工业机器人常用坐标系介绍

合集下载

5.2.2任务52工业机器人工具坐标系

5.2.2任务52工业机器人工具坐标系
直于固定点),并依次记录位置; • 利用第四点的姿态,从固定点向设定的X方向移动,并记录位置; • 利用第四点的姿态,从固定点向设定的Z方向移动,并记录位置; • 确认修改位置,观察tool1的平均误差,误差值在小于1mm的范围即可。
任务考核
考核项目
考核内容
要求及评分标准
配分 成绩
示教器设置
工业机器人坐标系包括哪些?
(10)如图所示,操控机器人使工具参考 点以点4的姿态从固定点移动到工具TCP的 +X方向。
如图所示,单击“修改位置”。
背景知识
(11)如图所示,操控机器人使工具参考 点以点4的姿态从固定点移动到工具TCP的 +Z方向。
如图所示,单击“修改位置”;
背景知识
(12) 如图所示,单击“确定”完成位置 修改。
任务目标
1)熟知 ——机器人坐标系的种类及定义; 2)熟知 ——工具坐标系定义及优点; 3)运用 ——工具坐标系的设定方法。
任务引入
在了解机器人系统坐标系的分类及其 定义的基础上,认知工具坐标 tooldata,理解其含义,掌握工具坐 标系的标定方法。
背景知识
认识各类坐标系定义 认识工具坐标系 工具坐标的设定方法;
●首先在机器人工作范围内找一个非常精确的固定点作为参考点; ● 然后在工具上确定一个参考点(最好是工具的中心点); ● 用手动操纵机器人的方法,去移动工具上的参考点,以四种以上不同的机器人姿 态尽可能与固定点刚好碰上。前三个点的姿态相差尽量大些,这样有利于TCP精度 的提高。第四点是用工具的参考点垂直于固定点,第五点是工具参考点从固定点向 将要设定为TCP的X方向移动,第六点是工具参考点从固定点向将要设定为TCP的Z 方向移动; ● 机器人通过这四个位置点的位置数据计算求得TCP的数据,然后TCP的数据就保存 在tooldata 这个程序数据中被程序进行调用。

工业机器人坐标系

工业机器人坐标系
• 所有机器人在手腕处都有一个预定义工具坐标系,默认工 具tool0中心点位于6轴中心。这样就能将一个或多个新工 具坐标系定义为tool0的偏移值.
• 机器人联动运行时,TCP是必需的 • 程序中支持多个工具,可根据当前工作状态进行变换,比
如焊接程序可以定义多个工具对应不同的干伸长度 • 工具被更换之后,重新定义工具即可直接运行程序
用户坐标系
A 用户坐标系 B 大地坐标系 C 基坐标系 D 移动用户坐标系 E 工件坐标系,与用户坐标系一 同移动
用户坐标系可用于表 示固定装置、工作台 等设备。这就在相关 坐标系链中提供了一 个额外级别,有助于 处理持有工件或其它 坐标系的处理设备.
用户坐标系与工件坐标系
可针对工作台定义用户坐标,针对工件定义目标坐 标,这样每个工作点都相对工件定义。工件固定位 置若发生改变就重定义目标数据,工作台固定位置 若改变就重定义用户数据,这样依然可以使用原程 序。
• 工具坐标系定义机器人到达预设目标时所使用工具的位置。 • 用户坐标系在表示持有其他坐标系的设备(如工件)时非
常有用。
基坐标系
• 基坐标系在机器人基座中有相应 的零点,这使固定安装的机器人 的移动具有可预测性。因此它对 于将机器人从一个位置移动到另 一个位置很有帮助。对机器人编 程来说,其它如工件坐标系等坐 标系通常是最佳选择。
机器人坐标系
坐标系
从一个称为原点的固定点通过轴定义平面或 空间。 机器人目标和位置通过沿坐标系轴的测量来 定位。 机器人使用若干坐标系,每一坐标系都适用 于特定类型的微动控制或编程。
注意: 在每个机械单元中,系统将对线性动作模式默认使用基坐标系。 在每个机械单元中,系统将对重定向动作模式默认使用工具坐标系。 微动控制就是使用FlexPendant 控制杆手动定位或移动机器人或外轴。

简述工业机器人的坐标系类型

简述工业机器人的坐标系类型

简述工业机器人的坐标系类型工业机器人是一种可以替代人工完成一系列重复性、高难度、高危险度的工作的机器人。

工业机器人的坐标系是机器人控制的基础,而坐标系的类型又决定了机器人的运动方式和精度。

因此,本文将简述工业机器人的坐标系类型。

一、笛卡尔坐标系笛卡尔坐标系是工业机器人应用最广泛的坐标系类型之一,它是一种三维坐标系,其中每个点都可以用三个数字(x,y,z)来表示,分别代表点在X轴、Y轴和Z轴上的坐标。

笛卡尔坐标系的特点是可以精确地控制机器人的位置和方向,适用于需要精确定位和定向的工作任务,如点焊、喷涂、切割等。

二、极坐标系极坐标系是一种基于极坐标的坐标系,它由极轴和极角两个参数组成。

其中,极轴代表点到原点的距离,极角代表点与极轴正方向的夹角。

极坐标系适用于需要进行圆弧运动的工作任务,如搬运、装配等。

三、关节坐标系关节坐标系是一种基于机器人关节的坐标系,它由每个关节的角度组成。

机器人的每个关节都有一个角度值,通过控制关节的转动角度,可以实现工具的位置和方向的控制。

关节坐标系适用于需要进行灵活、多变的工作任务,如装配、搬运等。

四、工具坐标系工具坐标系是一种基于机器人末端工具的坐标系,它由末端工具的位置和方向组成。

通过控制末端工具的位置和方向,可以实现机器人的控制。

工具坐标系适用于需要进行精细、复杂的工作任务,如零件加工、组装等。

五、基座坐标系基座坐标系是一种基于机器人底座的坐标系,它由底座的位置和方向组成。

通过控制底座的位置和方向,可以实现机器人的控制。

基座坐标系适用于需要进行大范围、高精度的工作任务,如搬运、装配等。

综上所述,工业机器人的坐标系类型有很多种,每种坐标系都有其适用范围和优缺点。

在实际应用中,需要根据工作任务的性质和要求选择适合的坐标系,以达到最佳的工作效果和控制精度。

工业机器人的五个坐标系

工业机器人的五个坐标系
① 顶吊安装工业机器人、M-710iC以外:在J1轴 上水平移动J2轴而交叉的位置。
② 顶吊安装工业机器人、M-710iC:J1轴处于0 位时,离开J4轴最近的J1轴上的点。
这是用来定义工具中心点(TCP)的位置和工具 姿态的坐标系。工具坐标系必须事先进行设定。
在没有定义的时候,将由默认工具坐标系来替代 该坐标系。
1.关节坐标系 2.直角坐标系 3.世界坐标系 4.工具坐标系 5.用户坐标系
关节坐标系是设定在工业机器人关节中的坐标系。 关节坐标系中工业机器人的位置和姿态,以各关 节底座侧的关节坐标系为基准而确定。
J1:0° J2:0°机器人的位置和姿态,通过
这是用户对每个作业空间进行定义的直角坐标系。 它用于位置寄存器的示教和执行、位置补偿指令 的执行等。在没有定义的时候,将由世界坐标系 来替代该坐标系。
从空间上的直角坐标系原点到工具侧的直角坐标 系原点(工具中心点)的坐标值x、y、z和空间 上的直角坐标系的相对X轴、Y轴、Z轴周围的工 具侧的直角坐标系的回转角w、p、r予以定义。
世界坐标系是被固定在空间上的标准直角坐标系, 其被固定在由工业机器人事先确定的位置。用户 坐标系是基于该坐标系而设定的。它用于位置数 据的示教和执行。有关各工业机器人(R系列 /M系列/ARC Mate/LR Mate)的世界坐标系 原点位置的大致标准为:

收藏工业机器人4大坐标系详解!

收藏工业机器人4大坐标系详解!

收藏工业机器人4大坐标系详解!机器人的坐标系,你知道多少?真的会使用坐标系吗?下面我来带你来剖析机器人的坐标系吧!(以ABB机器人举例说明)1. 基坐标系基坐标系是以机器人安装基座为基准、用来描述机器人本体运动的直角坐标系。

任何机器人都离不开基坐标系,也是机器人TCP在三维空间运动空间所必须的基本坐标系(面对机器人前后:X轴,左右:Y轴,上下:Z轴)。

坐标系遵守右手准则:2. 大地坐标系大地坐标系:大地坐标系是以大地作为参考的直角坐标系。

在多个机器人联动的和带有外轴的机器人会用到,90%的大地坐标系与基坐标系是重合的。

但是在以下两种情况大地坐标系与基坐标系不重合:(1)机器人倒装。

如图1-0,倒装机器人的基坐标与大地坐标Z轴的方向是相反,机器人可以倒过来,但是大地却不可以倒过来。

(2)带外部轴的机器人。

如图1-1,大地坐标系固定好位置,而基坐标系却可以随着机器人整体的移动而移动。

3. 工具坐标系工具坐标系:是以工具中心点作为零点,机器人的轨迹参照工具中心点,不再是机器人手腕中心点Tool0(如图1-2)了,而是新的工具中心点(如图1-3)。

例如:焊接的时候,我们所使用的工具是焊枪,所以可把工具坐标移植为焊枪的顶点。

而用吸盘吸工件时使用的是吸盘,所以我们可以把工具坐标移植为吸盘的表面(如图1-5)。

4. 工件坐标系工件坐标系:工件坐标系是以工件为基准的直角坐标系,可用来描述TCP运动的坐标系。

充分利用工件坐标系能让我们编程达到事半功倍的效果。

例如:机器人加工工件1,轨迹编程已经编好,另外有工件2,轨迹不需要重复编程只要把工件坐标系1改为工件坐标系2即可。

End文章来源:网络,本文系网络转载,版权归原作者所有。

但因转载众多,无法确认真正原始作者,故仅标明转载来源。

本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。

2.3.1 工业机器人的坐标系

2.3.1 工业机器人的坐标系

O
Y
X
二、基坐标系:
基坐标系是机器人其它坐标系的参照基础,是 机器人示教与编程时经常使用的坐标系之一,它的 原点位置没有硬性的规定,一般定义在机器人安装 面与第一转动轴的交点处。
右手定则: X轴:机器人机械零点
时,由基座指向机械手抓 TCP的水平方向。
Z轴:机器人机械零点 时,由基座指向机械手抓 TCP的垂直方向。
需要注意的是,以上讲解是一般机器人坐 标的定义,但不同品牌的不同的机器人型号, 可能采用不同的坐标定义,在使用机器人前, 一定要熟悉机器人坐标的正方向。
我们看一下ABB机器人的坐标截图:
很显然,在ABB机器人中没有关节坐标,却 多出一个大地坐标,这又是为什么呢?
那是因为我们使用的是外国的机器人,机 器人的定义在世界都没有完全的分界线,何况 一个坐标,肯定也会出现命名的不同,而且翻 译也不见得准确。
我们看一下英文版的:
我们看英文单词,可能还会翻译成世界坐 标。同样,还有把基坐标称为机械坐标的。
我们简单的看看这几个坐标: Nhomakorabea节坐标 基坐标 工具坐标 工件坐标 大地坐标 机械坐标 世界坐标
捏柿子
1、判断图中各轴的正 方向:
J1: J2: J3: J4: J5: J6:
捏柿子
2、说出下列坐标的名称
2、横向关节:ABB的, 末端执行器落下即为关节坐 标正方向。
四、工件坐标系:
工件坐标系是用户 自定义的坐标系,用户 坐标系也可以定义为工 件坐标系,可根据需要 定义多个工件坐标系, 当配备多个工作台时, 选择工件坐标系操作更 为简单。
五、工具坐标系:
工具坐标系是原点安装 在机器人末端的工具中心点 (TCP:Tool Center Point) 处的坐标系,原点及方向都 是随着末端位置与角度不断 变化的,该坐标系实际是将 基坐标系通过旋转及位移变 化而来的。工具坐标系也是 用户自定义的坐标系。

机器人常用的坐标系

机器人常用的坐标系

机器人常用的坐标系机器人是一种自动化机械设备,具有无人值守、精度高、效率高等优点,广泛应用于工业制造、军事、医疗等领域。

在机器人的运动控制中,坐标系是一个非常重要的概念,不同的坐标系具有不同的特点和应用,下面将介绍机器人常用的坐标系。

笛卡尔坐标系笛卡尔坐标系是最为常用的坐标系之一,使用三个互相垂直的轴线(X、Y、Z)描述物体的位置和姿态。

该坐标系以物体的质心为原点,X轴正方向指向右侧,Y轴正方向指向前方,Z轴正方向指向上方。

笛卡尔坐标系适用于描述机器人的绝对位置,对机器人工作空间的描述较为精确。

极坐标系极坐标系也称为柱面坐标系,使用两个参数(半径r和极角θ)描述物体的位置和姿态。

该坐标系以物体的质心为原点,在平面内定义一个极坐标系,半径r表示物体到原点的距离,极角θ表示物体到X轴正方向的旋转角度。

极坐标系适用于描述机器人的相对位置,且具有较好的旋转性能,在一些特定的应用中可以取代笛卡尔坐标系。

欧拉角坐标系欧拉角坐标系是使用三个角度(俯仰角、偏航角、横滚角)描述物体的绝对方位和姿态。

该坐标系以物体的姿态(方向)为原点,其中俯仰角表示物体在Y轴(XZ平面)上的旋转角度,偏航角表示物体在Z 轴(XY平面)上的旋转角度,横滚角表示物体在X轴上的旋转角度。

欧拉角坐标系适用于描述机器人在工作过程中的姿态变化。

四元数坐标系四元数坐标系是一种超复数形式的坐标系,使用四个参数(实部+三个虚部)描述物体的方向和姿态。

该坐标系以物体的姿态为原点,其中实部表示物体在该方向上的放大倍数,三个虚部表示物体围绕该方向上的旋转情况。

四元数坐标系适用于描述机器人运动过程中的转动变化,具有计算复杂度低、适用范围广等优点。

总结以上是机器人常用的坐标系,它们各具特点,可根据具体应用选择合适的坐标系。

在机器人的运动控制中,坐标系是机器人的位置和姿态的基本描述方式,熟练掌握坐标系的应用可以提高机器人运动的精度和效率。

解密:工业机器人四大坐标系,小白可以进来学习

解密:工业机器人四大坐标系,小白可以进来学习

解密:工业机器人四大坐标系,小白可以进来学习
机器人坐标系的种类
定义:机器人分为机器人本体轴和外部轴。

外部轴又分为滑台和上位机等。

如无特别说明,机器人轴即指机器人本体的运动轴。

对机器人进行轴操作时,可以使用以下几种坐标系(各牌子机器人叫法不一致):
一、关节坐标系
机器人各轴进行单独动作,称关节坐标系。

二.直角坐标系
直角坐标系的原点定义在机器人轴轴线上,是与2轴所在水平面的交点。

直角坐标系的方向规定:X轴方向向前,Z轴方向向上,Y轴根据右手定则确定。

不管机器人处于什么位置,均可沿设定的X 轴、Y 轴、Z 轴平行移动。

三.工具坐标系
工具坐标系把机器人腕部法兰盘所持工具的有效方向作为Z 轴,并把坐标定义在工具的尖端点。

四.用户坐标系
在机器人动作允许范围内的任意位置,设定任意角度的X、Y、Z 轴,用户坐标系一般定义在工件,方向由用户自己定义.
以下是用户坐标的使用范例。

工业机器人常用坐标系你知道多少?

工业机器人常用坐标系你知道多少?

工业机器人常用坐标系你知道多少?据深圳启程工控学院了解,随着社会进步、科技发展,工业机器人的应用也越来越普遍。

由于其种类众多、坐标系也很多,确定起来容易出错,对于新手尤其如此。

下面就让小编来全面介绍机器人常用坐标系。

(1)基坐标系( B a s eCoordinate System),又称为机座坐标系,位于机器人基座。

基坐标系在机器人基座中有相应的零点,这使固定安装机器人的移动具有可预测性。

在正常配置的机器人系统中,工人可通过控制杆进行该坐标系的移动。

(2)世界坐标系(Wo r l dCoordinate System),又称为大地坐标系或绝对坐标系。

如果机器人安装在地面,在基坐标系下示教编程很容易,但当机器人吊装时,机器人末端移动直观性差,因而示教编程较为困难。

另外,如果两台或多台机器人共同协作时,例如,一台安装于地面,另一台倒置,倒置机器人的基坐标系也将上下颠倒(见图2)。

当分别在两台机器人的基坐标系A 、B 中进行运动控制时,很难预测相互协作运动的情况。

图2 世界坐标系此时,可以定义一个共同的世界坐标系C 取而代之。

若无特殊说明,单台机器人世界坐标系和基坐标系是重合的。

(3)用户坐标系(U s e rCoordinate System),机器人可以和不同的工作台或夹具配合工作,在每个工作台上建立一个用户坐标系。

机器人大部分采用示教编程的方式,步骤繁琐,对于相同工件,若放置在不同工作台进行操作,不必重新编程,只需相应地变换到当前用户坐标系下。

用户坐标系在基坐标系或者世界坐标系下建立。

(4)工件坐标系(Obje c tCoordinate System)与工件相关,通常最适于对机器人进行编图2 世界坐标系程。

工件坐标系对应工件,它定义工件相对于大地坐标系(或其他坐标系)的位置。

据深圳启程工控学院了解,工件坐标系拥有特定附加属性,主要用于简化编程。

他拥有两个框架:用户框架(与大地基座相关)和工件框架(与用户框架相关)。

工业机器人的五个坐标系

工业机器人的五个坐标系

工业机器人的五个坐标系在工业机器人领域,坐标系是用来描述机器人末端执行器(或工具)在空间中的位置和姿态的框架。

为了确保机器人的准确性和一致性,通常会使用一系列标准的坐标系。

以下是工业机器人领域中最常用的五个坐标系:1、笛卡尔坐标系:在三维空间中,笛卡尔坐标系使用三个相互垂直的坐标轴(X、Y、Z),以及三个相互垂直的旋转轴(Rx、Ry、Rz)。

这种坐标系常用于描述机器人在空间中的位置和姿态,以及机器人末端执行器的位置和姿态。

2、极坐标系:极坐标系是一种以机器人末端执行器为中心的坐标系,它使用径向距离(r)、方位角(θ)和高度(z)来描述机器人在空间中的位置和姿态。

这种坐标系常用于路径规划、路径插补和机器人运动学分析。

3、圆柱坐标系:圆柱坐标系是一种以机器人末端执行器为中心的坐标系,它使用径向距离(r)、方位角(θ)和垂直距离(z)来描述机器人在空间中的位置和姿态。

这种坐标系常用于描述机器人在圆柱体或球体等形状上的路径和姿态。

4、球坐标系:球坐标系是一种以机器人末端执行器为中心的坐标系,它使用径向距离(r)、方位角(θ)和极角(φ)来描述机器人在空间中的位置和姿态。

这种坐标系常用于描述机器人在球体或类似形状上的路径和姿态。

5、工具坐标系:工具坐标系是一种以机器人末端执行器(或工具)为中心的坐标系,它使用工具的几何中心作为原点,并使用三个旋转轴(Rx、Ry、Rz)来描述工具的空间姿态。

这种坐标系常用于机器人运动学建模、路径规划和机器人控制等方面。

这些坐标系在工业机器人领域中具有广泛的应用,它们为机器人控制、路径规划和运动学建模提供了方便的框架。

根据实际应用场景的不同,选择合适的坐标系可以有效地提高机器人的精度和效率。

ABB工业机器人操作和坐标系一、引言在现代化的制造和自动化流程中,工业机器人扮演着关键的角色。

它们被广泛应用于各种复杂任务,从装配到质量检测,从搬运到喷漆,无所不能。

ABB集团作为全球领先的机器人技术提供商,其产品广泛应用于全球的各个行业。

工业机器人常用的四种坐标系

工业机器人常用的四种坐标系

工业机器人常用的四种坐标系1 机器人坐标系工业机器人的坐标系是指用于控制机器人运动的坐标系,常用的有四种坐标系,即机器人基座坐标系、世界坐标系、末端坐标系和用户定义的坐标系。

2 机器人基座坐标系机器人基座坐标系(Base Coordinate System,BCS)一般是机器人的起点,也就是位于机器人的基座上,可以理解为机器人“抓取”东西时的测量和控制参考系,以及机器人坐标到世界坐标转换的参考系。

起始点可以通过编程人员在机器人程序上定义或使用具有软件的机器人控制器交互进行定位。

3 世界坐标系世界坐标系(World Coordinate System,WCS)是在机器人程序执行时定义的机器人环境中一个参考系,任何在机器人程序中定义的位置总是以世界坐标系为参照系定义的,以这个坐标系来表示机器人完成动作的最终目标点。

4 末端坐标系末端坐标系(TCP,Tool Centre Point)位于机器人末端,是坐标系统上机器人末端位置的参考系。

末端坐标系位于关节空间的终点,跟踪机器人的最终位置,用于控制器知道完成多个任务时,机器人头部位置的正确性。

此外,末端坐标系还可以用于关节运动时的夹持物体的位置定义及控制。

5 用户定义的坐标系用户定义的坐标系(User defined Coordinate System,UCS)由程序员在机器人程序中定义,有时也称为临时坐标系,以满足特定程序规划及定位运动任务的需要。

程序员可以自定义各种用户坐标系,通过建立坐标系与世界坐标系之间的关系,来完成更复杂的任务定位与控制,例如在组装任务中检查某一样件的位置相对与主体的关系等。

在控制机器人运动时,机器人的正确性定位及动作的精确性取决于机器人坐标系的准确性,上文介绍了四种机器人常用的机器人坐标系,他们非常适用于机器人程序规划定位及控制任务,能够将复杂的机器人运动任务优化,以及正确定位指令。

工业机器人的工具坐标系、工件坐标系、世界坐标系标定

工业机器人的工具坐标系、工件坐标系、世界坐标系标定

⼯业机器⼈的⼯具坐标系、⼯件坐标系、世界坐标系标定第3章机器⼈的坐标系及标定机器⼈的坐标系是机器⼈操作和编程的基础。

⽆论是操作机器⼈运动,还是对机器⼈进⾏编程,都需要⾸先选定合适的坐标系。

机器⼈的坐标系分为关节坐标系、机器⼈坐标系、⼯具坐标系、世界坐标系和⼯件坐标系。

通过本章的内容,掌握这⼏种坐标系的含义其标定⽅法。

3.1 实验设备六⾃由度机器⼈3.2 机器⼈的坐标系对机器⼈进⾏轴操作时,可以使⽤以下⼏种坐标系:(1)关节坐标系—ACS(Axis Coordinate System)关节坐标系是以各轴机械零点为原点所建⽴的纯旋转的坐标系。

机器⼈的各个关节可以独⽴的旋转,也可以⼀起联动。

(2)机器⼈(运动学)坐标系—KCS(Kinematic Coordinate System)机器⼈(运动学)坐标系是⽤来对机器⼈进⾏正逆运动学建模的坐标系,它是机器⼈的基础笛卡尔坐标系,也可以称为机器⼈基础坐标系或运动学坐标系,机器⼈⼯具末端(TCP)在该坐标系下可以进⾏沿坐标系X轴、Y轴、Z轴的移动运动,以及绕坐标系轴X轴、Y轴、Z轴的旋转运动。

(3)⼯具坐标系—TCS(Tool Coordinate System)将机器⼈腕部法兰盘所持⼯具的有效⽅向作为⼯具坐标系Z轴,并把⼯具坐标系的原点定义在⼯具的尖端点(或中⼼点)TCP(TOOL CENTER POINT)。

但当机器⼈末端未安装⼯具时,⼯具坐标系建⽴在机器⼈的法兰盘端⾯中⼼点上,Z轴⽅向垂直于法兰盘端⾯指向法兰⾯的前⽅。

当机器⼈运动时,随着⼯具尖端点(TCP)的运动,⼯具坐标系也随之运动。

⽤户可以选择在⼯具坐标系下进⾏⽰教运动。

TCS坐标系下的⽰教运动包括沿⼯具坐标系的X轴、Y轴、Z轴的移动运动,以及绕⼯具坐标系轴X轴、Y轴、Z轴的旋转运动。

(4)世界坐标系—WCS(World Coordinate System)世界坐标系是空间笛卡尔坐标系。

运动学坐标系和⼯件坐标系的建⽴都是参照世界坐标系建⽴的。

简述工业机器人四类常用坐标系的定义

简述工业机器人四类常用坐标系的定义

工业机器人是一种能够自动执行各种工业生产任务的智能化设备,它能够完成重复性高、精度要求高的工作,极大地提高了生产效率和产品质量。

在工业机器人的运动控制中,坐标系是一个非常重要的概念,它决定了机器人在空间中的运动轨迹和位置。

常见的工业机器人坐标系包括基坐标系、工具坐标系、世界坐标系和用户坐标系。

下面将对这四种常用坐标系进行简要介绍。

一、基坐标系基坐标系是工业机器人控制中最基本的坐标系,也是机器人的运动参考系。

它通常是由机器人末端执行器的位置和姿态决定的,其坐标原点通常位于机器人的基座中心,x轴指向机器人末端执行器的前进方向,y轴指向机器人的左侧,z轴指向机器人的上方。

通过基坐标系,机器人可以准确定位和控制自身的运动轨迹。

二、工具坐标系工具坐标系是相对于机器人末端执行器的一个坐标系,它描述了机器人末端执行器上安装的工具或夹具在运动过程中的位置和姿态。

工具坐标系的建立需要考虑到工具的重心位置、姿态等因素,通过工具坐标系,机器人可以准确地控制工具在工作空间中的位置和姿态。

三、世界坐标系世界坐标系是指在工业机器人操作的整个工作空间中建立的一个固定的坐标系,它通常是由工作空间的边界和环境参考物所确定的。

世界坐标系的建立可以帮助机器人在工作空间中进行定位和路径规划,保证其移动和操作的准确性和稳定性。

四、用户坐标系用户坐标系是根据用户的需要和工作要求,由用户自行建立的一个坐标系。

用户可以根据实际工作需要,将世界坐标系中的某个点或者某个工件的某个特定位置定义为一个新的坐标系原点,并设置新的坐标轴方向。

通过用户坐标系,用户可以方便的对工作空间进行定位、操作和控制。

总结:在工业机器人的运动控制中,坐标系是一个非常重要的概念,不同的坐标系具有不同的运动特性和控制方式。

了解和掌握工业机器人常用的四类坐标系的定义和使用方法,对于提高机器人的运动控制精度和灵活性,实现高效的生产操作具有重要的意义。

希望本文能够对读者有所帮助,谢谢!很高兴看到您对工业机器人坐标系有着浓厚的兴趣,下面将继续为您介绍工业机器人常用坐标系的一些细节和应用。

工业机器人常用坐标系介绍

工业机器人常用坐标系介绍

工业机器人常用坐标系介绍坐标系:为确定机器人的位置和姿态而在机器人或空间上进行的位置指标系统。

坐标系包含:1、基坐标系(Base Coordinate System)2、大地坐标系(World Coordinate System)3、工具坐标系(Tool Coordinate System)4、工件坐标系(Work Object Coordinate System)1、工具坐标系机器人工具座标系是由工具中心点TCP 与座标方位组成。

机器人联动运行时,TCP 是必需的。

1) Reorient 重定位运动(姿态运动)机器人TCP 位置不变,机器人工具沿座标轴转动,改变姿态。

2) Linear 线性运动机器人工具姿态不变,机器人TCP 沿座标轴线性移动。

机器人程序支持多个TCP,可以根据当前工作状态进行变换。

机器人工具被更换,重新定义TCP 后,可以不更改程序,直接运行。

1.1.定义工具坐标系的方法:1、N(N=4)点法/TCP 法-机器人TCP 通过N 种不同姿态同某定点相碰,得出多组解,通过计算得出当前TCP 与机器人手腕中心点( tool0 ) 相应位置,座标系方向与tool0 一致。

2、TCPZ 法-在N 点法基础上,Z 点与定点连线为座标系Z 方向。

3、TCPX,Z 法-在N 点法基础上,X 点与定点连线为座标系X 方向,Z 点与定点连线为座标系Z 方向。

2. 工件坐标系机器人工件座标系是由工件原点与座标方位组成。

机器人程序支持多个Wobj,可以根据当前工作状态进行变换。

外部夹具被更换,重新定义Wobj 后,可以不更改程序,直接运行。

通过重新定义Wobj,可以简便的完成一个程序适合多台机器人。

2.1.定义工件坐标系的方法:三点法-点X1 与点X2 连线组成X 轴,通过点Y1 向X 轴作的垂直线,为Y 轴。

tips:感谢大家的阅读,本文由我司收集整编。

仅供参阅!。

工业机器人坐标系的分类及应用

工业机器人坐标系的分类及应用

工业机器人坐标系的分类及应用工业机器人是现代工业生产中一种重要的自动化设备,能够替代人工完成重复、繁琐、危险或高精度的工作任务。

而工业机器人的运动控制离不开坐标系的应用。

坐标系是描述物体位置的一种数学工具,它能够帮助工业机器人准确地计算出各个关节的运动轨迹,以实现精确的动作。

下面将介绍工业机器人坐标系的分类及其在实际应用中的作用。

一、分类根据坐标系的不同,工业机器人的坐标系可以分为以下几种:1. 基坐标系:基坐标系是工业机器人的参考坐标系,它通常与机器人的机械结构相关联,用于确定机器人的原点和基准位置。

基坐标系的选择对机器人的运动控制具有重要影响,因此在设计和安装机器人时需要仔细选择合适的基坐标系。

2. 关节坐标系:关节坐标系是机器人各个关节的运动坐标系,它以机器人的关节为基准,用于描述机器人各个关节的角度和运动范围。

关节坐标系的选择通常由机器人的结构和工作要求决定,不同的关节坐标系可以实现不同的运动方式。

3. 工具坐标系:工具坐标系是机器人工具末端执行器的参考坐标系,它与机器人末端执行器的位置和姿态相关联,用于描述机器人末端执行器的位置和姿态。

工具坐标系的选择对机器人的工作精度和稳定性有重要影响,因此在设计和安装机器人时需要考虑工具坐标系的选择。

4. 世界坐标系:世界坐标系是工业机器人的工作空间坐标系,它用于描述机器人的工作空间范围和位置。

世界坐标系通常以工件或工作台为参考,用于确定机器人在工作空间中的位置和姿态。

二、应用工业机器人的坐标系在实际应用中起到了关键的作用。

以下是工业机器人坐标系在不同应用中的具体应用:1. 点位运动控制:工业机器人常常需要通过坐标系来完成点位运动控制,即将工具坐标系移动到指定的位置上。

通过在工具坐标系中设定目标位置,工业机器人可以根据逆运动学模型计算出关节角度,并控制关节运动到指定位置上。

2. 轨迹运动控制:除了点位运动控制,工业机器人还可以通过坐标系来实现轨迹运动控制,即在指定的路径上移动。

工业机器人坐标系讲解学习

工业机器人坐标系讲解学习

工业机器人坐标系讲解学习工业机器人坐标系是指工业机器人在进行运动和定位时所采用的坐标系。

了解和掌握工业机器人坐标系可以帮助工业机器人控制工程师正确地进行机器人编程和操作,实现精准高效的生产目标。

工业机器人常用的坐标系有三种,分别是机床坐标系、基础坐标系和工具坐标系。

下面我们来逐个介绍三种坐标系及其应用方法。

1. 机床坐标系机床坐标系是相对于机床主轴而建立的坐标系。

在这个坐标系中,机床主轴的旋转轴是Z轴,横向的移动方向是X轴,纵向的移动方向是Y轴。

机床坐标系通常用于铣床和车床等机床加工领域的机器人。

机床坐标系需要进行坐标系转化,将机床坐标系转化为机器人关节坐标系,才能在机器人控制器中使用。

只有正确地将机床坐标系与机器人的坐标系建立联系,才能进行精准的运动控制和定位。

在机床坐标系中,基准面是以机床工作台为基准面,Z轴方向是由工作台向上为正方向。

横向方向(X轴方向)是由工作台中心轴线指向加工件的一侧,纵向方向(Y轴方向)是与Z轴垂直的方向。

由于机床一般比较庞大,如果加工件太小,则很难安装和固定,所以在机床坐标系中通常只考虑较大的加工件。

基础坐标系是相对于机器人底座而建立的坐标系。

在这个坐标系中,底座固定不动,机器人的运动是相对于底座进行的。

基础坐标系是机器人最基本的坐标系,所有机器人程序的起点都是基础坐标系。

在基础坐标系中,底座的横向方向(X轴)是指机器人的首臂或者腰臂的方向,纵向方向(Y轴)是指机器人的工具臂的方向,垂直底座方向的方向(Z轴)是指垂直于底座方向。

在基础坐标系中,机器人的零点是相对于底座来确定的。

基础坐标系的建立和工具坐标系相比是比较简单的,通过对机器人的末端执行器进行零点标定,即可建立起基础坐标系。

由于机器人的末端执行器是机器人的“手”,实际操作中可以通过机器人手“触碰”工作物,在基础坐标系中为其设置一个零点。

在工具坐标系中,基准面是与机器人末端执行器接触的面,Z轴是指与基准面垂直的方向,X轴是指在基准面上与机器人伸直臂臂长方向垂直的方向,Y轴是用右手定则确定的垂直于X轴和Z轴的方向。

工业机器人坐标系的分类及应用

工业机器人坐标系的分类及应用

工业机器人坐标系的分类及应用工业机器人是一种可以完成各种工业任务的自动化设备,它通常由机械臂、控制系统、传感器和执行器等部件组成。

机器人的坐标系是用来描述机器人在三维空间中的位置和姿态的数学模型。

根据机器人坐标系的不同分类方法和应用领域的不同需求,可以将工业机器人坐标系分为世界坐标系、机器人本体坐标系和工具坐标系三种。

世界坐标系是机器人中最基本的坐标系,它以机器人所在的工作空间为参考,通常将机器人的起始位置设为坐标原点。

世界坐标系是一个固定的参考系,它用来描述机器人在整个工作区域内的位置和姿态。

在使用世界坐标系时,机器人的位置和姿态可以通过测量或计算得到,然后通过运动学算法将其转换为机器人的关节角度,从而实现机器人的运动控制。

机器人本体坐标系是以机器人自身为参考的坐标系,它与机器人的关节角度密切相关。

机器人本体坐标系的原点通常位于机器人的基座,坐标轴与机器人的关节轴对应。

机器人本体坐标系的主要作用是描述机器人各个关节的运动状态,通过测量机器人关节的角度,可以确定机器人本体坐标系中的位置和姿态。

机器人本体坐标系的建立需要考虑机器人的结构和动力学特性,通过逆运动学算法可以将机器人本体坐标系转换为世界坐标系。

工具坐标系是机器人末端执行器的坐标系,它与机器人的工作工具相关。

工具坐标系的原点通常位于末端执行器的中心,坐标轴与工具的运动方向对应。

工具坐标系的主要作用是描述机器人末端执行器的位置和姿态,通过测量工具的运动状态,可以确定工具坐标系中的位置和姿态。

工具坐标系的建立需要考虑工具的结构和功能,通过正运动学算法可以将工具坐标系转换为机器人本体坐标系。

工业机器人坐标系的分类和应用在工业自动化领域具有重要意义。

世界坐标系可以用于描述机器人在整个工作区域内的位置和姿态,可以实现机器人的运动规划和轨迹控制。

机器人本体坐标系可以用于描述机器人关节的运动状态,可以实现机器人的逆运动学控制和动力学分析。

工具坐标系可以用于描述机器人末端执行器的位置和姿态,可以实现机器人的工具路径规划和力控制。

机器人坐标系的种类

机器人坐标系的种类

机器人坐标系的种类
机器人坐标系(Robot Coordinate System)是机器人运动和控制的基础,用来描述机器人的位置和姿态。

机器人坐标系有多种不同的种类,每种种类有不同的定义和用途。

以下是几种常见的机器人坐标系:
1. 世界坐标系(World Coordinate System):世界坐标系通常是一个固定的全局坐标系,用来描述机器人所在的整个空间。

它类似于绝对坐标系,在整个机器人系统中保持稳定性。

2. 基坐标系(Base Coordinate System):基坐标系通常是机器人控制器确定的初始坐标系,它与机器人的基座之间有一一对应的关系。

基坐标系是机器人运动的参考坐标系。

3. 关节坐标系(Joint Coordinate System):关节坐标系是由机器人的各个关节(Joint)构成的坐标系。

它以机器人每个关节的旋转轴线为坐标系轴,用来描述机器人的关节角度。

4. 工具坐标系(Tool Coordinate System):工具坐标系是在机器人末端工具上定义的坐标系。

它描述了工具相对于机器人末端执行器的位置和姿态,通常用来描述工具的操作或执行特定任务时的姿态。

5. 末端坐标系(End-effector Coordinate System):末端坐标系是机器人执行器(末端执行器)的参考坐标系。

它通常与工具坐标系重合,用来描述机器人末端执行器的位置和姿态。

机器人坐标系的选择和应用根据具体的机器人结构和任务需求而定。

不同的坐标系可以在机器人控制、路径规划、姿态调整和对象定位等方面发挥重要作用。

在实际应用中,正确理解和使用适当的坐标系是机器人控制和操作的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工业机器人常用坐标系介绍
坐标系:为确定机器人的位置和姿态而在机器人或空间上进行的位置指标
系统。

坐标系包含:1、基坐标系(Base Coordinate System)
2、大地坐标系(World Coordinate System)
3、工具坐标系(Tool Coordinate System)
4、工件坐标系(Work Object Coordinate System)
1、工具坐标系机器人工具座标系是由工具中心点TCP 与座标方位组成。

机器人联动运行时,TCP 是必需的。

1) Reorient 重定位运动(姿态运动)机器人TCP 位置不变,机器人工具沿座标轴转动,改变姿态。

2) Linear 线性运动机器人工具姿态不变,机器人TCP 沿座标轴线性移动。

机器人程序支持多个TCP,可以根据当前工作状态进行变换。

机器人工具被更换,重新定义TCP 后,可以不更改程序,直接运行。

1.1.定义工具坐标系的方法:1、N(N=4)点法/TCP 法-机器人TCP 通过N 种不同姿态同某定点相碰,得出多组解,通过计算得出当前TCP 与机器人手腕中心点( tool0 ) 相应位置,座标系方向与tool0 一致。

2、TCPZ 法-在N 点法基础上,Z 点与定点连线为座标系Z 方向。

3、TCPX,Z 法-在N 点法基础上,X 点与定点连线为座标系X 方向,Z 点与定点连线为座标系Z 方向。

2. 工件坐标系机器人工件座标系是由工件原点与座标方位组成。

机器人程序支持多个Wobj,可以根据当前工作状态进行变换。

外部夹具被更换,重新定义Wobj 后,可以不更改程序,直接运行。

相关文档
最新文档