有理数的混合运算--课件
合集下载
第2课时有理数的加减混合运算(44张PPT)数学
(2)根据你选取的基准数,用正、负数填写下表.
解 27-25=2,24-25=-1,23-25=-2,28-25=3,21-25=-4,26-25=1,22-25=-3,27-25=2,填表如下:
解
原质量
27
24
23
28
21
26
22
27
与基准数的差距
原质量
27
24
23
28
21
26
22
解析 A.1-4+5-4=1-4-4+5,故此选项错误;B.4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.7,故此选项正确;C.1-2+3-4=-2+1-4+3,故此选项错误;
B
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析
答案
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解
=1+(-1)=0.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解
解 原式=5.6+(-7.6)+8.3+(-5.3)+(-1)=(5.6+8.3)+(-7.6-5.3-1)=13.9+(-13.9)=0.
《有理数的混合运算》 课件 (共25张PPT)
当堂训练
36 ( 1 1)2 ; 23
4 (3) 2 6; (2)3 13 ( 1 );
2 [(3) 2 (5) 2 ] (2);
解:原式 4 2 1 9 3 3
42 99
2 9
在有理数的混合运算中,我们要注意什么?
注意: (1)运算顺序 (2)符号
扑克牌(去掉大小王),根据牌面上 的数字进行混合运算(每张牌只能用一 次),使得运算结果为24或-24。其中红 色代表正数,黑色代表负数,J、Q、K分 别表示11、12、13。
二 教法学法分析
本节课我采用探究式教学法,师生互动,讲练结合 ,小 组合作游戏比赛等方式提高学生的学习兴趣巩固来学习效 果
一教材分析
本节课是在学生学习了有理数的加减乘除乘法运算的基础上,进一 步加深学生对有理数各运算的认识,同时起到复习全章的作用。有 理数的混合运算是一种基础的运算模型,在计算中占重要的地位, 为以后学习方程和函数奠定了基础。
解:
3
100 22 2 2
3
100 4 2 3
2
25 3
22
辨析:
2
2
4
6
1
3
3
正确解法:
解:原式
442 9
42 9
14 9
3
分析:这个算式有哪几种运算?运算顺序又是怎么样的?
解:原式 18 3 1
3
18 1
17
例 2
(3)2
2 3
(
《1.4.2 有理数的混合运算》课件(三套)
有问题要请你 帮忙,喽!
1.计算:
(1)
5 1 ;
21 7
(2) 1 1.5;
(3) 3 2 1 ;
5 4
(4)
3
2 5
1 4
.
一、做一做:
先说出商的符号,再说出商:
(1) 12÷4 =3
(2)(-57)÷3 =-19
(3)(-36)÷(-9)= 4 (4)96 ÷(-16)=-6
分数可以理解 为分子除以分
(1) 12 (2) 45 母.
3
12
解: (1)
12 3
=(-12) ÷3=-4
(2) 45
12
=(-45) ÷(-12)
=45÷12
= 15 4
例3,计算:
(1) 1 6
(2) 1 (6)
解: 1 6
1 1
1 6 6
解: 1 (6)
1 ( 1)
1 6 6
1除以一个不为零的数的商就是这个数的倒数.
(- 4)(- 4) 2 3 35
(4 4 2) 335
32 45
(2) (-81) 2 1 ( 4) (16) 49
解:原式 (-81) 9 ( 4) (16) 49
(-81) 4 ( 4) ( 1 ) 9 9 16
(81 4 4 1 ) 9 9 16
1
四、填空.
1.有理数的除法法则(一) 除以一个不等于零的数等于乘这个数的倒数. a÷b=a× 1 (b≠0).
b
2.有理数除法法则(二)同号两数相除得正数, 异号两数相除得负数,并把它们的绝对值相除. 0除以任何一个不等于0的数都得0.
分层训练
1、填空题
(1)(-27)÷3=_-_9 _, (-27)÷(-3)=__9 _
有理数的混合运算ppt课件
A.0
B.18
C.-16 D.-24
课堂练习:
课本P65练习
我们的收获……
结合本堂课内容,请用下列句式造句.
我学会了…… 我明白了…… 我认为…… 我会用…… 我想……
小结
回
头
1.先算乘方,再算乘除,最
一
后算加减。
看
2.同级运算依照从左到右的
,
顺序运算;
我
3.若有括号,先小括号,再
明
中括号,最后大括号,依次
然后算乘方 再算乘除
最后算加减
一.有理数混合运算的法则: (1)先算乘方,再算乘除,最后算加减。 (2)如有括号,先进行括号里的运算。
先算括
乘乘
加
号里的
方除
减
1,加法 和 减法 叫做第一级运算, 乘法 和除__法__ 叫做第二级运算,已 学过的第三级运算是 乘方 ;
2、同一级运算按照_自__左__到右 的顺序行;
议一议:分析这道题中有几种运算,并探 索归纳其运算顺序。
1、先算乘方,再算乘除,最后算加减.
2、同级运算,从左到右进行依次计算.
那么有理数的运算到底遵循什么样的规律呢?
例如
如有括号先
先算乘
算括号
6
3
22
方
(
1
2)
?
55
最后算加减 再算乘除
有理数混合运算的法则:
先算乘方,再算乘除,最后算加减。 如有括号,先进行括号里的运算。
学习目标
1、灵活运用有理数的运算法则和运算律进行 有理数的混合运算;
2、在练习中积累运算技巧,提高运算速度;
3、做到严谨细致,提高运算的准确性.
每一个非零有理数由__符号__和___绝__对__值___两部分组成;
1.5 有理数的混合运算(第1课时)(课件)六年级数学上册(沪教版2024)
− + = − − , − − = − + .
课堂练习
1.
下列计算是否正确?如果不正确,应该如何改正?
1 79 − 32 ÷ 70 = 70 ÷ 70 = 1;
解: 1 不正确,改正:79 − 32 ÷ 70 = 79 −
9
70
= 78
2 6 ÷ 2 × 3 = 6 ÷ 2 × 3 = 3 × 3 = 9;
+10
.
பைடு நூலகம்
+6
8
6 )
11
.
随堂检测
1
8
3.计算: 16 ÷ (−2)3 − (− ) × (−4)
解:原式=16÷(-8)-( ×4),
.
1
2
4.计算: 1 ÷ (−8) + ( )3 × 3.3 − 0.125 × (−7.7) .
解:原式=1×(- )+ ×3.3+ ×7.7
4 + 30 ÷
33
1
× −
− 2.
2
上面这个算式中含有有理数的加,减,乘,除,乘方运算,这是有理数的
混合运算
有理数的混合运算,可以按照以下顺序进行:
先算乘方,再算乘除,最后算加减,同级运算,从左到右进行,
如果有括号,先进行括号内的运算。
课本例题
例1.计算
1 1 1
1 1− + − ;
2 4 8
2 15 ÷ −2 − 4 2 ;
随堂检测
1.计算:
3
初二七年级数学上册第2课时 有理数的混合运算ppt课件
6.(4分)(2017
)观察以下一列数的特点:0,1,-4,9,-16,25,…,则第11个数是( B )
A.-121
B.-100
C.100
D.121
7.(4分)给出依次排列的一列数:2,-4,8,-16,32,… (1)依次写出32后面的三个数:-__6_4_,__1_2_8_,__-__2_5_6__; (2)按照规律,第n个数为__(_-__1_)_n_+_1_×__2_n (n为正整数).
有理数的加、减、乘、除、乘方混合运算
1.(4分)(2017
)计算:-32×(-2)3的结果是( D )
A.36
B.-36
C.-72
D.72
四清导航
2.(4分)8-23÷(-4)×(-7+5)的结果为( B )
A.-4
B.4
C.12
D.-12
3.(7分)(1)计算-32+5-8×(-2)时,应该先算_乘__方___,再算__乘__法___,最后算__加__减___,正确的结 果为_1_2__; (2)计算2-[(1-8)×(-2)+(-10)]时,应该先算___小__括__号__里的,再算_中__括__号___里的,正确的结果 为_-_2__.
(3)-14-(1-0.5)× 1 ×[2-(-3)2]; 3
解:原式=-1+7=1. 66
四清导航
(2)(2017
)-12×2+(-2)2÷4;
解:原式=-1×2+4÷4=-2+1=-1.
(4)2×[5+(-2)3]-(-|-4|÷ 1 ). 2
解:2.
四清导航
有理数的加、减、乘、除、乘方运算中的规律探索
(2)第二行的数比第一行对应的数大2,第三行的数是第一行对应的数的2倍.
人教版七年级数学上册第一章 有理数第2课时 有理数的混合运算 优秀课件
1 024 1 024 2 1 024 0.5
1 024 1 026 512 2 562
强化训练
辨析:
2 3
2
4
6
1 3
.
解:原式 4 4 2 9
解:原式
4 9
2 3
1 3
42 9
14 9
正确 解法
42 99
2 9
随堂练习
1.计算式子(-1)3 +(-1)6的结果是( C )
解: (2)原式 8 (3) (16 2) 9 (2) 8 (3)18 (4.5) 8 54 4.5 57.5.
强化训练
计算:
(1)
110 2 23 4;
(2)
53
3
1 2
4
;0125 316(3)11 5
1 3
1 2
3 11
5; 4
2 25
知识点2 有理数乘方的规律探究
(2) 第②行 2 2,(2)2 2,(2)3 2,(2) 4 2,(2)5 2,(2)6 2...
第③行
2 0.5,(2)2 0.5,(2)3 0.5,(2) 40.5,(2)5 0.5,(2)6 0.5..
(3)取每行数的第10个数,计算这三个数的和.
解: (2)10 (2)10 2 (2)10 0.5
观察下列三行数,你能提出哪些问题? -2,4,-8,16,-32,64,… ① 0,6,-6,18,-30,66,… ② -1,2,-4,8,-16,32,… ③
(1)第①行数按什么规律排列? (2)第②③行数与第①行数分别有什么关系?
解: (1) 2,(2)2 ,(2)3 ,(2) 4 ,(2)5 ,(2)6...
例3 计算:
1 024 1 026 512 2 562
强化训练
辨析:
2 3
2
4
6
1 3
.
解:原式 4 4 2 9
解:原式
4 9
2 3
1 3
42 9
14 9
正确 解法
42 99
2 9
随堂练习
1.计算式子(-1)3 +(-1)6的结果是( C )
解: (2)原式 8 (3) (16 2) 9 (2) 8 (3)18 (4.5) 8 54 4.5 57.5.
强化训练
计算:
(1)
110 2 23 4;
(2)
53
3
1 2
4
;0125 316(3)11 5
1 3
1 2
3 11
5; 4
2 25
知识点2 有理数乘方的规律探究
(2) 第②行 2 2,(2)2 2,(2)3 2,(2) 4 2,(2)5 2,(2)6 2...
第③行
2 0.5,(2)2 0.5,(2)3 0.5,(2) 40.5,(2)5 0.5,(2)6 0.5..
(3)取每行数的第10个数,计算这三个数的和.
解: (2)10 (2)10 2 (2)10 0.5
观察下列三行数,你能提出哪些问题? -2,4,-8,16,-32,64,… ① 0,6,-6,18,-30,66,… ② -1,2,-4,8,-16,32,… ③
(1)第①行数按什么规律排列? (2)第②③行数与第①行数分别有什么关系?
解: (1) 2,(2)2 ,(2)3 ,(2) 4 ,(2)5 ,(2)6...
例3 计算:
有理数的混合运算课件(共19张PPT)
11
解法二: 原式
9( 2) 9( 5)
3
9
6 (5)
11
书P67 --1、计算(1)(8)
(1)、
解:原式
36
(
1
2 )
6
36 1 36
1
课堂自主检测: 数学书第67页知识技能
课堂小结
回 头 一 看
一:确定运算顺序
1.若有括号,先算括号里面 的。
2.先乘方,再乘除,最后加 减。
3
解:(1) 8 (3)2(2)
原式 8 9 (2)
8 (18) 10
(2) 100 22 (2) ( 2)
3
原式 100 4 (2) ( 3)
25 3
2
22
简化运算:
加法交换律:a+b=b+a; 加法结合律:(a+b)+c=a+(b+c); 乘法交换律:axb=bxa; 乘法结合律:(axb)xc=ax(bxc); 乘法分配律:ax(b+c)=axb+axc.
, 我
3.同级运算依照从左到右的 顺序运算;
想
二:根据运算法则,进行计
说
算
…
三:利用运算律,简化运算。
课时分层B第43-44页
(1 4)
(
4) 3
5 14
解
:
原式
(1 4)
5 14
(
4) 3
(5)
(
4) 3
20
3
有理数混合运算顺序:
• 1、如果有括号,先算括号里面的(小括号--中括号---大括号)
• 2、先算乘方,再算乘除,最后算加减 • 3、同级运算,从左到右
《有理数的混合运算》课件
和挑战自我的精神。
THANKS
感谢观看
复杂混合运算示例
总结词
复杂运算的解析与解答
详细描述
选取具有代表性的复杂有理数混合运 算题目,展示如何分析、化简和求解 这类题目,强调解题思路和步骤。
实际应用中的混合运算示例
总结词
数学与实际生活的结合
详细描述
通过一些实际问题,如购物找零、速度与距离的计算等,展 示有理数混合运算在实际生活中的应用,强调数学知识的实 用价值。
除法运算
总结词
有理数除法运算的基本法则
详细描述
有理数的除法运算可以通过乘法来实现,即除以一个数等于乘以这个数的倒数。在进行除法运算时, 首先将除法转换为乘法,然后按照乘法法则进行计算。
03
有理数的混合运算示例
简单混合运算示例
总结词
基本运算规则的展示
详细描述
通过简单的有理数混合运算示例 ,如加减乘除的基本运算,展示 混合运算的基本规则和顺序(先 乘除后加减)。
有理数混合运算是数学中基本运算之一,是数学学习和科学计算的基础。
它广泛应用于日常生活和科学研究中,如计算物理量、工程技术和金融等领域。
掌握有理数混合运算的规则和顺序对于培养学生的逻辑思维和数学素养具有重要意 义。
02
有理数的四则运算
加法运算
总结词
有理数加法运算的基本法则
详细描述
有理数的加法运算遵循交换律和结合律,即加法满足交换性和结合性。在进行 加法运算时,首先确定结果的符号,然后计算绝对值的和。
04
有理数的混合运算技巧
简化运算的技巧
总结词
利用运算律简化计算
详细描述
在进行有理数的混合运算时,可以运 用加法交换律、结合律,乘法交换律 、结合律以及乘法分配律等运算律来 简化计算过程,提高计算效率。
THANKS
感谢观看
复杂混合运算示例
总结词
复杂运算的解析与解答
详细描述
选取具有代表性的复杂有理数混合运 算题目,展示如何分析、化简和求解 这类题目,强调解题思路和步骤。
实际应用中的混合运算示例
总结词
数学与实际生活的结合
详细描述
通过一些实际问题,如购物找零、速度与距离的计算等,展 示有理数混合运算在实际生活中的应用,强调数学知识的实 用价值。
除法运算
总结词
有理数除法运算的基本法则
详细描述
有理数的除法运算可以通过乘法来实现,即除以一个数等于乘以这个数的倒数。在进行除法运算时, 首先将除法转换为乘法,然后按照乘法法则进行计算。
03
有理数的混合运算示例
简单混合运算示例
总结词
基本运算规则的展示
详细描述
通过简单的有理数混合运算示例 ,如加减乘除的基本运算,展示 混合运算的基本规则和顺序(先 乘除后加减)。
有理数混合运算是数学中基本运算之一,是数学学习和科学计算的基础。
它广泛应用于日常生活和科学研究中,如计算物理量、工程技术和金融等领域。
掌握有理数混合运算的规则和顺序对于培养学生的逻辑思维和数学素养具有重要意 义。
02
有理数的四则运算
加法运算
总结词
有理数加法运算的基本法则
详细描述
有理数的加法运算遵循交换律和结合律,即加法满足交换性和结合性。在进行 加法运算时,首先确定结果的符号,然后计算绝对值的和。
04
有理数的混合运算技巧
简化运算的技巧
总结词
利用运算律简化计算
详细描述
在进行有理数的混合运算时,可以运 用加法交换律、结合律,乘法交换律 、结合律以及乘法分配律等运算律来 简化计算过程,提高计算效率。
有理数的加减混合运算PPT教学课件PPT授课课件
基础巩固练
5.下列关于噪声的理解,正确的是( D ) A.0 dB是指没有声音 B.0 dB的环境是人类最理想的声音环境 C.长期工作和生活在高分贝噪声环境中可锻炼人的听力 D.噪声使人烦躁不安,有害身心健康
基础巩固练
6.[安徽灵璧校级月考]如图甲所示,摩托车安装消声器是 从噪声的__声__源____处减弱噪声;如图乙所示,道路两 旁的隔音墙是从噪声的_传__播__过__程_中减弱噪声。
=2.7-8.5-3.4+1.2
知3-练
=(2.7+1.2)+(-8.5-3.4)
=3.9-11.9=-8.
(2)-0.6-0.08+ 2 -2 5 -0.92+2 5
5 11
11
=-0.6+0.4+(-0.08-0.92)+
2
5 11
+2
5 11
=-0.2-1
=-1.2.
感悟新知
总结
知3-讲
使问题转化为几个有理数的加法.
解: (-20) + (+3)-(-5)-(+7)
= (-20) + ( + 3) + (+5) + (- 7) 这里使用了哪
=[(-20) + -7)]+[(+5) + (+3)] 些运算律?
=(-27) + (+8)= -19.
感悟新知
1 将式子3-10-7写成和的形式正确的是( D ) 知1-练 A.3+10+7 B.-3+(-10)+(-7) C.3-(+10)-(+7) D.3+(-10)+(-7)
基础巩固练
9.控制噪声是城市环境保护的主要措施之一,下列不能 减弱噪声的措施是( B ) A.市区禁止机动车鸣笛 B.减少二氧化碳气体的排放 C.大街小巷两旁种草植树 D.在会场上手机要设置成静音
2.6有理数的混合运算 课件
(3)更希望以方案二卖出.
理由如下:若有人一次性购买4碗,小刘的收益如下:
方案一:4×(6-3.1-0.7)=8.8(元)
方案二:4×(6-3.1)-2=9.6(元).
因为9.6>8.8,所以方案二会使小刘收益更多,所以小刘更希望以
方案二卖出.
04
课堂练习
【选做】5.定义一种新运算“☆”,规则为m☆n= m +mn-n,
D 选 项 , 2 + 0 - 2 ×4 = 2 - 8 = - 6 .
因 为 1 0 > 6 > - 2 > - 6 , 所 以 2 - 0 + 2 ×4
的结果最大.故选B.
04
课堂练习
【 例 2 】 计 算 1 5 - 4 × ( - 3 ) + ( − 3 ) 2 × 2 的 结 果 为 _______
(1)若朵朵爸爸采用计费方法A一个月累计通话362分钟,则朵
朵爸爸这个月所需的移动电话费用是多少?
(2)在(1)条件下所需的费用,若朵朵爸爸改用计费方法B,则比
计费方法 A 多通话多少分钟?
06
作业布置
【必做】3.
(1)根据题意得 58+0.25×(362-150)
=58+0.25×212-58+53
解:
圆的面积减去正方形的面积即为花坛的面积.
花坛的实际种花面积为3×3×π-1.2×1.2,
这个算式有乘法运算和减法运算,应该先算乘法,再算减
法;
花坛的实际种花面积为:(9π-1.44)平方米.
03
新知讲解
有理数的混合运算:
一个运算中,含有有理数的加、减、乘、除、乘
方等多种运算,称为有理数的混合运算.
理由如下:若有人一次性购买4碗,小刘的收益如下:
方案一:4×(6-3.1-0.7)=8.8(元)
方案二:4×(6-3.1)-2=9.6(元).
因为9.6>8.8,所以方案二会使小刘收益更多,所以小刘更希望以
方案二卖出.
04
课堂练习
【选做】5.定义一种新运算“☆”,规则为m☆n= m +mn-n,
D 选 项 , 2 + 0 - 2 ×4 = 2 - 8 = - 6 .
因 为 1 0 > 6 > - 2 > - 6 , 所 以 2 - 0 + 2 ×4
的结果最大.故选B.
04
课堂练习
【 例 2 】 计 算 1 5 - 4 × ( - 3 ) + ( − 3 ) 2 × 2 的 结 果 为 _______
(1)若朵朵爸爸采用计费方法A一个月累计通话362分钟,则朵
朵爸爸这个月所需的移动电话费用是多少?
(2)在(1)条件下所需的费用,若朵朵爸爸改用计费方法B,则比
计费方法 A 多通话多少分钟?
06
作业布置
【必做】3.
(1)根据题意得 58+0.25×(362-150)
=58+0.25×212-58+53
解:
圆的面积减去正方形的面积即为花坛的面积.
花坛的实际种花面积为3×3×π-1.2×1.2,
这个算式有乘法运算和减法运算,应该先算乘法,再算减
法;
花坛的实际种花面积为:(9π-1.44)平方米.
03
新知讲解
有理数的混合运算:
一个运算中,含有有理数的加、减、乘、除、乘
方等多种运算,称为有理数的混合运算.
有理数的混合运算PPT授课课件
基础巩固练
5.下列关于噪声的理解,正确的是( D ) A.0 dB是指没有声音 B.0 dB的环境是人类最理想的声音环境 C.长期工作和生活在高分贝噪声环境中可锻炼人的听力 D.噪声使人烦躁不安,有害身心健康
基础巩固练
6.[安徽灵璧校级月考]如图甲所示,摩托车安装消声器是 从噪声的__声__源____处减弱噪声;如图乙所示,道路两 旁的隔音墙是从噪声的_传__播__过__程_中减弱噪声。
能力提升练
【点拨】隔音板不能降低噪声的音调,故A错误;声音的强 弱等级用分贝为单位来划分,故B正确;利用隔音板能在传 播过程中减弱噪声,不是在声源处防止噪音产生,也不是在 人耳处减弱噪声,故C、D错误。故选B。 【答案】B
能力提升练
15.在学校、医院和科学研究部门附近,有禁鸣喇叭的标志。 在下列措施中,与这种控制噪声的方法相同的是( D ) A.工人戴上防噪声耳罩 B.在道路旁设置隔声板 C.上课时关闭教室的门窗 D.在摩托车上安装消声器
活学巧记 混合运算分三级,运算顺序高到低; 乘方、乘除再加减,若有括号它优先.
感悟新知
知1-练
例 3 若a,b互为相反数,c,d互为倒数,m的绝
对值是2,求2a+3cd+2b+m2的值.
导引:由已知可得a+b=0,cd=1,m2=4,整体 代入计算即可.
感悟新知
知1-练
解:因为a,b互为相反数,c,d互为倒数,m的 绝对值是2, 所以a+b=0,cd=1,m2=4. 所以2a+3cd+2b+m2=2(a+b)+3cd+m2 =0+3+4=7.
感悟新知
知2-练
分析:观察①,发现各数均为2的倍数.联系数的乘方, 从符号和绝对值两方面考虑,可发现排列的规律.
感悟新知
2.1.2.2有理数的加减混合运算 课件(共22张PPT)
2.1 有理数的加减法 2.1.2 有理数的减法 2.1.2.2 有理数的加减混合运算
学习目标
1.学会把有理数加减法的算式统一成只有加法的算式. 2.能正确熟练地进行有理数的加减混合运算. 3.通过把减法运算转化为加法运算,体会转化思想.
学习重、难点: 重点:加减法统一成加法. 难点:有理数加法的省略写法和读法.
(2)
.
总结归纳
有理数加减混合运算的步骤:
加法
交换律和加法 结合 律; 加法
有理数加减法混合运算常用方法: (1)正负数结合法; (2)相反数结合法; (3)凑整数结合法; (4)同分母分数结合法等.
典例精析
例 计算:
解:原式=
拆分带分数法
拆分带分数时,拆开的整数与分数必须与原 注意: 分数同号,用字母表示为:
= –40–27+19–24+32
观察以上两个式子,
(2) 原式=(–9)+(+2)+(–3)+(–4)你能发现简化符号的
= –9+2–3-4
规律吗?
规律:数字前“-”号是奇数个取“-”; 数字前“-”号是偶数个取“+”.
练一练
把下列算式改写为省略括号和加号的形式:
(1) (-40)-(+27)+19-24-(-32)
跟踪训练
计算: (1)7.8+(-1.2)-(-0.2)
(2)-5.3-(-6.1)-(-3.4)+7
问题探究
在数轴上,点A,B分别表示数a,b.对于下列各组数a,b:
(1)a=2,b=6;
(2)a=0,b=6;
(3)a=2,b=-6; (4)a=-2,b=-6.
(1)观察点 A,B 在数轴上的位置,你能得出它们之间的
-40-27+19-24+32
学习目标
1.学会把有理数加减法的算式统一成只有加法的算式. 2.能正确熟练地进行有理数的加减混合运算. 3.通过把减法运算转化为加法运算,体会转化思想.
学习重、难点: 重点:加减法统一成加法. 难点:有理数加法的省略写法和读法.
(2)
.
总结归纳
有理数加减混合运算的步骤:
加法
交换律和加法 结合 律; 加法
有理数加减法混合运算常用方法: (1)正负数结合法; (2)相反数结合法; (3)凑整数结合法; (4)同分母分数结合法等.
典例精析
例 计算:
解:原式=
拆分带分数法
拆分带分数时,拆开的整数与分数必须与原 注意: 分数同号,用字母表示为:
= –40–27+19–24+32
观察以上两个式子,
(2) 原式=(–9)+(+2)+(–3)+(–4)你能发现简化符号的
= –9+2–3-4
规律吗?
规律:数字前“-”号是奇数个取“-”; 数字前“-”号是偶数个取“+”.
练一练
把下列算式改写为省略括号和加号的形式:
(1) (-40)-(+27)+19-24-(-32)
跟踪训练
计算: (1)7.8+(-1.2)-(-0.2)
(2)-5.3-(-6.1)-(-3.4)+7
问题探究
在数轴上,点A,B分别表示数a,b.对于下列各组数a,b:
(1)a=2,b=6;
(2)a=0,b=6;
(3)a=2,b=-6; (4)a=-2,b=-6.
(1)观察点 A,B 在数轴上的位置,你能得出它们之间的
-40-27+19-24+32
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数
an 幂
底数
读作:a的n次方 或 a的n次幂 乘方的意义:表示n个a相乘
1、复习巩固
我们到现在为止学过几种运算?运算的结果是什么?都是几 级运算?(填表完成)
运算 加
减
乘
除
乘方
运算结果 和
差
积
商
幂
运算级别 一
一
二
二
三
有理数的运算规则
1、先高级运算再低级运算 2、同级运算在一起。
即:先乘方再乘除最后加减 即:同级运算从左到右进行
11 7
4 72
2020年7月29日星期三
25
2.有不同级运算在一起的
—从高级到低级运算
先算乘方三级; 再算乘除二级; 最后算加减一级.
例题示范1
例3(1)计算 2(- 3)3 - 4(- 3)15 解:原式= 2(- 27)(- -12)15 -541215 -27
2.没有括号的不同级运算,先算乘方再算乘除,
2)-50÷2×(-1/5)
2.有不同级运算在一起的 高 低
例2 计算: 1)2×(-3)2
2)14-6÷(-2)-4·(-6) 3)1-2×(-3)2
4)[2×(-3)]2
口诀歌 同 级 运 算,从 左 至 右; 异 级 运 算, 由 高 到 低; 若 有 括 号, 先 算 内 部; 简 便 方 法, 优 先 采 用。
运算 加 除 乘方 乘 减 结果 和 商 幂 积 差
第一级运算 第三级运算 第二级运算
先乘方,后乘除,最后加减; 有括号的先进行括号里的运算
例1 计算:
(1)(6)2 ( 2 1 ) 23 32
(2) 5 2 1 62 32
633
1.只含某一级运算
左右
例1 计算 1)-17/6+10/3 -11/2
是 雄 鹰 就 搏 击 长 空
学习目标
1、灵活运用有理数的运算法则和运算律进行 有理数的混合运算;
2、在练习中积累运算技巧,提高运算速度;
3、做到严谨细致,提高运算的准确性.
每一个非零有理数由__符号__和___绝__对__值___两部分组成;
有理数的加法法则 1)同号两数的相加,取加数符号,并把绝对值相加; 2)绝对值不等异号两数相加,取绝对值较大数的符号, 并用较大绝对值减去较小绝对值; 3)互为相反数的两数相加和为零; 4)零与任何数相加仍得这个数. 有理数的减法法则
减去一个数就是加上这个数的相反数.
有理数的乘法法则
1)两数相乘同号得正,异号得负,并把绝对值相乘; 2)零与任何数相乘都得零.
有理数的除法法则 1)除以一个数就是乘以这个数的倒数; 2)两数相除同号得正,异号得负;并把绝对值相除; 3)零除以任何非零的数为零.
有理数的乘方符号法则
1)正数的任何次幂都是正数; 2)负数的奇次幂为负,偶次幂为正.
(1) 9 5 (6) (4)2 (8) = -37
(2) 2 (3)3 4 (3) 15= -27
2020年7月29日星期三
28
计算 (1) 14-14÷(-2)+7×(-3) (2) 1-2×(-3)2
3.带有括号的运算
—从内到外依次进行运算
先算小括号; 再算中括号; 最后算大括号里面的.
最后算加减。 例3.计算:
(2)2 (52 ) (1)5 87 (3) (1)4
解:原式= 4 (25) (1) 87 (3) 1 (先乘方)
= 4-25-29 = -50
(再乘除) (最后相加)
注意: (-2)2=4 -52=-25 (-1)5=-1 (-1)4=1
课堂练习 计算:
3、计算下列各式
(1)(-1)101;(2)-252; (3)(-2)3; (4)-72 ; (5)-(-7)2 ;(6)(-3)3
上面的计算中,你发现 了什么规律?
只有一级运算时,我们 从左向右运算
有多级运算时呢?我们应该 怎样计算?
3+50÷22×(- 1/5)-1
计算: 3+50÷22×(- 1/5)-1
9、 {0.85-[12+4×(3-10)]}÷5
10、 11 (1 1) 3 5 .
5 3 2 11 4
11、10 8 (2)2 (4) (3).
Hale Waihona Puke 审选定算 查改1.只含某一级运算
——从左到右依次运算
• 例1:计算 • 1) -2+5-8 • 2) -100÷25×(-4)
小试牛刀
3、如果有括号
即:先做小括号内的运算,然后再做中括号内的运算最 后做大括号内的运算。
有理数 的
混合运算
我们学过的有理数 的运算律: 加法交换律:a+b=b+a;
加法结合律:(a+b)+c=a+(b+c);
乘法交换律:ab=ba;
乘法结合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
1、2×(-3)3-4×(-3)+15 2、-10+8÷(-2)2-(-4)×(-3) 3、(-8÷23)-(-8÷2)3 4、2+10÷52 ×(-0.5)-1
5、-9+5×(-6)-(-4)2÷(-8) 6、-3-[-5+(1-0.2)÷(-2)] 7、-14-×[ 2-(-3)2 ] 8(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4
计算: 42+(-27)+27+58 解: 原式=〔(-27)+27〕+(58 +42)
=0+100 =100
2020年7月29日星期三
24
.计算:
1 13 1 2 5 ( 6) 11 14
解:原式=
11
(
1 )
3
4
5
6 11 5
(统一为乘法)
=
2 25
(乘法法则)
课堂练习 计算:
2 3 ( 6) (1 2)
例题示范2
例3 计算(-2)3+(-3)X [(-4)2+2]-(-3)2÷(-2)
解:原式=-8+(-3)×(16+2)-9÷(-2) =-8+(-3)X18-(-4.5) = -8-54+4.5= -57.5
3.在带有括号运算中,先算小括号,再算中括号, 最后算大括号。
1.计算下列各题:
(1)21-35; (2)-3+5; (3)-12+11-8+39; (4)+45-9-91+5; (5)-5-5-3-3; (6)-5.4+0.2-0.6+0.8;
2、计算下列各式:
(1)(-3)×(-8)×25; (2)(-616)÷(-28); (3) 6-(-12)÷(-3); (4) 3·(-4)+(-28)÷7 (5) (-7)(-5)-90÷(-15);