陕西省2018年中考数学试题(含答案)【真题】
2018年陕西省中考数学试卷
2018年陕西省中考数学试卷(含答案)一、选择题(共10小题,每小题3分,计30分。
每小题只有一个选项是符合题意的)1.﹣的倒数是()A.B.C.D.2.如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥3.如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个 B.2个 C.3个 D.4个4.如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.B.C.﹣2 D.25.下列计算正确的是()A.a2•a2=2a4B.(﹣a2)3=﹣a6C.3a2﹣6a2=3a2D.(a﹣2)2=a2﹣4 6.如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为()A.B.2 C.D.37.若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0) C.(﹣6,0)D.(6,0)8.如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、GH和HE.若EH=2EF,则下列结论正确的是()A.AB=EF B.AB=2EF C.AB=EF D.AB=EF9.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°10.对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共4小题,每小题3分,计12分)11.比较大小:3(填“>”、“<”或“=”).12.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为.13.若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.14.如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是.三、解答题(共11小题,计78分。
陕西省2018年中考数学真题试题(含解析)含答案
陕西省2018年中考数学真题试题一、选择题:(本大题共10题,每题3分,满分30分)1. -的倒数是A. B. - C. D. -【答案】D【解析】【分析】根据乘积为1的两个数互为倒数进行求解即可得.【详解】∵=1,∴-的倒数是-,故选D.【点睛】本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.2. 如图,是一个几何体的表面展开图,则该几何体是A. 正方体B. 长方体C. 三棱柱D. 四棱锥【答案】C【解析】根据表面展开图中有两个三角形,三个长方形,由此即可判断出此几何体为三棱柱。
【详解】观察可知图中有一对全等的三角形,有三个长方形,所以此几何体为三棱柱,故选C【点睛】本题考查了几何体的展开图,熟记常见立体图形的展开图特点是解决此类问题的关键.3. 如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】如图根据平行线的性质可得∠2=∠4,∠1+∠2=180°,再根据对顶角的性质即可得出与∠1互补的角的个数.【详解】如图,∵l1∥l2,l3∥l4,∵∠2=∠4,∠1+∠2=180°,又∵∠2=∠3,∠4=∠5,∴与∠1互补的角有∠2、∠3、∠4、∠5共4个,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4. 如图,在矩形ABCD中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为A. -B.C. -2D. 2【答案】A【解析】【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k. 【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB是矩形,∴BC=OA=2,AC=OB=1,∵点C在第二象限,∴C点坐标为(-2,1),∵正比例函数y=kx的图像经过点C,∴-2k=1,∴k=-,故选A.【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键.5. 下列计算正确的是A. a2·a2=2a4B. (-a2)3=-a6C. 3a2-6a2=3a2D. (a-2)2=a2-4【答案】B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得. 【详解】A. a2·a2=a4,故A选项错误;B. (-a2)3=-a6,正确;C. 3a2-6a2=-3a2,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.6. 如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为A. B. 2 C. D. 3【答案】C【分析】由已知可知△ADC是等腰直角三角形,根据斜边AC=8可得AD=4,在Rt△ABD中,由∠B=60°,【解析】可得BD==,再由BE平分∠ABC,可得∠EBD=30°,从而可求得DE长,再根据AE=AD-DE即可【详解】∵AD⊥BC,∴△ADC是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC,∵AC=8,∴AD=4,在Rt△ABD中,∠B=60°,∴BD===,∵BE平分∠ABC,∴∠EBD=30°,∴DE=BD•tan30°==,∴AE=AD-DE=,故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.7. 若直线l1经过点(0,4),l2经过(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为A. (-2,0)B. (2,0)C. (-6,0)D. (6,0)【答案】B【解析】【分析】根据l1与l2关于x轴对称,可知l2必经过(0,-4),l1必经过点(3,-2),然后根据待定系数法分别求出l1、l2的解析式后,再联立解方程组即可得.【详解】由题意可知l1经过点(3,-2),(0,4),设l1的解析式为y=kx+b,则有,解得,所以l1的解析式为y=-2x+4,由题意可知由题意可知l2经过点(3,2),(0,-4),设l1的解析式为y=mx+n,则有,解得,所以l2的解析式为y=2x-4,联立,解得:,所以交点坐标为(2,0),故选B.【点睛】本题考查了两直线相交或平行问题,关于x轴对称的点的坐标特征,待定系数法等,熟练应用相关知识解题是关键.8. 如图,在菱形ABCD中,点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、GH和HE.若EH=2EF,则下列结论正确的是A. AB=EFB. AB=2EFC. AB=EFD. AB=EF【答案】D【解析】【分析】连接AC、BD交于点O,由菱形的性质可得OA=AC,OB=BD,AC⊥BD,由中位线定理可得EH=BD,EF=AC,根据EH=2EF,可得OA=EF,OB=2EF,在Rt△AOB中,根据勾股定理即可求得AB=EF,由此即可得到答案.【详解】连接AC、BD交于点O,∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,∵E、F、G、H分别是边AB、BC、CD和DA的中点,∴EH=BD,EF=AC,∵EH=2EF,∴OA=EF,OB=2OA=2EF,在Rt△AOB中,AB==EF,故选D.【点睛】本题考查了菱形的性质、三角形中位线定理、勾股定理等,正确添加辅助线是解决问题的关键.9. 如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为A. 15°B. 35°C. 25°D. 45°【答案】A【详解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D -∠BCD=180°-50°-(65°+50°)=15°,故选A.【点睛】本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键.10. 对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】先由题意得到关于a的不等式,解不等式求出a的取值范围,然后再确定抛物线的顶点坐标的取值范围,据此即可得出答案.【详解】由题意得:a+(2a-1)+a-3>0,解得:a>1,∴2a-1>0,∴<0,,∴抛物线的顶点在第三象限,故选C.【点睛】本题考查了抛物线的顶点坐标公式,熟知抛物线的顶点坐标公式是解题的关键.二、填空题:(本大题共4题,每题3分,满分12分)11. 比较大小:3_________ (填<,>或=).【答案】<【解析】【分析】根据实数大小比较的方法进行比较即可得答案.【详解】∵32=9,9<10,∴3<,故答案为:<.【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.12. 如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为________【答案】72°【解析】【分析】首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为:72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键13. 若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为______【答案】【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=,由题意得:m2=2m×(-1),解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=,故答案为:y=.【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.14. 点O是平行四边形ABCD的对称中心,AD>AB,E、F分别是AB边上的点,且EF=AB;G、H分别是BC 边上的点,且GH=BC;若S1,S2分别表示∆EOF和∆GOH的面积,则S1,S2之间的等量关系是______________ 【答案】2S1=3S2【解析】【分析】过点O分别作OM⊥BC,垂足为M,作ON⊥AB,垂足为N,根据点O是平行四边形ABCD的对称中心以及平行四边形的面积公式可得AB•ON=BC•OM,再根据S1=EF•ON,S2=GH•OM,EF=AB,GH=BC,则可得到答案.【详解】过点O分别作OM⊥BC,垂足为M,作ON⊥AB,垂足为N,∵点O是平行四边形ABCD的对称中心,∴S平行四边形ABCD=AB•2ON, S平行四边形ABCD=BC•2OM,∴AB•ON=BC•OM,∵S1=EF•ON,S2=GH•OM,EF=AB,GH=BC,∴S1=AB•ON,S2=BC•OM,∴2S1=3S2,故答案为:2S1=3S2.【点睛】本题考查了平行四边形的面积,中心对称的性质,正确添加辅助线、准确表示出图形面积是解题的关键.三、解答题(共11小题,计78分.解答应写出过程)15. 计算:(-)×(-)+|-1|+(5-2π)0【答案】【解析】【分析】按顺序先分别进行二次根据的乘法运算、绝对值的化简、0次幂的计算,然后再按运算顺序进行计算即可.【详解】(-)×(-)+|-1|+(5-2π)0=3+-1+1=4.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算的法则是解题的关键.16. 化简:【答案】【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算即可得.【详解】===.【点睛】本题考查了分式的混合运算,熟练掌握分式混合运算的顺序是解题的关键.17. 如图,已知在正方形ABCD中,M是BC边上一定点,连接AM,请用尺规作图法,在AM上求作一点P,使得△DPA∽△ABM(不写做法保留作图痕迹)【答案】作图见解析.【解析】【分析】根据尺规作图的方法过点D作AM的垂线即可得【详解】如图所示,点P即为所求作的点.【点睛】本题考查了尺规作图——作垂线,熟练掌握作图的方法是解题的关键.18. 如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【答案】证明见解析.【解析】【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG =DH+GH即可证得AG=HD.【详解】∵AB∥CD,∴∠A=∠D,∵CE∥BF,∴∠AHB=∠DGC,在∆ABH和∆DCG中,,∴∆ABH≌∆DCG(AAS),∴AH=DG,∵AH=AG+GH,DG=DH+GH,∴AG=HD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.19. 对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表依据以上统计信息,解答下列问题:(1)求得m=,n= ;(2)这次测试成绩的中位数落在组;(3)求本次全部测试成绩的平均数.【答案】(1)30;19%;(2)B;(3)80.1分.【解析】【分析】(1)根据B组的频数以及频率可求得样本容量,然后用样本容量乘以D组的百分比可求得m的值,用A的频数除以样本容量即可求得n的值;(2)根据中位数的定义进行解答即可得解;(3)根据平均数的定义进行求解即可得.【详解】(1)72÷36%=200,m=200×15%=30,n==19%,故答案为:30,19%;(2)一共有200个数据,从小到大排序后中位数是第100个、第101个数据的平均数,观察可知中位数落在B组,故答案为:B;(3)本次全部测试的平均成绩==80.1分.【点睛】本题考查了频数分布表,扇形统计图,中位数,平均数等知识,熟练掌握相关的概念是解题的关键.20. 周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.【答案】河宽为17米.【解析】【分析】由题意先证明∆ABC∽∆ADE,再根据相似三角形的对应边成比例即可求得AB的长.【详解】∵CB⊥AD,ED⊥AD,∴∠CBA=∠EDA=90°,∵∠CAB=∠EAD,∴∆ABC∽∆ADE,∴,又∵AD=AB+BD,BD=8.5,BC=1,DE=1.5,∴,∴AB=17,即河宽为17米.【点睛】本题考查了相似三角形的应用,熟记相似三角形的判定与性质是解题的关键.21. 经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣味x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.【答案】(1)前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋;(2)小明家网店销售这种规格的红枣和小米至少获得总利润23200元.【解析】【分析】(1)设前五个月小明家网店销售这种规格的红枣a袋,销售小米b袋,根据等量关系:①销售红枣和小米共3000kg,②获得利润4.2万元,列方程组进行求解即可得;(2)根据总利润=红枣的利润+小米的利润,可得y与x间的函数关系式,根据一次函数的性质即可得答案.【详解】(1)设前五个月小明家网店销售这种规格的红枣a袋,销售小米b袋,根据题意得:,解得:,答:前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋;(2)根据题意得:y=(60-40)x+(54-38)×=12x+16000,∵k=12>0,∴y随x的增大而增大,∵x≥600,∴当x=600时,y取得最小值,最小值为y=12×600+16000=23200,∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元.【点睛】本题考查了二元一次方程组的应用,一次函数的应用,弄清题意,找出各个量之间的关系是解题的关键.22. 如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.【答案】(1);(2).【解析】【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为=;(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.23. 如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC相交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)如图,连接ON,根据直角三角形斜边中线等于斜边的一半可得AD=CD=DB,从而可得∠DCB=∠DBC,再由∠DCB=∠ONC,可推导得出ON∥AB,再结合NE是⊙O的切线,ON//AB,继而可得到结论;(2)如图,由(1)可知ON∥AB,继而可得N为BC中点,根据圆周角定理可知∠CMD=90°,继而可得MD∥CB,再由D是AB的中点,根据得到MD=NB.【详解】(1)如图,连接ON,∵CD是Rt△ABC斜边AB上的中线,∴AD=CD=DB,∴∠DCB=∠DBC,又∵OC=ON,∴∠DCB=∠ONC,∴∠ONC=∠DBC,∴ON∥AB,∵NE是⊙O的切线,ON是⊙O的半径,∴∠ONE=90°,∴∠NEB=90°,即NE⊥AB;(2)如图所示,由(1)可知ON∥AB,∵OC=OD,∴∴CN=NB=CB,又∵CD是⊙O的直径,∴∠CMD=90°,∵∠ACB=90°,∴∠CMD+∠ACB=180°,∴MD//BC,又∵D是AB的中点,∴MD=CB,∴MD=NB.【点睛】本题考查了切线的性质、三角形中位线、圆周角定理等,正确添加辅助线、熟练应用相关知识是解题的关键.24. 已知抛物线L:y=x2+x-6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.(1)求A、B、C三点的坐标,并求出△ABC的面积;(2)将抛物线向左或向右平移,得到抛物线L´,且L´与x轴相交于A´、B´两点(点A´在点B´的左侧),并与y轴交于点C´,要使△A´B´C´和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.【答案】(1)A(-3,0),B(2,0),C(0,6);15;(2)y=x2-7x-6,y=x2+7x-6,y=x2-x-6.【解析】【分析】(1)在抛物线解析式中分别令x=0、y=0即可求得抛物线与坐标轴的交点坐标,然后根据三角形面积公式即可求得三角形的面积;(2)将抛物线向左或向右平移时,A´、B´两点间的距离不变,始终为5,那么要使△A´B´C´和△ABC 的面积相等,高也只能是6,分点C´在x轴上方与x轴下方两种情况分别讨论即可得.【详解】(1)当y=0时,x2+x-6=0,解得x1=-3,x2=2,当x=0时,y=-6,∴A(-3,0),B(2,0),C(0,6),∴S△ABC=AB·OC=×5×6=15;(2)将抛物线向左或向右平移时,A´、B´两点间的距离不变,始终为5,那么要使△A´B´C´和△ABC的面积相等,高也只能是6,设A(a,0),则B(a+5,0),y=(x-a)(x-a-5),当x=0时,y=a2+5a,当C´点在x轴上方时,y=a2+5a=6,a=1或a=-6,此时y=x2-7x-6或y=x2+7x-6;当C´点在x轴下方时,y=a2+5a=-6,a=-2或a=-3,此时y=x2-x-6或y=x2+x-6(与原抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y=x2-7x-6,y=x2+7x-6,y=x2-x-6.【点睛】本题考查了抛物线与坐标轴的交点、抛物线的平移等知识,熟知抛物线沿x轴左右平移时,抛物线与x轴两个交点间的距离不变是解(2)小题的关键.25. 问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,∠BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P 的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图①图②图③【答案】(1)5;(2)18;(3)(3-9)km.【解析】【分析】(1)如图(1),设外接圆的圆心为O,连接OA, OB,根据已知条件可得△AOB是等边三角形,由此即可得半径;(2)如图(2)所示,连接MO并延长交⊙O于N,连接OP,显然,MN即为MP的最大值,根据垂径定理求得OM的长即可求得MN的最大值;(3)如图(3)所示,假设P点即为所求点,分别作出点P关于AB、AC的对称点P´、P"连接PP´、P´E,PE,P"F,PF,PP",则P´P"即为最短距离,其长度取决于PA的长度,根据题意正确画出图形,得到点P的位置,根据等边三角形、勾股定理等进行求解即可得PE+EF+FP的最小值.【详解】(1)如图(1),设外接圆的圆心为O,连接OA, OB,∵O是等腰三角形ABC的外心,AB=AC,∴∠BAO=∠OAC=∠BAC==60°,∵OA=OB,∴△AOB是等边三角形,∴OB=AB=5,故答案为:5;(2)如图(2)所示,连接MO并延长交⊙O于N,连接OP,显然,MP≤OM+OP=OM+ON=MN,ON=13,OM==5,MN=18,∴PM的最大值为18;(3)如图(3)所示,假设P点即为所求点,分别作出点P关于AB、AC的对称点P´、P"连接PP´、P´E,PE,P"F,PF,PP"由对称性可知PE+EF+FP=P´E+EF+FP"=P´P",且P´、E、F、P"在一条直线上,所以P´P"即为最短距离,其长度取决于PA的长度,如图(4),作出弧BC的圆心O,连接AO,与弧BC交于P,P点即为使得PA最短的点,∵AB=6km,AC=3km,∠BAC=60°,∴∆ABC是直角三角形,∠ABC=30°,BC=3,BC所对的圆心角为60°,∴∆OBC是等边三角形,∠CBO=60°,BO=BC=3,∴∠ABO=90°,AO=3,PA=3-3,∠P´AE=∠EAP,∠PAF=∠FAP",∴∠P´AP"=2∠ABC=120°,P´A=AP",∴∠AP´E=∠AP"F=30°,∵P´P"=2P´Acos∠AP´E=P´A=3-9,所以PE+EF+FP的最小值为3-9km.【点睛】本题考查了圆的综合题,涉及到垂径定理、最短路径问题等,正确添加辅助线、灵活应用相关知识是解题的关键.。
【真题】2018年陕西省中考数学试题含答案(word版)
2018年陕西省中考数学试卷一、选择题:(本大题共10题,每题3分,满分30分)1、-711的倒数是A .711B .-711C .117D .-1172、如图,是一个几何体的表面展开图,则该几何体是 A .正方体 B .长方体 C .三棱柱 D .四棱锥3、如图,若l 1∥l 2,l 3∥l 4,则图中与∠1互补的角有 A .1个 B .2个 C .3个 D .4个4、如图,在矩形ABCD 中,A (-2,0),B(0,1).若正比例函数y =kx 的图像经过点C ,则k 的取值为A.-12 B .12C .-2D .2题图第3题图第4题图5、下列计算正确的是A .a 2·a 2=2a 4B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-4 6、如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为A .423B .2 2C .823D .3 2第6题图第8题图第9题图7、若直线l 1经过点(0,4),l 2经过(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为 A .(-2,0) B .(2,0) C .(-6,0) D .(6,0)8、如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、GH 和HE .若EH =2EF ,则下列结论正确的是A .AB =2EF B .AB =2EFC .AB =3EFD .AB =5EF9、如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为A .15°B .35°C .25°D .45°10、对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在 A .第一象限 B .第二象限 C .第三象限 D .第四象限 二、填空题:(本大题共4题,每题3分,满分12分)11、比较大小:填<,>或=).12、如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE 的度数为72° 13、若一个反比例函数的图像经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为y =4x3DB14、点O 是平行四边形A BCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H 分别是BC 边上的点,且GH =13BC ;若S 1,S 2分别表示∆EOF 和∆GOH 的面积,则S 1,S 2之间的等量关系是2S 1=3S 2第12题图 第14题图二、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分) 计算:(-3)×(-6)+|2-1|+(5-2π)0 解:原式=32+2-1+1=4 2 16.(本题满分5分)化简:⎝ ⎛⎭⎪⎫a +1a -1-a a +1÷3a +1a 2+a解:原式=3a +1(a +1)(a -1)×a (a +1)3a +1=aa -117.(本题满分5分)如图,已知在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA ∽△ABM (不写做法保留作图痕迹)解:如图,P 即为所求点.18、(本题满分5分)如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .证明:∵AB ∥CD ,∴∠A =∠D ∵CE ∥BF ,∴∠AHB =∠DGC 在∆ABH 和∆DCG 中,BBCADAD∵⎩⎪⎨⎪⎧∠A =∠D∠AHB =∠DGC AB =CD∴∆ABH ≌∆DCG (AAS ),∴AH =DG∵AH =AG +GH ,DG =DH +GH ,∴AG =HD19.(本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表(第19题图)依据以上统计信息,解答下列问题: (1)求得m =30,n =19%;(2)这次测试成绩的中位数落在B 组;(3)求本次全部测试成绩的平均数.解:测试的平均成绩=2581+5543+5100+2796200=80.1.20.(本题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .解:∵CB ⊥AD ,ED ⊥AD , ∴∠CBA =∠EDA =90° ∵∠CAB =∠EADA nD 、15%B 36%C 30%∴∆ABC ∽∆ADE ∴AD AB =DE BC ∴AB +8.5AB =1.51∴AB =17,即河宽为17米. 21.(本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg ,其中,这种规格的红枣的销售量不低于600kg .假设这后五个月,销售这种规格的红枣味x (kg ),销售这种规格的红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.解:(1)设前五个月小明家网店销售这种规格的红枣a 袋,销售小米b 袋,根据题意列方程得:a +2b =3000,(60-40)a +(54-38)b =42000,解得:a =1500,b =750∴前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋 (2)根据题意得:y =(60-40)x +(54-38)×2000-x 2=12x +16000y 随x 的增大而增大,∵x ≥600,∴当x =600时,y 取得最小值, 最小值为y =12×600+16000=23200∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元. 22.(本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.1-23-2(第22题图)解:(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120°360°=13; (2)由(1)可知,该转盘转出“1”“3”“-2”的概率相同,均为13,所有可能性如下由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为5923.(本题满分8分)如图,在Rt △A BC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC 、BC 相交于点M 、N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ; (2)连接MD ,求证:MD =NB .23题图 23题解图(1)解:(1)如图,连接ON∵CD 是Rt △ABC 斜边AB 上的中线 ∴AD =CD =DB ∴∠DCB =∠DBC 又∵∠DCB =∠ONC ∴∠ONC =∠DBC ∴ON ∥AB∵NE 是⊙O 的切线,ON 是⊙O 的半径 ∴∠ONE =90°∴∠NEB =90°,即NE ⊥AB ;(2)如解图(1)所示,由(1)可知ON ∥AB ,O 为⊙O 的圆心,∴OC =OB ,∠CMD =90°∴CN =NB =12CB ,MD ∥CB又∵D 是AB 的中点,∴MD =12CB ∴MD =NB .24.(本题满分10分)已知抛物线L :y =x 2+x -6与x 轴相交于A 、B 两点(点A 在点B 的左侧),并与y 轴相交于点C .(1)求A 、B 、C 三点的坐标,并求出△ABC 的面积; (2)将抛物线向左或向右平移,得到抛物线L ´,且L ´与x 轴相交于A ´、B ´两点(点A ´ABBA在点B ´的左侧),并与y 轴交于点C ´,要使△A ´B ´C ´和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.解:(1)当y =0时,x 2+x -6=0,解得x 1=-3,x 2=2;当x =0时,y =-6 ∴A (-3,0),B (2,0),C (0,6)∴S △ABC =12AB ·OC =12×5×6=15; (2)将抛物线向左或向右平移时,A ´、B ´两点间的距离不变,始终为5,那么要使△A ´B ´C ´和△ABC 的面积相等,高也只能是6设A (a ,0),则B (a +5,0),y =(x -a )(x -a -5),当x =0时,y =a 2+5a当C 点在x 轴上方时,y =a 2+5a =6,a =1或a =-6,此时y =x 2-7x -6或y =x 2+7x -6;当C 点在x 轴下方时,y =a 2+5a =-6,a =-2或a =-3,此时y =x 2-x -6或y =x 2+x -6(与圆抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y =x 2-7x -6,y =x 2+7x -6,y =x 2-x -6.25.(本题满分12分) 问题提出 (1)如图①,在△ABC 中,∠A =120°,AB =AC =5,则△ABC 的外接圆半径R 的值为 . 问题探究(2)如图②,⊙O 的半径为13,弦AB =24,M 是AB 的中点,P 是⊙O 上一动点,求PM 的最大值.问题解决(3)如图③所示,AB 、AC 、BC 是某新区的三条规划路其中,AB =6km ,AC =3km ,∠BAC =60°,BC 所对的圆心角为60°.新区管委会想在BC 路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F .也就是,分别在BC 线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天要将物资在各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷环保和节约成本要使得线段PE 、EF 、FP 之和最短,试求PE +EF +FP 的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图① 图② 图③解:(1)R =AB =AC =5;(2)如25题解图(2)所示,连接MO 并延长交⊙O 于N ,连接OP显然,MP ≤OM +OP =OM +ON =MN ,ON =13,OM =132-122=5,MN =18 ∴PM 的最大值为18;25题解图(2) 25题解图(3) (3)假设P 点即为所求点,分别作出点P 关于AB 、AC 的对称点P ´、P "连接PP ´、P ´E ,PE ,P "F ,PF ,PP "由对称性可知PE +EF +FP =P ´E +EF +FP "=P ´P ",且P ´、E 、F 、P "在一条直线上,所以P ´P "即为最短距离,其长度取决于P A 的长度25题解图(4)作出弧BC 的圆心O ,连接AO ,与弧BC 交于P ,P 点即为使得P A 最短的点 ∵AB =6km ,AC =3km ,∠BAC =60°,∴∆ABC 是直角三角形,∠ABC =30°,BC=3 3 BC 所对的圆心角为60°,∴∆OBC 是等边三角形,∠CBO =60°,BO =BC =3 3 ∴∠ABO =90°,AO =37,PA =37-3 3 ∠P ´AE =∠EAP ,∠P AF =∠F AP ",∴∠P ´AP "=2∠ABC =120°,P ´A =AP ",∴∠AP ´E =∠AP "F =30°∵P ´P "=2P ´A cos ∠AP ´E =3P ´A =321-9 所以PE +EF +FP 的最小值为321-9km .P''BB。
陕西省2018年中考数学试题(完美word版含答案)
2018年陕西省中考数学试卷一、选择题:(本大题共10题,每题3分,满分30分)1、-711的倒数是A .711B .-711C .117D .-1172、如图,是一个几何体的表面展开图,则该几何体是A .正方体B .长方体C .三棱柱D .四棱锥3、如图,若l 1∥l 2,l 3∥l 4,则图中与∠1互补的角有A .1个B .2个C .3个D .4个4、如图,在矩形ABCD 中,A (-2,0),B(0,1).若正比例函数y =kx 的图像经过点C ,则k 的取值为A .-12B .12C .-2D .2第2题图 第3题图第4题图5、下列计算正确的是A .a 2·a 2=2a 4B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-46、如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为A .423B .2 2C .823D .3 2第6题图第8题图第9题图7、若直线l 1经过点(0,4),l 2经过(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标3DB为A .(-2,0)B .(2,0)C .(-6,0)D .(6,0)8、如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、GH 和HE .若EH =2EF ,则下列结论正确的是A .AB =2EF B .AB =2EFC .AB =3EFD .AB =5EF9、如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为A .15°B .35°C .25°D .45°10、对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:(本大题共4题,每题3分,满分12分)11、比较大小:填<,>或=).12、如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE 的度数为72°13、若一个反比例函数的图像经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为y =4x14、点O 是平行四边形ABCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H 分别是BC 边上的点,且GH =13BC ;若S 1,S 2分别表示∆EOF 和∆GOH 的面积,则S 1,S 2之间的等量关系是2S 1=3S 2第12题图第14题图二、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分)计算:(-3)×(-6)+|2-1|+(5-2π)0 解:原式=32+2-1+1=4 2 16.(本题满分5分)BBGH化简:⎝⎛⎭⎪⎫a +1a -1-a a +1÷3a +1a 2+a 解:原式=3a +1(a +1)(a -1)×a (a +1)3a +1=a a -117.(本题满分5分)如图,已知在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA ∽△ABM (不写做法保留作图痕迹)解:如图,P 即为所求点.18、(本题满分5分)如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .证明:∵AB ∥CD ,∴∠A =∠D ∵CE ∥BF ,∴∠AHB =∠DGC 在∆ABH 和∆DCG 中, ∵⎩⎪⎨⎪⎧∠A =∠D ∠AHB =∠DGC AB =CD∴∆ABH ≌∆DCG (AAS ),∴AH =DG∵AH =AG +GH ,DG =DH +GH ,∴AG =HD19.(本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知CADAD识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表(第19题图)依据以上统计信息,解答下列问题: (1)求得m =30,n =19%;(2)这次测试成绩的中位数落在B 组; (3)求本次全部测试成绩的平均数.解:测试的平均成绩=2581+5543+5100+2796200=80.1.20.(本题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .解:∵CB ⊥AD ,ED ⊥AD , ∴∠CBA =∠EDA =90° ∵∠CAB =∠EAD ∴∆ABC ∽∆ADEA nD 、15%B 36%C 30%∴AD AB =DE BC∴AB +8.5AB =1.51∴AB =17,即河宽为17米. 21.(本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg ,其中,这种规格的红枣的销售量不低于600kg .假设这后五个月,销售这种规格的红枣味x (kg ),销售这种规格的红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.解:(1)设前五个月小明家网店销售这种规格的红枣a 袋,销售小米b 袋,根据题意列方程得:a +2b =3000,(60-40)a +(54-38)b =42000,解得:a =1500,b =750∴前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋 (2)根据题意得:y =(60-40)x +(54-38)×2000-x 2=12x +16000y 随x 的增大而增大,∵x ≥600,∴当x =600时,y 取得最小值,最小值为y =12×600+16000=23200∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元. 22.(本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.(第22题图)解:(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120°360°=13;(2)由(1)可知,该转盘转出“1”“3”“-2”的概率相同,均为13,所有可能性如下表所示:由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为923.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC 、BC 相交于点M 、N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ; (2)连接MD ,求证:MD =NB .1-23-223题图23题解图(1)解:(1)如图,连接ON∵CD 是Rt △ABC 斜边AB 上的中线 ∴AD =CD =DB ∴∠DCB =∠DBC 又∵∠DCB =∠ONC ∴∠ONC =∠DBC ∴ON ∥AB∵NE 是⊙O 的切线,ON 是⊙O 的半径 ∴∠ONE =90°∴∠NEB =90°,即NE ⊥AB ; (2)如解图(1)所示,由(1)可知ON ∥AB ,O 为⊙O 的圆心,∴OC =OB ,∠CMD =90° ∴CN =NB =12CB ,MD ∥CB又∵D 是AB 的中点,∴MD =12CB∴MD =NB . 24.(本题满分10分)已知抛物线L :y =x 2+x -6与x 轴相交于A 、B 两点(点A 在点B 的左侧),并与y 轴相交于点C .(1)求A 、B 、C 三点的坐标,并求出△ABC 的面积;(2)将抛物线向左或向右平移,得到抛物线L ´,且L ´与x 轴相交于A ´、B ´两点(点A ´在点B ´的左侧),并与y 轴交于点C ´,要使△A ´B ´C ´和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.解:(1)当y =0时,x 2+x -6=0,解得x 1=-3,x 2=2;当x =0时,y =-6 ∴A (-3,0),B (2,0),C (0,6)ABBA∴S △ABC =12AB ·OC =12×5×6=15;(2)将抛物线向左或向右平移时,A ´、B ´两点间的距离不变,始终为5,那么要使△A ´B ´C ´和△ABC 的面积相等,高也只能是6设A (a ,0),则B (a +5,0),y =(x -a )(x -a -5),当x =0时,y =a 2+5a 当C 点在x 轴上方时,y =a 2+5a =6,a =1或a =-6,此时y =x 2-7x -6或y =x 2+7x -6;当C 点在x 轴下方时,y =a 2+5a =-6,a =-2或a =-3,此时y =x 2-x -6或y =x 2+x -6(与圆抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y =x 2-7x -6,y =x 2+7x -6,y =x 2-x -6.25.(本题满分12分) 问题提出(1)如图①,在△ABC 中,∠A =120°,AB =AC =5,则△ABC 的外接圆半径R 的值为.问题探究(2)如图②,⊙O 的半径为13,弦AB =24,M 是AB 的中点,P 是⊙O 上一动点,求PM 的最大值.问题解决(3)如图③所示,AB 、AC 、BC 是某新区的三条规划路其中,AB =6km ,AC =3km ,∠BAC =60°,BC 所对的圆心角为60°.新区管委会想在BC 路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F .也就是,分别在BC 线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天要将物资在各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷环保和节约成本要使得线段PE 、EF 、FP 之和最短,试求PE +EF +FP 的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图①图②图③解:(1)R =AB =AC =5;(2)如25题解图(2)所示,连接MO 并延长交⊙O 于N ,连接OP显然,MP ≤OM +OP =OM +ON =MN ,ON =13,OM =132-122=5,MN =18 ∴PM 的最大值为18;25题解图(2)25题解图(3)(3)假设P 点即为所求点,分别作出点P 关于AB 、AC 的对称点P ´、P "连接PP ´、P ´E ,PE ,P "F ,PF ,PP "由对称性可知PE +EF +FP =P ´E +EF +FP "=P ´P ",且P ´、E 、F 、P "在一条直线上,所以P ´P "即为最短距离,其长度取决于PA 的长度25题解图(4)作出弧BC 的圆心O ,连接AO ,与弧BC 交于P ,P 点即为使得PA 最短的点 ∵AB =6km ,AC =3km ,∠BAC =60°,∴∆ABC 是直角三角形,∠ABC =30°,BC =3 3BC 所对的圆心角为60°,∴∆OBC 是等边三角形,∠CBO =60°,BO =BC =3 3∴∠ABO =90°,AO =37,PA =37-3 3∠P ´AE =∠EAP ,∠PAF =∠FAP ",∴∠P ´AP "=2∠ABC =120°,P ´A =AP ",∴∠AP ´E =∠AP "F =30°∵P ´P "=2P ´A cos ∠AP ´E =3P ´A =321-9P''BB所以PE+EF+FP的最小值为321-9km.。
2018年陕西省中考数学试卷(带解析答案)
【解答】解:∵
t = =,
∴S1= S△AOB,S2= S△BOC. ∵点 O 是▱ ABCD 的对称中心, ∴S△AOB=S△BOC= S▱ ABCD,
t = =, hh
∴ = =.
即 S1 与 S2 之间的等量关系是 = . 故答案为 = .
三、解答题(共 11 小题,计 78 分。解答应写出过程)
∴AD= AC=4 . 在 Rt△ADB 中,AD=4 ,∠ABD=60°,
∴BD= AD= . ∵BE 平分∠ABC, ∴∠EBD=30°.
在 Rt△EBD 中,BD= ,∠EBD=30°,
∴DE= BD= ,
∴AE=AD﹣DE= . 故选:C.
第 3页(共 18页)
7.(3 分)若直线 l1 经过点(0,4),l2 经过点(3,2),且 l1 与 l2 关于 x 轴对称, 则 l1 与 l2 的交点坐标为( ) A.(﹣2,0) B.(2,0) C.(﹣6,0) D.(6,0)
第 8页(共 18页)
∴△DPA∽△ABM.
18.(5 分)如图,AB∥CD,E、F 分别为 AB、CD 上的点,且 EC∥BF,连接 AD, 分别与 EC、BF 相交于点 G,H,若 AB=CD,求证:AG=DH.
【解答】证明:∵AB∥CD、EC∥BF, ∴四边形 BFCE 是平行四边形,∠A=∠D, ∴∠BEC=∠BFC,BE=CF, ∴∠AEG=∠DFH, ∵AB=CD, ∴AE=DF, 在△AEG 和△DFH 中,
A.15° B.35° C.25° D.45° 【解答】解:∵AB=AC、∠BCA=65°, ∴∠CBA=∠BCA=65°,∠A=50°, ∵CD∥AB, ∴∠ACD=∠A=50°, 又∵∠ABD=∠ACD=50°, ∴∠DBC=∠CBA﹣∠ABD=15°, 故选:A.
陕西省2018年中考数学试题及解析
2018年陕西省初中毕业学业考试数学试卷(满分120分,考试时间120分钟)一、选择题(共10小题,每小题3分,计30分。
每小题只有一个选项是符合题意的)1.(3分)﹣的倒数是( )A. B. C. D.2.(3分)如图,是一个几何体的表面展开图,则该几何体是( )A.正方体B.长方体C.三棱柱D.四棱锥3.(3分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有( )A.1个 B.2个 C.3个 D.4个4.(3分)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为( )A.B. C.﹣2 D.25.(3分)下列计算正确的是( )A.a2•a2=2a4B.(﹣a2)3=﹣a6C.3a2﹣6a2=3a2 D.(a﹣2)2=a2﹣46.(3分)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为( )A. B.2 C. D.37.(3分)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为( )A.(﹣2,0)B.(2,0)C.(﹣6,0) D.(6,0)8.(3分)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.若EH=2EF,则下列结论正确的是( )A.AB=EF B.AB=2EF C.AB=EF D.AB=EF9.(3分)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为( )A.15°B.35°C.25°D.45°10.(3分)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在( )A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共4小题,每小题3分,计12分)11.(3分)比较大小:3 (填“>”、“<”或“=”).12.(3分)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为 .13.(3分)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为 .14.(3分)如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是 .三、解答题(共11小题,计78分。
2018年陕西省中考数学试题及解析
2018年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)(2018•陕西)计算:(﹣)0=()A.1B.C.0D.2.(3分)(2018•陕西)如图是一个螺母的示意图,它的俯视图是()A.B.C.D.3.(3分)(2018•陕西)下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a2b2÷a2b2=3ab4.(3分)(2018•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()A.43°30′B.53°30′C.133°30′D.153°30′5.(3分)(2018•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣46.(3分)(2018•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个7.(3分)(2018•陕西)不等式组的最大整数解为()A.8B.6C.5D.48.(3分)(2018•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度9.(3分)(2018•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或810.(3分)(2018•陕西)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2018•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为.12.(3分)(2018•陕西)正八边形一个内角的度数为.13.(2018•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).14.(3分)(2018•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为.15.(3分)(2018•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2018•陕西)计算:×(﹣)+|﹣2|+()﹣3.17.(5分)(2018•陕西)解分式方程:﹣=1.18.(5分)(2018•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)(2018•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)(2018•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21.(7分)(2018•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22.(7分)(2018•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)(2018•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.(8分)(2018•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.25.(10分)(2018•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y 轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.26.(12分)(2018•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.2018年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)(2018•陕西)计算:(﹣)0=()A.1B.C.0D.考点:零指数幂.分析:根据零指数幂:a0=1(a≠0),求出(﹣)0的值是多少即可.解答:解:(﹣)0=1.故选:A.点评:此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.2.(3分)(2018•陕西)如图是一个螺母的示意图,它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看外面是一个正六边形,里面是一个没有圆心的圆,故选:B.点评:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.3.(3分)(2018•陕西)下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a2b2÷a2b2=3ab考点:整式的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.解答:解:A、a2•a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.点评:本题考查了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决本题的关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法的法则.4.(3分)(2018•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()A.43°30′B.53°30′C.133°30′D.153°30′考点:平行线的性质.分析:先根据平行线的性质求出∠EFD的度数,再根据补角的定义即可得出结论.解答:解:∵AB∥CD,∠1=46°30′,∴∠EFD=∠1=46°30′,∴∠2=180°﹣46°30′=133°30′.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两线平行,同位角相等.5.(3分)(2018•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣4考点:正比例函数的性质.分析:直接根据正比例函数的性质和待定系数法求解即可.解答:解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选B点评:本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0,图象经过第一、三象限,y值随x的增大而增大;当k<0,图象经过第二、四象限,y值随x的增大而减小.6.(3分)(2018•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个考点:等腰三角形的判定与性质.分析:根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.解答:解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.点评:此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.7.(3分)(2018•陕西)不等式组的最大整数解为()A.8B.6C.5D.4考点:一元一次不等式组的整数解.分析:先求出各个不等式的解集,再求出不等式组的解集,最后求出答案即可.解答:解:∵解不等式①得:x≥﹣8,解不等式②得:x<6,∴不等式组的解集为﹣8≤x<6,∴不等式组的最大整数解为5,故选C.点评:本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.8.(3分)(2018•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度考点:一次函数图象与几何变换.分析:利用一次函数图象的平移规律,左加右减,上加下减,得出即可.解答:解:∵将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,∴﹣2(x+a)﹣2=﹣2x+4,解得:a=﹣3,故将l1向右平移3个单位长度.故选:A.点评:此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.9.(3分)(2018•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或8考点:平行四边形的性质;勾股定理;正方形的性质.专题:分类讨论.分析:设AE的长为x,根据正方形的性质可得BE=14﹣x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为x,根据正方形的性质可得BE=14﹣x,在△ABE中,根据勾股定理可得x2+(14﹣x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.10.(3分)(2018•陕西)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧考点:抛物线与x轴的交点.分析:根据函数值为零,可得相应的方程,根据根的判别式,公式法求方程的根,可得答案.解答:解:当y=0时,ax2﹣2ax+1=0,∵a>1∴△=(﹣2a)2﹣4a=4a(a﹣1)>0,ax2﹣2ax+1=0有两个根,函数与有两个交点,x=>0,故选:D.点评:本题考查了抛物线与x轴的交点,利用了函数与方程的关系,方程的求根公式.二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2018•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为﹣6.考点:实数大小比较.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:≈2.236,π≈3.14,∵﹣6<0<2.236<3.14,∴﹣6.故答案为:﹣6.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)(2018•陕西)正八边形一个内角的度数为135°.考点:多边形内角与外角.分析:首先根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.解答:解:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为×1080°=135°.故答案为:135°.点评:此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180(n≥3)且n为整数).13.(2018•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为27.8°(用科学计算器计算,结果精确到0.1°).考点:解直角三角形的应用-坡度坡角问题.分析:直接利用坡度的定义求得坡角的度数即可.解答:解:∵tan∠A==≈0.5283,∴∠A=27.8°,故答案为:27.8°.点评:本题考查了坡度坡角的知识,解题时注意坡角的正切值等于铅直高度与水平宽度的比值,难度不大.14.(3分)(2018•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10.考点:反比例函数系数k的几何意义.分析:设点A的坐标为(a,b),点B的坐标为(c,d),根据反比例函数y=的图象过A,B两点,所以ab=4,cd=4,进而得到S△AOC=|ab|=2,S△BOD=|cd|=2,S矩形MCDO=3×2=6,根据四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO,即可解答.解答:解:如图,设点A的坐标为(a,b),点B的坐标为(c,d),∵反比例函数y=的图象过A,B两点,∴ab=4,cd=4,∴S △AOC =|ab|=2,S △BOD =|cd|=2,∵点M (﹣3,2),∴S 矩形MCDO =3×2=6,∴四边形MAOB 的面积=S △AOC +S △BOD +S 矩形MCDO =2+2+6=10,故答案为:10.点评:本题主要考查反比例函数的对称性和k 的几何意义,根据条件得出S △AOC =|ab|=2,S △BOD =|cd|=2是解题的关键,注意k 的几何意义的应用.15.(3分)(2018•陕西)如图,AB 是⊙O 的弦,AB=6,点C 是⊙O 上的一个动点,且∠ACB=45°.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是3.考点:三角形中位线定理;等腰直角三角形;圆周角定理.分析:根据中位线定理得到MN 的最大时,AC 最大,当AC 最大时是直径,从而求得直径后就可以求得最大值.解答:解:∵点M ,N 分别是AB ,BC 的中点,∴MN=AC ,∴当AC 取得最大值时,MN 就取得最大值,当AC 时直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3故答案为:3.点评:本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN 的值最大,难度不大.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2018•陕西)计算:×(﹣)+|﹣2|+()﹣3.考点:二次根式的混合运算;负整数指数幂.专题:计算题.分析:根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8,然后化简后合并即可.解答:解:原式=﹣+2+8=﹣3+2+8=8﹣.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数整数幂、17.(5分)(2018•陕西)解分式方程:﹣=1.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(5分)(2018•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)考点:作图—复杂作图.分析:作BC边上的中线,即可把△ABC分成面积相等的两部分.解答:解:如图,直线AD即为所求:点评:此题主要考查三角形中线的作法,同时要掌握若两个三角形等底等高,则它们的面积相等.19.(5分)(2018•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在良好等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据各个等级的百分比得出答案即可;(2)根据中位数的定义知道中位数是第25和26个数的平均数,由此即可得出答案;(3)首先根据扇形图得出优秀人数占的百分比,条形统计图可以求出平均数的最小值,然后即可求出答案.解答:解:(1);(2)∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级,故答案为:良好;(3)650×26%=169(人),即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.点评:本题难度中等,主要考查统计图表的识别;解本题要懂得频率分布直分图的意义.同时考查了平均数和中位数的定义.20.(7分)(2018•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.考点:全等三角形的判定与性质.专题:证明题.分析:根据平行线的性质得出∠EAC=∠ACB,再利用ASA证出△ABD≌△CAE,从而得出AD=CE.解答:证明:∵AE∥BD,∴∠EAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE,∴AD=CE.点评:此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、平行线的性质,关键是利用ASA证出△ABD≌△CAE.21.(7分)(2018•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)考点:相似三角形的应用.分析:先证明△CAD~△MND,利用相似三角形的性质求得MN=9.6,再证明△EFB~△MFN,即可解答.解答:解:由题意得:∠CAD=∠MND=90°,∠CDA=MDN,∴△CAD~△MND,∴,∴,∴MN=9.6,又∵∠EBF=∠MNF=90°,∠EFB=∠MFN ,∴△EFB ~△MFN ,∴,∴∴EB ≈1.75,∴小军身高约为1.75米.点评:本题考查的是相似三角形的判定及性质,解答此题的关键是相似三角形的判定.22.(7分)(2018•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x 人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y (元)与x (人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.考点:一次函数的应用.专题:应用题.分析:(1)根据总费用等于人数乘以打折后的单价,易得y 甲=640×0.85x ,对于乙两家旅行社的总费用,分类讨论:当0≤x ≤20时,y 乙=640×0.9x ;当x >20时,y 乙=640×0.9×20+640×0.75(x ﹣20);(2)把x=32分别代入(1)中对应得函数关系计算y 甲和y 乙的值,然后比较大小即可.解答:解:(1)甲两家旅行社的总费用:y 甲=640×0.85x=544x ;乙两家旅行社的总费用:当0≤x ≤20时,y 乙=640×0.9x=576x ;当x >20时,y 乙=640×0.9×20+640×0.75(x ﹣20)=480x+1920;(2)当x=32时,y 甲=544×32=17408(元),y 乙=480×32+1920=17280,因为y 甲>y 乙,所以胡老师选择乙旅行社.点评:本题考查了一次函数的应用:利用实际问题中的数量关系建立一次函数关系,特别对乙旅行社的总费用要采用分段函数解决问题.23.(7分)(2018•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)考点:游戏公平性;列表法与树状图法.分析:(1)首先判断出向上一面的点数为奇数有3种情况,然后根据概率公式,求出小亮掷得向上一面的点数为奇数的概率是多少即可.(2)首先应用列表法,列举出所有可能的结果,然后分别判断出小亮、小丽获胜的概率是多少,再比较它们的大小,判断出该游戏是否公平即可.解答:解:(1)∵向上一面的点数为奇数有3种情况,∴小亮掷得向上一面的点数为奇数的概率是:.(2)填表如下:1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,一共有36种等可能的结果,其中小亮、小丽获胜各有9种结果.∴P(小亮胜)=,P(小丽胜)==,∴游戏是公平的.点评:(1)此题主要考查了判断游戏公平性问题,要熟练掌握,首先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.(2)此题主要考查了列举法(树形图法)求概率问题,解答此类问题的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.24.(8分)(2018•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.考点:切线的性质;勾股定理;相似三角形的判定与性质.分析:(1)根据切线的性质,和等角的余角相等证明即可;(2)根据勾股定理和相似三角形进行解答即可.解答:(1)证明:∵AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,∴∠ABE=90°,∴∠BAE+∠E=90°,∵∠DAE=90°,∴∠BAD+∠BAE=90°,∴∠BAD=∠E;(2)解:连接BC,如图:∵AB是⊙O的直径,∴∠ACB=90°,∵AC=8,AB=2×5=10,∴BC=,∵∠BCA=∠ABE=90°,∠BAD=∠E,∴△ABC∽△EAB,∴,∴,∴BE=.点评:本题考查了切线的性质、相似三角形等知识点,关键是根据切线的性质和相似三角形的性质分析.25.(10分)(2018•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y 轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.考点:二次函数综合题.分析:(1)令y=0,求出x的值;令x=0,求出y,即可解答;(2)先求出A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,﹣4),再代入解析式,即可解答;(3)取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,由此判定四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,从而平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,求出抛物线的顶点坐标M,根据,即可解答.解答:解:(1)令y=0,得x2+5x+4=0,∴x1=﹣4,x2=﹣1,令x=0,得y=4,∴A(﹣4,0),B(﹣1,0),C(0,4).(2)∵A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,﹣4),∴所求抛物线的函数表达式为y=ax2+bx﹣4,将(4,0),(1,0)代入上式,得解得:,∴y=﹣x2+5x﹣4.(3)如图,取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,∴四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,∴平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,∵y=,∴M(),又∵A(﹣4,0),A′(4,0)∴AA′=8,MD=,∴=点评:本题考查了二次函数的性质与图象、中心对称、平行四边形的判定、菱形的判定,综合性较强,解决本题的关键是根据中心对称,求出抛物线的解析式,在(3)中注意菱形的判定与数形结合思想的应用.26.(12分)(2018•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为24;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.。
陕西省2018年中考数学试题(含答案)【精品】.docx
2018年陕西省中考数学试卷一、选择题:(本大题共10题,每题3分,满分30分)1、-711的倒数是A .711B .-711C .117D .-1172、如图,是一个几何体的表面展开图,则该几何体是 A .正方体 B .长方体 C .三棱柱 D .四棱锥3、如图,若l 1∥l 2,l 3∥l 4,则图中与∠1互补的角有 A .1个 B .2个 C .3个 D .4个4、如图,在矩形ABCD 中,A (-2,0),B(0,1).若正比例函数y =kx 的图像经过点C ,则k 的取值为A.-12 B .12C .-2D .2第2题图第3题图第4题图5、下列计算正确的是A .a 2·a 2=2a 4B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-4 6、如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为A .423B .2 2C .823D .3 2第6题图第8题图第9题图7、若直线l 1经过点(0,4),l 2经过(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为 A .(-2,0) B .(2,0) C .(-6,0) D .(6,0)8、如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、GH 和HE .若EH =2EF ,则下列结论正确的是 A .AB =2EF B .AB =2EF C .AB =3EF D .AB =5EF9、如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为 A .15° B .35° C .25° D .45°10、对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在 A .第一象限 B .第二象限 C .第三象限 D .第四象限二、填空题:(本大题共4题,每题3分,满分12分)11、比较大小:填<,>或=).12、如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE 的度数为72°13、若一个反比例函数的图像经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为3DBy =4x14、点O 是平行四边形ABCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H分别是BC 边上的点,且GH =13BC ;若S 1,S 2分别表示∆EOF 和∆GOH 的面积,则S 1,S 2之间的等量关系是2S1=3S 2第12题图第14题图二、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分) 计算:(-3)×(-6)+|2-1|+(5-2π)0 解:原式=32+2-1+1=4 2 16.(本题满分5分)化简:⎝ ⎛⎭⎪⎫a +1a -1-a a +1÷3a +1a 2+a解:原式=3a +1(a +1)(a -1)×a (a +1)3a +1=aa -117.(本题满分5分)如图,已知在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA ∽△ABM (不写做法保留作图痕迹)解:如图,P 即为所求点.18、(本题满分5分)如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .证明:∵AB ∥CD ,∴∠A =∠D ∵CE ∥BF ,∴∠AHB =∠DGC 在∆ABH 和∆DCG 中, ∵⎩⎪⎨⎪⎧∠A =∠D∠AHB =∠DGC AB =CDBGHCADAD∴∆ABH ≌∆DCG (AAS ),∴AH =DG∵AH =AG +GH ,DG =DH +GH ,∴AG =HD 19.(本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:(第19题图)依据以上统计信息,解答下列问题: (1)求得m =30,n =19%;(2)这次测试成绩的中位数落在B 组; (3)求本次全部测试成绩的平均数.解:测试的平均成绩=2581+5543+5100+2796200=80.1.20.(本题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .解:∵CB ⊥AD ,ED ⊥AD , ∴∠CBA =∠EDA =90° ∵∠CAB =∠EAD ∴∆ABC ∽∆ADE ∴AD AB =DE BC∴AB +8.5AB =1.51∴AB =17,即河宽为17米. 21.(本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往A nD 、15%B 36%C 30%(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg ,其中,这种规格的红枣的销售量不低于600kg .假设这后五个月,销售这种规格的红枣味x (kg ),销售这种规格的红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.解:(1)设前五个月小明家网店销售这种规格的红枣a 袋,销售小米b 袋,根据题意列方程得:a +2b =3000,(60-40)a +(54-38)b =42000,解得:a =1500,b =750∴前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋(2)根据题意得:y =(60-40)x +(54-38)×2000-x2=12x +16000y 随x 的增大而增大,∵x ≥600,∴当x =600时,y 取得最小值, 最小值为y =12×600+16000=23200∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元.22.(本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.(第22题图)解:(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120°360°=13;(2)由(1)可知,该转盘转出“1”“3”“-2”的概率相同,均为1,所有可能性如下表所示:由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为5923.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC 、BC 相交于点M 、N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ; (2)连接MD ,求证:MD =NB .1-23-223题图 23题解图(1)解:(1)如图,连接ON∵CD 是Rt △ABC 斜边AB 上的中线 ∴AD =CD =DB ∴∠DCB =∠DBC 又∵∠DCB =∠ONC ∴∠ONC =∠DBC ∴ON ∥AB∵NE 是⊙O 的切线,ON 是⊙O 的半径 ∴∠ONE =90°∴∠NEB =90°,即NE ⊥AB ;(2)如解图(1)所示,由(1)可知ON ∥AB ,O 为⊙O 的圆心,∴OC =OB ,∠CMD =90°∴CN =NB =12CB ,MD ∥CB又∵D 是AB 的中点,∴MD =12CB ∴MD =NB .24.(本题满分10分)已知抛物线L :y =x 2+x -6与x 轴相交于A 、B 两点(点A 在点B 的左侧),并与y 轴相交于点C .(1)求A 、B 、C 三点的坐标,并求出△ABC 的面积; (2)将抛物线向左或向右平移,得到抛物线L ´,且L ´与x 轴相交于A ´、B ´两点(点A ´在点B ´的左侧),并与y 轴交于点C ´,要使△A ´B ´C ´和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.解:(1)当y =0时,x 2+x -6=0,解得x 1=-3,x 2=2;当x =0时,y =-6 ∴A (-3,0),B (2,0),C (0,6)∴S △ABC =12AB ·OC =12×5×6=15; (2)将抛物线向左或向右平移时,A ´、B ´两点间的距离不变,始终为5,那么要使△A ´B ´C ´和△ABC 的面积相等,高也只能是6设A (a ,0),则B (a +5,0),y =(x -a )(x -a -5),当x =0时,y =a 2+5a当C 点在x 轴上方时,y =a 2+5a =6,a =1或a =-6,此时y =x 2-7x -6或y =x 2+7x -6; 当C 点在x 轴下方时,y =a 2+5a =-6,a =-2或a =-3,此时y =x 2-x -6或y =x 2+x -6(与圆抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y =x 2-7x -6,y =x 2+7x -6,y =x 2-x -6. 25.(本题满分12分) 问题提出(1)如图①,在△ABC 中,∠A =120°,AB =AC =5,则△ABC 的外接圆半径R 的值为. 问题探究(2)如图②,⊙O 的半径为13,弦AB =24,M 是AB 的中点,P 是⊙O 上一动点,求PM 的最大值.问题解决(3)如图③所示,AB 、AC 、BC 是某新区的三条规划路其中,AB =6km ,AC =3km ,∠BAC =60°,BC 所对的圆心角为60°.新区管委会想在BC 路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F .也就是,分别在BC 线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天要将物资在ABB各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷环保和节约成本要使得线段PE 、EF 、FP 之和最短,试求PE +EF +FP 的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图①图②图③解:(1)R =AB =AC =5;(2)如25题解图(2)所示,连接MO 并延长交⊙O 于N ,连接OP显然,MP ≤OM +OP =OM +ON =MN ,ON =13,OM =132-122=5,MN =18 ∴PM 的最大值为18;25题解图(2) 25题解图(3)(3)假设P 点即为所求点,分别作出点P 关于AB 、AC 的对称点P ´、P "连接PP ´、P ´E ,PE ,P "F ,PF ,PP "由对称性可知PE +EF +FP =P ´E +EF +FP "=P ´P ",且P ´、E 、F 、P "在一条直线上,所以P ´P "即为最短距离,其长度取决于P A 的长度25题解图(4)作出弧BC 的圆心O ,连接AO ,与弧BC 交于P ,P 点即为使得P A 最短的点 ∵AB =6km ,AC =3km ,∠BAC =60°,∴∆ABC 是直角三角形,∠ABC =30°,BC=3 3 BC 所对的圆心角为60°,∴∆OBC 是等边三角形,∠CBO =60°,BO =BC =3 3 ∴∠ABO =90°,AO =37,PA =37-3 3 ∠P ´AE =∠EAP ,∠P AF =∠F AP ",∴∠P ´AP "=2∠ABC =120°,P ´A =AP ",∴∠AP ´E =∠AP "F =30°∵P ´P "=2P ´A cos ∠AP ´E =3P ´A =321-9 所以PE +EF +FP 的最小值为321-9km .P''BB。
陕西省2018年中考数学考试及解析(word精编版)
陕西省2018年中考数学考试及解析(word精编版)————————————————————————————————作者:————————————————————————————————日期:2018年陕西省初中毕业学业考试数学试卷(满分120分,考试时间120分钟)一、选择题(共10小题,每小题3分,计30分。
每小题只有一个选项是符合题意的)1.(3分)﹣的倒数是()A. B. C. D.2.(3分)如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥3.(3分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个 B.2个 C.3个 D.4个4.(3分)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx 的图象经过点C,则k的值为()A.B. C.﹣2 D.25.(3分)下列计算正确的是()A.a2•a2=2a4B.(﹣a2)3=﹣a6C.3a2﹣6a2=3a2 D.(a﹣2)2=a2﹣46.(3分)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为()A. B.2 C. D.37.(3分)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0)C.(﹣6,0) D.(6,0)8.(3分)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.若EH=2EF,则下列结论正确的是()A.AB=EF B.AB=2EF C.AB=EF D.AB=EF9.(3分)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°10.(3分)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共4小题,每小题3分,计12分)11.(3分)比较大小:3 (填“>”、“<”或“=”).12.(3分)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为.13.(3分)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.14.(3分)如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是.三、解答题(共11小题,计78分。
陕西省2018年中考数学试题与解析(word精编版)
2018年陕西省初中毕业学业考试数学试卷(满分120分,考试时间120分钟)一、选择题(共10小题,每小题3分,计30分。
每小题只有一个选项是符合题意的)1.(3分)﹣的倒数是()A. B. C. D.2.(3分)如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥3.(3分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个 B.2个 C.3个 D.4个4.(3分)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx 的图象经过点C,则k的值为()A.B. C.﹣2 D.25.(3分)下列计算正确的是()A.a2•a2=2a4B.(﹣a2)3=﹣a6C.3a2﹣6a2=3a2 D.(a﹣2)2=a2﹣46.(3分)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为()A. B.2 C. D.37.(3分)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0)C.(﹣6,0) D.(6,0)8.(3分)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.若EH=2EF,则下列结论正确的是()A.AB=EF B.AB=2EF C.AB=EF D.AB=EF9.(3分)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°10.(3分)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共4小题,每小题3分,计12分)11.(3分)比较大小:3 (填“>”、“<”或“=”).12.(3分)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为.13.(3分)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.14.(3分)如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是.三、解答题(共11小题,计78分。
2018年陕西省中考数学试题含答案(word版)
2018年陕西省中考数学试卷一、选择题:(本大题共10题,每题3分,满分30分)1、-711的倒数是A .711B .-711C .117D .-1172、如图,是一个几何体的表面展开图,则该几何体是 A .正方体 B .长方体 C .三棱柱 D .四棱锥3、如图,若l 1∥l 2,l 3∥l 4,则图中与∠1互补的角有 A .1个 B .2个 C .3个 D .4个4、如图,在矩形ABCD 中,A (-2,0),B(0,1).若正比例函数y =kx 的图像经过点C ,则k 的取值为A .-12B .12C .-2D .2第2题图第3题图第4题图5、下列计算正确的是 A .a 2·a 2=2a 4 B .(-a 2)3=-a 6 C .3a 2-6a 2=3a 2 D .(a -2)2=a 2-46、如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为A .423B .2 2C .823D .3 2第6题图第8题图第9题图7、若直线l 1经过点(0,4),l 2经过(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为 A .(-2,0) B .(2,0) C .(-6,0) D .(6,0) 8、如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、GH 和HE .若EH =2EF ,则下列结论正确的是A .AB =2EF B .AB =2EFC .AB =3EFD .AB =5EF9、如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为A .15°B .35°C .25°D .45°10、对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在A .第一象限B .第二象限C .第三象限D .第四象限 二、填空题:(本大题共4题,每题3分,满分12分)11、比较大小:3<10(填<,>或=).12、如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE 的度数为72° 13、若一个反比例函数的图像经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为y =4x1l 4l 3l 2l 1EDBACGHEFDA CBDOABCO x14、点O 是平行四边形ABCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H 分别是BC 边上的点,且GH =13BC ;若S 1,S 2分别表示∆EOF 和∆GOH 的面积,则S 1,S 2之间的等量关系是2S 1=3S 2第12题图 第14题图二、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分) 计算:(-3)×(-6)+|2-1|+(5-2π)0 解:原式=32+2-1+1=4 2 16.(本题满分5分)化简:⎝ ⎛⎭⎪⎫a +1a -1-a a +1÷3a +1a 2+a解:原式=3a +1(a +1)(a -1)×a (a +1)3a +1=aa -117.(本题满分5分)如图,已知在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA ∽△ABM (不写做法保留作图痕迹)解:如图,P 即为所求点.18、(本题满分5分)如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .证明:∵AB ∥CD ,∴∠A =∠D ∵CE ∥BF ,∴∠AHB =∠DGC 在∆ABH 和∆DCG 中,BBBCADMAD∵⎩⎪⎨⎪⎧∠A =∠D∠AHB =∠DGC AB =CD∴∆ABH ≌∆DCG (AAS ),∴AH =DG∵AH =AG +GH ,DG =DH +GH ,∴AG =HD19.(本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表(第19题图)依据以上统计信息,解答下列问题: (1)求得m=30,n =19%;(2)这次测试成绩的中位数落在B 组;(3)求本次全部测试成绩的平均数.解:测试的平均成绩=2581+5543+5100+2796200=80.1.20.(本题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .解:∵CB ⊥AD ,ED ⊥AD , ∴∠CBA =∠EDA =90° ∵∠CAB =∠EAD组别 分数/分 频数 各组总分/分A 60<x ≤70 38 2581B 70<x ≤80 72 5543C 80<x ≤90 60 5100D 90<x ≤100m2796、15%∴∆ABC ∽∆ADE ∴AD AB =DE BC∴AB +8.5AB =1.51∴AB =17,即河宽为17米. 21.(本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:商品红枣 小米 规格 1kg /袋 2kg /袋 成本(元/袋) 40 38 售价(元/袋)6054根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg ,其中,这种规格的红枣的销售量不低于600kg .假设这后五个月,销售这种规格的红枣味x (kg ),销售这种规格的红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.解:(1)设前五个月小明家网店销售这种规格的红枣a 袋,销售小米b 袋,根据题意列方程得:a +2b =3000,(60-40)a +(54-38)b =42000,解得:a =1500,b =750∴前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋 (2)根据题意得:y =(60-40)x +(54-38)×2000-x 2=12x +16000y 随x 的增大而增大,∵x ≥600,∴当x =600时,y 取得最小值, 最小值为y =12×600+16000=23200∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元. 22.(本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.1-23-2(第22题图)解:(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120°360°=13; (2)由(1)可知,该转盘转出“1”“3”“-2”的概率相同,均为13,所有可能性如下由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为923.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC 、BC 相交于点M 、N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ; (2)连接MD ,求证:MD =NB .23题图 23题解图(1)解:(1)如图,连接ON∵CD 是Rt △ABC 斜边AB 上的中线 ∴AD =CD =DB ∴∠DCB =∠DBC 又∵∠DCB =∠ONC ∴∠ONC =∠DBC ∴ON ∥AB∵NE 是⊙O 的切线,ON 是⊙O 的半径 ∴∠ONE =90°∴∠NEB =90°,即NE ⊥AB ;(2)如解图(1)所示,由(1)可知ON ∥AB , O 为⊙O 的圆心,∴OC =OB ,∠CMD =90°∴CN =NB =12CB ,MD ∥CB又∵D 是AB 的中点,∴MD =12CB ∴MD =NB .24.(本题满分10分)已知抛物线L :y =x 2+x -6与x 轴相交于A 、B 两点(点A 在点B 的左侧),并与y 轴相交于点C .(1)求A 、B 、C 三点的坐标,并求出△ABC 的面积;(2)将抛物线向左或向右平移,得到抛物线L ´,且L ´与x 轴相交于A ´、B ´两点(点A ´在ABB点B ´的左侧),并与y 轴交于点C ´,要使△A ´B ´C ´和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.解:(1)当y =0时,x 2+x -6=0,解得x 1=-3,x 2=2;当x =0时,y =-6 ∴A (-3,0),B (2,0),C (0,6)∴S △ABC =12AB ·OC =12×5×6=15; (2)将抛物线向左或向右平移时,A ´、B ´两点间的距离不变,始终为5,那么要使△A ´B ´C ´和△ABC 的面积相等,高也只能是6设A (a ,0),则B (a +5,0),y =(x -a )(x -a -5),当x =0时,y =a 2+5a当C 点在x 轴上方时,y =a 2+5a =6,a =1或a =-6,此时y =x 2-7x -6或y =x 2+7x -6;当C 点在x 轴下方时,y =a 2+5a =-6,a =-2或a =-3,此时y =x 2-x -6或y =x 2+x -6(与圆抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y =x 2-7x -6,y =x 2+7x -6,y =x 2-x -6.25.(本题满分12分) 问题提出 (1)如图①,在△ABC 中,∠A =120°,AB =AC =5,则△ABC 的外接圆半径R 的值为 . 问题探究(2)如图②,⊙O 的半径为13,弦AB =24,M 是AB的中点,P 是⊙O 上一动点,求PM 的最大值.问题解决(3)如图③所示,AB 、AC 、BC 是某新区的三条规划路其中,AB =6km ,AC =3km ,∠BAC =60°,BC 所对的圆心角为60°.新区管委会想在BC 路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F .也就是,分别在BC 线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天要将物资在各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷环保和节约成本要使得线段PE 、EF 、FP 之和最短,试求PE +EF +FP 的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图① 图② 图③解:(1)R =AB =AC =5;(2)如25题解图(2)所示,连接MO 并延长交⊙O 于N ,连接OP显然,MP ≤OM +OP =OM +ON =MN ,ON =13,OM =132-122=5,MN =18 ∴PM 的最大值为18;25题解图(3) (3)假设P 点即为所求点,分别作出点P 关于AB 、AC 的对称点P ´、P "连接PP ´、P ´E ,PE ,P "F ,PF ,PP "由对称性可知PE +EF +FP =P ´E +EF +FP "=P ´P ",且P ´、E 、F 、P "在一条直线上,所以P ´P "即为最短距离,其长度取决于P A 的长度25题解图(4)作出弧BC 的圆心O ,连接AO ,与弧BC 交于P ,P 点即为使得P A 最短的点∵AB =6km ,AC =3km ,∠BAC =60°,∴∆ABC 是直角三角形,∠ABC =30°,BC =3 3 BC 所对的圆心角为60°,∴∆OBC 是等边三角形,∠CBO =60°,BO =BC =3 3 ∴∠ABO =90°,AO =37,PA =37-3 3∠P ´AE =∠EAP ,∠P AF =∠F AP ",∴∠P ´AP "=2∠ABC =120°,P ´A =AP ",∴∠AP ´E =∠AP "F =30°∵P ´P "=2P ´A cos ∠AP ´E =3P ´A =321-9 所以PE +EF +FP 的最小值为321-9km .P''BB。
2018年陕西省中考数学试卷及答案解析word版
2018年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分。
每小题只有一个选项是符合题意的)1.(3分)﹣的倒数是()A.B.C.D.分析:根据倒数的定义,互为倒数的两数乘积为1,即可解答.解答:解:﹣的倒数是﹣,故选:D.2.(3分)如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥分析:由展开图得这个几何体为棱柱,底面为三边形,则为三棱柱.解答:解:由图得,这个几何体为三棱柱.故选:C.3.(3分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个 B.2个 C.3个 D.4个分析:直接利用平行线的性质得出相等的角以及互补的角进而得出答案.解答:解:∵l1∥l2,l3∥l4,∴∠1+∠2=180°,2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D.4.(3分)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx 的图象经过点C,则k的值为()A.B.C.﹣2 D.2分析:根据矩形的性质得出点C的坐标,再将点C坐标代入解析式求解可得.解答:解:∵A(﹣2,0),B(0,1).∴OA=2、OB=1,∵四边形AOBC是矩形,∴AC=OB=1、BC=OA=2,则点C的坐标为(﹣2,1),将点C(﹣2,1)代入y=kx,得:1=﹣2k,解得:k=﹣,故选:A.5.(3分)下列计算正确的是()A.a2•a2=2a4B.(﹣a2)3=﹣a6C.3a2﹣6a2=3a2D.(a﹣2)2=a2﹣4分析:根据同底数幂相乘、幂的乘方、合并同类项法则及完全平方公式逐一计算可得.解答:解:A、a2•a2=a4,此选项错误;B、(﹣a2)3=﹣a6,此选项正确;C、3a2﹣6a2=﹣3a2,此选项错误;D、(a﹣2)2=a2﹣4a+4,此选项错误;故选:B.6.(3分)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为()A.B.2 C.D.3分析:在Rt△ADC中,利用等腰直角三角形的性质可求出AD的长度,在Rt△ADB 中,由AD的长度及∠ABD的度数可求出BD的长度,在Rt△EBD中,由BD的长度及∠EBD的度数可求出DE的长度,再利用AE=AD﹣DE即可求出AE的长度.解答:解:∵AD⊥BC,∴∠ADC=∠ADB=90°.在Rt△ADC中,AC=8,∠C=45°,∴AD=CD,∴AD=AC=4.在Rt△ADB中,AD=4,∠ABD=60°,∴BD=AD=.∵BE平分∠ABC,∴∠EBD=30°.在Rt△EBD中,BD=,∠EBD=30°,∴DE=BD=,∴AE=AD﹣DE=.故选:C.7.(3分)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0) C.(﹣6,0)D.(6,0)分析:根据对称的性质得出两个点关于x轴对称的对称点,再根据待定系数法确定函数关系式,求出一次函数与x轴的交点即可.解答:解:∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴两直线相交于x轴上,∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴直线l1经过点(3,﹣2),l2经过点(0,﹣4),把(0,4)和(3,﹣2)代入直线l1经过的解析式y=kx+b,则,解得:,故直线l1经过的解析式为:y=﹣2x+4,可得l1与l2的交点坐标为l1与l2与x轴的交点,解得:x=2,即l1与l2的交点坐标为(2,0).故选:B.8.(3分)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA 的中点,连接EF、FG、GH和HE.若EH=2EF,则下列结论正确的是()A.AB=EF B.AB=2EF C.AB=EF D.AB=EF分析:连接AC、BD交于O,根据菱形的性质得到AC⊥BD,OA=OC,OB=OD,根据三角形中位线定理、矩形的判定定理得到四边形EFGH是矩形,根据勾股定理计算即可.解答:解:连接AC、BD交于O,∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∵点E、F、G、H分别是边AB、BC、CD和DA的中点,∴EF=AC,EF∥AC,EH=BD,EH∥BD,∴四边形EFGH是矩形,∵EH=2EF,∴OB=2OA,∴AB==OA,∴AB=EF,故选:D.9.(3分)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°分析:根据等腰三角形性质知∠CBA=∠BCA=65°,∠A=50°,由平行线的性质及圆周角定理得∠ABD=∠ACD=∠A=50°,从而得出答案.解答:解:∵AB=AC、∠BCA=65°,∴∠CBA=∠BCA=65°,∠A=50°,∵CD∥AB,∴∠ACD=∠A=50°,∴∠DBC=∠CBA﹣∠ABD=15°,故选:A.10.(3分)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限分析:把x=1代入解析式,根据y>0,得出关于a的不等式,得出a的取值范围后,利用二次函数的性质解答即可.解答:解:把x=1,y>0代入解析式可得:a+2a﹣1+a﹣3>0,解得:a>1,所以可得:﹣,,所以这条抛物线的顶点一定在第三象限,故选:C.二、填空题三、11.(3分)比较大小:3<(填“>”、“<”或“=”).分析:首先把两个数平方法,由于两数均为正数,所以该数的平方越大数越大.解答:解:32=9,=10,∴3<.12.(3分)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为72°.分析:根据五边形的内角和公式求出∠EAB,根据等腰三角形的性质,三角形外角的性质计算即可.解答:解:∵五边形ABCDE是正五边形,∴∠EAB=∠ABC==108°,∵BA=BC,同理∠ABE=36°,∴∠AFE=∠ABF+∠BAF=36°+36°=72°,故答案为:72°.13.(3分)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.分析:设反比例函数的表达式为y=,依据反比例函数的图象经过点A(m,m)和B(2m,﹣1),即可得到k的值,进而得出反比例函数的表达式为.解答:解:设反比例函数的表达式为y=,∵反比例函数的图象经过点A(m,m)和B(2m,﹣1),∴k=m2=﹣2m,解得m1=﹣2,m2=0(舍去),∴k=4,∴反比例函数的表达式为.故答案为:.14.(3分)如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是=.分析:根据同高的两个三角形面积之比等于底边之比得出==,==,再由点O是▱ABCD的对称中心,根据平行四边形的性质可得S△AOB =S △BOC =S ▱ABCD ,从而得出S 1与S 2之间的等量关系.解答:解:∵==,==,∴S 1=S △AOB ,S 2=S △BOC . ∵点O 是▱ABCD 的对称中心, ∴S △AOB =S △BOC =S ▱ABCD ,∴==.即S 1与S 2之间的等量关系是=.故答案为=.三、解答题15.(5分)计算:(﹣)×(﹣)+|﹣1|+(5﹣2π)0分析:先进行二次根式的乘法运算,再利用绝对值的意义和零指数幂的意义计算,然后合并即可. 解答:解:原式=+﹣1+1=3+﹣1+1=4.16.(5分)化简:(﹣)÷.分析:先将括号内分式通分、除式的分母因式分解,再计算减法,最后除法转化为乘法后约分即可得. 解答:解:原式=[﹣]÷=÷ =•=.17.(5分)如图,已知:在正方形ABCD中,M是BC边上一定点,连接AM.请用尺规作图法,在AM上作一点P,使△DPA∽△ABM.(不写作法,保留作图痕迹)分析:过D点作DP⊥AM,利用相似三角形的判定解答即可.解答:解:如图所示,点P即为所求:∵DP⊥AM,∴∠APD=∠ABM=90°,∵∠BAM+∠PAD=90°,∠PAD+∠ADP=90°,∴∠BAM=∠ADP,∴△DPA∽△ABM.18.(5分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G,H,若AB=CD,求证:AG=DH.分析:由AB∥CD、EC∥BF知四边形BFCE是平行四边形、∠A=∠D,从而得出∠AEG=∠DFH、BE=CF,结合AB=CD知AE=DF,根据ASA可得△AEG≌△DFH,据此即可得证.解答:证明:∵AB∥CD、EC∥BF,∴四边形BFCE是平行四边形,∠A=∠D,∴∠BEC=∠BFC,BE=CF,∴∠AEG=∠DFH,∵AB=CD,∴AE=DF,在△AEG和△DFH中,∵,∴△AEG≌△DFH(ASA),∴AG=DH.19.(7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表组别分数/分频数各组总分/分A60<x≤70382581B70<x≤80725543C80<x≤90605100D90<x≤100m2796依据以上统计信息解答下列问题:(1)求得m=30,n=19%;(2)这次测试成绩的中位数落在B组;(3)求本次全部测试成绩的平均数.分析:(1)用B组人数除以其所占百分比求得总人数,再用总人数减去A、B、C 组的人数可得m的值,用A组人数除以总人数可得n的值;(2)根据中位数的定义求解可得;(3)根据平均数的定义计算可得.解答:解:(1)∵被调查的学生总人数为72÷36%=200人,∴m=200﹣(38+72+60)=30,n=×100%=19%,故答案为:30、19%;(2)∵共有200个数据,其中第100、101个数据均落在B组,∴中位数落在B组,故答案为:B;(3)本次全部测试成绩的平均数为=80.1(分).20.(7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.分析:由BC∥DE,可得=,构建方程即可解决问题.解答:解:∵BC∥DE,∴△ABC∽△ADE,∴=,∴=,∴AB=17(m),经检验:AB=17是分式方程的解,答:河宽AB的长为17米.21.(7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国.小明家网店中红枣和小米这两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋)4038售价(元/袋)6054根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣为x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.分析:(1)设这前五个月小明家网店销售这种规格的红枣x袋.根据总利润=42000,构建方程即可;(2)构建一次函数,利用一次函数的性质即可解决问题;解答:解:(1)设这前五个月小明家网店销售这种规格的红枣x袋.由题意:20x+×16=42000解得x=1500,答:这前五个月小明家网店销售这种规格的红枣1500袋.(2)由题意:y=20x+×16=12x+16000,∵600≤x≤2000,当x=600时,y有最小值,最小值为23200元.答:这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润23200元22.(7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.分析:(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2的有2种结果,根据概率公式计算可得;(2)列表得出所有等可能结果,从中找到乘积为正数的结果数,再利用概率公式求解可得.解答:解:(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2的有2种结果,所以转出的数字是﹣2的概率为=;(2)列表如下:﹣2﹣21133﹣244﹣2﹣2﹣6﹣6﹣244﹣2﹣2﹣6﹣61﹣﹣1133221﹣2﹣211333﹣6﹣633993﹣6﹣63399由表可知共有36种等可能结果,其中数字之积为正数的有20种结果,所以这两次分别转出的数字之积为正数的概率为=.23.(8分)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.分析:(1)连接ON,如图,根据斜边上的中线等于斜边的一半得到CD=AD=DB,则∠1=∠B,再证明∠2=∠B得到ON∥DB,接着根据切线的性质得到ON⊥NE,然后利用平行线的性质得到结论;(2)连接DN,如图,根据圆周角定理得到∠CMD=∠CND=90°,则可判断四边形CMDN为矩形,所以DM=CN,然后证明CN=BN,从而得到MD=NB.解答:证明:(1)连接ON,如图,∵CD为斜边AB上的中线,∴CD=AD=DB,∴∠1=∠B,∵OC=ON,∴∠1=∠2,∴∠2=∠B,∴ON∥DB,∵NE为切线,∴ON⊥NE,∴NE⊥AB;(2)连接DN,如图,∵CD为直径,∴∠CMD=∠CND=90°,而∠MCB=90°,∴四边形CMDN为矩形,∴DM=CN,∵DN⊥BC,∠1=∠B,∴CN=BN,∴MD=NB.24.(10分)已知抛物线L:y=x2+x﹣6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.(1)求A、B、C三点的坐标,并求△ABC的面积;(2)将抛物线L向左或向右平移,得到抛物线L′,且L′与x轴相交于A'、B′两点(点A′在点B′的左侧),并与y轴相交于点C′,要使△A'B′C′和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.分析:(1)解方程x2+x﹣6=0得A点和B点坐标,计算自变量为0的函数值得到C点坐标,然后利用三角形面积公式计算△ABC的面积;(2)利用抛物线平移得到A′B′=AB=5,再利用△A'B′C′和△ABC的面积相等得到C′(0,﹣6)或(0,6),则设抛物线L′的解析式为y=x2+bx﹣6或y=x2+bx+6,当m+n=﹣b,mn=﹣6,然后利用|n﹣m|=5得到b2﹣4×(﹣6)=25,于是解出b 得到抛物线L′的解析式;当m+n=﹣b,mn=6,利用同样方法可得到对应抛物线L′的解析式.解答:解:(1)当y=0时,x2+x﹣6=0,解得x1=﹣3,x2=2,∴A(﹣3,0),B(2,0),当x=0时,y=x2+x﹣6=﹣6,∴C(0,﹣6),∴△ABC的面积=•AB•OC=×(2+3)×6=15;(2)∵抛物线L向左或向右平移,得到抛物线L′,∴A′B′=AB=5,∵△A'B′C′和△ABC的面积相等,∴OC′=OC=6,即C′(0,﹣6)或(0,6),设抛物线L′的解析式为y=x2+bx﹣6或y=x2+bx+6设A'(m,0)、B′(n,0),当m、n为方程x2+bx﹣6=0的两根,∴m+n=﹣b,mn=﹣6,∵|n﹣m|=5,∴(n﹣m)2=25,∴(m+n)2﹣4mn=25,∴b2﹣4×(﹣6)=25,解得b=1或﹣1,∴抛物线L′的解析式为y=x2﹣x﹣6.当m、n为方程x2+bx+6=0的两根,∴m+n=﹣b,mn=6,∵|n﹣m|=5,∴(n﹣m)2=25,∴(m+n)2﹣4mn=25,∴b2﹣4×6=25,解得b=7或﹣7,∴抛物线L′的解析式为y=x2+7x+6或y=x2﹣7x+6.综上所述,抛物线L′的解析式为y=x2﹣x﹣6或y=x2+7x+6或y=x2﹣7x+6.25.(12分)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为5.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,所对的圆心角为60°,新区管委会想在路边建物资总站点P,在AB,AC路边分别建物资分站点E、F,也就是,分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天都要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷、环保和节约成本.要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)分析:(1)设O是△ABC的外接圆的圆心,易证△ABO是等边三角形,所以AB=OA=OB=5;(2)当PM⊥AB时,此时PM最大,连接OA,由垂径定理可知:AM=AB=12,再由勾股定理可知:OM=5,所以PM=OM+OP=18,(3)设连接AP,OP,分别以AB、AC所在直线为对称轴,作出P关于AB的对称点为M,P关于AC的对称点为N,连接MN,交AB于点E,交AC于点F,连接PE、PF,所以AM=AP=AN,设AP=r,易求得:MN=r,所以PE+EF+PF=ME+EF+FN=MN=r,即当AP最小时,PE+EF+PF 可取得最小值.解答:解:(1)设O是△ABC的外接圆的圆心,∴OA=OB=OC,∵∠A=120°,AB=AC=5,∴△ABO是等边三角形,∴AB=OA=OB=5,(2)当PM⊥AB时,此时PM最大,连接OA,由垂径定理可知:AM=AB=12,∵OA=13,∴由勾股定理可知:OM=5,∴PM=OM+OP=18,(3)设连接AP,OP分别以AB、AC所在直线为对称轴,作出P关于AB的对称点为M,P关于AC的对称点为N,连接MN,交AB于点E,交AC于点F,连接PE、PF,∴AM=AP=AN,∵∠MAB=∠PAB,∠NAC=∠PAC,∴∠BAC=∠PAB+∠PAC=∠MAB+∠NAC=60°,∴∠MAN=120°∴M、P、N在以A为圆心,AP为半径的圆上,设AP=r,易求得:MN=r,∵PE=ME,PF=FN,∴PE+EF+PF=ME+EF+FN=MN=r,∴当AP最小时,PE+EF+PF可取得最小值,∵AP+OP≥OA,∴AP≥OA﹣OP,即点P在OA上时,AP可取得最小值,设AB的中点为Q,∴AQ=AC=3,∵∠BAC=60°,∴AQ=QC=AC=BQ=3,∴∠ABC=∠QCB=30°,∴∠ACB=90°,∴由勾股定理可知:BC=3,∵∠BOC=60°,OB=OC=3,∴△OBC是等边三角形,∴∠OBC=60°,∴∠ABO=90°∴由勾股定理可知:OA=3,∵OP=OB=3,∴AP=r=OA﹣OP=3﹣3,∴PE+EF+PF=MN=r=3﹣9∴PE+EF+PF的最小值为(3﹣9)km.。
2018年度陕西中考数学试卷及内容答案解析word版
2018年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每题3分,计30分。
每题只有一个选项是符合题意的)1.(3分)﹣的倒数是()A.B.C.D.分析:依照倒数的概念,互为倒数的两数乘积为1,即可解答.解答:解:﹣的倒数是﹣,应选:D.2.(3分)如图,是一个几何体的表面展开图,那么该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥分析:由展开图得那个几何体为棱柱,底面为三边形,那么为三棱柱.解答:解:由图得,那个几何体为三棱柱.应选:C.3.(3分)如图,假设l1∥l2,l3∥l4,那么图中与∠1互补的角有()A.1个B.2个C.3个D.4个分析:直接利用平行线的性质得出相等的角和互补的角进而得出答案.解答:解:∵l1∥l2,l3∥l4,∴∠1+∠2=180°,2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.应选:D.4.(3分)如图,在矩形AOBC中,A(﹣2,0),B(0,1).假设正比例函数y=kx的图象通过点C,那么k的值为()A.B.C.﹣2 D.2分析:依照矩形的性质得出点C的坐标,再将点C坐标代入解析式求解可得.解答:解:∵A(﹣2,0),B(0,1).∴OA=二、OB=1,∵四边形AOBC是矩形,∴AC=OB=一、BC=OA=2,那么点C的坐标为(﹣2,1),将点C(﹣2,1)代入y=kx,得:1=﹣2k,解得:k=﹣,应选:A.5.(3分)以下计算正确的选项是()A.a2•a2=2a4B.(﹣a2)3=﹣a6C.3a2﹣6a2=3a2D.(a﹣2)2=a2﹣4分析:依照同底数幂相乘、幂的乘方、归并同类项法那么及完全平方公式一一计算可得.解答:解:A、a2•a2=a4,此选项错误;B、(﹣a2)3=﹣a6,此选项正确;C、3a2﹣6a2=﹣3a2,此选项错误;D、(a﹣2)2=a2﹣4a+4,此选项错误;应选:B.6.(3分)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,那么AE的长为()A.B.2 C.D.3分析:在Rt△ADC中,利用等腰直角三角形的性质可求出AD的长度,在Rt△ADB中,由AD的长度及∠ABD的度数可求出BD的长度,在Rt△EBD中,由BD的长度及∠EBD 的度数可求出DE的长度,再利用AE=AD﹣DE即可求出AE的长度.解答:解:∵AD⊥BC,∴∠ADC=∠ADB=90°.在Rt△ADC中,AC=8,∠C=45°,∴AD=CD,∴AD=AC=4.在Rt△ADB中,AD=4,∠ABD=60°,∴BD=AD=.∵BE平分∠ABC,∴∠EBD=30°.在Rt△EBD中,BD=,∠EBD=30°,∴DE=BD=,∴AE=AD﹣DE=.应选:C.7.(3分)假设直线l1通过点(0,4),l2通过点(3,2),且l1与l2关于x轴对称,那么l1与l2的交点坐标为()A.(﹣2,0)B.(2,0) C.(﹣6,0)D.(6,0)分析:依照对称的性质得出两个点关于x轴对称的对称点,再依照待定系数法确信函数关系式,求出一次函数与x轴的交点即可.解答:解:∵直线l1通过点(0,4),l2通过点(3,2),且l1与l2关于x轴对称,∴两直线相交于x轴上,∵直线l1通过点(0,4),l2通过点(3,2),且l1与l2关于x轴对称,∴直线l1通过点(3,﹣2),l2通过点(0,﹣4),把(0,4)和(3,﹣2)代入直线l1通过的解析式y=kx+b,则,解得:,故直线l1通过的解析式为:y=﹣2x+4,可得l1与l2的交点坐标为l1与l2与x轴的交点,解得:x=2,即l1与l2的交点坐标为(2,0).应选:B.8.(3分)如图,在菱形ABCD中.点E、F、G、H别离是边AB、BC、CD和DA的中点,连接EF、FG、GH和HE.假设EH=2EF,那么以下结论正确的选项是()A.AB=EF B.AB=2EF C.AB=EF D.AB=EF分析:连接AC、BD交于O,依照菱形的性质取得AC⊥BD,OA=OC,OB=OD,依照三角形中位线定理、矩形的判定定理取得四边形EFGH是矩形,依照勾股定理计算即可.解答:解:连接AC、BD交于O,∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∵点E、F、G、H别离是边AB、BC、CD和DA的中点,∴EF=AC,EF∥AC,EH=BD,EH∥BD,∴四边形EFGH是矩形,∵EH=2EF,∴OB=2OA,∴AB==OA,∴AB=EF,应选:D.9.(3分)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,那么∠DBC的大小为()A.15°B.35°C.25°D.45°分析:依照等腰三角形性质知∠CBA=∠BCA=65°,∠A=50°,由平行线的性质及圆周角定理得∠ABD=∠ACD=∠A=50°,从而得出答案.解答:解:∵AB=AC、∠BCA=65°,∴∠CBA=∠BCA=65°,∠A=50°,∵CD∥AB,∴∠ACD=∠A=50°,又∵∠ABD=∠ACD=50°,∴∠DBC=∠CBA﹣∠ABD=15°,应选:A.10.(3分)关于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,那么这条抛物线的极点必然在()A.第一象限B.第二象限C.第三象限D.第四象限分析:把x=1代入解析式,依照y>0,得出关于a的不等式,得出a的取值范围后,利用二次函数的性质解答即可.解答:解:把x=1,y>0代入解析式可得:a+2a﹣1+a﹣3>0,解得:a>1,因此可得:﹣,,因此这条抛物线的极点必然在第三象限,应选:C.二、填空题三、11.(3分)比较大小:3<(填“>”、“<”或“=”).分析:第一把两个数平方式,由于两数均为正数,因此该数的平方越大数越大.解答:解:32=9,=10,∴3<.12.(3分)如图,在正五边形ABCDE中,AC与BE相交于点F,那么∠AFE的度数为72°.分析:依照五边形的内角和公式求出∠EAB,依照等腰三角形的性质,三角形外角的性质计算即可.解答:解:∵五边形ABCDE是正五边形,∴∠EAB=∠ABC==108°,∵BA=BC,∴∠BAC=∠BCA=36°,同理∠ABE=36°,∴∠AFE=∠ABF+∠BAF=36°+36°=72°,故答案为:72°.13.(3分)假设一个反比例函数的图象通过点A(m,m)和B(2m,﹣1),那么那个反比例函数的表达式为.分析:设反比例函数的表达式为y=,依据反比例函数的图象通过点A(m,m)和B(2m,﹣1),即可取得k的值,进而得出反比例函数的表达式为.解答:解:设反比例函数的表达式为y=,∵反比例函数的图象通过点A(m,m)和B(2m,﹣1),∴k=m2=﹣2m,解得m1=﹣2,m2=0(舍去),∴k=4,∴反比例函数的表达式为.故答案为:.14.(3分)如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=AB;G、H 是BC边上的点,且GH=BC,假设S1,S2别离表示△EOF和△GOH的面积,那么S1与S2之间的等量关系是=.分析:依照同高的两个三角形面积之比等于底边之比得出==,==,再由点O是▱ABCD的对称中心,依照平行四边形的性质可得S△AOB =S△BOC=S▱ABCD,从而得出S1与S2之间的等量关系.解答:解:∵==,==,∴S1=S△AOB,S2=S△BOC.∵点O是▱ABCD的对称中心,∴S△AOB =S△BOC=S▱ABCD,∴==.即S1与S2之间的等量关系是=.故答案为=.三、解答题15.(5分)计算:(﹣)×(﹣)+|﹣1|+(5﹣2π)0分析:先进行二次根式的乘法运算,再利用绝对值的意义和零指数幂的意义计算,然后归并即可.解答:解:原式=+﹣1+1=3+﹣1+1=4.16.(5分)化简:(﹣)÷.分析:先将括号内分式通分、除式的分母因式分解,再计算减法,最后除法转化为乘法后约分即可得.解答:解:原式=[﹣]÷=÷=•=.17.(5分)如图,已知:在正方形ABCD中,M是BC边上必然点,连接AM.请用尺规作图法,在AM上作一点P,使△DPA∽△ABM.(不写作法,保留作图痕迹)分析:过D点作DP⊥AM,利用相似三角形的判定解答即可.解答:解:如下图,点P即为所求:∵DP⊥AM,∴∠APD=∠ABM=90°,∵∠BAM+∠PAD=90°,∠PAD+∠ADP=90°,∴∠BAM=∠ADP,∴△DPA∽△ABM.18.(5分)如图,AB∥CD,E、F别离为AB、CD上的点,且EC∥BF,连接AD,别离与EC、BF 相交于点G,H,假设AB=CD,求证:AG=DH.分析:由AB∥CD、EC∥BF知四边形BFCE是平行四边形、∠A=∠D,从而得出∠AEG=∠DFH、BE=CF,结合AB=CD知AE=DF,依照ASA可得△AEG≌△DFH,据此即可得证.解答:证明:∵AB∥CD、EC∥BF,∴四边形BFCE是平行四边形,∠A=∠D,∴∠BEC=∠BFC,BE=CF,∴∠AEG=∠DFH,∵AB=CD,∴AE=DF,在△AEG和△DFH中,∵,∴△AEG≌△DFH(ASA),∴AG=DH.19.(7分)对垃圾进行分类投放,能有效提高对垃圾的处置和再利用,减少污染,爱惜环境.为了了解同窗们对垃圾分类知识的了解程度,增强同窗们的环保意识,普及垃圾分类及投放的相关知识,某校数学爱好小组的同窗们设计了“垃圾分类知识及投放情形”问卷,并在本校随机抽取假设干名同窗进行了问卷测试.依照测试成绩散布情形,他们将全数测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情形”问卷测试成绩统计表组别分数/分频数各组总分/分A60<x≤70382581B70<x≤80725543C80<x≤90605100D90<x≤100m2796依据以上统计信息解答以下问题:(1)求得m=30,n=19%;(2)这次测试成绩的中位数落在B组;(3)求本次全数测试成绩的平均数.分析:(1)用B组人数除以其所占百分比求得总人数,再用总人数减去A、B、C组的人数可得m 的值,用A组人数除以总人数可得n的值;(2)依照中位数的概念求解可得;(3)依照平均数的概念计算可得.解答:解:(1)∵被调查的学生总人数为72÷36%=200人,∴m=200﹣(38+72+60)=30,n=×100%=19%,故答案为:30、19%;(2)∵共有200个数据,其中第100、101个数据均落在B组,∴中位数落在B组,故答案为:B;(3)本次全数测试成绩的平均数为=(分).20.(7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=,BD=.测量示用意如下图.请依照有关测量信息,求河宽AB.分析:由BC∥DE,可得=,构建方程即可解决问题.解答:解:∵BC∥DE,∴△ABC∽△ADE,∴=,∴=,∴AB=17(m),经查验:AB=17是分式方程的解,答:河宽AB的长为17米.21.(7分)通过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国.小明家网店中红枣和小米这两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋)4038售价(元/袋)6054依照上表提供的信息,解答以下问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,取得利润万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)依照之前的销售情形,估量今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣为x(kg),销售这种规格的红枣和小米取得的总利润为y(元),求出y与x之间的函数关系式,并求这后五个月,小明家网店销售这种规格的红枣和小米至少取得总利润多少元.分析:(1)设这前五个月小明家网店销售这种规格的红枣x袋.依照总利润=42000,构建方程即可;(2)构建一次函数,利用一次函数的性质即可解决问题;解答:解:(1)设这前五个月小明家网店销售这种规格的红枣x袋.由题意:20x+×16=42000解得x=1500,答:这前五个月小明家网店销售这种规格的红枣1500袋.(2)由题意:y=20x+×16=12x+16000,∵600≤x≤2000,当x=600时,y有最小值,最小值为23200元.答:这后五个月,小明家网店销售这种规格的红枣和小米至少取得总利润23200元22.(7分)如图,能够自由转动的转盘被它的两条直径分成了四个别离标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,那么该扇形内的数字即为转出的数字,此刻,称为转动转盘一次(假设指针指向两个扇形的交线,那么不计转动的次数,从头转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2的概率;(2)转动转盘两次,用树状图或列表法求这两次别离转出的数字之积为正数的概率.分析:(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2的有2种结果,依照概率公式计算可得;(2)列表得出所有等可能结果,从中找到乘积为正数的结果数,再利用概率公式求解可得.解答:解:(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2的有2种结果,因此转出的数字是﹣2的概率为=;(2)列表如下:﹣2﹣21133﹣244﹣2﹣2﹣6﹣6﹣244﹣2﹣2﹣6﹣61﹣2﹣211331﹣2﹣211333﹣6﹣633993﹣6﹣63399由表可知共有36种等可能结果,其中数字之积为正数的有20种结果,因此这两次别离转出的数字之积为正数的概率为=.23.(8分)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,别离与AC、BC交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.分析:(1)连接ON,如图,依照斜边上的中线等于斜边的一半取得CD=AD=DB,那么∠1=∠B,再证明∠2=∠B取得ON∥DB,接着依照切线的性质取得ON⊥NE,然后利用平行线的性质取得结论;(2)连接DN,如图,依照圆周角定理取得∠CMD=∠CND=90°,那么可判定四边形CMDN为矩形,因此DM=CN,然后证明CN=BN,从而取得MD=NB.解答:证明:(1)连接ON,如图,∵CD为斜边AB上的中线,∴CD=AD=DB,∴∠1=∠B,∵OC=ON,∴∠1=∠2,∴∠2=∠B,∴ON∥DB,∵NE为切线,∴ON⊥NE,∴NE⊥AB;(2)连接DN,如图,∵CD为直径,∴∠CMD=∠CND=90°,而∠MCB=90°,∴四边形CMDN为矩形,∴DM=CN,∵DN⊥BC,∠1=∠B,∴CN=BN,∴MD=NB.24.(10分)已知抛物线L:y=x2+x﹣6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.(1)求A、B、C三点的坐标,并求△ABC的面积;(2)将抛物线L向左或向右平移,取得抛物线L′,且L′与x轴相交于A'、B′两点(点A′在点B′的左侧),并与y轴相交于点C′,要使△A'B′C′和△ABC的面积相等,求所有知足条件的抛物线的函数表达式.分析:(1)解方程x2+x﹣6=0得A点和B点坐标,计算自变量为0的函数值取得C点坐标,然后利用三角形面积公式计算△ABC的面积;(2)利用抛物线平移取得A′B′=AB=5,再利用△A'B′C′和△ABC的面积相等取得C′(0,﹣6)或(0,6),那么设抛物线L′的解析式为y=x2+bx﹣6或y=x2+bx+6,当m+n=﹣b,mn=﹣6,然后利用|n﹣m|=5取得b2﹣4×(﹣6)=25,于是解出b取得抛物线L′的解析式;当m+n=﹣b,mn=6,利用一样方式可取得对应抛物线L′的解析式.解答:解:(1)当y=0时,x2+x﹣6=0,解得x1=﹣3,x2=2,∴A(﹣3,0),B(2,0),当x=0时,y=x2+x﹣6=﹣6,∴C(0,﹣6),∴△ABC的面积=•AB•OC=×(2+3)×6=15;(2)∵抛物线L向左或向右平移,取得抛物线L′,∴A′B′=AB=5,∵△A'B′C′和△ABC的面积相等,∴OC′=OC=6,即C′(0,﹣6)或(0,6),设抛物线L′的解析式为y=x2+bx﹣6或y=x2+bx+6设A'(m,0)、B′(n,0),当m、n为方程x2+bx﹣6=0的两根,∴m+n=﹣b,mn=﹣6,∵|n﹣m|=5,∴(n﹣m)2=25,∴(m+n)2﹣4mn=25,∴b2﹣4×(﹣6)=25,解得b=1或﹣1,∴抛物线L′的解析式为y=x2﹣x﹣6.当m、n为方程x2+bx+6=0的两根,∴m+n=﹣b,mn=6,∵|n﹣m|=5,∴(n﹣m)2=25,∴(m+n)2﹣4mn=25,∴b2﹣4×6=25,解得b=7或﹣7,∴抛物线L′的解析式为y=x2+7x+6或y=x2﹣7x+6.综上所述,抛物线L′的解析式为y=x2﹣x﹣6或y=x2+7x+6或y=x2﹣7x+6.25.(12分)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,那么△ABC的外接圆半径R的值为5.问题探讨(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、是某新区的三条打算路,其中AB=6km,AC=3km,∠BAC=60°,所对的圆心角为60°,新区管委会想在路边建物资总站点P,在AB,AC路边别离建物资分站点E、F,也确实是,别离在、线段AB和AC上选取点P、E、F.由于总站工作人员天天都要将物资在各物资站点间按P→E→F→P的途径进行运输,因此,要在各物资站点之间打算道路PE、EF和FP.为了快捷、环保和节约本钱.要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)分析:(1)设O是△ABC的外接圆的圆心,易证△ABO是等边三角形,因此AB=OA=OB=5;(2)当PM⊥AB时,此刻PM最大,连接OA,由垂径定理可知:AM=AB=12,再由勾股定理可知:OM=5,因此PM=OM+OP=18,(3)设连接AP,OP,别离以AB、AC所在直线为对称轴,作出P关于AB的对称点为M,P关于AC的对称点为N,连接MN,交AB于点E,交AC于点F,连接PE、PF,因此AM=AP=AN,设AP=r,易求得:MN=r,因此PE+EF+PF=ME+EF+FN=MN=r,即当AP最小时,PE+EF+PF可取得最小值.解答:解:(1)设O是△ABC的外接圆的圆心,∴OA=OB=OC,∵∠A=120°,AB=AC=5,∴△ABO是等边三角形,∴AB=OA=OB=5,(2)当PM⊥AB时,此刻PM最大,连接OA,由垂径定理可知:AM=AB=12,∵OA=13,∴由勾股定理可知:OM=5,∴PM=OM+OP=18,(3)设连接AP,OP别离以AB、AC所在直线为对称轴,作出P关于AB的对称点为M,P关于AC的对称点为N,连接MN,交AB于点E,交AC于点F,连接PE、PF,∴AM=AP=AN,∵∠MAB=∠PAB,∠NAC=∠PAC,∴∠BAC=∠PAB+∠PAC=∠MAB+∠NAC=60°,∴∠MAN=120°∴M、P、N在以A为圆心,AP为半径的圆上,设AP=r,易求得:MN=r,∵PE=ME,PF=FN,∴PE+EF+PF=ME+EF+FN=MN=r,∴当AP最小时,PE+EF+PF可取得最小值,∵AP+OP≥OA,∴AP≥OA﹣OP,即点P在OA上时,AP可取得最小值,设AB的中点为Q,∴AQ=AC=3,∵∠BAC=60°,∴AQ=QC=AC=BQ=3,∴∠ABC=∠QCB=30°,∴∠ACB=90°,∴由勾股定理可知:BC=3,∵∠BOC=60°,OB=OC=3,∴△OBC是等边三角形,∴∠OBC=60°,∴∠ABO=90°∴由勾股定理可知:OA=3,∵OP=OB=3,∴AP=r=OA﹣OP=3﹣3,∴PE+EF+PF=MN=r=3﹣9∴PE+EF+PF的最小值为(3﹣9)km.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年陕西省中考数学试卷一、选择题:(本大题共10题,每题3分,满分30分)1、-711的倒数是A .711B .-711C .117D .-1172、如图,是一个几何体的表面展开图,则该几何体是 A .正方体 B .长方体 C .三棱柱 D .四棱锥3、如图,若l 1∥l 2,l 3∥l 4,则图中与∠1互补的角有 A .1个 B .2个 C .3个 D .4个4、如图,在矩形ABCD 中,A (-2,0),B(0,1).若正比例函数y =kx 的图像经过点C ,则k 的取值为A .-12B .12C .-2D .2第3题图第4题图5、下列计算正确的是 A .a 2·a 2=2a 4 B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-4 6、如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为A .423B .2 2C .823D .3 2第6题图第8题图第9题图7、若直线l 1经过点(0,4),l 2经过(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为 A .(-2,0) B .(2,0) C .(-6,0) D .(6,0)8、如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、GH 和HE .若EH =2EF ,则下列结论正确的是A .AB =2EF B .AB =2EFC .AB =3EFD .AB =5EF9、如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为A .15°B .35°C .25°D .45°10、对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在A .第一象限B .第二象限C .第三象限D .第四象限 二、填空题:(本大题共4题,每题3分,满分12分)11、比较大小:3<10(填<,>或=).12中,AC 与BE 相交于点F ,则AFE 的度数为72° 13、若一个反比例函数的图像经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为y =4x1l 4l 3l 2l 1EBACGEDA BDOBCyC B AO x14、点O 是平行四边形ABCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H 分别是BC 边上的点,且GH =13BC ;若S 1,S 2分别表示∆EOF 和∆GOH 的面积,则S 1,S 2之间的等量关系是2S 1=3S 2第12题图 第14题图二、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分) 计算:(-3)×(-6)+|2-1|+(5-2π)0 解:原式=32+2-1+1=4 2 16.(本题满分5分)化简:⎝ ⎛⎭⎪⎫a +1a -1-a a +1÷3a +1a 2+a解:原式=3a +1(a +1)(a -1)×a (a +1)3a +1=aa -117.(本题满分5分)如图,已知在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA ∽△ABM (不写做法保留作图痕迹)解:如图,P 即为所求点.18、(本题满分5分)如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .证明:∵AB ∥CD ,∴∠A =∠D ∵CE ∥BF ,∴∠AHB =∠DGC 在∆ABH 和∆DCG 中,BBCADAD∵⎩⎪⎨⎪⎧∠A =∠D∠AHB =∠DGC AB =CD∴∆ABH ≌∆DCG (AAS ),∴AH =DG∵AH =AG +GH ,DG =DH +GH ,∴AG =HD19.(本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表(第19题图)依据以上统计信息,解答下列问题: (1)求得m=30,n =19%;(2)这次测试成绩的中位数落在B 组;(3)求本次全部测试成绩的平均数.解:测试的平均成绩=2581+5543+5100+2796200=80.1.20.(本题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .解:∵CB ⊥AD ,ED ⊥AD , ∴∠CBA =∠EDA =90° ∵∠CAB =∠EADA nD 、15%B 36%C 30%组别 分数/分 频数 各组总分/分A 60<x ≤70 38 2581B 70<x ≤80 72 5543C 80<x ≤90 60 5100D 90<x ≤100m2796∴∆ABC ∽∆ADE ∴AD AB =DE BC∴AB +8.5AB =1.51∴AB =17,即河宽为17米. 21.(本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产商品 红枣 小米 规格 1kg /袋 2kg /袋 成本(元/袋) 40 38 售价(元/袋)6054根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg ,其中,这种规格的红枣的销售量不低于600kg .假设这后五个月,销售这种规格的红枣味x (kg ),销售这种规格的红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.解:(1)设前五个月小明家网店销售这种规格的红枣a 袋,销售小米b 袋,根据题意列方程得:a +2b =3000,(60-40)a +(54-38)b =42000,解得:a =1500,b =750∴前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋 (2)根据题意得:y =(60-40)x +(54-38)×2000-x 2=12x +16000y 随x 的增大而增大,∵x ≥600,∴当x =600时,y 取得最小值, 最小值为y =12×600+16000=23200∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元. 22.(本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.1-23-2(第22题图)解:(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120°360°=13; (2)由(1)可知,该转盘转出“1”“3”“-2”的概率相同,均为13,所有可能性如下由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为923.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC 、BC 相交于点M 、N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ; (2)连接MD ,求证:MD =NB .23题图 23题解图(1)解:(1)如图,连接ON∵CD 是Rt △ABC 斜边AB 上的中线 ∴AD =CD =DB ∴∠DCB =∠DBC 又∵∠DCB =∠ONC ∴∠ONC =∠DBC ∴ON ∥AB∵NE 是⊙O 的切线,ON 是⊙O 的半径 ∴∠ONE =90°∴∠NEB =90°,即NE ⊥AB ;(2)如解图(1)所示,由(1)可知ON ∥AB ,O 为⊙O 的圆心,∴OC =OB ,∠CMD =90°∴CN =NB =12CB ,MD ∥CB又∵D 是AB 的中点,∴MD =12CB ∴MD =NB .24.(本题满分10分)已知抛物线L :y =x 2+x -6与x 轴相交于A 、B 两点(点A 在点B 的左侧),并与y 轴相交于点C .(1)求A 、B 、C 三点的坐标,并求出△ABC 的面积; (2)将抛物线向左或向右平移,得到抛物线L ´,且L ´与x 轴相交于A ´、B ´两点(点A ´ABB在点B ´的左侧),并与y 轴交于点C ´,要使△A ´B ´C ´和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.解:(1)当y =0时,x 2+x -6=0,解得x 1=-3,x 2=2;当x =0时,y =-6 ∴A (-3,0),B (2,0),C (0,6)∴S △ABC =12AB ·OC =12×5×6=15; (2)将抛物线向左或向右平移时,A ´、B ´两点间的距离不变,始终为5,那么要使△A ´B ´C ´和△ABC 的面积相等,高也只能是6设A (a ,0),则B (a +5,0),y =(x -a )(x -a -5),当x =0时,y =a 2+5a当C 点在x 轴上方时,y =a 2+5a =6,a =1或a =-6,此时y =x 2-7x -6或y =x 2+7x -6;当C 点在x 轴下方时,y =a 2+5a =-6,a =-2或a =-3,此时y =x 2-x -6或y =x 2+x -6(与圆抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y =x 2-7x -6,y =x 2+7x -6,y =x 2-x -6.25.(本题满分12分) 问题提出(1)如图①,在△ABC 中,∠A =120°,AB =AC =5,则△ABC 的外接圆半径R 的值为. 问题探究(2)如图②,⊙O 的半径为13,弦AB =24,M 是AB 的中点,P 是⊙O 上一动点,求PM 的最大值.问题解决(3)如图③所示,AB 、AC 、BC 是某新区的三条规划路其中,AB =6km ,AC =3km ,∠BAC =60°,BC 所对的圆心角为60°.新区管委会想在BC 路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F .也就是,分别在BC 线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天要将物资在各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷环保和节约成本要使得线段PE 、EF 、FP 之和最短,试求PE +EF +FP 的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图①图②图③解:(1)R =AB =AC =5;(2)如25题解图(2)所示,连接MO 并延长交⊙O 于N ,连接OP显然,MP ≤OM +OP =OM +ON =MN ,ON =13,OM =132-122=5,MN =18 ∴PM 的最大值为18;25题解图(2) 25题解图(3) (3)假设P 点即为所求点,分别作出点P 关于AB 、AC 的对称点P ´、P "连接PP ´、P ´E ,PE ,P "F ,PF ,PP "由对称性可知PE +EF +FP =P ´E +EF +FP "=P ´P ",且P ´、E 、F 、P "在一条直线上,所以P ´P "即为最短距离,其长度取决于P A 的长度25题解图(4)作出弧BC 的圆心O ,连接AO ,与弧BC 交于P ,P 点即为使得P A 最短的点 ∵AB =6km ,AC =3km ,∠BAC =60°,∴∆ABC 是直角三角形,∠ABC =30°,BC=3 3 BC 所对的圆心角为60°,∴∆OBC 是等边三角形,∠CBO =60°,BO =BC =3 3 ∴∠ABO =90°,AO =37,PA =37-3 3 ∠P ´AE =∠EAP ,∠P AF =∠F AP ",∴∠P ´AP "=2∠ABC =120°,P ´A =AP ",∴∠AP ´E =∠AP "F =30°∵P ´P "=2P ´A cos ∠AP ´E =3P ´A =321-9 所以PE +EF +FP 的最小值为321-9km .P''BB。