高二81统计随机抽样直方图茎叶图知识点经典例题及练习题带答案

合集下载

新课标人教A版高二数学必修三 2.2 茎叶图、直方图统计图的应用 同步测试

新课标人教A版高二数学必修三 2.2 茎叶图、直方图统计图的应用 同步测试

茎叶图、直方图统计图的应用典题探究例1 某教师为了了解一次“普法”知识竞赛成绩情况,从800名学生中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成的频率分布表解答下列问题:(1)将频率分布表补全,并作出对应的频率分布直方图;(2)估计成绩在70.5~90.5分的学生的比例;(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?例2如图2是总体的一样本频率分布直方图,若[15,18)对应的频数为8,且[12,15)对应的小矩形面积为0.06.(1)求样本容量;(2)求样本在[12,15)内的频数;(3)求样本数据在[18,33)内的频率,并估计总体数据在[18,33)内的频率.例3某赛季甲、乙两名篮球运动员每场比赛的得分记录如下(甲运动员因伤缺席两场):甲运动员得分:13,51,23,8,26,38,16,33,14,28,39; 乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39. 用茎叶图表示两人的成绩,并由图指出哪位运动员的发挥更稳定?A 档(巩固专练)1.用样本频率分布估计总体分布的过程中,下列说法正确的是 ( ). A .总体容量越大,估计越精确 B .总体容量越小,估计越精确C .样本容量越大,估计越精确D .样本容量越小,估计越精确 2.下面对于茎叶图的说法正确的是( ).A .茎叶图不能保留原始数据B .茎叶图不能反映数据的分布情况 ( 40 , 50 ] , 5 ; ( 50 , 60 ] , 4 ; ( 60 , 70 ] , 2 ; 则样本在( 10 , 50 ]上的频率为 ( ). A.120B. 14C. 12D. 7104.下面茎叶图中数据的平均值为14.3,则x y +的值为( ). A .25 B .6 C .33 D .55.从一堆苹果中任取了20个,并得到它们的质量(单位:g )数据分布表如表:分组 [)90100, [)100110, [)110120, [)120130,[)130140, [)140150, 频数123101则这堆苹果中,质量小于120克的苹果数约占苹果总数的 %.6.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17岁~18岁的男生体重(kg) ,得到频率分布直方图如图. 那么,这100名学生中体重在[56.5,64.5]学生有______人.7.抽查某班的15名学生在40 min 的课堂上的平均听课时间(单位:min )得到的数据的茎叶图如图5所示,现又抽查了另外5位同学的平均听课时间,其数据为32,15,21,33,30,请将这5个数据追加在茎叶图中.8.为了解某地初三年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高),分组情况如表2 ,求出表中a ,m 的值.表2分组 频数 频率 60.5~70.5 0.16 70.5~80.5 10 80.5~90.5 18 0.3690.5~100.5 合计 50分组 147.5~155.5 155.5~163.5 163.5~171.5 171.5~179.5频数 62lm茎 叶 2x 8 1 35 7 3y 9 0 1 2 茎 叶 3 3 4 6 6 7 9 0 1 2 2 3 4 55 1239. 12个人戒烟前和戒烟五个星期后的体重如下(单位:kg ) 人 员 a b c d e f g h i j k l 戒烟前 67 80 69 52 52 60 55 54 64 60 48 49 戒烟后708168555762545267585251画出茎叶图并回答下列问题:(1)这12个人戒烟前的体重的中位数和这12个人戒烟五个星期后的体重的众数各是多少? (2)分别计算这12个人戒烟前和戒烟五个星期后的平均体重.B 档(提升精练)1.下面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图1可知 ( ).A .甲运动员的成绩好于乙运动员B .乙运动员的成绩好于甲运动员C .甲、乙两名运动员的成绩没有明显的差异D .甲运动员的最低得分为0分2.已知样本:10,8,6,10,8,13,11,10,12,7,8,9,12,9,11,10,9,10,11,12,那么频率为0.2的范围是( ).A. 5.5~7.5B. 7.5~9.5C. 9.5~11.5D.11.5~13.53.将一个容量为m 的样本分成3组,已知第一组的频数为10,第二、三组的频率分别为0.35和0.45,则m = .4.从某校的高一学生中采用系统抽样法选出30人测量其身高,数据的茎叶图如图4(单位:cm ):若高一年级共有600人,据上图估算身高在1.70 m 以上的大约有_____人.5. 为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5~18岁男生体重(单位:kg ),得到如图3所示的频率分布直方图:图3根据图3可得这100名学生中体重在[56.5,64.5)内的学生人数是______ _人.6.200辆汽车通过某一段公路的时速的频率分布直方图如图2,则时速在[50,60]的汽车大约有 辆.` 图2 图37.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果可用图3的条形图表示. 根据此图可得这50名学生这一天平均每人的课外阅读时间为____ h.甲 0 1 2 3 4 5 乙 8 247 199 36 250 32 875421 944 1 茎 叶 2 5 2 3 3 6 8 3 3 4 5 5 7 7 8 1 2 2 3 3 4 4 4 5 57 88 0 114 15 16 17 180.5 人数/个 时间/h20 10 50 1.0 1.5 2.0158.如图是某班50名学生身高的频率分布直方图(精确到1cm),从左边起第一、二、三、四个小长方形的高的比为1:3:5:1,那么身高150cm 以下(不含150cm)的学生有多少人?身高为160cm 及160cm 以上的学生占全班学生总数的百分比约为多少?9. 目前,中国的青少年视力水平下降已引起全社会的关注,为了调查了解某中学高三年级1 500名学生的视力情况,从中抽测了一部分学生的视力, 整理数据后,分析数据如下:(1)在这个问题中,总体是 ; (2)填写频率分布表中未完成的部分;(3)若视力为4.9,5.0,5.1均属正常,不需矫正, 试估计该校毕业年级学生视力正常的人数约为多少?10.在同等条件下,对30辆同一型号的汽车进行耗油1L 所行路程的试验,得到如下数据(单位:km ),以前两位数为茎,画出上面数据的茎叶图.(提示:茎叶图中只单侧有数据) 14.1 12.3 13.7 14.0 12.8 12.9 13.1 13.6 14.4 13.8 12.6 13.8 12.6 13.2 13.3 14.2 13.9 12.7 13.0 13.2 13.5 13.6 13.4 13.6 12.1 12.5 13.1 13.5 13.2 13.4C 档(跨越导练)1. 为了了解某校高三学生视力情况,随机抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失, 但知道前4组的频数,每一个与前一个的比为常数,后5组的频率,每一个与前一个的差为 常数,设最大的频率为a ,视力在4.6到5.0之 间的学生数为b ,则a,b 的值分别为( ). A.0.27,78 B. 0.27,83 C. 27,78 D. 2.7,832.在样本频率分布直方图中,共有11个小矩形,若中间一个的面积等于其余面积和的14,且样本容量为160,则中间一组的频数为 .3.为了了解高中学生的体能情况,抽了100名学生进行引体向上次数测试,将所得数据整理后,画出频率分布直方图如下图所示,图中从左到右依次为第1,2,3,4,5组.(1)第1组的频率为_____,频数为______.(2)若次数在5次(含5次)以上为达标,则达标率约为____.4.有一个容量为60的样本,(60名学生的数学考试成绩),分组情况如表3,将表格补全. 表3分组0.5~ 20.5[来源:学科网] 20.5~ 40.5 40.5~ 60.5 60.5~ 80.5 80.5~ 100.5 频数 3 6 12 频率0.35.图1为甲、乙两名同学某次考试中各科成绩(共9科,每科满分皆为100分)的茎叶图:分 组 频 数 频 率 3.95~4.252 0.04 6 0.12 4.55~4.85 23 4.85~5.15 5.15~5.451 0.02 合计1.00频率分步表频率 组距由图回答:(1)甲、乙同学的各科成绩的中位数分别为____、____;(2)若60分以下为不及格,大于等于80分为优秀,则乙同学共有_____门课程不及格,_____门课程优秀;(3)甲、乙两个同学相比较,_______偏科现象更明显,________成绩相对好一些.6.如图4,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)79.589.5 这一组的频数与频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格)7.有一个容量为50 的样本,其数据的茎叶图如图2:图2 (1)列出样本的频率分布表;(2)画出频率分布直方图和频率分布折线图.8. 从两个班中各随机的抽取10名学生,他们的数学成绩如下:甲班: 76 74 82 96 66 76 78 72 52 68 乙班:86 84 62 76 78 92 82 74 88 85画出茎叶图并分析两个班学生的数学学习情况.9.为了了解一大片经济林生长情况,随机测量其中100株的底部周长,得到如下数据:(单位:cm )135 98 102 110 99 125 97 117 113 110 109 124 87 131 97 105 123 111 103[来源:105129 126 97 100 115111 89 110 121 80 129 99 90 99 121 99 101 116 97 102 102 108 117 99 118 123 119 98 121 101 121 110 96 100 103 92 102 109 104 112 102 123 104 104[来12892 114 108 104 102111 106 117 104 109 120 121 104 108 118 123 107 111 91 100 108 101 95 107 101 106 119 97 126 108 113 102 103 104[来源:108(1)编制频率分布表;(2)绘制频率分布直方图; (3)估计该片经济林中底部周长小于100 cm 的树木约占多少?周长不小于120cm 的树木约占多少?甲 乙 4 5 6 7 8 9 105 9 59 8 6 07 42 3 8 5 3 8 9 3 81 3 4 5 6 6 6 7 8 8 8 8 9 9 92 0 0 0 01 1 2 2 2 2 23 3 34 4 45 5 56 6 6 67 7 78 8 8 93 0 1 1 2 3茎叶图、直方图统计图的应用参考答案典题探究例1解:(1)频率分布表如表所示:频率分布直方图如图所示:[来源:](2)估计成绩在70.5~90.5中的学生的比例为(0.20+0.36)×100℅=56℅.(3)利用组中值(区间的中点)进行估计,在被抽到的学生中获二等奖的人数是9+7=16人,占样本的比例是160.3250=,所以估计全校获二等奖的学生人数估计为800×32%=256人. 例2解:⑴设样本容量为n ,则37548⨯=n ,∴50=n . ⑵∵0.06×50=3 ,∴[12,15)内的频数为3. ⑶∵[15,18)上的频率为2543754=⨯,∴在[18,33)上的频率为78.006.02541=--,∴估计总体数据在[18,33)内的频率为0.78.例3解:茎叶图表示为下图,由茎叶图可知:甲运动员有911[来源:Z|xx|] 的得分集中在茎1,2,3上,乙运动员有1013的得 分集中在茎2,3,4上,并且乙运动员的得分相对集中,说明乙运动员的发挥更稳定. [来源:]例4解:(1)甲网站的极差为:73865-=;乙网站的极差为:71566-=; (2)甲网站点击量[]10,40间的频率是40.2857114≈; (3)从数据的分布情况来看,甲网站更受欢迎.演练方阵A 档(巩固专练)1.【答案】 C2.【答案】 D3.【答案】 D[解析]23450.720+++=4.【答案】 D[解析]由已知可得8+2+x +11+15+13+17+23+29+()20y +=143,解得5x y +=. 5.【答案】 3 [解析]设对应的数据为x ,则67652x +=,解得63x =. 6.【答案】30.[解析]样本容量为20,由表可以算得质量大于或等于120g .的苹果数为14只,所以质量小于120g .的苹果数约占苹果总数的百分比为20140.3.20-= 7. 【答案】40. [解析] 体重在〔56.5,64.5〕的频率为,所以所分组频数 频率 60.5~70.5 8 0.16 70.5~80.5 10 0.20 80.5~90.5 18 0.36 90.5~100.514 0.28 合计501分数 频率 组距 _0 . 020 _0 . 028 _0 . 036 _0 . 016 _ 100 . 5_ 90 . 5 _ 80 . 5 _ 70 . 5 _ 60 . 5 _0 . 024 _0 . 032 甲 乙 8 0 6 4 3 1 2 5 8 6 3 2 4 5 9 8 3 3 1 1 6 6 7 9 4 4 9 1 5 0占人数为1000.440⨯=(人). 8.[解析][来源:学+科+网Z+X+X+K]9.[解析]a=0.45,m=6.10. [解析](1)12个人戒烟前的体重中位数为57.5 (kg).12个人戒烟五个星期后的体重众数为:52 (kg). (2)12个人戒烟前的平均体重为:1(484952525455606064676980)59.212+++++++++++≈(kg) 12个人戒烟五个星期后的平均体重为:1(515252545557586267687081)60.612+++++++++++≈(kg) B 档(提升精练)1.【答案】A 2.【答案】D. [解析]共有20个数据,11.5~13.5范围内的有12,12,12,13,共4个,故选D. 3.【答案】50.[解析]由题意可知,第一组的频率为1-0.35-0.45=0.2,所以m=100.2=50. 4.【答案】300. [解析]根据茎叶图,30人中身高在1.70 m 以上的有15人,据此可估计该高一学生中身高在1.70 m 以上的学生比例约为50%,所以其人数约为60050%300⨯=. 5.【答案】40.6.【答案】60.[来源:学。

高中数学统计抽样方法精选题目(附答案)

高中数学统计抽样方法精选题目(附答案)

高中数学统计抽样方法精选题目(附答案)一、抽样方法1.简单随机抽样(1)特征:①一个一个不放回的抽取;②每个个体被抽到可能性相等.(2)常用方法:①抽签法;②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.1.(1)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15(2)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.[解析](1)从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n组抽到的号码为a n=9+30(n-1)=30n-21,由451≤30n-21≤750,得23615≤n≤25710,所以n=16,17,…,25,共有25-16+1=10人.(2)小学中抽取30×150150+75+25=18所学校;从中学中抽取30×75150+75+25=9所学校.[答案](1)C(2)189注:1.系统抽样的特点(1)适用于元素个数很多且均衡的总体. (2)各个个体被抽到的机会均等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样. (4)如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn . 2.与分层抽样有关问题的常见类型及解题策略(1)确定抽样比.可依据各层总数与样本数之比,确定抽样比.(2)求某一层的样本数或总体个数.可依据题意求出抽样比,再由某层总体个数(或样本数)确定该层的样本(或总体)数.(3)求各层的样本数.可依据题意,求出各层的抽样比,再求出各层样本数. 2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法解析:选C 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法. 3.某学校高一、高二、高三3个年级共有430名学生,其中高一年级学生160名,高二年级学生180名,为了解学生身体状况,现采用分层抽样方法进行调查,在抽取的样本中高二学生有32人,则该样本中高三学生人数为________.解析:高三年级学生人数为430-160-180=90,设高三年级抽取x 人,由分层抽样可得32180=x90,解得x =16. 答案:164.某单位有职工960人,其中青年职工420人,中年职工300人,老年职工240人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为________.解析:因为分层抽样的抽样比应相等,所以420960=14样本容量,样本容量=960×14420=32.答案:32二、用样本的频率分布估计总体的频率分布1.频率分布直方图2.茎叶图5.(1)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.(2)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].①求图中a的值;②根据频率分布直方图,估计这100名学生语文成绩的平均分;③若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 [为50×0.18=9.答案:9(2)解:①由频率分布直方图可知(0.04+0.03+0.02+2a)×10=1.所以a=0.005.②该100名学生的语文成绩的平均分约为x=0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.③由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:分数段[50,60)[60,70)[70,80)[80,90)x 5403020x∶y 1∶12∶13∶44∶5y 5204025100-(5+20+40+25)=10.注:与频率分布直方图有关问题的常见类型及解题策略(1)已知频率分布直方图中的部分数据,求其他数据,可根据频率分布直方图中的数据求出样本与整体的关系,利用频率和等于1就可求出其他数据.(2)已知频率分布直方图,求某种范围内的数据,可利用图形及某范围结合求解.6.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()A.0.2 B.0.4C.0.5 D.0.6解析:选B由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4,故选B.7.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示.根据此图,估计该校2 000名高中男生中体重大于70.5公斤的人数为()A .300B .360C .420D .450解析:选B 样本中体重大于70.5公斤的频率为: (0.04+0.034+0.016)×2=0.090×2=0.18.故可估计该校2 000名高中男生中体重大于70.5公斤的人数为:2 000×0.18=360(人). 8.某商场在庆元宵节促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.解析:总销售额为2.50.1=25(万元),故11时至12时的销售额为0.4×25=10(万元).答案:10三、用样本的数字特征估计总体的数字特征有关数据的数字特征9.(1)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53(2)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差(3)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)[解析] (1)从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56,故选择A.(2)由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.故选C.(3)假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4,则⎩⎨⎧x 1+x 2+x 3+x44=2,x 2+x32=2,∴⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4, 又s = 14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2] =12(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2=122[(x 1-2)2+(x 2-2)2]=1, ∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.[答案] (1)A (2)C (3)1,1,3,3 注:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.10.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:选B 法一:∵x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,∴x 甲<x 乙,又s 2甲=9+1+0+4+45=185,s 2乙=4+1+0+1+45=2,∴s 甲>s 乙.故可判断结论①④正确.法二:甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.11.甲和乙两个城市去年上半年每月的平均气温(单位:℃)用茎叶图记录如图所示,根据茎叶图可知,两城市中平均温度较高的城市是__________,气温波动较大的城市是__________.解析:根据题中所给的茎叶图可知,甲城市上半年的平均温度为9+13+17×2+18+226=16,乙城市上半年的平均温度为12+14+17+20+24+276=19,故两城市中平均温度较高的是乙城市,观察茎叶图可知,甲城市的温度更加集中在峰值附近,故乙城市的温度波动较大.答案:乙 乙12.甲、乙两台机床同时加工直径为100 mm 的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103; 乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差;(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求. 解:(1)x 甲=99+100+98+100+100+1036=100(mm),x 乙=99+100+102+99+100+1006=100(mm),s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73(mm 2), s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1(mm 2).(2)因为s 2甲>s 2乙,说明甲机床加工零件波动比较大,因此乙机床加工零件更符合要求.四、线性回归1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关:①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b x .13.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)[解] (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80.所以a ^=y -b ^x =80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1 000 =-20(x -8.25)2+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润. 注:(1)线性回归分析就是研究两组变量间线性相关关系的一种方法,通过对统计数据的分析,可以预测可能的结果,这就是线性回归方程的基本应用,因此利用最小二乘法求线性回归方程是关键,必须熟练掌握线性回归方程中两个重要估计量的计算.(2)回归直线方程恒过点(x ,y ).14.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?解:(1)将6组数据按月份顺序编号为1,2,3,4,5,6,从中任取两组数据,基本事件构成的集合为Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}共15个基本事件,设抽到相邻两个月的事件为A ,则A ={(1,2),(2,3),(3,4),(4,5),(5,6)}共5个基本事件,∴P (A )=515=13.(2)由表中数据求得x =11,y =24,∑i =14x i y i =1 092,∑i =14x 2i =498.代入公式可得b ^=187.再由a ^=y -b ^x ,求得a ^=-307,所以y 关于x 的线性回归方程为 y ^=187x -307.(3)当x =10时,y ^=1507,⎪⎪⎪⎪1507-22=47<2; 同样,当x =6时,y ^=787,⎪⎪⎪⎪787-12=67<2. 所以该小组所得线性回归方程是理想的.。

统计有关经典例题解析、及高考题50道,带答案

统计有关经典例题解析、及高考题50道,带答案

【经典例题】【例1】(2008广东).为了调查某厂工人生产某种产品的能力,随机抽 查了20位工人某天生产该产品的数量.产品数量的分组区间为[)45,55,[)[)[)55,65,65,75,75,85,[)85,95由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[)55,75的 人数是 . 【答案】13【解析】20(0.06510)13⨯⨯=,故答案为13.【例2】(2009山东)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的 产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ).A. 90B.75C. 60D.45【答案】A【解析】产品净重小于100克的概率为(0.050+0.100)×2=0.300,已知样本中产品净重小于100克的个数是36,设样本容量为n ,则300.036=n,所以120=n ,净重大于或等于98克并且小于104克的产品的概率为(0.100+0.150+0.125)×2=0.75,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90.故选A. 【例3】(2009上海)在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。

根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A. 甲地:总体均值为3,中位数为4B. 乙地:总体均值为1,总体方差大于0C. 丙地:中位数为2,众数为3D. 丁地:总体均值为2,总体方差为3 【答案】D【解析】根据信息可知,连续10天内,每天的新增疑似病例不能有超过7的数,选项A 中,中位数为4,可能存在大于7的数;同理,在选项C 中也有可能;选项B 中的总体方差大于0,叙述不明确,如果数目太大,也有可能存在大于7的数;选项D 中,根据方差公式,如果有大于7的数存在,那么方差不会为3,故答案选D. 【例4】(2009湖北)下图是样本容量为200的频率分布直方图。

高二数学--概率与统计-(1)

高二数学--概率与统计-(1)

高二数学 概率与统计考试要求1.统计(1)随机抽样① 理解随机抽样的必要性和重要性.② 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法. (2)总体估计① 了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.② 理解样本数据标准差的意义和作用,会计算数据标准差. ③ 能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释. ④ 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.⑤ 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题. (3)变量的相关性① 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系. ② 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 不要求记忆线性回归方程系数公式()()()1122211,nniiiii i nniii i x ynx y xxyyb a y bxxnxxx-------===---∑∑∑∑用最小二乘法求线性回归方程系数公式:7.概率(1)事件与概率① 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.② 了解两个互斥事件的概率加法公式. (2)古典概型①理解古典概型及其概率计算公式.②会计算一些随机事件所含的基本事件数及事件发生的概率. (3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率. ②了解几何概型的意义.1.课本概念与定理详解(1)随机抽样①简单随机抽样特点为从总体中逐个抽取,适用范围:总体中的个体数较少. ②系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取,适用范围:总体中的个体数较多.③分层抽样特点是将总体分成几层,分层进行抽取,适用范围:总体由差异明显的几部分组成.(2)众数、中位数、平均数①众数:在样本数据中,出现次数最多的那个数据.②中位数:在样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数.在直方图中取频率为0.5处的频数。

高二8-1统计(随机抽样、直方图、茎叶图)知识点、经典例题及练习题带答案

高二8-1统计(随机抽样、直方图、茎叶图)知识点、经典例题及练习题带答案

环球雅思教育学科教师讲义讲义编号: ______________ 副校长/组长签字:签字日期:【考纲说明】1、理解随机抽样的必要性和重要性,了解分布、样本数据标准差的意义和作用,理解用样本估计总体的思想。

2、会画频率分布直方图、频率折线图、茎叶图,会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题【趣味链接】U2合唱团在17分钟内得赶到演唱会场,途中必需跨过一座桥,四个人从桥的同一端出发,你得帮助他们到达另一端,天色很暗,而他们只有一只手电筒。

一次同时最多可以有两人一起过桥,而过桥的时候必须持有手电筒,所以就得有人把手电筒带来带去,来回桥两端。

手电筒是不能用丢的方式来传递的。

四个人的步行速度各不同,若两人同行则以较慢者的速度为准。

BONO需花1分钟过桥,EDGE需花2分钟过桥,ADAM需花5分钟过桥,LARRY需花10分钟过桥,他们要如何在17分钟内过桥呢?【知识梳理】一、抽样方法与总体分布的估计1、随机抽样(1)总体:在统计学中, 把研究对象的全体叫做总体,把每个研究对象叫做个体,把总体中个体的总数叫做总体容量.总体与个体之间的关系类似于集合与元素的关系.(2)样本:从总体中随机抽取一部分个体叫做总体的一个样本,样本中个体的数目称为样本的容量,样本和总体之间的关系类似于子集和集合之间的关系.(3)简单随机抽样:一般地,从元素个数为N 的总体中不放回地抽取容量为的样本,如果每一次抽取时总体中的各个个体被抽到的可能性是相同的,那么这种抽样方法叫简单随机抽样,这样抽取的样本,叫做简单随机样本. 常用的方法有抽签法和随机数表法.(4)系统抽样:当总体中的个体比较多时,将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分中抽取一个个体,得到所需要的样本,这样的抽样方法称为系统抽样,也称作等距抽样.(5)分层抽样:当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,可将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样. 2、频率分布直方图与茎叶图(1)频率分布:样本中所有数据(或数据组)的频数和样本容量的比就是该数据的频率,所有数据(或数据组)的频率的分布变化规律叫做频率分布,可以用频率分布表、频率分布折线图、茎叶图、频率分布直方图来表示. (2)频率折线图:如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图。

高中数学涉及的统计学知识典型例题分析

高中数学涉及的统计学知识典型例题分析

高中数学涉及的统计学知识典型例题分析一、基础知识:(一)随机抽样:1、抽签法:把总体中的N 个个体编号,把号码写在号签上,将号签放在一个容器中搅拌均匀后,每次从中抽取一个号签,连续抽取n 次,就得到容量为n 的样本2、系统抽样:也称为等间隔抽样,大致分为以下几个步骤:(1)先将总体的N 个个体编号(2)确定分段间隔k ,设样本容量为n ,若N n 为整数,则N k n= (3)在第一段中用简单随机抽样确定第一个个体编号l ,则后面每段所确定的个体编号与前一段确定的个体编号差距为k ,例如:第2段所确定的个体编号为l k +,第m 段所确定的个体编号为()1l m k +−,直至完成样本注:(1)若N n不是整数,则先用简单随机抽样剔除若干个个体,使得剩下的个体数能被n 整除,再进行系统抽样。

例如501名学生所抽取的样本容量为10,则先随机抽去1个,剩下的500个个体参加系统抽样(2)利用系统抽样所抽出的个体编号排成等差数列,其公差为k3、分层抽样:也称为按比例抽样,是指在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本。

分层抽样后样本中各层的比例与总体中各个层次的比例相等,这条结论会经常用到(二)频率分布直方图:1、频数与频率(1)频数:指一组数据中个别数据重复出现的次数或一组数据在某个确定的范围内出现的数据的个数.(2)频率:是频数与数据组中所含数据的个数的比,即频率=频数/总数(3)各试验结果的频率之和等于12、频率分布直方图:若要统计每个小组数据在样本容量所占比例大小,则可通过频率分布表(表格形式)和频率分布直方图(图像形式)直观的列出(1)极差:一组数据中最大值与最小值的差(2)组距:将一组数据平均分成若干组(通常5-12组),则组内数据的极差称为组距,所以有组距=极差/组数(3)统计每组的频数,计算出每组的频率,便可根据频率作出频率分布直方图(4)在频率分布直方图中:横轴按组距分段,纵轴为“频率/组距”(5)频率分布直方图的特点:②因为各试验结果的频率之和等于1,所以可得在频率分布直方图中,各个矩形的面积和为1 (三)茎叶图:通常可用于统计和比较两组数据,其中茎是指中间的一列数,通常体现数据中除了末位数前面的其他数位,叶通常代表每个数据的末位数。

高三数学《概率统计(文科)》练习

高三数学《概率统计(文科)》练习

文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率()()1,0∈AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表. A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表 满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:()()()()()d b c a d c b a bc d a n K ++++-=22满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意()02k K P ≥ 0.10 0.05 0.01 0.005 0k 2.706 3.841 6.635 7.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ .18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分区间 [25,30) [30,35) [35,40) [40,45) [45,50]人数 25 a b(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.31B.21C.32D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.107 B.85 C.83 D.103 22.在区间[-2,3]上随机选取一个数x ,则1≤x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A .1ˆ-=x yB .1ˆ+=x yC .x y 2188ˆ+= D .176ˆ=y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程a x b yˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年 份 2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程a t b yˆˆˆ+=; (Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程a t b yˆˆˆ+=中,t b y atn tyt n y t b ni ini ii ˆˆ,ˆ1221-=--=∑∑==.28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算y x ,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算()()()()()d b c a d c b a bc ad n K ++++-=22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:a x b y ˆˆˆ+=,其中()()()x b y ax x y y x x b ni ini iiˆˆ,ˆ121-=---=∑∑==; 90,93==y x ,()()()30,4051251=--=-∑∑==y y x x x x ii ii i .30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁) 频数 频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350[35,40) 30 b[40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。

高二数学统计试题答案及解析

高二数学统计试题答案及解析

高二数学统计试题答案及解析1.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为()A.10B.9C.8D.7【答案】B【解析】分层抽样是按比例进行抽样,据题中所给的学生人数比,可设高三学生中抽取的人数应为,可得,得.故本题选.【考点】分层抽样2.设某大学的女生体重(单位:)与身高(单位:)具有线性相关关系,根据一组样本数据(),用最小二乘法建立的回归方程为,则下列结论中不正确的是()A.与具有正的线性相关关系B.回归直线过样本点的中心C.若该大学某女生身高增加,则其体重约增加D.若该大学某女生身高为,则可断定其体重必为【答案】D【解析】 A正确;回归直线过样本点中心,故B正确;某女生身高增加,则其体重约增加,故D正确;C中体重为预测值,故C错误。

本题选C。

3.已知变量之间具有线性相关关系,其散点图如图所示,则其回归方程可能为()A.B.C.D.【答案】B【解析】根据散点图的带状分布特点判断回归方程的斜率和截距.解:因为散点图由左上方向右下方成带状分布,故线性回归方程斜率为负数,排除A,C.由于散点图的带状区域经过y轴的正半轴,故线性回归方程的截距为正数,排除D.故选:B.【考点】线性回归方程.4.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则的值是()A.10B.11C.12D.13【答案】C【解析】:∵甲组学生成绩的平均数是88,∴由茎叶图可知78+86+84+88+95+90+m+92=88×7,∴m=3又乙组学生成绩的中位数是89,∴n=9,∴m+n=12【考点】茎叶图5.下表提供了某厂节能降耗技术改造后,在生产A产品过程中记录的产量x(吨)与相应的生产耗能y(吨)的几组相对应数据.根据上表提供的数据,求出y关于x的线性回归直线方程为,那么表中t=__________.【答案】3【解析】由题意可知,因为回归直线方程,经过样本中心,所以=0.7×4.5+0.35,解得t=3【考点】线性回归方程6.某考察团对全国10大城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查发现,y与x具有相关关系,回归方程为=0.66x+1.562.若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为()A.83%B.72%C.67%D.66%【答案】A【解析】由题意可知,当居民人均消费水平为千元时,则,解答,即职工人均工资水平为千元,所以人均消费额占人均工资收入的百分比为,故选A.【考点】回归直线方程.7.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否达标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.【答案】1211【解析】根据系统抽样性质可知,分组间隔,若第一组抽出的号码是,则第六十一组抽出的号码为.【考点】系统抽样.8.某射击选手连续射击5枪命中的环数分别为:9.7,9.9,10.1,10.2,10.1,则这组数据的方差为________.【答案】0.032【解析】平均数方差【考点】方差9.某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为的样本,已知从高中生中抽取了70人,则为()A.100B.150C.200D.250【答案】A【解析】根据已知可得:,故选择A【考点】分层抽样10.潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。

(完整版)高中数学统计、统计案例知识点总结和典例

(完整版)高中数学统计、统计案例知识点总结和典例

统计一.简单随机抽样:抽签法和随机数法1.一般地,设一个总体含有N个个体(有限),从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等(n/N),就把这种抽样方法叫做简单随机抽样。

2.一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本,这种抽样方法叫做抽签法。

抽签法的一般步骤:a、将总体的个体编号。

b、连续抽签获取样本号码。

3. 利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法。

随机数表法的步骤:a、将总体的个体编号。

b、在随机数表中选择开始数字。

c、读数获取样本号码。

4. 抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型。

二.系统抽样:1.一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。

系统抽样的一般步骤:(1)采用随机抽样的方法将总体中的N个个编号。

(2)将整体按编号进行分段,确定分段间隔k=N/n。

(k∈N,L≤k).(3)在第一段用简单随机抽样确定起始个体的编号L(L∈N,L≤k)。

(4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体编号L+K,再加上K得到第3个个体编号L+2K,这样继续下去,直到获取整个样本。

在确定分段间隔k时应注意:分段间隔k为整数,当N/n不是整数时,应采用等可能剔除的方剔除部分个体,以获得整数间隔k。

三.分层抽样:1.一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。

必修2数学第九章统计知识点

必修2数学第九章统计知识点

必修2数学第九章统计知识点一、随机抽样。

1. 简单随机抽样。

- 定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤ N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

- 常用方法:抽签法和随机数法。

- 抽签法:把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

- 随机数法:利用随机数表、随机数生成器或统计软件来产生随机数,根据随机数抽取样本。

2. 系统抽样。

- 定义:将总体分成均衡的若干部分,然后按照预先规定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样。

- 步骤:- 先将总体的N个个体编号。

- 确定分段间隔k,对编号进行分段,当(N)/(n)(n是样本容量)是整数时,取k = (N)/(n);当(N)/(n)不是整数时,先从总体中随机地剔除几个个体,使得总体中剩余的个体数N'能被n整除,这时k=(N')/(n)。

- 在第1段用简单随机抽样确定第一个个体编号l(l≤ k)。

- 按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号(l + k),再加k得到第3个个体编号(l+2k),依次类推,直到获取整个样本。

3. 分层抽样。

- 定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样。

- 步骤:- 根据已有的信息,将总体分成互不相交的层。

- 计算各层中个体的个数与总体个数的比。

- 按各层个体数占总体数的比确定各层应抽取的样本容量。

- 在每一层中进行简单随机抽样或系统抽样,获取相应的样本个体,合在一起得到分层抽样的样本。

- 特点:使样本具有较强的代表性,而且在各层抽样时,可灵活选用不同的抽样方法。

二、用样本估计总体。

高中数学 统计 经典例题和巩固练习(及详解)

高中数学 统计 经典例题和巩固练习(及详解)

高中数学 统计总复习(例题、巩固练习、例题和巩固练习详解)【典型例题】类型一:随机抽样例1.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法举一反三:【变式1】甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生( )A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人【变式2】一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为l ,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 小组中抽取的号码个位数字与m+k 的个位数字相同.若m=6,则在第7组中抽取的号码是 .【变式3】某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的41,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定(Ⅰ)游泳组中,青年人、中年人、老年人分别所占的比例; (Ⅱ)游泳组中,青年人、中年人、老年人分别应抽取的人数.类型二:用样本估计总体例2.一次科技知识竞赛,两组学生成绩统计如下表:已经算得两个组的平均数都是80分,请根据你所学统计知识,进一步判断这两个组这次竞赛中的成绩谁优谁次,并说明理由。

统计案例分析及典型例题

统计案例分析及典型例题

统计案例分析及典型例题§11.1 抽样方法基础自测1.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,总体的一个样本是 .答案 200个零件的长度2.某城区有农民、工人、知识分子家庭共计2 004户,其中农民家庭1 600户,工人家庭303户,现要从中抽取容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法:①简单随机抽样,②系统抽样,③分层抽样中的 .答案①②③3.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为 .答案3,9,184.某工厂生产A、B、C三种不同型号的产品,其相应产品数量之比为2∶3∶5,现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,那么此样本的容量n= .答案80例1某大学为了支援我国西部教育事业,决定从2007应届毕业生报名的18名志愿者中,选取6人组成志愿小组.请用抽签法和随机数表法设计抽样方案.解抽签法:第一步:将18名志愿者编号,编号为1,2,3, (18)第二步:将18个号码分别写在18张外形完全相同的纸条上,并揉成团,制成号签;第三步:将18个号签放入一个不透明的盒子里,充分搅匀;第四步:从盒子中逐个抽取6个号签,并记录上面的编号;第五步:所得号码对应的志愿者,就是志愿小组的成员.随机数表法:第一步:将18名志愿者编号,编号为01,02,03, (18)第二步:在随机数表中任选一数作为开始,按任意方向读数,比如第8行第29列的数7开始,向右读;第三步:从数7开始,向右读,每次取两位,凡不在01—18中的数,或已读过的数,都跳过去不作记录,依次可得到12,07,15,13,02,09.第四步:找出以上号码对应的志愿者,就是志愿小组的成员.例2 某工厂有1 003名工人,从中抽取10人参加体检,试用系统抽样进行具体实施. 解 (1)将每个人随机编一个号由0001至1003. (2)利用随机数法找到3个号将这3名工人剔除. (3)将剩余的1 000名工人重新随机编号由0001至1000. (4)分段,取间隔k =100001=100将总体均分为10段,每段含100个工人.(5)从第一段即为0001号到0100号中随机抽取一个号l .(6)按编号将l ,100+l ,200+l ,…,900+l 共10个号码选出,这10个号码所对应的工人组成样本. 例3 (14分)某一个地区共有5个乡镇,人口3万人,其中人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.解 应采取分层抽样的方法.3分过程如下:(1)将3万人分为五层,其中一个乡镇为一层.5分(2)按照样本容量的比例随机抽取各乡镇应抽取的样本. 300×153=60(人);300×152=40(人); 300×155=100(人);300×152=40(人); 300×153=60(人),10分因此各乡镇抽取人数分别为60人,40人,100人,40人,60人.12分(3)将300人组到一起即得到一个样本.14分练习:一、填空题1.(安庆模拟)某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现分层抽取容量为45的样本,那么高一、高二、高三年级抽取的人数分别为 .答案15,10,202.某牛奶生产线上每隔30分钟抽取一袋进行检验,则该抽样方法为①;从某中学的30名数学爱好者中抽取3人了解学习负担情况,则该抽样方法为②.那么①,②分别为 .答案系统抽样,简单随机抽样3.下列抽样实验中,最适宜用系统抽样的是(填序号).①某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样②某厂生产的2 000个电子元件中随机抽取5个入样③从某厂生产的2 000个电子元件中随机抽取200个入样④从某厂生产的20个电子元件中随机抽取5个入样答案③4.(2013·重庆文)某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是 .答案分层抽样法5.某中学有高一学生400人,高二学生300人,高三学生200人,学校团委欲用分层抽样的方法抽取18名学生进行问卷调查,则下列判断不正确的是(填序号).①高一学生被抽到的概率最大②高三学生被抽到的概率最大③高三学生被抽到的概率最小④每名学生被抽到的概率相等答案①②③6.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 .答案 67.(天津文,11)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工人.答案108.将参加数学竞赛的1 000名学生编号如下0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,…,0020,从第一部分随机抽取一个号码为0015,则第40个号码为 . 答案 07959.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人,上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,如何抽取? 解 用分层抽样抽取. (1)∵20∶100=1∶5, ∴510=2,570=14,520=4∴从副处级以上干部中抽取2人,一般干部中抽取14人,从工人中抽取4人.(2)因副处级以上干部与工人人数较少,可用抽签法从中分别抽取2人和4人;对一般干部可用随机数表法抽取14人.(3)将2人、4人、14人编号汇合在一起就得到了容量为20的样本.10.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样法和分层抽样法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n .解 总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为n36,分层抽样的比例是36n ,抽取工程师36n ×6=6n (人),抽取技术人员36n ×12=3n (人),抽取技工36n×18=2n (人).所以n 应是6的倍数,36的约数即n =6,12,18,36.当样本容量为(n +1)时,在总体中剔除1人后还剩35人,系统抽样的间隔为135+n ,因为135+n 必须是整数,所以n 只能取6,即样本容量为6.总体分布的估计与总体特征数的估计基础自测1.一个容量为20的样本,已知某组的频率为0.25,则该组的频数为 . 答案 52.(2008·山东理)右图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为 . 答案 303.63.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a ,b )是其中的一组,抽查出的个体在该组上的频率为m ,该组在频率分布直方图的高为h ,则|a -b |= . 答案 hm4.(2008·山东文,9)从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为 .分数 5 4 3 2 1 人数2010303010答案 51025.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg ),得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5,64.5)的学生人数是 . 答案 40典型例题:例1 在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交 作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高? 解 (1)第三组的频率为1464324+++++=51又因为第三组的频数为12,∴参评作品数为5112=60.(2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有60×1464326+++++=18(件).(3)第四组的获奖率是1810=95,第六组上交的作品数量为60×1464321+++++=3(件),∴第六组的获奖率为32=96,显然第六组的获奖率高.例4(14分)某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30 min 抽取一包产品,称其重量,分别 记录抽查数据如下: 甲:102, 101, 99, 98, 103, 98,99;乙:110, 115, 90,85,75,115, 110.(1)这种抽样方法是哪一种? (2)将这两组数据用茎叶图表示;(3)将两组数据比较,说明哪个车间产品较稳定. 解 (1)因为间隔时间相同,故是系统抽样. 2分(2)茎叶图如下:5分(3)甲车间: 平均值:1x =71(102+101+99+98+103+98+99)=100,7分方差:s 12=71[(102-100)2+(101-100)2+…+(99-100)2]≈3.428 6.9分乙车间:平均值:2x =71(110+115+90+85+75+115+110)=100,11分方差:s 22=71[(110-100)2+(115-100)2+…+(110-100)2]≈228.571 4.13分∵1x =2x ,s 12<s 22,∴甲车间产品稳定.14分练习:1.为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生人数是多少?(3)在这次测试中,学生跳绳次数的中位数落在第几小组内? 解 (1)第四小组的频率=1-(0.1+0.3+0.4)=0.2. (2)设参加这次测试的学生人数是n , 则有n =第一小组频率第一小组频数=5÷0.1=50(人).(3)因为0.1×50=5,0.3×50=15,0.4×50=20,0.2×50=10,即第一、第二、第三、第四小组的频数分别为5、15、20、10,所以学生跳绳次数的中位数落在第三小组内. 练习:一、填空题1.下列关于频率分布直方图的说法中不正确的是 .①直方图的高表示取某数的频率②直方图的高表示该组上的个体在样本中出现的频率③直方图的高表示该组上的个体数与组距的比值④直方图的高表示该组上的个体在样本中出现的频率与组距的比值答案①②③2.甲、乙两名新兵在同样条件下进行射击练习,每人打5发子弹,命中环数如下:甲:6,8,9,9,8;乙:10,7,7,7,9.则这两人的射击成绩比稳定.答案甲乙4.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果分成六组:右图是得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可分析出x和y分别为 .答案0.9, 356.甲、乙两名同学在5次体育测试中的成绩统计的茎叶图如图所示,若甲、乙两人的平均成绩分别是x甲、x乙,则x甲x乙,比稳定.答案<乙甲7.(上海,9)已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a、b的取值分别是 .答案10.5、10.5二、解答题10.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? (3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由. 解 (1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为:391517424+++++=0.08.又因为频率=样本容量第二小组频数, 所以样本容量=第二小组频率第二小组频数=08.012=150. (2)由图可估计该学校高一学生的达标率约为39151742391517++++++++×100%=88%.(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.线性回归方程1.下列关系中,是相关关系的为 (填序号). ①学生的学习态度与学习成绩之间的关系; ②教师的执教水平与学生的学习成绩之间的关系; ③学生的身高与学生的学习成绩之间的关系; ④家庭的经济条件与学生的学习成绩之间的关系. 答案 ①②2.为了考察两个变量x 、y 之间的线性相关关系,甲、乙两同学各自独立地做10次和15次试验,并利用最小二乘法求得回归直线分别为l 1和l 2.已知在两人的试验中发现变量x 的观测数据的平均值恰好基础自测相等,都为s,变量y的观测数据的平均值也恰好相等,都为t,那么下列说法中正确的是(填序号).①直线l1,l2有交点(s,t)②直线l1,l2相交,但是交点未必是(s,t)③直线l1,l2由于斜率相等,所以必定平行④直线l1,l2必定重合答案①3.下列有关线性回归的说法,正确的是(填序号).①相关关系的两个变量不一定是因果关系②散点图能直观地反映数据的相关程度③回归直线最能代表线性相关的两个变量之间的关系④任一组数据都有回归直线方程答案①②③4.下列命题:①线性回归方法就是由样本点去寻找一条贴近这些样本点的直线的数学方法;②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归直线yˆ=bˆx+aˆ及回归系数bˆ,可以估计和预测变量的取值和变化趋势.其中正确命题的序号是 .答案①②③5.已知回归方程为yˆ=0.50x-0.81,则x=25时,yˆ的估计值为 .答案11.69例1下面是水稻产量与施化肥量的一组观测数据:施化肥量15 20 25 30 35 40 45水稻产量320 330 360 410 460 470 480(1)将上述数据制成散点图;(2)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而增长吗?解(1)散点图如下:(2)从图中可以发现施化肥量与水稻产量具有线性相关关系,当施化肥量由小到大变化时,水稻产量由小变大,图中的数据点大致分布在一条直线的附近,因此施化肥量和水稻产量近似成线性相关关系,但水稻产量只是在一定范围内随着化 肥施用量的增加而增长.例2 (14分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:家庭编号 12345678910x i (收入)千元 0.8 1.1 1.3 1.5 1.5 1.8 2.0 2.2 2.4 2.8y i (支出)千元0.7 1.0 1.2 1.0 1.3 1.5 1.3 1.7 2.0 2.5(1)判断家庭平均收入与月平均生活支出是否相关? (2)若二者线性相关,求回归直线方程. 解 (1)作出散点图:5分观察发现各个数据对应的点都在一条直线附近,所以二者呈线性相关关系. 7分(2)x =101 (0.8+1.1+1.3+1.5+1.5+1.8+2.0+2.2+2.4+2.8)=1.74,y =101(0.7+1.0+1.2+1.0+1.3+1.5+1.3+1.7+2.0+2.5)=1.42,9分bˆ=∑∑==-•-ni ini i i x n xyx n y x 1221≈0.813 6,a ˆ=1.42-1.74×0.813 6≈0.004 3,13分∴回归方程y ˆ=0.813 6x +0.004 3. 14分例3 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨)标准煤的几组对照数据.x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程yˆ=b ˆx +a ˆ; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 解 (1)散点图如下图:(2)x =46543+++=4.5,y =45.4435.2+++=3.5∑=41i ii yx =3×2.5+4×3+4×5+6×4.5=66.5.∑=412i ix=32+42+52+62=86∴bˆ=24124144x x yx yx i i i ii -•-∑∑===25.44865.45.345.66⨯-⨯⨯-=0.7aˆ =y -b ˆx =3.5-0.7×4.5=0.35. ∴所求的线性回归方程为yˆ=0.7x +0.35. (3)现在生产100吨甲产品用煤y =0.7×100+0.35=70.35,∴降低90-70.35=19.65(吨)标准煤.1.科研人员为了全面掌握棉花新品种的生产情况,查看了气象局对该地区年降雨量与年平均气温的统计数据(单位分别是mm,℃),并作了统计.年平均气温 12.51 12.84 12.84 13.69 13.33 12.74 13.05 年降雨量748542507813574701432(1)试画出散点图;(2)判断两个变量是否具有相关关系. 解 (1)作出散点图如图所示,(2)由散点图可知,各点并不在一条直线附近,所以两个变量是非线性相关关系.2.在研究硝酸钠的可溶性程度时,对于不同的温度观测它在水中的溶解度,得观测结果如下:温度(x ) 0 10 20 50 70 溶解度(y )66.776.085.0112.3128.0由资料看y 与x 呈线性相关,试求回归方程. 解 x =30,y =50.1283.1120.850.767.66++++=93.6.bˆ=25125155x xyx yx i ii ii -•-∑∑==≈0.880 9.aˆ=y -b ˆx =93.6-0.880 9×30=67.173. ∴回归方程为yˆ=0.880 9x +67.173.3.某企业上半年产品产量与单位成本资料如下:月份 产量(千件)单位成本(元)1 2 73 2 3 72 3 4 71 4 3 73 5 4 69 6568(1)求出线性回归方程;(2)指出产量每增加1 000件时,单位成本平均变动多少? (3)假定产量为6 000件时,单位成本为多少元? 解 (1)n =6,∑=61i i x =21,∑=61i i y =426,x =3.5,y =71,∑=612i i x =79,∑=61i i i y x =1 481,bˆ=26126166x x yx yx i i i ii -•-∑∑===25.3679715.364811⨯-⨯⨯-=-1.82.aˆ=y -b ˆx =71+1.82×3.5=77.37. 回归方程为yˆ=a ˆ+b ˆx =77.37-1.82x . (2)因为单位成本平均变动bˆ=-1.82<0,且产量x 的计量单位是千件,所以根据回归系数b 的意义有: 产量每增加一个单位即1 000件时,单位成本平均减少1.82元. (3)当产量为6 000件时,即x =6,代入回归方程:yˆ=77.37-1.82×6=66.45(元) 当产量为6 000件时,单位成本为66.45元.一、填空题1.观察下列散点图,则①正相关;②负相关;③不相关.它们的排列顺序与图形对应顺序是 .答案 a ,c ,b2.回归方程yˆ=1.5x -15,则下列说法正确的有 个. ①y =1.5x -15 ②15是回归系数a ③1.5是回归系数a ④x =10时,y =0 答案 13.(2009.湛江模拟)某地区调查了2~9岁儿童的身高,由此建立的身高y (cm)与年龄x (岁)的回归模型为yˆ=8.25x +60.13,下列叙述正确的是 . ①该地区一个10岁儿童的身高为142.63 cm ②该地区2~9岁的儿童每年身高约增加8.25 cm ③该地区9岁儿童的平均身高是134.38 cm④利用这个模型可以准确地预算该地区每个2~9岁儿童的身高 答案 ②4.三点(3,10),(7,20),(11,24)的回归方程是 .答案 yˆ=1.75x +5.75 5.某人对一地区人均工资x (千元)与该地区人均消费y (千元)进行统计调查,y 与x 有相关关系,得到回归直线方程yˆ=0.66x +1.562.若该地区的人均消费水平为7.675千元,估计该地区的人均消费额占人均工资收入的百分比约为 . 答案 83%6.某化工厂为预测产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取8对观测值,计算,得∑=81i i x =52, ∑=81i i y =228, ∑=812i i x =478, ∑=81i i i y x =1 849,则其线性回归方程为 .答案 yˆ=11.47+2.62x 7.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其断面直径与高度之间的关系.其中,具有相关关系的是 .答案①③④8.已知关于某设备的使用年限x与所支出的维修费用y(万元),有如下统计资料:使用年限2 3 4 5 6x维修费用2.23.8 5.5 6.5 7.0y若y对x呈线性相关关系,则回归直线方程yˆ=bˆx+aˆ表示的直线一定过定点 .答案(4,5)二、解答题9.期中考试结束后,记录了5名同学的数学和物理成绩,如下表:学生A B C D E学科数学80 75 70 65 60物理70 66 68 64 62(1)数学成绩和物理成绩具有相关关系吗?(2)请你画出两科成绩的散点图,结合散点图,认识(1)的结论的特点.解(1)数学成绩和物理成绩具有相关关系.(2)以x轴表示数学成绩,y轴表示物理成绩,可得相应的散点图如下:由散点图可以看出,物理成绩和数学成绩对应的点不分散,大致分布在一条直线附近.10.以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:房屋面积x(m2) 115 110 80 135 105销售价格y(万24.8 21.6 18.4 29.2 22元)(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线. 解 (1)数据对应的散点图如图所示:(2)x =109,y =23.2,∑=512i i x =60 975,∑=51i iiy x=12 952,bˆ=25125155x xyx yx i ii ii -•-∑∑==≈0.196 2aˆ=y -b ˆx ≈1.814 2 ∴所求回归直线方程为yˆ=0.196 2x +1.814 2. 11.某公司利润y 与销售总额x (单位:千万元)之间有如下对应数据:x 10 15 17 20 25 28 32 y11.31.822.62.73.3(1)画出散点图; (2)求回归直线方程;(3)估计销售总额为24千万元时的利润. 解 (1)散点图如图所示:(2)x =71(10+15+17+20+25+28+32)=21,y =71(1+1.3+1.8+2+2.6+2.7+3.3)=2.1,∑=712i i x =102+152+172+202+252+282+322=3 447,∑=71i iiy x=10×1+15×1.3+17×1.8+20×2+25×2.6+28×2.7+32×3.3=346.3,bˆ=27127177x x yx yx i i i ii -•-∑∑===221744731.22173.346⨯-⨯⨯-≈0.104, aˆ=y -b ˆx =2.1-0.104×21=-0.084, ∴yˆ=0.104x -0.084. (3)把x =24(千万元)代入方程得,yˆ=2.412(千万元). ∴估计销售总额为24千万元时,利润为2.412千万元.12.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:x 2 4 5 6 8 y3040605070(1)画出散点图; (2)求回归直线方程;(3)试预测广告费支出为10百万元时,销售额多大? 解 (1)根据表中所列数据可得散点图如下:(2)列出下表,并用科学计算器进行有关计算:i 1 2 3 4 5 x i 2 4 5 6 8 y i3040605070x i y i60 160 300 300 560因此,x =525=5,y =5250 =50,∑=512i i x =145, ∑=512i i y =13 500, ∑=51i i i y x =1 380.于是可得:bˆ=25125155x xyx yx i ii ii -•-∑∑===55514550553801⨯⨯-⨯⨯-=6.5;aˆ=y -b ˆx =50-6.5×5=17.5. 因此,所求回归直线方程为:yˆ=6.5x +17.5. (3)根据上面求得的回归直线方程,当广告费支出为10百万元时,yˆ=6.5×10+17.5=82.5(百万元),即这种产品的销售收入大约为82.5百万元.§11.4 统计案例1.对有线性相关关系的两个变量建立的回归直线方程y ˆ=a ˆ+b ˆx 中,回归系数bˆ与0的大小关系为 .(填序号) ①大于或小于 ②大于 ③小于 ④不小于答案 ①2.如果有90%的把握说事件A 和B 有关系,那么具体计算出的数据χ2 2.706.(用“>”,“<”,“=”填空) 答案 >3.对两个变量y 与x 进行回归分析,分别选择不同的模型,它们的相关系数r 如下,其中拟合效果最好的模型是 .基础自测①模型Ⅰ的相关系数r 为0.98 ②模型Ⅱ的相关系数r 为0.80 ③模型Ⅲ的相关系数r 为0.50 ④模型Ⅳ的相关系数r 为0.25 答案 ①4.下列说法中正确的有:①若r >0,则x 增大时,y 也相应增大;②若r <0,则x 增大时,y 也相应增大;③若r =1或r =-1,则x 与y 的关系完全对应(有函数关系),在散点图上各个点均在一条直线上 . 答案 ①③例1 (14分)调查339名50岁以上人的吸烟习惯与患慢性气管炎的情况,获数据如下:患慢性气管炎未患慢性气管炎 总计 吸烟 43 162 205 不吸烟 13 121 134 合计56283339试问:(1)吸烟习惯与患慢性气管炎是否有关? (2)用假设检验的思想给予证明. (1)解 根据列联表的数据,得到χ2=))()()(()(2c d b d c a b a bc ad n ++++- 2分 =13428356205)1316212143(3392⨯⨯⨯⨯-⨯⨯=7.469>6.6356分 所以有99%的把握认为“吸烟与患慢性气管炎有关”.9分(2)证明 假设“吸烟与患慢性气管炎之间没有关系”,由于事件A ={χ2≥6.635}≈0.01,即A 为小概率事件,而小概率事件发生了,进而得假设错误,这种推断出错的可能性约有1%.14分例2 一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有 缺点零件的多少,随机器运转的速度而变化,下表为抽样试验结果:(1)对变量y 与x 进行相关性检验;(2)如果y 与x 有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?解 (1)x =12.5,y =8.25,∑=41i iiy x=438,4x y =412.5,∑=412i i x =660,∑=412i i y =291,所以r =)4)(4(42412241241y yx xyx yx i ii ii ii --•-∑∑∑====)25.272291()625660(5.412438-⨯--=25.6565.25≈62.2550.25≈0.995 4.因为r >r 0.05,所以y 与x 有很强的线性相关关系.(2)yˆ=0.728 6x -0.857 1. (3)要使yˆ≤10⇒0.728 6x -0.857 1≤10, 所以x ≤14.901 3.所以机器的转速应控制在14.901 3转/秒以下.例3 下表是某年美国旧轿车价格的调查资料,今以x 表示轿车的使用年数,y 表示相应的年均价格,求y 关于x 的回归 方程.数x年均价格y(美元)2 651 1 943 1 494 1 087 765 538 484 290 226 204解作出散点图如图所示.可以发现,各点并不是基本处于一条直线附近,因此,y与x之间应是非线性相关关系.与已学函数图象比较,用yˆ=e a x bˆˆ 来刻画题中模型更为合理,令zˆ=ln yˆ,则zˆ=bˆx+aˆ,题中数据变成如下表所示:x 1 2 3 4 5 6 7 8 9 10z 7.8837.5727.3096.9916.646.2886.1825.675.4215.318相应的散点图如图所示,从图中可以看出,变换的样本点分布在一条直线附近,因此可以用线性回归方程拟合.由表中数据可得r≈-0.996.|r|>r0.05.认为x与z之间具有线性相关关系,由表中数据得bˆ≈-0.298,aˆ≈8.165,所以zˆ=-0.298x+8.165,最后回代zˆ=ln yˆ,即yˆ=e-0.298x+8.165为所求.1.某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:积极参加班级工作不太主动参加班级工作合计学习积极性高18 7 25(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?说明理由.解 (1)随机抽查这个班的一名学生,有50种不同的抽查方法,由于积极参加班级工作的学生有18+6=24人,所以有24种不同的抽法,因此由古典概型的计算公式可得抽到积极参加班级工作的学生的概率是P 1=5024=2512,又因为不太主动 参加班级工作且学习积极性一般的学生有19人,所以抽到不太主动参加班级工作且学习积极性一般的学生的概率是P 2=5019.(2)由2χ统计量的计算公式得2χ=25252624)761918(502⨯⨯⨯⨯-⨯⨯≈11.538,由于11.538>10.828,所以可以有99.9%的把握认为“学生的学习积极性与对待班级工作的态度有关系”.2.某个体服装店经营某种服装,一周内获纯利y (元)与该周每天销售这种服装的件数x 之间的一组数据如下:已知∑=712i i x =280, ∑=712i i y =45 309, ∑=71i i i y x =3 487,此时r 0.05=0.754.(1)求x ,y ;(2)判断一周内获纯利润y 与该周每天销售件数x 之间是否线性相关,如果线性相关,求出回归直线方程.解 (1)x =71(3+4+5+6+7+8+9)=6,y =71(66+69+73+81+89+90+91)≈79.86.(2)根据已知∑=712i i x =280, ∑=712i i y =45 309, ∑=71i i i y x =3 487,得相关系数 r =)86.79730945)(67280(86.7967487322⨯-⨯-⨯⨯-≈0.973.。

高中数学统计图表总结练习含答案解析

高中数学统计图表总结练习含答案解析

§3统计图表1.条形统计图(1)概念:条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的①,然后把这些②按一定的顺序排列起来.(2)特点:体现每组中的具体数据,常用其高度来表示各值的频率,如果改变纵轴的意义,它还可以表示取各值的频数.2.折线统计图(1)概念:折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用③顺次连接起来.(2)特点:既能表示数量的多少,又能清楚地反映出数量增减和大小的变化.3.扇形统计图(1)概念:扇形统计图中的④代表总体,圆中的各个⑤分别代表总体中的不同部分,⑥的大小反映部分占总体的百分比的大小.通过扇形统计图可以很清楚地表示各部分数量同总体数量之间的关系.(2)特点:能清楚地表示出各部分在总体中所占的百分比.4.茎叶图(1)概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的⑦,两边的部分像植物的茎上长出来的⑧,因此通常把这样的图叫作茎叶图.(2)特点:(i)统计图上的数据没有信息的损失,所有的原始数据都可以从这个茎叶图中得到;(ii)茎叶图可以随时记录,方便表示和比较.基础巩固训练1.如下图所示,以下四种说法中对的是( )A.8班学生最少B.9班男生是女生的2倍C.10班女生比男生多D.8班和10班学生一样多2.某工厂前四年各年的产值统计图如下图,下列说法错误的是( )A.第一年产值为2 000万元B.四年中产值增长的是第二年到第四年C.四年中产值增长速度最快的是第二年到第三年D.四年中产值增长速度最快的是第三年到第四年3.2008~2014年的国内生产总值的增长情况如下图所示,下列结论中不正确的是( )A.2014年国内生产总值的年增长率开始回升B.这7年中,每年的国内生产总值有增有减C.2009~2013年,国内生产总值的年增长率逐年减小D.这7年中,每年的国内生产总值一直在增加4.下图是某中学初中各年级学生人数百分比的统计图,已知八年级学生有540人,那么该校七年级学生人数为( )A.405B.216C.473D.3245.下图为小强参加今年1~5月份的全县中学生数学竞赛的测验成绩,则他的五次成绩的平均数为( )A.80B.82C.78D.816.从甲、乙两个班各随机选出15名同学进行测验,成绩(单位:分)的茎叶图如图所示,则甲、乙两个班的最高成绩各是、,从图中看,班的平均成绩较高.7.某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A、B、C三个级别,其中A级30棵,B级60棵,C级10棵,然后从A、B、C三个级别的苹果树中分别随机抽取了3棵、6棵、1棵,测出其产量,制成了如下统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是千克.苹果树长势A级B级C级随机抽取棵数(棵) 3 6 1 所抽取果树的平均产量(千克) 80 75 70能力提升训练8.某奶品生产企业,2010年对铁锌牛奶、酸牛奶、纯牛奶三个品种的生产情况进行了统计,绘制了图1、图2的统计图,请根据图中信息解答下列问题:(1)酸牛奶生产了多少万吨?把图1补充完整;酸牛奶在图2中所对应的圆心角是多少度?(2)由于市场不断需求,据统计,2011年的生产量比2010年增长20%,按照这样的增长速度,请你估算2012年酸牛奶的生产量是多少万吨.9.某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:分析结果的扇形统计图、条形统计图根据上述信息完成下列问题:(1)求这次抽取的样本容量;(2)请把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)的有多少份.知识清单①直条②直条③线段④圆⑤扇形⑥扇形⑦茎⑧叶子链接高考1. A 由题图可知,样本容量等于(3 500+4 500+2 000)×2%=200;抽取的高中生近视人数为2 000×2%×50%=20,故选A.,所以鸡蛋开支占总开支的2.C 由题图2可知鸡蛋开支占食品开支的11030%×1=3%,故选C.103.答案8解析50岁以上的职工数为200×20%=40人,按分层抽样应抽取的人数为=8.40×402004.答案(1)132;48;60 (2)4;6解析(1)A型有240×55%=132(套),B型有240×20%=48(套),C型有240×25%=60(套).(2)由题中左图可知每人组装A型玩具16套用2小时,所以组装C型玩具12套用2小时,则每小时组装6套,由2a-2=6,得a=4.基础过关基础巩固训练1.B 由题中条形图知,仅B描述正确.2.D 由题中折线图知,增长最快的是第二年到第三年,故D错.3.B 由题中条形图知,增长率有变化,但产值一直在增加.4.D 540÷50%×30%=324.=80,选A.5.A x=65+80+80+85+9056.答案96;92;乙解析由题图可得甲班最高成绩为96分,乙班最高成绩为92分.甲班平均成绩约为73.1分,乙班平均成绩约为76.7分.7.答案7 600解析由题中表格各等级苹果树的平均产量可估算果园的总产量为(80×3+75×6+70×1)×10=7 600(千克).能力提升训练8.解析(1)牛奶总产量=120÷50%=240(万吨),酸牛奶产量=240-40-120=80(万吨),酸牛奶在图2中所对应的圆心角度数为80×360°=120°.补充图1.240(2)80×(1+20%)2=115.2(万吨).答:估算2012年酸牛奶的生产量是115.2万吨.9.解析(1)结合条形统计图及扇形统计图中A级的信息可以求出这次抽取的样本容量为120.×100%=40%;D级的百分(2)求出C级的人数是120×30%=36;B级的百分比为48120比为1-20%-40%-30%=10%,D级的人数为120×10%=12,补充条形统计图如图所示.(3)由扇形统计图可知:参赛作品达到B级以上的占20%+40%=60%,故参赛作品达到B级以上的有750×60%=450(份).。

统计经典例题及答案

统计经典例题及答案

统计专题训练1、为了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将取得数据整理后,画出频率分布直方图(如图).已知图中从左到右前三个小组频率分别为0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.解(1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2.(2)设参加这次测试的学生有x人,则0.1x=5,∴x=50.即参加这次测试的学生有50人.(3)达标率为0.3+0.4+0.2=90%,所以估计该年级学生跳绳测试的达标率为90%.2、对某400件元件进行寿命追踪调查情况频率分布如下:寿命(h)频率[500,600)0.10[600,700)0.15[700,800)0.40[[800,900)0.20[900,1000]0.15合计 1(1)(3)估计元件寿命在700 h以上的频率.解(1)寿命与频数对应表:寿命(h)[500,600)[600,700)[700,800)[800,900)[来源:学科网ZXXK][900,1000]频数40601608060(2)估计该元件寿命在[500,800)内的频率为0.10+0.15+0.40=0.65.(3)估计该元件寿命在700 h以上的频率为0.40+0.20+0.15=0.75.3、两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:甲1,0,2,0,2,3,0,4,1,2 乙1,3,2,1,0,2,1,1,0,1(1)哪台机床次品数的平均数较小?(2)哪台机床的生产状况比较稳定?解(1)x甲=(1+0+2+0+2+3+0+4+1+2)×110=1.5,x乙=(1+3+2+1+0+2+1+1+0+1)×110=1.2. ∵x甲>x乙,∴乙车床次品数的平均数较小.(2)s2甲=110[(1-1.5)2+(0-1.5)2+(2-1.5)2+(0-1.5)2+(2-1.5)2+(3-1.5)2+(0-1.5)2+(4-1.5)2+(1-1.5)2+(2-1.5)2]=1.65,同理s2乙=0.76,∵s2甲>s2乙,∴乙车床的生产状况比较稳定.4、某良种培育基地正在培育一种小麦新品种A.将其与原有的一个优良品种B进行对照试验.两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,445,451,454品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430(1)完成数据的茎叶图;(2)用茎叶图处理现有的数据,有什么优点?(3)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.解(1)(2)由于每个品种的数据都只有25个,样本不大,画茎叶图很方便;此时茎叶图不仅清晰明了地展示了数据的分布情况,便于比较,没有任何信息损失,而且还可以随时记录新的数据.(3)通过观察茎叶图可以看出:①品种A的亩产平均数(或均值)比品种B高;②品种A的亩产标准差(或方差)比品种B大,故品种A的亩产量稳定性较差.5、某个体服装店经营各种服装,在某周内获纯利润y(元)与该周每天销售这种服装件数x之间的一组数据关系如下表:x 3456789y 66 69 73 81 89 90 91已知:∑i =17x 2i =280,∑i =17x i y i =3487.(1)求x ,y ; (2)画出散点图;(3)观察散点图,若y 与x 线性相关,请求纯利润y 与每天销售件数x 之间的回归直线方程. 解 (1)x =3+4+5+6+7+8+97=6, y =66+69+73+81+89+90+917=5597≈79.86. (2)散点图如图所示.(3)观察散点图知,y 与x 线性相关.设回归直线方程为y ^=b ^x +a ^. ∵∑i =17x 2i =280,∑i =17x i y i =3487,x =6,y =5597, ∴b ^=3487-7×6×5597280-7×36=13328=4.75. a ^=5597-6×4.75≈51.36.∴回归直线方程为y ^=4.75x +51.36.6、某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量,分别记录如下:甲:52,51,49,48,53,48,49; 乙:60,65,40,35,25,65,60.(1)这种抽样方法是哪一种抽样方法?(2)画出茎叶图,并说明哪个车间的产品比较稳定. 解 (1)该抽样方法为系统抽样法. (2)茎叶图如图所示.由图可以看出甲车间包装的产品重量较集中,而乙车间包装的产品重量较分散,所以甲车间包装的产品重量较稳定.7、有一个容量为100的某校毕业生起始月薪的样本数据的分组及各组的频数如下:月薪[13,14)[14,15)[15,16)[16,17)[17,18)[18,19)[19,20)[20,21] (百元)频数71126231584 6(2)画出频率分布直方图和频率分布折线图;(3)根据频率分布估计该校毕业生起始月薪低于2000元的频率.解(1)样本频率分布表为.起始月薪(百元) 频数频率[13,14)70.07[14,15)110.11[15,16)260.26[16,17)230.23[17,18)150.15[18,19)80.08[19,20)40.04[20,21]60.06合计100 1(2)频率分布直方图和频率分布折线图如图.(3)起始月薪低于2000元的频率为0.07+0.11+0.26+0.23+0.15+0.08+0.04=0.94.即起始月薪低于2000元的频率估计为0.94.8.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班67679解析 由题中表格数据,得甲班:x -甲=7,s 2甲=15×(12+02+02+12+02)=25; 乙班:x -乙=7,s 2乙=15×(12+02+12+02+22)=65. ∵s 2甲<s 2乙,∴两组数据中方差较小的为s 2甲=25. 9.高一(2)班有男生27名,女生21名,在一次物理测试中,男生的平均分82分,中位数是75分,女生的平均分是80分,中位数是80分. (1)求这次测试全班平均分(精确到0.01);(2)估计全班成绩在80分以下(含80分)的学生至少有多少? (3)分析男生的平均分与中位数相差较大的主要原因是什么? 分析 根据各种数的定义及意义解决问题.解 (1)由平均数公式得x -=148×(82×27+80×21)≈81.13(分).(2)∵男生的中位数是75,∴至少有14人得分不超过75分.又∵女生的中位数是80,∴至少有11人得分不超过80分.∴全班至少有25人得分低于80分.(3)男生的平均分与中位数的差别较大,说明男生中两极分化现象严重,得分高的和低的相差较大. 10.甲、乙两名战士在相同条件下各射靶10次,每次命中的环数分别是:甲:8,6,7,8,6,5,9,10,4,7; 乙:6,7,7,8,6,7,8,7,9,5. (1)分别计算以上两组数据的平均数; (2)分别求出两组数据的方差; (3)根据计算结果,估计一下两名战士的射击情况. 解 (1)x甲=110×(8+6+7+8+6+5+9+10+4+7)=7(环),x乙=110×(6+7+7+8+6+7+8+7+9+5)=7(环).(2)解法1:由方差公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],得s 2甲=3.0(环2),s 2乙=1.2(环2). 解法2:由方差公式s 2=1n [(x ′21+x ′22+…+x ′2n )-n x ′2]计算s 2甲,s 2乙,由于两组数据都在7左右,所以选取a =7.∴s 2甲=110[(x ′21甲+x ′22甲+…+x ′210甲)-10x ′2甲]=110×(1+1+0+1+1+4+4+9+9+0-10×0) =110×30=3.0(环2).同理s 2乙=1.2(环2). (3)x甲=x 乙,说明甲、乙两战士的平均水平相当.又s 2甲>s 2乙,说明甲战士射击情况波动大.因此乙战士比甲战士射击情况稳定.11、假设关于某种设备的使用年限x (年)与所支出的修理费用y (万元),有如下的统计资料:由资料可知y 与x 具有线性相关关系.(1)求回归方程y =b x +a ; (2)估计使用年限为10年时维修费用是多少. 解 (1)先把数据列表如下.由表知,x =4,y =5,由公式可得b ^=112.3-5×4×590-5×42=12.310=1.23,a ^=y -b ^x =5-1.23×4=0.08, ∴回归方程为y ^=1.23x +0.08.(2)由回归方程y ^=1.23x +0.08知,当x =10时,y ^=1.23×10+0.08=12.38(万元). 故估计使用年限为10年时维修费用是12.38万元.12、下表提供了某厂节能降耗技术,改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.(1)(2)请据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?(参考值:3×2.5+4×3+5×4+6×4.5=66.5)解 (1)由题设所给数据,可得散点图如图所示. (2)由对照数据计算,得∑i =14x 2i =86,x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5. ∑i =14x i y i =66.5.∴由最小二乘法确定的回归方程的系数b ^=∑i =14x i y i -4x y∑i =14x 2i -4x 2=66.5-4×4.5×3.586-4×4.52=0.7,a ^=y -b ^x =3.5-0.7×4.5=0.35,由此所求的线性回归方程为y ^=0.7x +0.35. (3)由(2)的回归方程及技改前生产100吨甲产品的生产能耗得降低的生产能耗约为: 90-(0.7×100+0.35)=19.65(吨标准煤).。

抽样、直方图茎叶图、数字特征

抽样、直方图茎叶图、数字特征

抽样、直方图、茎叶图与数字特征板块一随机抽样知识点:1.随机抽样:满足每个个体被抽到的机会是均等的抽样,共有三种经常采用的随机抽样方法:⑴简单随机抽样:从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.抽出办法:①抽签法:用纸片或小球分别标号后抽签的方法;②随机数表法:随机数表是使用计算器或计算机的应用程序生成随机数的功能生成的一张数表.表中每一位置出现各个数字的可能性相同.随机数表法是对样本进行编号后,按照一定的规律从随机数表中读数,并取出相应的样本的方法.简单随机抽样是最简单、最基本的抽样方法.2.简单随机抽样必须具备下列特点:⑴简单随机抽样要求被抽取的样本的总体个数N是有限的.⑵简单随机样本数n小于等于样本总体的个数N.⑶简单随机样本是从总体中逐个抽取的.⑷简单随机抽样是一种不放回的抽样.⑸简单随机抽样的每个个体入样的可能性均为nN.2.系统抽样:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本的抽样方法.抽出办法:从元素个数为N的总体中抽取容量为n的样本,如果总体容量能被样本容量整除,设Nkn=,先对总体进行编号,号码从1到N,再从数字1到k中随机抽取一个数s作为起始数,然后顺次抽取第2(1)s k s k s n k+++-,,,个数,这样就得到容量为n的样本.如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样方法进行抽样.系统抽样适用于大规模的抽样调查,由于抽样间隔相等,又被称为等距抽样.3.分层抽样:当总体有明显差别的几部分组成时,要反映总体情况,常采用分层抽样,使总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样,这种抽样方法叫做分层抽样.分层抽样的样本具有较强的代表性,而且各层抽样时,可灵活选用不同的抽样方法,应用广泛.一.系统抽样1.已知某商场新进3000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为 . 备注:注意使用等差数列的方法。

高中统计复习题(回归方程-独立性检验-茎叶图-频率分布直方图)

高中统计复习题(回归方程-独立性检验-茎叶图-频率分布直方图)

统计专题一、选择题1.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为0.25,则N 等于( ) A.150 B.200 C.120 D.1002.(2010·重庆高考)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人.为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为( )A .7B .15C .25D .353.(2010·福建高考)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A.91.5和91.5 B .91.5和92 C .91和91.5D .92和924.(2010·湖南高考)某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( ) A.y ︿=-10x +200 B.y ︿=10x +200 C.y ︿=-10x -200D.y ︿=10x -2005.(2011·山东济宁调研)执行如图所示的程序框图,若输出的b 的值为16,则图中判断框内①处应填( )A .3B .4C .5D .26.阅读如图所示的程序框图,若记y =f (x ).且x 0满足f (x 0)<0,若f [f (x 0)]=1,则x 0=( )A.π4 B.π3C.2π3 D.5π47.(2010·改编题)已知某算法的流程图如图所示,若将输出的数据(x,y)依次记为(x1,y1),(x2,y2),…(x n,y n).则程序结束时,最后一次输出的数组(x,y)是()A.(1 004,-2 006) B.(1 005,-2 008)C.(1 006,-2 010) D.(1 007,-2 012)8.(2011·安徽名校联考)关于统计数据的分析,有以下几个结论:①一组数不可能有两个众数;②将一组数据中的每个数据都减去同一个数后,方差没有变化;③调查剧院中观众观看感受时,从50排(每排人数相同)中任意抽取一排的人进行调查,属于分层抽样;④一组数据的方差一定是正数;⑤如下图是随机抽取的200辆汽车通过某一段公路时的时速分布直方图,根据这个直方图,可以得到时速在[50,60)的汽车大约是60辆.则这5种说法中错误的个数是()A.2 B.3C.4 D.5二、填空题(4×5分=20分)10.(2010·创新题)某企业三月中旬生产A、B、C三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A A产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C产品的数量是________件.11.一个总体中有100个个体,随机编号0,1,2,...,99,依编号顺序平均分成10个小组,组号依次为1,2,3, (10)现用系统抽样法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是___________________________.12.(2011·天津和平区一模)在如右图所示的程序框图中,当程序被执行后,输出s的结果是________.13.(2010·创新题)某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查对临界值表知P(K2≥3.841)≈0.05.p:有95%的把握认为“这种血清能起到预防感冒的作用”;q:若某人未使用该血清,那么他在一年中有95%的可能性得感冒;r:这种血清预防感冒的有效率为95%;s:这种血清预防感冒的有效率为5%.则下列结论中,正确结论的序号是________.(把你认为正确的命题序号都填上)①p∧綈q;②綈p∧q;③(綈p∧綈q)∧(r∨s);④(p∨綈r)∧(綈q∨s).三、解答题(共27分)14.(13分)(2011·北京海淀)某校高三年级进行了一次数学测验,随机从甲乙两班各抽取6名同学,所得分数的茎叶图如图所示.(1)根据茎叶图判断哪个班的平均分数较高,并说明理由;(2)现从甲班这6名同学中随机抽取两名同学,求他们的分数之和大于165分的概率.15.(14分)(2011·江苏徐州模拟)高三年级有500名学生,为了了解数学学科的学习情况,现从中随机抽取若干名学生在一次测试中的数学成绩,制成如下频率分布表:(1)根据上面图表,①②③④处的数值分别为__________、________、________、________; (2)在所给的坐标系中画出[85,155]的频率分布直方图;(3)根据题中信息估计总体平均数和中位数,并估计总体落在[129,155]中的频率.16.某中学100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师用A 、B 两种不同的教学方式分别对甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名同学的成绩进行统计,作出茎叶图如下. 记成绩不低于90分者为“成绩优秀”.(I )在乙班的20个样本中,现从不低于86分的成绩中随机抽取2个,求抽出的两个成绩均优秀的概率;(II)附:2()()()()()n ad bc K a b c d a c b d -=++++(此公式也可写成2211221221()n n n n n n n n n χ-=)17. .(1)画出散点图; (2)求回归直线方程;(3)试预测广告费支出为10百万元时,销售额多大?BAAACBB 答案:800 答案:63 答案:286 答案:①④15解析:(1)因为乙班的成绩集中在80分,且没有低分,所以乙班的平均分比较高.(2)设从甲班中任取两名同学,两名同学分数之和超过165分为事件A .从甲班6名同学中任取两名同学,则基本事件空间中包含15个基本事件,而事件A 中包含4个基本事件, 所以,P (A )=415. ∴从甲班中任取两名同学,两名同学分数之和超过165分的概率为415.16解析:(1)椭机抽出的人数为120.300=40,由统计知识知④处应填1;③处应填440=0.1;②处应填1-0.050-0.1-0.275-0.300-0.200-0.050=0.025;①处应填0.025×40=1.(2)频率分布直方图如下图.(3)利用组中值算得平均数为:90×0.025+100×0.05+110×0.2+120×0.3+130×0.275+140×0.1+150×0.05=122.5;总体落在[129,155]上的频率为610×0.275+0.1+0.05=0.315.∴总体平均数约为122.5,总体落在[129,155]上的频率约为0.315.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

环球雅思教育学科教师讲义讲义编号: ______________ 副校长/组长签字:签字日期:【考纲说明】1、理解随机抽样的必要性和重要性,了解分布、样本数据标准差的意义和作用,理解用样本估计总体的思想。

2、会画频率分布直方图、频率折线图、茎叶图,会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题【趣味链接】U2合唱团在17分钟内得赶到演唱会场,途中必需跨过一座桥,四个人从桥的同一端出发,你得帮助他们到达另一端,天色很暗,而他们只有一只手电筒。

一次同时最多可以有两人一起过桥,而过桥的时候必须持有手电筒,所以就得有人把手电筒带来带去,来回桥两端。

手电筒是不能用丢的方式来传递的。

四个人的步行速度各不同,若两人同行则以较慢者的速度为准。

BONO需花1分钟过桥,EDGE需花2分钟过桥,ADAM需花5分钟过桥,LARRY需花10分钟过桥,他们要如何在17分钟内过桥呢?【知识梳理】一、抽样方法与总体分布的估计1、随机抽样(1)总体:在统计学中, 把研究对象的全体叫做总体,把每个研究对象叫做个体,把总体中个体的总数叫做总体容量.总体与个体之间的关系类似于集合与元素的关系.(2)样本:从总体中随机抽取一部分个体叫做总体的一个样本,样本中个体的数目称为样本的容量,样本和总体之间的关系类似于子集和集合之间的关系.(3)简单随机抽样:一般地,从元素个数为N 的总体中不放回地抽取容量为的样本,如果每一次抽取时总体中的各个个体被抽到的可能性是相同的,那么这种抽样方法叫简单随机抽样,这样抽取的样本,叫做简单随机样本. 常用的方法有抽签法和随机数表法.(4)系统抽样:当总体中的个体比较多时,将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分中抽取一个个体,得到所需要的样本,这样的抽样方法称为系统抽样,也称作等距抽样.(5)分层抽样:当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,可将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样. 2、频率分布直方图与茎叶图(1)频率分布:样本中所有数据(或数据组)的频数和样本容量的比就是该数据的频率,所有数据(或数据组)的频率的分布变化规律叫做频率分布,可以用频率分布表、频率分布折线图、茎叶图、频率分布直方图来表示. (2)频率折线图:如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图。

(3)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光华曲线,即总体密度曲线。

(4)制作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.茎叶图对于分布在0~99的容量较小的数据比较合适,此时,茎叶图比直方图更详尽地表示原始数据的信息. 在茎叶图中,茎也可以放两位,后面位数多可以四舍五入后再制图. 3、样本的数字特征(1)众数:出现次数最多的数叫做众数.(2)中位数:如果将一组数据按大小顺序依次排列,把处在最中间位置的一个数据或中间两个数据的平均是叫做这组数据的中位数.(3)平均数与加权平均数:如果有n 个数,,,,n x x x x ⋯⋯321那么12nx x x x n++⋅⋅⋅+=叫做这n 个数的平均数.如果在n 个数中,1x 出现次1f 次, 2x 出现次2f 次,……,k x 出现次2f 次,(这里),n f f f k =+⋯⋯++21那么11221()k k x x f x f x f n=++⋅⋅⋅+叫做这n 个数的加权平均数,其中k f f f ⋯⋯,,21叫做权.(4)标准差与方差:设一组数据123nx x x x ⋯,,,,的平均数为x ,则nx x x x x x s s n 222212)()()(-++-+-== ,其中2s 表示方差,s 表示标准差.【经典例题】【例1】(2009山东)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ). A. 90 B.75 C. 60 D.45【例2】(2009上海)在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。

根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A. 甲地:总体均值为3,中位数为4B. 乙地:总体均值为1,总体方差大于0C. 丙地:中位数为2,众数为3D. 丁地:总体均值为2,总体方差为3【例3】(2009湖北)右图是样本容量为200的频率分布直方图。

根据样本的频率分布直方图估计,样本数据落在[6,10]内的频数为 ,数据落在(2,10)内的概率约为 . 【例4】(2008广东)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[)45,55,[)[)[)55,65,65,75,75,85,[)85,95由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[)55,75的人数是 .【例5】(2009福建)点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为 .【例6】(2013江苏)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下表, 则成绩较为稳定(方差较小)的那位运动员成绩的方差为________.运动员第1次第2次第3次第4次第5次甲87 91 90 89 93乙89 90 91 88 92【例7】(2011广东)在某次测验中,有6位同学的平均成绩为75分.用x n表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:编号n 1 2 3 4 5成绩x n70 76 72 70 72(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.【例8】(2009广东)随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.【例9】(2009山东)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A 轿车B 轿车C舒适型100 150 z标准型300 450 600按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(1)求z的值.(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.【例10】(2011北京)以下茎叶图记录了甲、乙两组各四名同学的植树棵树。

乙组记录中有一个数据模糊,无法确认,在图中以X表示。

(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y 的分布列和数学期望。

(注:方差()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦,其中x 为1x ,2x ,…… n x 的平均数)【课堂练习】1、(2008山东)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为( ) A. 304.6 B. 303.6 C. 302.6 D. 301.62、(2009四川)设矩形的长为a ,宽为b ,其比满足b ∶a =618.0215≈-,这种矩形给人以美感,称为黄金矩形,黄金矩形常应用于工艺品设计中。

下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本: 甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( ) A. 甲批次的总体平均数与标准值更接近 B. 乙批次的总体平均数与标准值更接近 C. 两个批次总体平均数与标准值接近程度相同 D. 两个批次总体平均数与标准值接近程度不能确定3、(2009福建)一个容量100的样本,其数据的分组与各组的频数如下表,则样本数据落在(10,40)上的频率为( )组别 (0,10](20,20] (20,30) (30,40) (40,50] (50,60] (60,70]频数1213241516137A. 0.13B. 0.39C. 0.52D. 0.644、(2010湖北)将参加夏令营的600名学生编号为:001,002,……600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数一次为A .26, 16, 8,B .25,17,8C .25,16,9D .24,17,95、(2009浙江)某个容量为100的样本的频率分布直方图如下,则在区间[4,5) 上的数据的频数..为 .6、(2008广东)某初级中学共有学生2000名,各年级男、女生人数如下表:初一年级 初二年级初三年级女生 373 x y 男生377370z已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (3)已知y ≥245,z ≥245,求初三年级中女生比男生多的概率.【课后作业】1、(2011湖北)已知随机变量ξ服从正态分布()22N ,a ,且P(ξ<4)=0.8,则P(0<ξ<2)=( ).A .0.6B .0.4C .0.3D .0.22.(2010重庆)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为( ). A .7 B .15 C .25 D .353、某商场在国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统 计,其频率分布直方图如图所示.已知9时至10时的销售额为2.5万元,则11 时至12时的销售额为( ).A. 6万元B. 8万元C. 10万元D. 12万元4、(2010山东)在某项体育比赛中,七位裁判为一选手打出的分数如下:90、89、90、95、93、94、93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( ). A .92 , 2 B .92 , 2.8 C. 93 , 2 D .93 , 2.85、 某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞 赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是 83,则x+y 的值为( ).A. 7B. 8C. 9D. 106、某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:学历 35岁以下 35~50岁 50岁以上本科 8030 20研究生x20y(1)用分层抽样的方法在35~50岁年龄段的专业技术人员中抽取一个容量为5的样本,将该样本看成一个总体, 从中任取2人, 求至少有1人的学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N 个人,其中35岁以下48人,50岁以上10人,再从这N 个人中随机抽取出1人,此人的年龄为50岁以上的概率为539,求x 、y 的值.7、某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)50,40,[)60,50,…,[]100,90后得到如图的频率分布直方图.0 40 50 60 70 80 0.00.00.020.02a频率组距甲乙78961 1 y 1 1 68 95 x 06 2(1)求图中实数a 的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成 绩不低于60分的人数;(3)若从数学成绩在[)40,50与[]90,100两个分数段内的学生中随机选取两 名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率.8、(2009全国)某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人。

相关文档
最新文档