新人教版五年级(下册)数学第三单元长方体和正方体的知识点整理

合集下载

第三单元 长方体和正方体的体积 2023-2024学年五年级数学下册重难点知识点(人教版)

第三单元 长方体和正方体的体积 2023-2024学年五年级数学下册重难点知识点(人教版)

人教版五年级数学下册同步重难点知识点第三单元长方体和正方体的体积温馨提示:图片放大更清晰!1.掌握长方体、正方体的特征,认识各个部分的名称。

2.掌握长方体和正方体的表面积的计算方法。

3.理解体积的概念,掌握体积单位及体积单位之间的进率,能正确进行单位的换算。

4.掌握长方体和正方体体积的计算方法。

5.掌握容积的意义、容积单位间的进率及容积单位与体积单位的换算。

6.会计算不规则物体的体积。

重点:1.长方体、正方体的特征。

2.长方体、正方体表面积和体积的计算方法。

难点:用公式解决生活中的实际问题。

知识点一:认识长方体长方体是由六个长方形(特殊情况下有两个相对的面是正方形)围成的立体图形。

一个长方体有6个面,相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点。

知识点二:认识正方体正方体是(也叫立方体)是由六个完全相同的正方形围成的立体图形。

一个正方体有6个面,每个面完全相同;有12条棱,每条棱长度相等;有8个顶点。

知识点三:长方体、正方体的展开图长方体和正方体的展开图都有多种。

利用长方体和正方体的展开图可以探究各个面之间的关系。

知识点四:长方体、正方体表面积的计算长方体或正方体6个面的总面积,叫做它的表面积。

长方体的表面积:(长×宽+长×高+宽×高)×2正方体的表面积:棱长×棱长×6知识点五:体积和体积单位物体所占空间的大小叫做物体的体积。

计量体积要用体积单位,常用的体积单位有立方厘米、立方分米和立方米,可以分别写成cm³、dm³和m³。

知识点六:长方体、正方体体积公式的推导长方体的体积=长×宽×高 V = abh正方体的体积=棱长×棱长×棱长 V = a3知识点七:长方体、正方体体积公式的应用长方体或正方体底面的面积叫底面积。

长方体或正方体的体积=底面积×高V = Sh知识点八:体积单位间的进率1dm³=1000cm ³ 1m³=1000dm³高级单位转换成为低级单位,用乘法进率,小数点向右移;低级单位转化成高级单位,用除法进率,小数点向左移。

小学五年级数学长方体和正方体知识点整理

小学五年级数学长方体和正方体知识点整理

小学五年级数学长方体和正方体知识点整理小学五年级数学长方体和正方体知识点整理在年少学习的日子里,是不是经常追着老师要知识点?知识点是指某个模块知识的重点、核心内容、关键部分。

为了帮助大家掌握重要知识点,下面是店铺为大家收集的小学五年级数学长方体和正方体知识点整理,供大家参考借鉴,希望可以帮助到有需要的朋友。

1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的`棱平行且相等;有8个顶点。

正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。

2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3、长方体的棱长总和=(长+宽+高)4正方体的棱长总和=棱长124、表面积:长方体或正方体6个面的总面积叫做它的表面积。

5、长方体的表面积=(长宽+长高+宽高)2S=(ab+ah+bh)2正方体的表面积=棱长棱长6用字母表示:S=6、表面积单位:平方厘米、平方分米、平方米相邻单位的进率为1007、体积:物体所占空间的大小叫做物体的体积。

8、长方体的体积=长宽高用字母表示:V=abh长=体积(宽高)宽=体积(长高)高=体积(长宽)正方体的体积=棱长棱长棱长用字母表示:V=aaa9、体积单位:立方厘米、立方分米和立方米相邻单位的进率为100010、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积高V=Sh11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;把低级单位聚成高级单位,用低级单位数除以进率。

12、容积:容器所能容纳物体的体积。

13、容积单位:升和毫升(L和ml)1L=1000ml1L=1000立方厘米1ml=1立方厘米。

14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。

【小学五年级数学长方体和正方体知识点整理】。

人教版五年级数学下册第三单元《长方体和正方体》知识点汇总清单

人教版五年级数学下册第三单元《长方体和正方体》知识点汇总清单

人教版五年级数学下册第三单元《长方体和正方体》知识点汇总清单一、长方体和正方体的定义及特征长方体:有6个面的立体图形,每个面都是长方形,任意两个相邻面都是全等的,相对的面是平行的。

正方体:是一种特殊的长方体,所有的面都是正方形。

二、长方体和正方体的面、棱和顶点1. 面:长方体有6个面,分别是底面、顶面和4个侧面。

正方体同样有6个面,每个面都是正方形。

2. 棱:长方体有12条棱,正方体有12条棱。

3. 顶点:长方体有8个顶点,正方体也有8个顶点。

三、长方体和正方体的名字长方体和正方体的命名按底部的形状来命名,如下所示:1. 底面为长方形的长方体,我们称为长方体;2. 底面为正方形的长方体,我们称为正方体。

四、长方体和正方体的面积和体积1. 面积:长方体的面积计算公式:面积 = 底面积 + 侧面积 + 侧面积 + 侧面积 + 侧面积 + 侧面积 = 2ab + 2bc + 2ac(其中a、b、c分别为长方体的长、宽、高)正方体的面积计算公式:面积 = 正方形的边长 ×正方形的边长 ×6 = a × a × 6(其中a为正方体的边长)2. 体积:长方体的体积计算公式:体积 = 底面积 ×高 = 底面积 × c(其中c 为长方体的高)正方体的体积计算公式:体积 = 正方形的边长 ×正方形的边长 ×正方形的边长 = a × a × a(其中a为正方体的边长)五、长方体和正方体的应用及实例长方体和正方体在日常生活中有许多应用,比如:1. 盒子和容器:我们常见的纸箱、塑料盒子、储物箱等都是长方体或正方体的形状,它们能够容纳各种物品。

2. 建筑:很多建筑物的砖块、砖石等都是长方体形状的,如砖墙、柱子等建筑结构。

3. 学习用具:书包、文具盒等也常常是长方体或正方体的形状。

举例:1. 如果一座长方体的长、宽、高分别为3厘米、4厘米、5厘米,则该长方体的面积为36平方厘米,体积为60立方厘米。

最新人教五年级下册三单元长方体和正方体

最新人教五年级下册三单元长方体和正方体
立方米 立方分米 立方厘米
重点题型
运用转化法解决复合体积单位的换算问题
例1:填空
2m³300dm³=( )dm³ 8.25dm³=( )dm³( )cm³
运用图示法解决立体图形的拼割问题
例2:一个长方体木块,长1.2dm,宽9cm,高7cm。将它锯成棱长为0.3dm的正方体小木块,最多可以锯成多少块?
巩固练习
将棱长是6dm的正方体铁块浸没到一个长方体水槽中,水面上升了3dm.再放入一个不规则石块(石块完全浸没在水中),水面又上升了2dm(水没有溢出),求不规则石块的体积。
知识点三:长方体的长、宽、高
知识点:相交于一个顶点的三条棱的长度分别叫作长方体的长、宽、高。长方体的12条棱中有4条长、4条宽和4条高。长方体的棱长总和=(长+宽+高)×4
(注意:对于同一个长方体,摆放方式不同,长、宽、高也就不同)
知识点四:正方体的特征
知识点:正方体是由6个完全相同的正方形围成的立体图形。一个正方体由6个面、8个顶点、12条棱,所有的棱长度相等。正方体的棱长总和=棱长×12
重点题型
运用转化法解决水面升高问题
例1:有一个长方体容器,从里面量长5dm,宽4dm,高6dm,里面注有水,水深3dm,把一块棱长为2dm的正方体铁块浸入水中,水面上升了多少分米?
求不规则物体体积的实际运用
例2:一个长方体鱼缸,从里面量,长是25cm,宽是12cm,高是36cm.小雨放入10条金鱼后,水面高度从20cm上升到33cm.这10条鱼的总体积是多少立方厘米?
练习巩固
某小学五年级学生用棱长4cm的正方体积木在宣传栏旁边搭起了一面积木墙,这面墙长8m、宽12cm、高2m,这面墙一共用了多少块积木?
3.3.3容积和容积单位

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。

小学五年级数学下册第三单元--长方体与正方体

小学五年级数学下册第三单元--长方体与正方体

第三单元长方体和正方体【概念】1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

在一个长方体中,相对面完全相同,相对的棱长度相等。

2、两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体有12条棱,它们的长度都相等,所有的面都完全相同。

4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

5、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。

长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4长=棱长总和÷4-宽-高 a=L÷4-b-h宽=棱长总和÷4-长-高 b=L÷4-a-h高=棱长总和÷4-长-宽 h=L÷4-a-b正方体的棱长总和=棱长×12 L=a×12正方体的棱长=棱长总和÷12 a=L÷121.长方体与正方体都有( )个面,( )个顶点和( )条棱,正方体是( )的长方体。

二、判断。

(对的画√,错的画×)1.在一个长方体中,最多有8条棱完全相等、6个面完全相同。

( ) 4.用棱长是1 cm的小正方体拼成一个大正方体,至少要6个小正方体。

( )4. 在一个长方体中,从一个顶点出发的三条棱的和是7.5分米,这个长方体的棱长总和是30分米.( )3. 长方体的12条棱中,平行的4条棱都相等.()1.用一根长36 cm的铁丝围成一个正方体框架,正方体框架的棱长是( )cm。

人教版五年级数学下册知识点归纳总结

人教版五年级数学下册知识点归纳总结

人教版五年级数学下册知识点归纳总结第一单元观察物体(三)1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。

2、不可能一次看到长方体或正方体相对的面。

注意点1)这里所说的正面、左面和上面,都是相对于观察者而言的。

2)站在任意一个位置,最多只能看到长方体的3个面。

3)从不同的位置观察物体,看到的形状可能是不同的。

4)从一个或两个方向看到的图形是不能确定立体图形的形状的。

5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。

6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。

第二单元因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。

因数和倍数是相互依存的,不能单独存在。

(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找。

(3)一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。

2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

3)个位上是0或5的数,是5的倍数。

4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。

同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

3、自然数按能不能被2整除来分:奇数、偶数。

奇数:不能被2整除的数。

叫奇数。

也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

最小的奇数是1,最小的偶数是0.关系:奇数+、- 偶数=奇数奇数+、- 奇数=偶数偶数+、-偶数=偶数。

人教版五年级下册数学必背知识点汇总

人教版五年级下册数学必背知识点汇总

人教版五年级下册数学必背知识点一:观察物体1、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化叫作旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为另一点成为对应点。

(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确中心点,角度和方向。

旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点。

3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数二:因数与倍数1.因数与倍数在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

例如:12÷6=2,我们就说12是6的倍数,6是12的因数。

12÷2=6,所以12是2的倍数,2是12的因数。

一个数的因数的个数是有限的,其中最小的是1,最大的是它本身。

一个数的倍数的个数是无限的,其中最小的是它本身,没有最大的。

2.2、3、5的倍数特征个位上是0、2、4、6、8的数都是2的倍数。

2的倍数一定是偶数。

168 1+6+8=15 15能够被3整除所以168是3的倍数。

个位上是0或5的数都是5的倍数。

3.奇数和偶数整数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

☆奇数+偶数=奇数奇数+奇数=偶数偶数+偶数=偶数奇数×偶数=偶数奇数×奇数=奇数偶数×偶数=偶数4.质数和合数一个数,如果只有1和它本身两个因数。

那么这样的数叫做质数(或素数)。

如:2、3、5、7都是质数。

一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。

如2、4、6、15、49都是合数。

1既不是质数,也不是合数。

【其中:偶数一定是合数,但合数不一定是偶数。

人教版五年级数学下册知识梳理归纳

人教版五年级数学下册知识梳理归纳

人教版五年级数学下册知识点梳理归纳第一单元:观察物体三1.长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面(或说成:最多同时能看到3个面)。

不可能一次看到长方体或正方体相对的面。

2.根据从一个方向看到的图形摆小正方体,有多种摆法,无法确定几何体的形状。

从而说明根据一个(或两个)方向看到的图形无法确定几何体的形状。

3.根据从三个方向观察到的图形摆小正方体,只有1种摆法,可以确定几何体的形状。

4.从正面、左面、上面3个不同的方向观察同一组物体而画出的图形就是三视图。

5.综合三视图的形状,可以确定出立体图形中小正方体的摆放位置,通常只有一种摆法。

6.由三视图拼摆正方体的方法:先摆出符合正面的立体图形,再摆出符合上面的立体图形,最后确定立体图形。

第二单元:因数和倍数【在研究因数和倍数的时候,我们所说的数指的是非0的自然数】1.整除的意义:如果整数a除以整数b,所得的商正好是整数且没有余数,我们就说a 能被b整除,也可以说b3|^,如:63 :9=7,我们就说63能被9整除,9能整除63。

2.在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除和商是被除数的因数。

在整数乘法中,因数是积的因数,积是因数的倍数。

因数和倍数是相互依存的,不能单独存在。

例如:12-2=6 -12是2和6的倍数,2和6是12的倍数;2x6=12 -12是2和6的倍数,2和6是12的因数。

3 .一个数的因数的个数是有限的;其中♦小的因数是1 ,最大的因数是它本身。

例如: 12的因数有123,4,5,6,12。

12最大的因数是(1),最小的因数是(12 )o4 .找一个数的因数的方法:①列乘法算式找②列除法算式找1-20的因数:5 .一个数的倍数的个数是无限的;其中最小的倍数是它本身,没有最大倍数。

例如: 18的最小倍数是(18 )6 .找一个数的倍数的方法:①列乘法算式找:依次乘自然数(从自然数1开始)②列 除法算式找8 .一个非0的自然数,它的最大因数和♦小倍数都是它本身。

(完整版)人教版五年级下册数学第三单元知识点汇总

(完整版)人教版五年级下册数学第三单元知识点汇总

at i m练习:小正方体拼大长方体的规律规律同正方体,首先观察大长方体各棱长分别是小正方体棱长的几倍,如,长方体长是小正方体棱长的a倍,宽是小正方体棱长的b倍,高是小正方体棱长的c倍,则,大长方体就是由a×b×c个小正方体组成的。

【知识点1】长方体表面积=(长×宽+长×高+宽×高)×2 =(a×b+a×c+b×c)×2=(前面面积+上面面积+右面面积)×2正方体表面积=棱长×棱长×6=a×a×6=6a2=任意一个面的面积×6前面面积=后面面积;左面面积=右面面积;上面面积=下面面积两个棱长和相等的长方体或一个长方体和一个正方体,表面积不一定相等!表面积相等的两个长方体或一个长方体和一个正方体,棱长和也不一定相等!【知识点2】长方体表面求法的变形:1 贴商标类型:只求四周面积。

例如:一个长方体包装盒,长宽高分别为8,4,5,需要在包装盒四周贴上商标,需要商标纸的面积是多少?2 游泳池类型:只求四周和底面。

例如:一座游泳池,长宽高分别为10m,4m,1.5m,需要在池内贴上边长为1dm的瓷砖,大约需要多少块瓷砖?3 抽纸盒类型:六个面面积减去缺口面积。

例如:一款抽纸盒,长宽高分别是20cm,12cm,5cm,上面有长14cm,宽3cm的抽纸口,做这款抽纸盒需要多少硬纸片?4 占地面积问题:只求底面面积。

例如:一个长方体蓄水池,长12m,宽8m,深3m,这个水池占地面积多少平方米?【知识点3】棱长变化对表面积的影响:正方体正方体的棱长扩大2倍,其棱长和也扩大2倍,表面积扩大4倍,体积扩大8倍;正方体的棱长扩大3倍,其棱长和也扩大3倍,表面积扩大9倍,体积扩大27倍;正方体的棱长扩大n倍,其棱长和也扩大n倍,表面积扩大n2倍,体积扩大n3倍。

长方体长方体的长宽高同时扩大2倍,其棱长和也扩大2倍,表面积扩大4倍,体积扩大8倍;长方体的长宽高同时扩大3倍,其棱长和也扩大3倍,表面积扩大9倍,体积扩大27倍;长方体的长宽高同时扩大n倍,其棱长和也扩大n倍,表面积扩大n2倍,体积扩大n3倍。

人教版五年级数学下册长方体和正方体知识点归纳

人教版五年级数学下册长方体和正方体知识点归纳

人教版五年级数学下册长方体和正方体知识点归纳长方体和正方体是五年级数学下册的重要内容之一。

它们是立体几何中常见的几何体形状,具有特定的性质和特征。

本文将对人教版五年级数学下册关于长方体和正方体的知识点进行归纳。

一、长方体的定义和特征长方体是一种具有六个矩形面的立体几何体,其中相对的面两两平行且面积相等。

它的特征包括:1. 六个面都是矩形,相对的面两两平行且面积相等;2. 每个面的边长两两相等;3. 所有的顶点都是直角。

二、长方体的性质和运算长方体具有以下性质和运算:1. 面的个数:长方体有6个面;2. 顶点的个数:长方体有8个顶点;3. 边的个数:长方体有12条边;4. 表面积:长方体的表面积等于所有面的面积之和,可通过计算每个面的长乘以宽再乘以2,然后将六个面的面积相加得到;5. 体积:长方体的体积等于底面的面积乘以高,可通过计算底面的长乘以宽再乘以高得到。

三、正方体的定义和特征正方体是一种具有六个正方形面的立体几何体,每条边的长度相等。

它的特征包括:1. 六个面都是正方形,每个面的边长相等;2. 相邻面之间的夹角都是直角。

四、正方体的性质和运算正方体具有以下性质和运算:1. 面的个数:正方体有6个面;2. 顶点的个数:正方体有8个顶点;3. 边的个数:正方体有12条边;4. 表面积:正方体的表面积等于所有面的面积之和,可以通过计算一个面的边长的平方再乘以6得到;5. 体积:正方体的体积等于底面的边长的立方,可通过计算边长的立方得到。

五、长方体和正方体的应用长方体和正方体在生活和实际问题中有广泛的应用,例如:1. 房间的体积:我们可以将房间看作一个长方体,通过测量长度、宽度和高度,计算房间的体积,从而确定房间的空间大小;2. 体育器材:篮球、足球、乒乓球等体育器材往往具有正方体或长方体的形状,了解它们的形状特征和性质,有助于更好地认识和使用它们;3. 包装箱的运输:考虑到方便和安全,一些物品在运输过程中会被装在长方体或正方体的包装箱中,了解包装箱的体积和表面积有助于合理选择箱子和运输方式。

人教版五年级数学下册 长方体和正方体 知识点归纳

人教版五年级数学下册 长方体和正方体 知识点归纳

《长方体和正方体》知识点归纳知识点一、长方体的特征1、长方体由6个面围成,相对的面互相平行且形状大小相同。

通常这些面的形状都是长方形,特殊情况下可有2个相对的面是正方形。

2、长方体有8个顶点。

3、长方体两个面相交的边叫做这个长方体的棱,共有12条棱,且每条棱长都相等。

相邻的三条棱互相垂直。

相对的两条棱互相平行。

4、相交于一个顶点的三条棱分别叫做这个长方体的长、宽、高。

底面中较长的一条棱是长,较短的一条棱是宽,垂直于底面的棱是高。

长方体有4条长、4条宽、4条高。

知识点二、正方体的特征1、正方体由6个面围成,每个面的形状大小都相同,且形状都是正方形,其中相对的两个面互相平行。

2、正方体有8个顶点。

3、正方体两个面相交的边叫做这个正方体的棱,共12条棱,且每条棱长都相等。

相邻的三条棱互相垂直。

相对的两条棱互相平行。

4、正方体可以视为长、宽、高都相等的长方体。

因此正方体是特殊的长方体。

5、从某一点观察,能够呈现几何体整体形状的绘图叫做直观图,其中看见不见的边要用虚线表示。

这里长方体和正方体的图都是直观图。

知识点三、长方体和正方体的相关计算1、物体外部各个面的面积之和叫做物体的表面积。

2、物体所占空间的大小叫做物体的体积。

3、表面积和面积的单位是一样的,常用的有:平方厘米、平方分米、平方米,分别写作cm2、dm2、m2。

4、常用体积单位有:立方厘米、立方分米、立方米,分别可以写作cm3、dm3、m3。

5、单位换算:①1m=10dm,1dm=10cm 。

(进率是10)②1m2=100dm2 ,1dm2=100cm2。

(进率是100)③1m3=1000dm3,1dm3=1000cm3。

(进率是1000)6、大单位转化为小单位,要乘以进率。

小单位转化为大单位,要除以进率。

7、长方体和正方体的表面积公式:温馨提示:计算表面积的时候,要注意物体是否有6个面。

例如游泳池、鱼缸等物体并不是完整长方体,它们只有5个面,我们算出长方体的表面积后,还要减去那1个缺少的面。

【新】五年级下册数学 人教版 长方体和正方体的表面积(知识点+试题)

【新】五年级下册数学 人教版 长方体和正方体的表面积(知识点+试题)

长方体和正方体二、内容讲解:知识点一:长方体和正方体的特征(1)长方体:由6个长方形围成的立体图形。

(2)正方体:由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

它是一种特殊的长方体。

(3)两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

特征:①有几个面?面的位置和大小有什么关系?②有多少条棱?棱的位置、长短有什么关系?③有多少个顶点?例一:1、(a)图是()体,它的6个面是()形。

(b)图是()体,它的6个面是()形。

2、长方体有()个面,()条棱,()个顶点。

相对的棱的长度(),相对的面完全()。

3、正方体所有的面都(),()条棱都()。

4、长、宽、高相等的长方体叫做()。

知识点二:长方体、正方体棱长的计算(1)各棱长之间的关系及棱长的计算方法长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4 长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12 L=a×12正方体的棱长=棱长总和÷12 a=L÷12例二:1、一个长方体的长8厘米,宽7厘米,高6厘米,棱长和是多少厘米?2、如果用一根长72厘米的铁丝做一个宽4厘米,高6厘米的长方体框架,长是多少厘米?知识点三:长方体、正方体的表面积表面积:长方体或正方体6个面的总面积,叫做它的表面积已知长、宽、高,求面积S=(ɑb+bc+ɑc)×2长方体的表面积= ( 长×宽+ 长×高+ 宽×高) × 2正方体的表面积=(长×宽)×6例三:1、一个长方体油箱,从里面量长是70厘米,宽是30厘米,高是85厘米,如果每升汽油重约0. 73千克,这个油箱最多能装多重的汽油?(一)已知棱长和求面积长方体棱长和=(长+宽+高)×4正方体棱长和=棱长×12例四:1、一个正方体框架是用一根长48分米的铁丝焊接成的,如果给这个正方体粘上一层塑料,至少需要多少平方分米的塑料?(二)已知长、宽、高的关系求面积例五:1、已知一个长方体的长是20分米,这个长方体的宽是长的4/5,高是宽的一半,求这个长方体的面积?2、一个长方体房间,长8米,宽比长短1/4,高比宽短1/3,这个房间的表面积是多少?(三)已知棱长和,求转换后图形面积例六:1、一根铁丝可以围成一个长6分米、宽4.5分米、高2.5分米长方体框架,现在想将其围成一个正方体,这个正方体的表面积是多少?(四)求面不全的长方体(正方体)表面积柱子:求四个面的面积,不算上下两面(长×宽)鱼缸:正面是玻璃,1、求其他五个面的面积,不算正面(长×高)2、前面的玻璃坏了,若求配上的玻璃面积,则只求正面的面积。

【新】五年级下册数学 人教版 长方体和正方体复习(知识点+练习题)

【新】五年级下册数学 人教版 长方体和正方体复习(知识点+练习题)

长方体和正方体的体积【上次课做题回顾】1、有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色。

求被涂成红色的表面积。

1、有一个长方体,正好可以切成大小相同的4个立方体,每个立方体的表面积是24平方厘米,原长方体的表面积可能是()平方厘米,也可能是()平方厘米。

【相似题巩固】1、如右图所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多少平方米?2、一个长方体可以切成两个完全相同的正方体,每个小正方体的表面积24平方厘米,则长方体表面积是()【长方体和正方体复习拓展】 基础知识回顾1、长方体和正方体的关系2、如果用a 、b、c 分别表示长方体的长、宽、高,那么: 长方体的侧面积: 长方体的表面积: 长方体的体积:3、如果用a 表示正方体的棱长,那么:正方体的表面积是: 正方体的体积是: 知识点1:不规则图形表面积 经典例题讲解:例1:如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?练:在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?例2:右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)练:下图是一个棱长为4厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为2厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为1厘米,那么最后得到的立体图形的表面积是多少平方厘米?例3:一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?练:(2018年走美六年级初赛)一个表面积为256cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2cm.例4:如图所示,一个555⨯⨯的孔,在另一个方向上开有⨯⨯的立方体,在一个方向上开有115⨯⨯的孔,剩余部分的体积是多少?215⨯⨯的孔,在第三个方向上开有315【总结】“切片法”:全面打洞(例如本题,五层一样),挖块成线(例如本题,在前一层的基础上,一条线一条线地挖),这里体现的思想方法是:化整为零,有序思考!练:如图,原来的大正方体是由125个小正方体所构成的.其中有些小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方体的挖除部分.请问剩下的部分共有多少个小正方体?第8题例3、看图计算下面图形的体积总结:练:看图计算图形的体积知识点2:正方体染色的规律一、活动一1、如图2,大正方形被分成了四个单位小正方形。

人教版五年级下册数学第三单元知识点汇总

人教版五年级下册数学第三单元知识点汇总

人教版五年级下册数学第三单元知识点易错点汇总一、长方体和正方体的认识 要素 立体图形棱面 顶点数量 特征 数量 特征数量 特征长方体12互相平行的棱长度相等 6相对的面完全相同 8同一个顶点引出的三条棱分别叫做长、宽、高特殊长方体 12 垂直于正方形面的棱长度相等 6 两个面是正方形,其余四个面是完全相同的长方形 8正方体 12 所有的棱长度都相等6 所有面都是正方形且完全相同8一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形! 【知识点2】棱长和公式:长方体棱长和=【长+宽+高】×4 长+宽+高=棱长和÷4 长方体棱长和=下面周长×2+高×4 长方体棱长和=右面周长×2+长×4 长方体棱长和=前面周长×2+宽×4正方体棱长和=棱长×12 棱长=棱长和÷12 棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的,因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。

前面和后面的彩带长度=高的长度;左面和右面的彩带长度=高的长度;上面和下面的彩带长度=长的长度。

需要彩带的长度=高×4+长×2+打结部分长度 20×4+30×2+10=150cm【知识点3】确定长方体中每个面的形状以及长、宽、高分别是多少。

长方体一共有6个面,相对面完全相同,如:前面和后面完全相同,左面和右面完全相同,上面和下面完全相同。

根据习惯我们一般认为在一个平面中水平方向的为长,垂直方向的为高。

根据这一习惯我们我们只需找到需要的面并根据习惯确定长和宽即可。

例如:如图下列长方体的后面是长方体形状,长是8宽是4;它的右面是长方形状,长是6宽是4;下面是长方形状,长是8宽是6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三单元长方体和正方体的知识整理
一、【概念】
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

在一个长方体中,
相对
2
3
、由
做立方体)。

正方体有
4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体
宽、
高都相等的长方体,它
5、长方体有
6
42个面是正方形。

正方体有
长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4 长=棱长总和÷4-宽-高 a=L÷4-b-h
宽=棱长总和÷4-长-高 b=L÷4-a-h 高=棱长总和÷4-长-宽 h=L÷4-a-b 正方体的棱长总和=棱长×12 L=a×12 正方体的棱长=棱长总和÷12 a=L÷12
6、长方体或正方体的长、宽、高同时扩大几倍,棱长总和会扩大相同的倍数。

(如长、宽、高各扩大2倍,棱长总和就会扩大到原来的2倍)。

二、【长方体和正方体的表面积】
1、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积
S=2(ab+ah+bh)
无底(无盖)长方体表面积
S=2(ab+ah+bh)-ab 或 S=2(ah+bh)+ab
无底又无盖长方体表面积
S=2(ah+bh)
正方体的表面积×a×6= 6a2 2、表面积的常用单位有:平方米、平方分米、平方厘米
相邻两个面积单位之间的进率是100
1m2 =100dm2 1 dm2 =100 cm2 1m2 =10000 cm2 3、生活实际
油箱、罐头盒等都是6个面;游泳池、鱼缸、粉刷教室等都只有5个面;水管、烟囱等都只有4个面。

4、长方体或正方体每截断一次会增加两个截面,所以这时的两
个物体的表面积大于原来物体的表面积。

5、长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大
倍数的平方倍。

(如长、宽、高各扩大3倍,表面积就会扩大到原来的9倍)。

三、【长方体和正方体的体积】
1、体积:物体所占空间的大小叫做物体的体积。

(就是看物体
含有多少个体积单位)
2、常用的体积单位有:立方米(m3)、立方分米(dm3)、立
方厘米(cm3)
①棱长是1 cm的正方体,体积是1 cm3
②棱长是1 dm的正方体,体积是1 dm3
③棱长是1 m的正方体,体积是1 m3
相邻两个体积单位之间的进率是1000
1 m3 =1000 dm3 1dm3=1000 cm3 1 m3 =1000000
cm3
长方体的体积
长÷b÷h
宽÷a÷h
高÷a÷b
正方体的体积×a×a =a³
3、容积:容器所能容纳物体的体积,叫做它的容积。

4、容积单位有: 升(L )、 毫升(mL ) 1 L = 1000 mL
5、容积单位和体积单位的关系: 1 L = 1 dm 3 1 mL = 1 cm 3
6、容积的计算:
长方体和正方体容器容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。

(所以物体的体积大于它的容积)。

7、长方体或正方体的长、宽、高同时扩大几倍,表面积就会扩大倍数的平方倍,体积就会扩大倍数的立方倍。

(如长、宽、高各扩大3倍,表面积就会扩大原来的9倍(3的平方倍),体积就会扩大到原来的27倍(3的立方倍)。

8、排水法:(计算不规则物体的体积)
9、把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

10、a 3读作“a 的立方”表示3个a 相乘,(即a ·a ·a )
【体积单位换算】 高级单位(大) 低级单位(小) 低级单位(小) 高级单位(大)
进率: 1立方米=1000立方分米 1立方米 =1000000立方厘米
×进率 ÷进率
1立方分米=1000立方厘米 1升=1000毫升1立方厘米=1毫升
1立方分米=1升;1平方米=100平方分米 1平方米=10000平方厘米
1平方分米=100平方厘米1平方千米=100公顷=1000000平方米;
1米=10分米1米=100厘米1分米=10厘米1千米=1000米。

相关文档
最新文档