数字图像处理计算题复习精华版
数字图像处理计算题复习精华版

30452计算题复习一、直方图均衡化(P68)对已知图像进行直方图均衡化修正。
例:表1为已知一幅总像素为n=64×64的8bit数字图像(即灰度级数为8),各灰度级(出现的频率)分布列于表中。
要求将此幅图像进行均衡化修正(变换),并画出修正(变换)前后的直方图。
解:对已知图像均衡化过程见下表:画出直方图如下:(a)原始图像直方图(b)均衡化后直方图**以下部分不用写在答题中。
其中:①r k、n k中k = 0,1,…,7② p r (r k )= n k /n ,即计算各灰度级像素个数占所有像素个数的百分比,其中∑==kj jnn 0,在此题中n =64×64。
③ ∑==kj jrk r p s 0)(计,即计算在本灰度级之前(包含本灰度级)所有百分比之和。
④ ]5.0)1int[(+-=计并k k s L s ,其中L 为图像的灰度级数(本题中L = 8),int[ ]表示对方括号中的数字取整。
⑤ 并k k s s =⑥ n sk 为映射对应关系r k →s k 中r k 所对应的n k 之和。
⑦ n n s p sk k s /)(=,或为映射对应关系r k →s k 中r k 所对应的p r (r k )之和。
二、 模板运算 使用空间低通滤波法对图像进行平滑操作(P80)空间低通滤波法是应用模板卷积方法对图像每一个像素进行局部处理。
模板(或称掩模)就是一个滤波器,它的响应为H (r ,s ),于是滤波输出的数字图像g(x ,y )用离散卷积表示为)6.2.4(),(),(),(∑∑-=-=--=lls k k r s r H s y r x f y x g式中:x ,y = 0,1,2,…,N -1;k 、l 根据所选邻域大小来决定。
具体过程如下: (1)将模板在图像中按从左到右、从上到下的顺序移动,将模板中心与每个像素依次重合(边缘像素除外); (2)将模板中的各个系数与其对应的像素一一相乘,并将所有的结果相加; (3)将(2)中的结果赋给图像中对应模板中心位置的像素。
数字图像处理试题集(终版)

第一章引言一.填空题1. 数字图像是用一个数字阵列来表示的图像。
数字阵列中的每个数字,表示数字图像的一个最小单位,称为_像素_。
2. 数字图像处理可以理解为两个方面的操作:一是从图像到图像的处理,如图像增强等;二是_从图像到非图像的一种表示_,如图像测量等。
3. 数字图像处理可以理解为两个方面的操作:一是_从图像到图像的处理_,如图像增强等;二是从图像到非图像的一种表示,如图像测量等。
4. 图像可以分为物理图像和虚拟图像两种。
其中,采用数学的方法,将由概念形成的物体进行表示的图像是虚拟图像_。
5. 数字图像处理包含很多方面的研究内容。
其中,_图像重建_的目的是根据二维平面图像数据构造出三维物体的图像。
二.简答题1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的5种。
①图像数字化:将一幅图像以数字的形式表示。
主要包括采样和量化两个过程。
②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。
③图像的几何变换:改变图像的大小或形状。
④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
2. 什么是图像识别与理解?图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出来的人脸区域进行分析,确定其是否是该犯罪分子。
4. 简述数字图像处理的至少5种应用。
①在遥感中,比如土地测绘、气象监测、资源调查、环境污染监测等方面。
②在医学中,比如B超、CT机等方面。
③在通信中,比如可视电话、会议电视、传真等方面。
④在工业生产的质量检测中,比如对食品包装出厂前的质量检查、对机械制品质量的监控和筛选等方面。
(完整版)数字图像处理试题集复习题

(完整版)数字图像处理试题集复习题⼀.填空题1. 数字图像是⽤⼀个数字阵列来表⽰的图像。
数字阵列中的每个数字,表⽰数字图像的⼀个最⼩单位,称为像素。
2. 数字图像处理可以理解为两个⽅⾯的操作:⼀是从图像到图像的处理,如图像增强等;⼆是从图像到⾮图像的⼀种表⽰,如图像测量等。
3. 图像可以分为物理图像和虚拟图像两种。
其中,采⽤数学的⽅法,将由概念形成的物体进⾏表⽰的图像是虚拟图像。
4. 数字图像处理包含很多⽅⾯的研究内容。
其中,图像重建的⽬的是根据⼆维平⾯图像数据构造出三维物体的图像。
5、量化可以分为均匀量化和⾮均匀量化两⼤类。
6. 图像因其表现⽅式的不同,可以分为连续图像和数字离散图像两⼤类。
5. 对应于不同的场景内容,⼀般数字图像可以分为⼆值图像、灰度图像和彩⾊图像三类。
8. 采样频率是指⼀秒钟内的采样次数。
10. 采样所获得的图像总像素的多少,通常称为图像分辨率。
11. 所谓动态范围调整,就是利⽤动态范围对⼈类视觉的影响的特性,将动态范围进⾏压缩,将所关⼼部分的灰度级的变化范围扩⼤,由此达到改善画⾯效果的⽬的。
12 动态范围调整分为线性动态范围调整和⾮线性动态范围调整两种。
13. 直⽅图均衡化的基本思想是:对图像中像素个数多的灰度值进⾏展宽,⽽对像素个数少的灰度值进⾏归并,从⽽达到清晰图像的⽬的。
14. 数字图像处理包含很多⽅⾯的研究内容。
其中,图像增强的⽬的是将⼀幅图像中有⽤的信息进⾏增强,同时将⽆⽤的信息进⾏抑制,提⾼图像的可观察性。
15. 我们将照相机拍摄到的某个瞬间场景中的亮度变化范围,即⼀幅图像中所描述的从最暗到最亮的变化范围称为动态范围。
16. 灰级窗,是只将灰度值落在⼀定范围内的⽬标进⾏对⽐度增强,就好像开窗观察只落在视野内的⽬标内容⼀样。
17. 图像的基本位置变换包括了图像的平移、镜像及旋转。
18. 最基本的图像形状变换包括了图像的放⼤、缩⼩和错切。
19. 图像经过平移处理后,图像的内容不发⽣变化。
(完整版)数字图像处理题库

[题目]数字图像[参考答案]为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔地划分成多个等级(层次),也即均匀量化,以此来用二维数字阵列表示其中各个像素的空间位置和每个像素的灰度级数(灰度值)的图像形式称为数字图像。
图像处理[参考答案]是指对图像信息进行加工以满足人的视觉或应用需求的行为。
题目]数字图像处理[参考答案]是指利用计算机技术或其他数字技术,对一图像信息进行某此数学运算及各种加工处理,以改善图像的视觉效果和提高图像实用性的技术。
一、绪论(名词解释,易,3分)[题目]图像[参考答案]是指用各种观测系统以不同形式和手段观测客观世界而获得的、可以直接或间接作用于人的视觉系统而产生的视知觉的实体。
一、绪论(简答题,难,6分)[题目]什么是图像?如何区分数字图像和模拟图像?[参考答案]“图”是物体透射或反射光的分布,是客观存在的。
“像”是人的视觉系统对图在大脑中形成的印象或认识,是人的感觉。
图像是图和像的有机结合,既反映物体的客观存在,又体现人的心理因素;图像是对客观存在的物体的一种相似性的生动模仿或描述,或者说图像是客观对象的一种可视表示,它包含了被描述对象的有关信息。
模拟图像是空间坐标和亮度(或色彩)都连续变化的图像;数字图像是空间坐标和亮度(或色彩)均不连续的、用离散数字(一般是整数)表示的图像。
[题目]简述研究图像恢复的基本思路。
[参考答案]基本思路是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面日,从而获得与景物真实面貌相像的图像。
一、绪论(简答题,易,5分)[题目]简述研究图像变换的基本思路。
[参考答案]基本思路是通过数学方法和图像变换算法对图像的某种变换,以便简化图像进一步处理的过程,或在进一步的图像处理中获得更好的处理效果。
一、绪论(简答题,易,5分)[题目]简述一个你所熟悉的图像处理的应用实例。
数字图像处理复习题(超牛)

对于数字图像处理的复习第一章1.1.1可以用f(x,y)来表示:(ABD)A、一幅2-D数字图像B、一个在3-D空间中的客观景物的投影;C 2-D空间XY中的一个坐标的点的位置;D、在坐标点(X,Y)的某种性质F的数值。
提示:注意3个符号各自的意义1.1.2、一幅数字图像是:(B)A、一个观测系统;B、一个有许多像素排列而成的实体;C、一个2-D数组中的元素D、一个3-D空间的场景。
提示:考虑图像和数字图像的定义1.2.2、已知如图1.2.2中的2个像素P和Q,下面说法正确的是:(C)A、2个像素P和Q直接的De距离比他们之间的D4距离和D8距离都短:B、2个像素p和q之间的D4距离为5;C、2个像素p和q之间的D8距离为5;D、2个像素p和q之间的De距离为5。
1.4.2、半调输出技术可以:(B)A、改善图像的空间分辨率;B、改善图像的幅度分辨率;C、利用抖动技术实现;D、消除虚假轮廓现象。
提示:半调输出技术牺牲空间分辨率以提高幅度分辨率1.4.3、抖动技术可以(D)A、改善图像的空间分辨率;B、改善图像的幅度分辨率;C、利用半输出技术实现;D、消除虚假轮廓现象。
提示:抖动技术通过加入随即噪声,增加了图像的幅度输出值的个数1.5.1、一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:(A)A、256KB、512KC、1M C、2M提示:表达图像所需的比特数是图像的长乘宽再乘灰度级数对应的比特数。
1.5.2、图像中虚假轮廓的出现就其本质而言是由于:(A)(平滑区域内灰度应缓慢变化,但当图像的灰度级数不够多时会产生阶跃)A、图像的灰度级数不够多造成的;B、图像的空间分辨率不够高造成;C、图像的灰度级数过多造成的D、图像的空间分辨率过高造成。
提示:图像中的虚假轮廓最易在平滑区域内产生。
1.5.3、数字图像木刻画效果的出现是由于下列原因所产生的:(A)A、图像的幅度分辨率过小;B、图像的幅度分辨率过大;C、图像的空间分辨率过小;D、图像的空间分辨率过大;提示:图像中的木刻效果指图像中的灰度级数很少1.5.4、当改变图像的空间分辨率时,受影响最大的是图像中的:(A)A、纹理区域(有许多重复单元的区域);B、灰度平滑的区域;C、目标边界区域;D、灰度渐变区域。
(完整版)数字图像处理复习题(选择题及相应答案)解析

第一章1.1.1可以用f(x,y)来表示:(ABD)A、一幅2-D数字图像B、一个在3-D空间中的客观景物的投影;C 2-D空间XY中的一个坐标的点的位置;D、在坐标点(X,Y)的某种性质F的数值。
提示:注意3个符号各自的意义1.1.2、一幅数字图像是:(B)A、一个观测系统;B、一个有许多像素排列而成的实体;C、一个2-D数组中的元素D、一个3-D空间的场景。
提示:考虑图像和数字图像的定义1.2.2、已知如图1.2.2中的2个像素P和Q,下面说法正确的是:(C)A、2个像素P和Q直接的De距离比他们之间的D4距离和D8距离都短:B、2个像素p和q之间的D4距离为5;C、2个像素p和q之间的D8距离为5;D、2个像素p和q之间的De距离为5。
1.4.2、半调输出技术可以:(B)A、改善图像的空间分辨率;B、改善图像的幅度分辨率;C、利用抖动技术实现;D、消除虚假轮廓现象。
提示:半调输出技术牺牲空间分辨率以提高幅度分辨率1.4.3、抖动技术可以(D)A、改善图像的空间分辨率;B、改善图像的幅度分辨率;C、利用半输出技术实现;D、消除虚假轮廓现象。
提示:抖动技术通过加入随即噪声,增加了图像的幅度输出值的个数1.5.1、一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:(A)A、256KB、512KC、1M C、2M提示:表达图像所需的比特数是图像的长乘宽再乘灰度级数对应的比特数。
1.5.2、图像中虚假轮廓的出现就其本质而言是由于:(A)(平滑区域内灰度应缓慢变化,但当图像的灰度级数不够多时会产生阶跃)A、图像的灰度级数不够多造成的;B、图像的空间分辨率不够高造成;C、图像的灰度级数过多造成的D、图像的空间分辨率过高造成。
提示:图像中的虚假轮廓最易在平滑区域内产生。
1.5.3、数字图像木刻画效果的出现是由于下列原因所产生的:(A)A、图像的幅度分辨率过小;B、图像的幅度分辨率过大;C、图像的空间分辨率过小;D、图像的空间分辨率过大;提示:图像中的木刻效果指图像中的灰度级数很少1.5.4、当改变图像的空间分辨率时,受影响最大的是图像中的:(A)A、纹理区域(有许多重复单元的区域);B、灰度平滑的区域;C、目标边界区域;D、灰度渐变区域。
数字图像处理试题及答案

数字图像处理试题及答案一、选择题(每题2分,共20分)1. 数字图像处理中,灰度化处理的目的是什么?A. 增加图像的分辨率B. 减少图像的存储空间C. 使彩色图像变为黑白图像D. 提高图像的对比度答案:C2. 在数字图像处理中,滤波器的作用是什么?A. 增强图像的边缘B. 减少图像的噪声C. 改变图像的颜色D. 以上都是答案:B3. 以下哪一项不是数字图像的基本属性?A. 分辨率B. 颜色深度C. 像素D. 文件大小答案:D4. 数字图像的直方图表示了什么?A. 图像的亮度分布B. 图像的对比度C. 图像的饱和度D. 图像的色相答案:A5. 在图像锐化处理中,通常使用什么类型的滤波器?A. 平滑滤波器B. 高通滤波器C. 低通滤波器D. 带通滤波器答案:B二、简答题(每题10分,共30分)1. 简述数字图像的采样和量化过程。
答:数字图像的采样是指将连续的图像信号转换为离散信号的过程,通常通过在空间上等间隔地采样图像的亮度值来实现。
量化则是将采样得到的连续值转换为有限数量的离散值的过程,这通常涉及到将采样值映射到一个有限的灰度或颜色级别上。
2. 解释什么是图像的边缘检测,并说明其在图像处理中的重要性。
答:边缘检测是识别图像中亮度变化显著的区域,通常是物体边界的表示。
在图像处理中,边缘检测对于图像分割、特征提取、目标识别等任务至关重要,因为它能帮助算法理解图像的结构和内容。
3. 描述图像的几何变换包括哪些类型,并举例说明其应用场景。
答:图像的几何变换包括平移、旋转、缩放和错切等。
这些变换可以用于图像校正、图像配准、视角转换等场景。
例如,在医学成像中,几何变换可以用来校正由于患者姿势不同导致的图像偏差。
三、计算题(每题25分,共50分)1. 给定一个3x3的高斯滤波器模板:\[G = \begin{bmatrix}1 &2 & 1 \\2 & 4 & 2 \\1 &2 & 1\end{bmatrix}\]如果原始图像的一个小区域为:\[A = \begin{bmatrix}10 & 20 & 30 \\40 & 50 & 60 \\70 & 80 & 90\end{bmatrix}\]计算经过高斯滤波后的图像区域。
数字图像处理总复习题

数字图像处理总复习题第⼀章引⾔⼀.填空题1. 数字图像是⽤⼀个数字阵列来表⽰的图像。
数字阵列中的每个数字,表⽰数字图像的⼀个最⼩单位,称为__________。
1.像素2. 数字图像处理可以理解为两个⽅⾯的操作:⼀是从图像到图像的处理,如图像增强等;⼆是____________________,如图像测量等。
2. 从图像到⾮图像的⼀种表⽰3. 数字图像处理可以理解为两个⽅⾯的操作:⼀是__________________,如图像增强等;⼆是从图像到⾮图像的⼀种表⽰,如图像测量等。
3. 从图像到图像的处理5. 数字图像处理包含很多⽅⾯的研究内容。
其中,________________的⽬的是根据⼆维平⾯图像数据构造出三维物体的图像。
5. 图像重建⼆.简答题1. 数字图像处理的主要研究内容包含很多⽅⾯,请列出并简述其中的4种。
①图像数字化:将⼀幅图像以数字的形式表⽰。
主要包括采样和量化两个过程。
②图像增强:将⼀幅图像中的有⽤信息进⾏增强,同时对其⽆⽤信息进⾏抑制,提⾼图像的可观察性。
③图像的⼏何变换:改变图像的⼤⼩或形状。
④图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⑤图像识别与理解:通过对图像中各种不同的物体特征进⾏定量化描述后,将其所期望获得的⽬标物进⾏提取,并且对所提取的⽬标物进⾏⼀定的定量分析。
2. 什么是图像识别与理解?图像识别与理解是指通过对图像中各种不同的物体特征进⾏定量化描述后,将其所期望获得的⽬标物进⾏提取,并且对所提取的⽬标物进⾏⼀定的定量分析。
⽐如要从⼀幅照⽚上确定是否包含某个犯罪分⼦的⼈脸信息,就需要先将照⽚上的⼈脸检测出来,进⽽将检测出来的⼈脸区域进⾏分析,确定其是否是该犯罪分⼦。
3. 简述数字图像处理的⾄少3种主要研究内容。
①图像数字化:将⼀幅图像以数字的形式表⽰。
主要包括采样和量化两个过程。
②图像增强:将⼀幅图像中的有⽤信息进⾏增强,同时对其⽆⽤信息进⾏抑制,提⾼图像的可观察性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30452计算题复习一、直方图均衡化(P68)对已知图像进行直方图均衡化修正。
例:表1为已知一幅总像素为n=64×64的8bit数字图像(即灰度级数为8),各灰度级(出现的频率)分布列于表中。
要求将此幅图像进行均衡化修正(变换),并画出修正(变换)前后的直方图。
表1原图像灰度级r k 原各灰度级像素个数n k原分布概率p r(r k)r0=0 790 0.19r1=1 1023 0.25r2=2 850 0.21r3=3 656 0.16r4=4 329 0.08r5=5 245 0.06r6=6 122 0.03r7=7 81 0.02 解:对已知图像均衡化过程见下表:原图像灰度级r k 原各灰度级像素个数n k原分布概率p r(r k)累积分布函数s k计取整扩展s k并确定映射对应关系r k→s k新图像灰度级s k新图像各灰度级像素个数n sk新图像分布概率p s(s k)r0=0 790 0.19 0.19 1 0→1 1 790 0.19 r1=1 1023 0.25 0.44 3 1→3 3 1023 0.25 r2=2 850 0.21 0.65 5 2→5 5 850 0.21 r3=3 656 0.16 0.81 6 3→66 985 0.24r4=4 329 0.08 0.89 6 4→6r5=5 245 0.06 0.95 7 5→77 448 0.11r6=6 122 0.03 0.98 7 6→7r7=7 81 0.02 1.00 7 7→7画出直方图如下:(a )原始图像直方图 (b )均衡化后直方图**以下部分不用写在答题中。
其中:① r k 、n k 中k = 0,1,…,7② p r (r k )= n k /n ,即计算各灰度级像素个数占所有像素个数的百分比,其中∑==kj jnn 0,在此题中n =64×64。
③ ∑==kj jrk r p s 0)(计,即计算在本灰度级之前(包含本灰度级)所有百分比之和。
④ ]5.0)1int[(+-=计并k k s L s ,其中L 为图像的灰度级数(本题中L = 8),int[ ]表示对方括号中的数字取整。
⑤ 并k k s s =⑥ n sk 为映射对应关系r k →s k 中r k 所对应的n k 之和。
⑦ n n s p sk k s /)(=,或为映射对应关系r k →s k 中r k 所对应的p r (r k )之和。
二、 模板运算 使用空间低通滤波法对图像进行平滑操作(P80)空间低通滤波法是应用模板卷积方法对图像每一个像素进行局部处理。
模板(或称掩模)就是一个滤波器,它的响应为H (r ,s ),于是滤波输出的数字图像g(x ,y )用离散卷积表示为)6.2.4(),(),(),(∑∑-=-=--=lls k k r s r H s y r x f y x g式中:x ,y = 0,1,2,…,N -1;k 、l 根据所选邻域大小来决定。
具体过程如下: (1)将模板在图像中按从左到右、从上到下的顺序移动,将模板中心与每个像素依次重合(边缘像素除外); (2)将模板中的各个系数与其对应的像素一一相乘,并将所有的结果相加; (3)将(2)中的结果赋给图像中对应模板中心位置的像素。
对于空间低通滤波器而言,采用的是低通滤波器。
由于模板尺寸小,因此具有计算量小、使用灵活、适于并行计算等优点。
常用的3*3低通滤波器(模板)有:模板不同,邻域内各像素重要程度也就不同。
但无论怎样的模板,必须保证全部权系数之和为1,这样可保证输出图像灰度值在许可范围内,不会产生灰度“溢出”现象。
1 7 1 8 1 7 1 1 1 1 1 5 1 1 1 1 1 1 5 5 5 1 1 7 1 1 5 5 5 1 8 1 8 1 1 5 1 1 1 1 8 1 1 5 1 1 8 1 1 1 1 5 1 1 1 1 1 7 1 8 1 7 1 1解:低通滤波的步骤为:(1)将模板在图像中按从左到右、从上到下的顺序移动,将模板中心与每个像素依次重合(边缘像素除外); (2)将模板中的各个系数与其对应的像素一一相乘,并将所有的结果相加; (3)将(2)中的结果赋给图像中对应模板中心位置的像素。
如图中第2行第2列处的值 = (1*1+1*7+1*1+1*1+2*1+1*1+1*1+1*1+1*5)/10 = 2 (其他位置同样方法计算可得)由此步骤可得处理结果为(空白处自己计算后填入)1 7 1 8 1 7 1 1 1 211 7 1 1 8 1 8 1 1 1 1 7 1 8 1 7 1 1三、 中值滤波与邻域平均中值滤波(P81)中值滤波是对一个滑动窗口内的诸像素灰度值排序,用中间值代替窗口中心像素的原来灰度值,它是一种非线性的图像平滑法。
它对脉冲干扰及椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。
但它对点、线等细节较多的图像却不太合适。
局部平滑法(邻域平均法 或 移动平均法)(P76)局部平滑法是一种直接在空间域上进行平滑处理的技术。
用邻域内各像素的灰度平均值代替该像素原来的灰度值,实现图像的平滑。
设有一幅N ×N 的图像f (x ,y ),若平滑图像为g (x ,y ),则有)1.2.4(),(1),(,∑∈=sj i j i f My x g式中x ,y = 0,1,…,N -1;s 为(x ,y )邻域内像素坐标的集合; M 表示集合s 内像素的总数。
可见邻域平均法就是将当前像素邻域内各像素的灰度平均值作为其输出值的去噪方法。
设图像中的噪声是随机不相关的加性噪声,窗口内各点噪声是独立同分布的,经过(4.2.1)平滑后,信号与噪声的方差比可望提高M 倍。
这种算法简单,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别在边缘和细节处。
而且邻域越大,在去噪能力增强的同时模糊程度越严重。
例:对下图做3*3中值滤波处理和3*3邻域平均处理,写出处理结果,并比较邻域平均与中值滤波的差异。
1 7 1 8 1 7 1 1 1 1 1 5 1 1 1 1 1 1 5 5 5 1 1 7 1 1 5 5 5 1 8 1 8 1 1 5 1 1 1 1 8 1 1 5 1 1 8 1 1 1 1 5 1 1 1 1 1 7 1 8 1 7 1 1解:(1)中值滤波是对一个滑动窗口内的诸像素灰度值排序,用中间值代替窗口中心像素的原来灰度值,它是一种非线性的图像平滑法。
题目中的图像经3*3中值滤波后的结果为(忽略边界):1 7 1 8 1 7 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 7 1 1 5 5 5 1 1 18 1 1 5 1 1 1 18 1 1 1 1 1 1 11 1 1 1 1 1 1 11 7 1 8 1 7 1 1(2)局部平滑法(邻域平均法或移动平均法)是用邻域内各像素的灰度平均值代替该像素原来的灰度值,实现图像的平滑。
题目中的图像经3*3局部平滑法(邻域平均法或移动平均法)后的结果为(忽略边界):1 7 1 8 1 7 1 11 19/9 38/9 40/9 38/9 23/9 21/9 11 71 18 18 11 11 7 1 8 1 7 1 1中值滤波法和局部平滑法(邻域平均法或移动平均法)均能有效削弱椒盐噪声,但中值滤波法比邻域平均法更有效,且滤波后图像中的轮廓比较清晰。
四、霍夫曼编码(P124)例:设有一信源A={a1, a2, a3, a4, a5, a6},对应概率P={0.1, 0.4, 0.06, 0.1, 0.04, 0.3}. (1)进行霍夫曼编码(要求大概率的赋码字0,小概率的赋码字1),给出码字;(2)计算平均码长,信源熵和编码效率。
解:(1)编码步骤1)缩减信源符号数量将信源符号按出现概率从大到小排列,然后结合2)对每个信源符号赋值从(消减到)最小的信源开始,逐步回到初始信源由此可得哈夫曼编码结果见下表平均码长2.2504.0.0506.0.041.031.023.014.01∑-==⨯+⨯+⨯+⨯+⨯+⨯==L i i ip B β(其中,i β是灰度值为i 的编码长度,i p 为灰度值为i a 的概率,L 为灰度级数) 信源熵14.2log 21=-=∑-=i L i ip pH编码效率973.02.214.2===B H η五、费诺—仙农编码(P126)费诺—仙农编码与Huffman编码相反,采用从上到下的方法。
香农-范诺编码算法步骤:(1)按照符号出现的概率减少的顺序将待编码的符号排成序列。
(2)将符号分成两组,使这两组符号概率和相等或几乎相等。
(3)将第一组赋值为0,第二组赋值为1。
(4)对每一组,重复步骤2的操作。
例:设一副灰度级为8的图象中,各灰度所对应的概率分别为0.04,0.05,0.06,0.07,0.10,0.10,0.18,0.40,要求对其进行费诺.仙侬编码。
解:根据费诺—仙农编码的方法进行分组和赋值如下图所示所得编码结果如下表六、 算术编码(P127)例:编码来自1个4-符号信源{a 1, a 2, a 3, a 4}的由5个符号组成的符号序列:b 1b 2b 3b 4b 5 = a 1a 2a 3a 3a 41a 2a 3a 4a 信源符号概率初始子区间0.20.20.40.2[0 , 0.2][0.8 , 1.0][0.4 , 0.8][0.2 , 0.4]解:由L C F N l s s *+=(新子区间的起始位置=前子区间的起始位置+当前符号的区间左端*前子区间长度)L C F N r s e *+=(新子区间的结束位置=前子区间的起始位置+当前符号的区间右端*前子区间长度)可得,对于{a 1,a 2,a 3,a 3,a 4},有 a 1 [0,0.2]a1a2 [0.2*0.2,0.2*0.4]=[0.04,0.08]a1a2a3 [0.04+0.04*0.4,0.04+0.04*0.8]=[0.056,0.072] a1a2a3a3 [0.056+0.016*0.4,0.056+0.016*0.8]=[0.0624,0.0688] a1a2a3a3a4[0.0624+0.0064*0.8,0.056+0.0064*1]=[0.06752,0.0688]解码过程 0.068702020340....=-(1)0.068 在区间[0 ,0.2] ,可知第一个源符号为a 1(2)在区间[0.2-0.4]中,第二个为a 2(3)在区间[0.4-0.8]中,第三个为a 3(4)在区间[0.4-0.8]中,第四个为a 3(5)在区间[0.8-1]中,第五个为a 43402000680...=-750404070....=-87504040750....=-七、 区域分割状态法(峰谷法、灰度阈值法)(P155)基本思想是,确定一个合适的阈值T 。