1实数的完备性与实变函数的极限概念1.2实变函数的连续与可导性质1.3实变函数的积分与微分概念与定理2.实变函数的序列收敛理论与方法(16学时)2.1一致收敛性与收敛级数理论2.2函数项级数的收敛理论与方法2.3 Weierstrass逼近定理的证明与应用2.4傅里叶级数的概念、性质及展开方法3.一元多项式空间与泛函分析基础(14学时)3.1一元多项式空间及其上的内积与范数3.2一元多项式空间中的正交多项式与勒让德多项式3.3泛函分析的基本概念与定理4.泛函空间与线性算子(18学时)4.1泛函空间的定义与性质4.2无穷维度空间的收敛性与紧性4.3线性算子的基本性质与分类4.4线性算子的连续性与有界性5.算子的谱理论与泛函方程(20学时)5.1线性算子的谱理论与应用5.2巴拿赫空间的定义与性质5.3泛函方程的基本理论与应用5.4泛函方程的解的存在唯一性定理三、教学方法1.理论教学:通过讲述与讲解基本概念与定理,引导学生掌握基本原理和方法。
2.解题指导:通过典型例题和习题,引导学生独立思考问题,掌握解题方法和技巧。
3.讨论与交流:鼓励学生参与讨论,提问和回答问题,促进学生之间的交流与合作。
实变函数与泛函分析基础完整版
bi
ai
bi ai
f(x), 当xF,
g(x)f(ai)
f(bbi)i afi(ai( ) xai),当x(ai,bi),ai,bi有限 ,,
f(ai), 当x(ai,bi),bi , f(bi), 当x(ai,bi),ai .
则g(x)满足要求,且在R上连续.(参见课本p91)
0 ,及 E i , 每 E i中 作 个 的 F i , m ( 闭 E i 使 F i) n 子 ( i 1 ,2 , 集 ,n
当x∈Ei时,f(x)=ci,所以f(x)在Fi上连续,而Fi为两
两不交闭集,故f(x)在 n 上连续,显然F为闭集,
且有
F
i 1
Fi
m ( i n 1 E i i n 1 F i) m ( i n 1 ( E i F i) )i n 1 m ( E i F i) i n 1 n
kj
若 fk:Ek R为连续f函 (x)数 fk(x), :xE 令 k,f则 (x): k 1Ek R上的连
事实上x0, k 1, 由 Ek, 于 x0为开 (k 1, 集 Ek)c的内点,
kk0
kk0
20,使U 得 (x0,: 2) (k 1, Ek)c,即 U(x: 0,2) k 1, Ek。
注2:鲁津定理的逆定理成立。
设f(x)为E上几乎处处有限的实函数,若 0,闭F 集 E,
使得 m(E-F)<ε且f(x)在F上连续,则f(x)在E上为可 测函数。
证明: 1n,则闭集 Fn F,使得m: (EFn)1n, f(x)在Fn上连续(可测函数
k
,必有
实变函数与泛函分析基础(课堂PPT)
i 1
Ei
,{Ei
}两两不交的闭集族
.若f k
:
Ek
R为连续函数,
n
令f (x)
fk (x) : x Ek,则f
(
x): k 1
Ek
R上的连续函数。
n
证明:取x0
k 1
Ek
,
0,
由于k0
N
,
使得:x0
k0,而f
k0
在Ek
上为连续的,
0
对此,1 0,
使
得:x
U
(
x0
,
1)
Ek
,必有
0
|
fk0 (x)
第四章 可测函数
第三节 可测函数的构造
1
可测函数 可测集E上的连续函数为可测函数。 简单函数是可测函数。 可测函数当且仅当可表示成一列简单函数列的极限。
问:可测函数是否可表示成一列连续函数的极限?
2
鲁津定理 设f(x)为E上几乎处处有限的可测函数,则 0, 闭集F E,
使得 m(E-F)<ε且f(x)在F上连续。
x 1处的任意去心邻域(1 ,1)(1,1 ) {x | f (x) g(x)}c {x | f (x) g(x)}
f (1 0) 0 f (1 0) 1。(矛盾)
15
5.设m(E) ,{ fk (x)}为E上可测函数,则
lim
n
fk
(x)
0, a.e.于E
0,有lim j
Ak
,
m( A)
m( k 1
Ak
)
lim
k
m( Ak
)
0, k0, k k0使得:| m( A) m( Ak ) | m( A Ak ) .
实变函数与泛函分析全册精品完整课件
University of science & Technology of China
五大论:
集合论-着重介绍 Cantor 关于集合的势论的知识.
测度论-讲解 Lebesgue 测度的思想与方法.
积分论-讲解 L 积分的定义、性质、极限定理和 L 可积函数空间,积分与微分的关系.
空间论-主要讲述无穷维赋范空间和内积空间,以 及与共轭空间有关的知识. 算子论-主要讲述三大基本定理(共鸣定理、开映 射定理、闭图像定理),共轭算子以及算子谱理
论.
University of science & Technology of China
教学目的
使学生掌握 L 测度与 L 积分的基本理论、基本思想 与方法,为今后进一步使用现代分析普遍应用的这 一基本工具打下基础。
使学生掌握有关空间和算子的基本理论和思想方法 . 认识和理解现代数学中公理化、抽象与具体、理 论和应用密切联系的特点并加以应用.
前言
课程的重要性 课程讲授的主要内容 教学目的 难易程度 考核方式
University of science & Technology of China
《实变函数与泛函分析》的重要性 在20世纪初期产生并发展起来的学科,是整 个分析数学中最年轻的学科之一 从“经典理论”向“现代理论”转折的关口 是联系各门课程的纽带
通过与其他学科的联系,加强学生对于数学思想方 法的内在联系和一致性的认识,从整体上提高学生 的数学素养
University of science & Technology of China
课程难度与考核方式
内容抽象,难度较大 平时表现分+考试分数, 比例 认真学习则无须担心考核
实变函数论与泛函分析第四版
实变函数论与泛函分析第四版
《实变函数论与泛函分析第四版》是一本深受读者青睐的重要数学著作,由美国知名数学家肖恩米尔顿编写,于2004年出版。
本书内容全面,讲述了实变函数论的各种概念、理论与实例。
书中讨论了函数的可微性,以及它们的微分与积分,也讲述了拉格朗日泛函分析的核心概念。
书中首先介绍了实变函数论的基本概念,如函数、可微函数、复数和庞加莱空间。
接着,作者详细讲述了实变函数的微分,例如反对称性、链式法则、李雅普诺夫定理,以及微积分的概念,例如微分不等式、变分法和李雅普诺夫定理。
此外,本书还涉及泛函分析的概念,例如函数的L-形和H-形性质、函数的极值、凸性和凹性。
此外,书中还介绍了几何分析的重要概念,例如参数方程、分岔点和坐标系统。
最后,作者还讨论了一些数学家特有的技术,如分析技术、半空间和特征值分析等。
总之,《实变函数论与泛函分析第四版》是一本比较全面的数学读物,内容深入浅出,既适合有数学背景的学生,也适合普通读者,可以作为教材或参考书。
此外,本书还帮助读者更好地理解数学的原理和方法,提高其运用数学的能力。
- 1 -。
实变函数与泛函分析课件
巴拿赫空间的性质
巴拿赫空间与连续线性映射
连续线性映射
连续线性映射的定义
连续线性映射的性质
线性算子的谱理论
03 空间上的算子与变换
有界线性算子
有界线性算子的定义:在某空 间上有界且线性
重要性质:有界线性算子可以 扩展为全空间上的有界线性算
子
谱定理:有界线性算子的谱分 解定理
空间上的算子与变换部分的习题与解答
01
02
总结词:空间上的算子 与变换部分主要涉及线 性算子、有界算子、 紧 算子等不同类型的算子 的定义、性质和计算方 法,以及空间上的变换 和约化定理的应用。
详细描述
03
04
05
1. 线性算子的定义和性 2. 有界算子和紧算子的 质,包括线性算子的有 定义和性质,以及在各 界性、紧性、谱性质等, 种空间中的存在性和构 以及在各种空间(例如, 造方法。 Hilbert空间、Banach 空间等)中的应用。
映射与变换
序关系
介绍映射的概念及基本性质,如一一映射、 满射、单射等。
讨论集合中的序关系,如偏序、全序、反 对称序等,以及相关的概念如最大元、最 小元、上界、下界等。
实数函数
01
函数的定义
介绍函数的概念及基本性质,如定 义域、值域、单调性等。
函数的极限
介绍函数极限的定义、性质及其计 算方法。
03
02
03
线性空间
01
数乘性质
02
中间元素性质
03
正交性
内积空间与Hilbert空间
内积空间的定义
1
内积空间的定义
2
正交性
3
内积空间与Hilbert空间
实变函数与泛函分析
实变函数的定义
实变函数是定义在实 数集上的函数,其值
域也是实数集。
实变函数具有连续性、 可微性、可积性等性
质。
实变函数的定义域可 以是有限区间、无限 区间或者整个实数轴。
实变函数的值域可以 是有限区间、无限区 间或者整个实数轴。
实变函数的性质
实变函数是一类特殊的数学函数,具 有连续性、可微性和可积性等性质。
实变函数的连续性
实变函数的连续性与极限存 在性有关
实变函数在定义域内是连续 的
实变函数的连续性是函数的 一种基本性质
实变函数的连续性与可微性 密切相关
03 实变函数的应用
实变函数在数学物理方程中的应用
实变函数在求解偏微分方程中的应用 在解决波动方程、热传导方程等数学物理方程中的作用 实变函数在数值分析中的重要地位 实变函数在解决物理问题中的应用实例
求解中。
添加标题
05 泛函分析的应用
泛函分析在微分方程中的应用
微分方程的求解:通过泛函分析中的变分法,求解微分方程的近似解。 稳定性分析:利用泛函分析中的算子谱理论,研究微分方程解的稳定性。 近似方法:利用泛函分析中的逼近理论,构造微分方程的近似解。 数值计算:通过泛函分析中的数值分析方法,对微分方程进行数值模拟和计算。
添加标题
随机积分与微分 方程:在概率论 中,随机积分与 微分方程是非常 重要的研究方向, 而泛函分析中的 积分和微分理论 为此提供了重要
的数学基础。
添加标题
泛函分析在量子力学中的应用
描述了量子力学中的波函数和 概率幅
提供了量子力学中算子的表示 和分类方法
揭示了量子力学中的一些重要 定理和原理,如不确定性原理 和量子纠缠
研究对象:实变函数研究的是具体的、有限的、离散的数学对象,而泛函分析则研究 的是抽象的、无限的、连续的数学对象。
实变函数与泛函分析第1讲
三、集合与元素的关系
如果 是集合 的元素,则说 属于 ,记作 ,或说A含有a.
如果 不是集 的元素,则说 不属于 ,记作 ,或说A不含有a.
四、集合与集合的关系
1.包含:
是 的子集
若 且 ,就称A是 的真子集,规定空集是任何集的子集.
2.相等
材的第一章.不过,对于实变函数论来说,集论知识.
一、集合的概念及其表示
集合也称作集,是数学中所谓原始概念之一,即不能用别的概念加以定义,它像几
何学中的“点”、“直线"那样,只能用一组公理去刻画.就目前来说,我们只要求掌握以下朴素的说法:
“在一定范围内的个体事物的全体,当将它们看作一个整体时,我们把这个整体称
由 个元素 所组成的集合,可表示为
由全体自然数所组成的集合称为自然数集,可表示为 .
不含任何元素的集合称为空集,记作 .
2.描述法
当集 是具有某性质 的元素之全体时,我们用下面的形式表示 :
方程 的解x的全体组成的数集是
注:有时我们也把集 具有性质 改写成 具有性质 .例如,设
是定义在集合 上的一实函数, 是一个实数,我们把集 写成
第一章 集合§1集合的表示
由德国数学家Cantor所创立的集合论,是现代数学中一个独立的分支,按其本性
而言,集合论是整个现代数学的逻辑基础;而就其发展历史而言,则与近代分析(包括
实变函数论)的发展密切相关,实变函数通常是第一门大量运用集合论知识的大学数学
课程.因此,在现代数学教育中,对集合论知识的较系统的介绍,通常构成实变函数教
为一个集合,其中每个个体事物叫做该集合的元素.”
一个集合的元素必须彼此互异,而且哪些事物是给定集合的元素必须明确.以集合
实变函数与泛函分析-教学大纲
实变函数与泛函分析-教学大纲第一篇:实变函数与泛函分析-教学大纲实变函数与泛函分析教学大纲Functions of Real Variables and Functional Analysis一、基本信息适用专业:信息技术专业课程编号:教学时数:72学时学分:4 课程性质:专业核心课开课系部:数学与计算机科学院使用教材:《实变函数论与泛函分析》(上、下册)第2版曹广福.高等教育出版社参考书[1]夏道行《实变函数论与泛函分析》(上、下册)第2版修订本.高等教育出版社;[2] W.Rudin ,Real and Complex Analysis, 3rd Edition; [3] W.Rudin,Functional Analysis, 3rd Edition; [4]周民强《实变函数论》第2版.北京大学出版社.二、课程介绍《实变函数与泛函分析》以掌握Lebesgue测度空间,Lebesgue 积分,Hilbert空间和Banach空间的基本知识,培养学生从几何、拓扑上来认识抽象函数空间,以抽象空间为工具来研究、解决实际问题的能力。
三、考试形式考试课程,考试成绩由平时成绩和期末考试组成,平时作业占百分之二十,期末考试百分之八十。
期末考试是闭卷的形式,重点考察学生的解题能力和基础理论。
四、课程教学内容及课时分配第一章集合与点集要求1、掌握集合的势,可数集2、熟悉欧氏空间上的拓扑,Cauchy收敛原理主要内容集合的势,可数集,n维欧氏空间上的拓扑,Canchy收敛原理重点集合的势,可数集课时安排(4学时)1、集合的势,可数集2学时2、欧氏空间上的拓扑,Cauchy收敛原理2学时第二章 Lebesgue测度要求1、熟练掌握外测度、可测集以及它们的性质2、掌握可测函数及其性质,以及非负可测函数的构造3、熟练掌握可测函数的收敛性主要内容:Lebesgue外测度,可测集(类),可测函数及其性质,可测函数的收敛性重点外测度、可测集以及它们的性质、可测函数的收敛性课时安排(12学时)1、外测度、可测集以及它们的性质4学时2、可测函数及其性质,以及非负可测函数的构造4学时3、可测函数的收敛性4学时第三章Lebesgue积分要求:1、熟练掌握可测函数的积分及性质2、熟练掌握Lebesgue积分基本定理,Fatou引理,控制收敛定理,Riemann可积的充要条件3、弄清重积分与累次积分的关系,Fubini定理主要内容:可测函数的积分及性质,Lebesgue积分的极限定理,Riemann 可积的充要条件,重积分与累次积分的关系,Fubini定理重点可测函数的积分及性质,Lebesgue积分的极限定理课时安排:(16学时)1、可测函数的积分及性质6学时2、Lebesgue积分基本定理,Fatou引理,控制收敛定理,Riemann可积的充要条件6学时3、重积分与累次积分的关系,Fubini定理4学时第四章L空间要求:1、熟练掌握L空间的范数、完备性、收敛性、可分性2、熟悉L空间的内积,标准正交基3、了解卷积与Fourier变换 ppp主要内容:pLp空间的范数、完备性、收敛性、可分性,L空间的内积,标准正交基,卷积与Fourier变换重点Lp空间的范数、完备性、收敛性、可分性课时安排(10学时)1、L空间的范数、完备性、收敛性、可分性4学时2、L空间的内积,标准正交基,正交化方法4学时3、卷积与Fourier变换2学时 pp第五章 Hilbert空间理论要求:1、熟练掌握距离空间的定义与紧致性的定义,Riesz表示定理2、熟悉Hilbert空间上线性算子的有界性和连续性3、熟悉共轭算子、投影算子,紧算子性质及其谱主要内容:距离空间的定义,紧致性,Hilbert影算子,紧算子性质及其谱。
实变函数与泛函分析点集
知 ' 0, 有O(x', ') (E {x '})
(当
'
min{
d (x,
x '), d (x,
x ')}时,有x O(x', ')
O(
x,
)
)
E
从而.O(x, ) (E {x})
即x为E的聚点,从而 (E')' E'
O( x', ')
利用(E)' (E E')' E'(E')' E'E' E' E 可得E为闭集
则O( y, ') O( x, ) E
从而y为E的内点,从而.O(x, ) E
所以x为Eº的内点,即 x (E) O( y, ')
E
从而E (E),即E为开集
注: Eº为含于E内的最大开集
O( x, )
TH2: E`为闭集
O( x, )
证明:只要证 (E')' E' 任取 x (E')' ,由聚点的定义知 E
2.)闭集的性质
若E为开集,则Ec为闭集; 若E为闭集,则Ec为开集
U I ( A )c Ac
I U ( A )c Ac
a.空集,Rn为闭集;
b.任意多个闭集之交仍为闭集;
c.有限个闭集之并仍为闭集。
注:无限多个闭集的并不一定为闭集,如:En=[0,1-1/n]
5. R中有关紧性的两个结论
⑴Weierstrass定理: 若E是Rn中的一个有界的无限集,则E至少有一个聚点.
从而x是(a,b)的内点,
实变函数与泛函分析要点
实变函数与泛函分析概要之吉白夕凡创作第一章集合基本要求:1、理解集合的包含、子集、相等的概念和包含的性质。
2、掌握集合的并集、交集、差集、余集的概念及其运算性质。
3、会求已知集合的并、交、差、余集。
4、了解对等的概念及性质。
5、掌握可数集合的概念和性质。
6、会判断己知集合是否是可数集。
7、理解基数、不成数集合、连续基数的概念。
8、了解半序集和Zorn引理。
第二章点集基本要求:1、理解n维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。
2、掌握内点、聚点的概念、理解外点、界点、孤立点的概念。
掌握聚点的性质。
3、掌握开核、导集、闭区间的概念及其性质。
4、会求己知集合的开集和导集。
5、掌握开核、闭集、完备集的概念及其性质,掌握一批例子。
6、会判断一个集合是非是开(闭)集,完备集。
7、了解Peano曲线概念。
主要知识点:一、基本结论:1、聚点性质§2 中T1聚点原则:P0是E的聚点⇔ P0的任一邻域内,至少含有一个属于E而异于P0的点⇔存在E中互异的点列{Pn},使P n→P0 (n→∞)2、开集、导集、闭集的性质§2 中T2、T3T2:设A⊂B,则A་⊂B་,·A⊂·B,-A⊂-B。
T3:(A∪B)′=A′∪B′.3、开(闭)集性质(§3中T1、2、3、4、5)T1:对任何E⊂Rⁿ,Ė是开集,E´和―E都是闭集。
(Ė称为开核,―E称为闭包的理由也在于此)T2:(开集与闭集的对偶性)设E是开集,则CE是闭集;设E是闭集,则CE 是开集。
T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。
T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。
T5:(Heine-Borel有限覆盖定理)设F是一个有界闭集,ℳ是一开集族{Ui}iєI它覆盖了F(即Fс∪iєIUi),则ℳ中一定存在有限多个开集U1,U2…Um,它们同样覆盖了F(即F⊂m∪ Ui)(iєI)4、开(闭)集类、完备集类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长春理工大学数学研究生入学加试
《实变函数与泛函分析》考试大纲
一、总体要求
考生应按本大纲的要求,掌握Lebesgue的测度论,实变量的可测函数理论,Lebesgue 积分理论与微分理论,掌握度量空间和赋范线性空间的概念和例子,有界线性算子和连续线性泛函的概念和例子,掌握Hilbert空间的基本性质。
较好的掌握测度论与抽象积分理论,并且在一定程度上掌握集合的分析方法。
二、教材
《实变函数与泛函分析基础(第二版)》,程其襄等,高等教育出版社,2003.
三、考试内容
(一)集合
1. 掌握集合的概念,集合的包含和相等的关系和判定方法;
2. 熟练掌握集合的和、交、差、余的运算,掌握上限集、下限集和收敛集的定义
3. 会求集合的和、交、差、余,会求集合族的上限集、下限集,会判定集合列是否收敛;
4. 理解集合基数的概念,对等的概念,掌握Bernstein定理,会用Bernstein定理判定集合对等;
5. 掌握可数集合与具有连续基数的不可数集合的概念、例子和运算性质,能够利用已知的例子和运算性质去确定集合为哪类无限集合;
6. 知道不存在具有最大基数的集合。
(二)点集
1. 理解距离和距离空间的概念,懂得Euclid空间是距离空间;
2. 掌握邻域的概念与性质,掌握点列收敛、点集距离、有界集和区间的概念;
3.深入理解内点、外点、界点、聚点、孤立点的定义,理解并掌握集合的开核、导集、边界、闭包的概念及相关的性质;
4. 熟练掌握开集、闭集的概念和相关性质,掌握紧集的概念,完备集的概念,掌握有限覆盖定理;
5. 理解直线上开集、闭集的构造定理,掌握Cantor集的性质。
(三)测度论
1.深入理解并熟练掌握外测度,L-可测集的定义和基本性质,并掌握典型的例子
2.理解σ代数的定义,掌握Borel集、G
δ
型集、Fσ型集的定义,明确可测集和Borel
集、Gδ型集、Fσ型集之间的关系,掌握L-可测集类;
(四)可测函数
1. 理解并掌握可测函数的定义与等价条件,掌握简单函数的概念,几乎处处收敛的概念,理解简单函数与可测函数的关系;
2. 理解Egorov定理,Lusin定理;
3. 理解并掌握依测度收敛的定义,理解Riesz定理,Lebesgue定理,会利用这两个定理去解决实际问题。
(五)积分论
1. 理解并熟练掌握Lebesgue积分的定义和等价条件,明确L-可积函数的种类;
2. 熟练掌握L-积分的性质:特别是Lebesgue控制收敛定理,Levi定理,逐项积分定理,积分的可数可加性,Fatou引理,能够熟练地利用这些性质解决实际问题;
3. 知道L-积分与R-积分的关系;理解Lebesgue积分的几何意义及Fubini定理。
(六)微分与不定积分
1. 掌握单调函数、有界变差函数的可微性和其微分的L-可积性,掌握不定积分的概念,绝对连续函数的概念,以及L-可积函数的Newton-Leibniz公式;
2. 理解分步积分法;
3. 了解Steiltjes积分。
(七)度量空间和赋范线性空间
1. 理解并熟练掌握度量空间中的相关概念和性质,特别是可分空间,完备度量空间,度量空间的完备化公理,压缩影射原理及应用;
理解并掌握赋范线性空间的定义,例子;掌握Banach空间的定义,例子和性质。
(八)有界线性算子和连续线性泛函
1. 理解并掌握有界线性算子,无界线性算子,连续线性泛函的定义和例子;
2.理解并掌握算子范数的定义,会求简单的算子范数;
3.理解并掌握有界线性算子空间及其共轭空间的定义,例子,及简单的性质,会求简单的线性算子空间的共轭空间;
4.了解广义函数的定义和例子。
(九)Hilbert空间
1. 掌握内积空间的定义,Hilbert空间的定义和例子,明确内积空间中范数、距离及正交的定义;
2. 理解并掌握Hilbert空间中的投影定理;
3. 掌握规范正交系,Fourier系数的定义,理解并掌握完全规范正交系,Fourier展开式的概念,掌握完全规范正交系的等价条件,判定定理,以及Hilbert空间中完全规范正交系的存在性;
4. 掌握Riesz表示定理,共轭算子的概念及性质;
5. 了解自伴算子,酉算子和正常算子的定义和简单性质。