机器学习中的EM算法详解及R语言实例
em算法的应用场景和案例
em算法的应用场景和案例EM算法(Expectation Maximization Algorithm)是一种常用的统计学习方法,主要用于估计含有隐变量的概率模型的参数。
以下是EM算法的一些应用场景和案例:1.K-Means聚类:这是EM算法的硬聚类应用案例。
在K-Means聚类中,我们试图将数据划分为K个不同的簇,其中每个簇的中心是所有属于该簇的数据点的平均值。
EM算法在这里被用来迭代地更新簇的中心和分配数据点到最近的簇。
2.GMM(高斯混合模型)聚类:这是EM算法的软聚类应用案例。
高斯混合模型是一种概率模型,它假设所有的数据点都是由几个高斯分布混合而成的。
EM算法在这里被用来估计每个高斯分布的参数以及每个数据点属于每个高斯分布的概率。
3.PLSA(概率潜在语义分析)模型:在文本挖掘和信息检索中,PLSA模型被用来发现文档和单词之间的潜在主题。
EM算法在这里被用来估计模型中的参数,包括每个文档的主题分布和每个主题中的单词分布。
4.硬币投掷实验:这是一个简单的EM算法应用案例。
假设有三枚硬币A,B,C,我们不知道它们投掷出正面的概率。
在实验中,我们首先投掷硬币A,如果A出现正面,我们就选择硬币B投掷,否则选择硬币C。
我们只观察到了所选择的硬币的投掷结果(正面或反面),而没有观察到硬币A的投掷结果。
EM算法在这里可以被用来估计三枚硬币投掷出正面的概率。
5.在自然语言处理中的应用:EM算法还可以用于词义消歧和主题模型中,例如隐含狄利克雷分布(LDA)。
在这些模型中,EM算法用于估计话题的分布和文档中单词的主题分配。
6.图像处理和计算机视觉:EM算法也广泛应用于图像处理和计算机视觉领域,例如用于混合高斯模型(GMM)来分割图像,或者用于隐马尔可夫模型(HMM)来进行图像序列分析等。
7.在生物信息学中的应用:EM算法在生物信息学中也有广泛的应用,例如在基因表达数据的分析、蛋白质分类和基因序列分析等领域。
EM算法
在医学研究中的应用
ˆ 和 ˆ 2: 3)计算均值和方差的最大似然估计校正值
2 ˆ ˆ 4)重复以上的2-3步,直至 和 收敛为止。
经过EM迭代算法可得:
迭代算法补入的两个数据:第4行第5个为2.5216,第8行第3个为4.5522。
在医学研究中的应用
5)MonteCarlo模拟,随机取 x
假设我们想估计知道A和B两个参数,在开始状态下二者都是未知的,但如果知道了A的信息就可以得到B的信息,反过来 知道了B也就得到了A。可以考虑首先赋予A某种初值,以此得到B的估计值,然后从B的当前值出发,重新估计A的取值, 持续迭代直到收敛为止。
迭代的结果真的有效吗?
从最大似然到EM算法
EM算法推导
里面了。那下一步怎么办啊?你开始喊:“男的左边,女的右边!”。然后你就先统计抽样得 某些男生和女生一见钟情,无法硬把他们拉扯开。那现在这200个人已经混到一起了, 到的 100个男生的身高。 随便指出一个人(的身高),无法确定这个人(的身高)是男生(的身高)还是女生(的身 假设他们的身高是服从高斯分布的。但是这个分布的均值 μ和方差σ2我们不知道,这两个参数 高)。也就是说不知道抽取的那200个人里面的每一个人到底是从男生的那个身高分布里面 就是我们要估计的。记作 θ=[μ,σ2]T 抽取的,还是女生的那个身高分布抽取的。 用数学的语言就是,抽取得到的每个样本都不知道是从哪个分布抽取的。 两个问题需要估计: 一是这个人是男的还是女的?
i 1 zi
p( xi , zi ; ) ln LEM ( ) ln p( xi , zi ; ) ln Q( zi ) Q( zi ) i zi i zi p( xi , zi ; ) Q( zi ) ln Q( zi ) i zi
EM算法
EM算法EM算法--应用到三个模型:高斯混合模型,混合朴素贝叶斯模型,因子分析模型判别模型求的是条件概率p(y|x),生成模型求的是联合概率p(x,y).即= p(x|y) ? p(y)常见的判别模型有线性回归、对数回归、线性判别分析、支持向量机、boosting、条件随机场、神经网络等。
常见的生产模型有隐马尔科夫模型、朴素贝叶斯模型、高斯混合模型、LDA、RestrictedBoltzmann Machine等。
所以这里说的高斯混合模型,朴素贝叶斯模型都是求p(x,y)联合概率的。
(下面推导会见原因)套路小结:凡是生产模型,目的都是求出联合概率表达式,然后对联合概率表达式里的各个参数再进行估计,求出其表达式。
下面的EM算法,GMM 等三个模型都是做这同一件事:设法求出联合概率,然后对出现的参数进行估计。
一、EM算法:作用是进行参数估计。
应用:(因为是无监督,所以一般应用在聚类上,也用在HMM 参数估计上)所以凡是有EM算法的,一定是无监督学习.因为EM是对参数聚集给定训练样本是高斯混合模型,混合朴素贝叶斯模型,因子分析模型"> 样例独立,我们想要知道每个样例隐含的类别z,使是p(x,z)最大,(即如果将样本x(i)看作观察值,潜在类别z看作是隐藏变量,则x可能是类别z,那么聚类问题也就是参数估计问题,)故p(x,z)最大似然估计是:高斯混合模型,混合朴素贝叶斯模型,因子分析模型">所以可见用到EM算法的模型(高斯混合模型,朴素贝叶斯模型)都是求p(x,y)联合概率,为生成模型。
对上面公式,直接求θ一般比较困难,因为有隐藏变量z存在,但是一般确定了z后,求解就容易了。
EM是一种解决存在隐含变量优化问题的有效方法。
竟然不能直接最大化?(θ),我们可建立?的下界(E步),再优化下界(M步),见下图第三步,取的就是下界高斯混合模型,混合朴素贝叶斯模型,因子分析模型" action-data="http%3A%2F%%2Fbl og%2F515474%2F201305%2F19180744-0ed136937810 4b548dbee01337f6ba69.jpg" action-type="show-slide"> (总式)解释上式:对于每一个样例i,让Qi表示该样例隐含变量z的某种分布,Qi满足的条件是(如果z 是连续性的,那么Qi是概率密度函数(因子分析模型就是如此),需要将求和符号换成积分符号即:高斯混合模型,混合朴素贝叶斯模型,因子分析模型">因子分析模型是如此,这个会用在EM算法的M步求。
EM算法详细例子及推导
EM算法详细例子及推导EM算法(Expectation-Maximization Algorithm)是一种用于求解含有隐变量(latent variable)的概率模型的参数估计方法。
其基本思想是通过迭代的方式,通过观测数据得到对隐变量的估计,然后再基于该估计对模型参数进行优化。
下面我们以一个简单的高斯混合模型为例,详细介绍EM算法的推导和实例。
1. 高斯混合模型(Gaussian Mixture Model, GMM)高斯混合模型是一种概率模型,由多个高斯分布组合而成。
假设我们观测到的数据由K个高斯分布组成,每个高斯分布对应一个参数向量:均值miu和方差sigma^2、同时,我们还有一个隐变量Z,表示观测数据属于哪个高斯分布,取值范围为{1,2,...,K}。
2.EM算法EM算法的核心思想是通过交替进行两个步骤:E步(Expectation)和M步(Maximization)。
在E步中,我们对当前模型参数下的隐变量进行估计,得到对隐变量的最大似然估计。
在M步中,我们利用得到的隐变量估计更新模型参数,使模型对观测数据的似然函数最大化。
不断重复这两步直至模型收敛。
下面我们通过具体的例子来推导EM算法。
假设我们观测到了一个数据集X = {x1, x2, ..., xn},我们希望通过EM算法对其进行建模。
Step1: 初始化模型参数首先,我们需要初始化模型参数。
选择K个高斯分布的参数miu和sigma^2,并假设所有的高斯分布对应的隐变量Z服从均匀分布。
这时,我们得到了初始模型参数Theta = {miu1, sigma^21, ..., miuK,sigma^K, pi1, pi2, ..., piK}。
Step2: E步,计算隐变量的后验分布在E步中,我们计算隐变量的后验分布。
对于每个观测样本xi,我们计算其属于每个高斯分布的概率,即:gamma(k,i) = P(Zi=k,xi, Theta) = P(Zi=k,xi, miu_k,sigma_k^2) = pi_k * N(xi,miu_k, sigma_k^2) / sum(pi_j * N(xi,miu_j, sigma_j^2), j=1 to K其中N(xi,miu_k, sigma_k^2)表示xi在第k个高斯分布下服从的概率密度函数。
EM算法及应用实例
EM算法及应用实例EM算法,全称为Expectation-Maximization算法,是一种常用的统计推断算法,用于在包含隐变量的概率模型中进行参数估计。
EM算法的基本思想是通过交替进行两步操作,一步是求期望(E步),另一步是求极大化解(M步)。
通过交替进行这两步操作,EM算法可以逐步提高模型对参数的估计,并逼近参数的最优解。
EM算法在统计学、机器学习和数据处理等领域有广泛的应用。
下面将对EM算法的两个步骤进行详细介绍,并给出一个应用实例加以说明。
1. E步(Expectation Step)在E步中,给定当前模型参数的估计,计算隐变量的条件概率分布期望(即给定观测数据下的隐变量的期望)。
这一步的目的是根据当前参数估计的情况,计算隐变量的期望,用于下一步的参数估计。
2. M步(Maximization Step)在M步中,给定E步计算得到的隐变量的期望,计算模型参数的估计值,使得参数估计值使得隐变量的期望最大化。
这一步的目的是用E步计算得到的隐变量的期望来修正参数估计。
下面给出一个EM算法的应用实例:高斯混合模型的参数估计。
高斯混合模型是一种常用的概率分布模型,它是由多个高斯分布按一定比例叠加而成。
每个高斯分布被称为一个混合成分,每个混合成分有自己的均值和方差。
给定一个观测数据集,我们希望用高斯混合模型来对这个数据集进行建模,从而估计出每个混合成分的均值和方差。
假设数据集包含N个样本,每个样本是一个d维的向量。
高斯混合模型的参数可以分为两类:混合比例和混合成分参数。
混合比例表示每个混合成分在总体中所占的比例,混合成分参数表示每个混合成分的均值和方差。
假设总共有K个混合成分,则混合比例可以用一个K维向量表示,并满足各个元素之和为1、混合成分的均值和方差可以分别用K个d维向量和K个d×d维矩阵表示。
首先,我们需要初始化混合比例和混合成分参数的估计值。
这些估计值可以随机初始化或者通过其他方式得到。
EM算法及其应用
EM算法及其应用EM算法作为一种常用的统计方法,被广泛应用于各种领域,如计算机视觉、自然语言处理、生物信息学等。
在本文中,我们将详细探讨EM算法及其应用。
一、EM算法概述EM算法(Expectation-Maximization Algorithm)是一种用于概率模型参数估计的迭代算法,由Arthur Dempster等人于1977年提出。
它可以用于处理带有隐变量的模型参数估计,也可以被看做一种极大化带有隐变量的数据似然函数的方法。
EM算法的核心思想是将似然函数分解为两部分,一部分是观测数据,另一部分是隐变量。
在每次迭代中,EM算法首先根据当前参数的值计算出对隐变量的期望,即E步。
然后,它通过极大化在E步中计算出的隐变量的期望下的似然函数来更新参数,即M步。
这个过程不断迭代,直到收敛为止。
二、EM算法应用案例1. 高斯混合模型高斯混合模型(Gaussian Mixture Model,GMM)是一种用来描述多个高斯分布的模型。
在计算机视觉中,GMM被广泛应用于图像分割和姿态估计等领域。
由于图像中的像素值往往服从高斯分布,因此使用GMM进行图像分割时,可以将像素分为多个高斯分布。
使用EM算法进行GMM参数估计的步骤如下:1) 初始化高斯分布的个数和参数;2) E步:计算每个样本属于每个高斯分布的概率,即计算隐变量的期望;3) M步:根据在E步中计算出的隐变量的期望,更新高斯分布的均值和方差。
4) 不断迭代E步和M步,直到收敛。
2. K均值聚类K均值聚类是一种无监督学习的算法,它将n个样本划分为k 个簇,使得每个样本都属于距离它最近的簇。
这种算法被广泛应用于图像分割和文本聚类等领域。
使用EM算法进行K均值聚类的步骤如下:1) 随机初始化k个簇的中心点;2) E步:将每个样本分配到距离它最近的簇中,即计算隐变量的期望;3) M步:根据在E步中计算出的隐变量的期望,更新每个簇的中心点;4) 不断迭代E步和M步,直到收敛。
em算法
em算法EM 算法是Dempster,Laind,Rubin 于1977 年提出的求参数极大似然估计的一种方法,它可以从非完整数据集中对参数进行MLE 估计,是一种非常简单实用的学习算法。
这种方法可以广泛地应用于处理缺损数据,截尾数据,带有噪声等所谓的不完全数据。
最大期望算法经过两个步骤交替进行计算:1)计算期望(E),利用概率模型参数的现有估计值,计算隐藏变量的期望;2)最大化(M),利用E 步上求得的隐藏变量的期望,对参数模型进行最大似然估计。
3)M 步上找到的参数估计值被用于下一个E 步计算中,这个过程不断交替进行。
总体来说,EM的算法流程如下:1.初始化分布参数2.重复直到收敛:E步骤:估计未知参数的期望值,给出当前的参数估计。
M步骤:重新估计分布参数,以使得数据的似然性最大,给出未知变量的期望估计。
EM算法流程假定集合由观测数据和未观测数据组成,和分别称为不完整数据和完整数据。
假设Z的联合概率密度被参数化地定义为,其中表示要被估计的参数。
的最大似然估计是求不完整数据的对数似然函数的最大值而得到的:EM算法包括两个步骤:由E步和M步组成,它是通过迭代地最大化完整数据的对数似然函数的期望来最大化不完整数据的对数似然函数,其中:假设在算法第t次迭代后获得的估计记为,则在(t+1)次迭代时,E-步:计算完整数据的对数似然函数的期望,记为:M-步:通过最大化来获得新的。
通过交替使用这两个步骤,EM算法逐步改进模型的参数,使参数和训练样本的似然概率逐渐增大,最后终止于一个极大点。
直观地理解EM算法,它也可被看作为一个逐次逼近算法:事先并不知道模型的参数,可以随机的选择一套参数或者事先粗略地给定某个初始参数,确定出对应于这组参数的最可能的状态,计算每个训练样本的可能结果的概率,在当前的状态下再由样本对参数修正,重新估计参数λ,并在新的参数下重新确定模型的状态,这样,通过多次的迭代,循环直至某个收敛条件满足为止,就可以使得模型的参数逐渐逼近真实参数。
机器学习中的EM算法详解及R语言实例
机器学习中的EM算法详解及R语言实例最大期望算法(EM)来自WXin gong zhong 号datadwK均值算法非常简单(可参见之前发布的博文),详细读者都可以轻松地理解它。
但下面将要介绍的EM算法就要困难许多了,它与极大似然估计密切相关。
1 算法原理不妨从一个例子开始我们的讨论,假设现在有100个人的身高数据,而且这100条数据是随机抽取的。
一个常识性的看法是,男性身高满足一定的分布(例如正态分布),女性身高也满足一定的分布,但这两个分布的参数不同。
我们现在不仅不知道男女身高分布的参数,甚至不知道这100条数据哪些是来自男性,哪些是来自女性。
这正符合聚类问题的假设,除了数据本身以外,并不知道其他任何信息。
而我们的目的正是推断每个数据应该属于哪个分类。
所以对于每个样本,都有两个需要被估计的项,一个就是它到底是来自男性身高的分布,还是来自女性身高的分布。
另外一个就是,男女身高分布的参数各是多少。
既然我们要估计知道A和B两组参数,在开始状态下二者都是未知的,但如果知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。
所以可能想到的一种方法就是考虑首先赋予A某种初值,以此得到B的估计,然后从B的当前值出发,重新估计A的取值,这个过程一直持续到收敛为止。
你是否隐约想到了什么?是的,这恰恰是K均值算法的本质,所以说K均值算法中其实蕴含了EM算法的本质。
EM算法,又称期望最大化(Expectation Maximization)算法。
在男女身高的问题里面,可以先随便猜一下男生身高的正态分布参数:比如可以假设男生身高的均值是1.7米,方差是0.1米。
当然,这仅仅是我们的一个猜测,最开始肯定不会太准确。
但基于这个猜测,便可计算出每个人更可能属于男性分布还是属于女性分布。
例如有个人的身高是1.75米,显然它更可能属于男性身高这个分布。
据此,我们为每条数据都划定了一个归属。
接下来就可以根据最大似然法,通过这些被大概认为是男性的若干条数据来重新估计男性身高正态分布的参数,女性的那个分布同样方法重新估计。
em算法
Em算法,是指期望最大化算法,是一种迭代算法,用于统计中,以找到概率模型中参数的最大似然估计,该估计依赖于不可观察的隐藏变量。
EM算法由dempster,laind和Rubin于1977年提出,是一种非常简单实用的学习算法,可以通过MLE从不完整的数据集中估计参数。
此方法可广泛用于处理不完整的数据,例如缺陷数据,截断的数据和嘈杂的数据。
可能会有一些生动的隐喻可以清楚地解释该算法。
例如,食堂的厨师炒了一道菜,不得不将它分成两部分,以便两个人一起吃。
显然,没有必要以很小的平衡来精确称量它。
最简单的方法是将一个盘子随机分成两个碗,然后观察是否有很多盘子,然后再取其中的一些放到另一个碗中。
这个过程是反复进行的,直到每个人都看不到两个碗中所盛菜肴的重量差异。
EM算法就是这样。
假设我们知道两个参数a和b,它们在初始状态下是未知的。
如果我们知道a的信息,那么我们可以得到b的信息,如果我们知道b,那么我们可以得到a。
可以考虑给定某个初始值以获得b的估计值,然后从b的当前值重新估计a的值,直到当前值收敛为止。
在统计中,最大期望(EM)算法是一种算法,用于根据概率模型中的参数来找到参数的最大似然估计或最大后验估计。
在机器学习和计算机视觉的数据集群领域中经常使用最大期望值。
EM算法及其应用实例
Gaussian Mixture Model -Generative Model
Gaussian Mixture Model-Generative Model
Gaussian Mixture Model-Generative Model
Gaussian Mixture Model-Generative Model
Probabilistic Latent Semantic Analysis Model -Generative Model • 问题提出 • 如果时间回到2006年,马云和杨致远的手还会握在一起吗/阿里巴巴集团和 雅虎就股权回购一事签署了最终协议
• 讲解:两个文本的完全不相关,但是事实上,马云和阿里巴巴集团,杨致远和雅虎有着密 切的联系,从语义上看,两者都和“阿里巴巴"有关系。
几个EM应用实例
• Gaussian Mixture Model • Probabilistic Latent Semantic Analysis Model • Latent Dirichlet Allocation Model
Gaussian Mixture Model-Generative Model
The LC Cluster Models
• Includes a K-category latent variable, each category representing a cluster. • Each cluster contains a homogeneous group of persons(cases) who share common interests, values, characteristics, and/or behavior(i.e. share common model parameters). • Note: Advantages over more traditional ad-hoc types of cluster analysis methods include selection criteria and probability-based classification. Posterior membership probabilities are estimated directly from the model parameters and used to assign cases to the modal class – the class for which the posterior probability is highest.
机器学习中的EM算法详解及R语言实例
机器学习中的EM算法详解及R语言实例EM算法(Expectation-Maximization Algorithm)是一种迭代优化算法,常用于机器学习中的聚类、分类和概率估计等问题。
它的主要思想是通过迭代的方式,同时估计模型参数和隐变量,以求得最优的模型拟合。
EM算法的基本流程如下:1.初始化模型参数。
通常可以通过启发式方法或者随机初始化来确定初始参数。
2. E步:根据当前参数和样本,计算每个样本属于每个类别的概率,或者计算隐变量的后验概率。
这一步被称为"Expectation"(期望)步骤。
3. M步:根据上一步得到的概率估计,更新模型参数。
这一步被称为"Maximization"(最大化)步骤。
4.重复第2步和第3步,直至收敛或达到预定的停止条件。
5.输出最优的模型参数或者隐变量的估计结果。
接下来以一个简单的高斯混合模型为例,使用R语言实现EM算法。
首先,我们需要导入必要的包,并生成一个高斯混合模型的样本数据。
```Rinstall.packages("mixtools")library(mixtools)#生成一个高斯混合模型的样本数据set.seed(123)n<-500#样本数量mu_true <- c(2, 5) # 真实的均值参数sigma_true <- c(1, 1) # 真实的标准差参数weight_true <- c(0.4, 0.6) # 真实的混合权重参数```接下来,我们可以使用EM算法来估计高斯混合模型的参数。
```R#初始化参数mu <- c(0, 0) # 均值参数的初始化sigma <- c(1, 1) # 标准差参数的初始化weight <- c(0.5, 0.5) # 混合权重参数的初始化#EM算法的迭代过程tolerance <- 1e-6 # 定义停止条件,当参数变化小于该值时停止迭代log_likelihood <- -Inf # 定义对数似然函数的初始值,用于判断是否收敛while (TRUE)#E步:计算每个样本属于每个类别的概率posterior <- dnorm(data, mean = mu[1], sd = sigma[1]) * weight[1] # 第一个组件posterior <- cbind(posterior, dnorm(data, mean = mu[2], sd = sigma[2]) * weight[2]) # 第二个组件posterior <- posterior / rowSums(posterior) # 归一化#M步:更新参数mu <- colSums(posterior * data) / colSums(posterior) # 更新均值参数sigma <- sqrt(colSums(posterior * (data - mu)^2) /colSums(posterior)) # 更新标准差参数weight <- colSums(posterior) / n # 更新混合权重参数#计算对数似然函数current_log_likelihood <- sum(log(apply(posterior, 1, sum))) #判断是否收敛if (current_log_likelihood - log_likelihood < tolerance)break # 达到停止条件,停止迭代}log_likelihood <- current_log_likelihood#输出结果cat("估计的均值参数:", mu, "\n")cat("估计的标准差参数:", sigma, "\n")cat("估计的混合权重参数:", weight, "\n")```通过运行上述代码,我们可以得到高斯混合模型的参数估计结果。
EM算法(讲解+程序)
EM算法实验报告一、算法简单介绍EM 算法是Dempster,Laind,Rubin于1977年提出的求参数极大似然估计的一种方法,它可以从非完整数据集中对参数进行MLE估计,是一种非常简单实用的学习算法。
这种方法可以广泛地应用于处理缺损数据、截尾数据以及带有噪声等所谓的不完全数据,可以具体来说,我们可以利用EM算法来填充样本中的缺失数据、发现隐藏变量的值、估计HMM中的参数、估计有限混合分布中的参数以及可以进行无监督聚类等等。
本文主要是着重介绍EM算法在混合密度分布中的应用,如何利用EM算法解决混合密度中参数的估计。
二、算法涉及的理论我们假设X是观测的数据,并且是由某些高斯分布所生成的,X是包含的信息不完整(不清楚每个数据属于哪个高斯分布)。
,此时,我们用k维二元随机变量Z(隐藏变量)来表示每一个高斯分布,将Z引入后,最终得到:,,然而Z的后验概率满足(利用条件概率计算):但是,Z nk为隐藏变量,实际问题中我们是不知道的,所以就用Z nk的期望值去估计它(利用全概率计算)。
然而我们最终是计算max:最后,我们可以得到(利用最大似然估计可以计算):三、算法的具体描述3.1 参数初始化对需要估计的参数进行初始赋值,包括均值、方差、混合系数以及。
3.2 E-Step计算利用上面公式计算后验概率,即期望。
3.3 M-step计算重新估计参数,包括均值、方差、混合系数并且估计此参数下的期望值。
3.4 收敛性判断将新的与旧的值进行比较,并与设置的阈值进行对比,判断迭代是否结束,若不符合条件,则返回到3.2,重新进行下面步骤,直到最后收敛才结束。
四、算法的流程图五、实验结果a_best=0.8022 0.1978mu_best=2.71483.93074.9882 3.0102cov_best=(:,:,1) =5.4082 -0.0693-0.0693 0.2184(:,:,2) =0.0858 -0.0177-0.0177 0.0769f=-1.6323数据X的分布每次迭代期望值利用EM估计的参量值与真实值比较(红色:真实值青绿色:估计值)六、参考文献1.M. Jordan. Pattern Recognition And Machine Learning2.Xiao Han. EM Algorithm七、附录close all;clear;clc;% 参考书籍Pattern.Recognition.and.Machine.Learning.pdf% % lwm@% 2009/10/15%%M=2; % number of GaussianN=200; % total number of data samplesth=0.000001; % convergent thresholdK=2; % demention of output signal% 待生成数据的参数a_real =[4/5;1/5];mu_real=[3 4;5 3];cov_real(:,:,1)=[5 0;0 0.2];cov_real(:,:,2)=[0.1 0;0 0.1];% generate the datax=[ mvnrnd( mu_real(:,1) , cov_real(:,:,1) , round(N*a_real(1)) )' , mvnrnd(mu_real(:,2),cov_real(:,:,2),N-round(N*a_real(1)))'];% for i=1:round(N*a_real(1))% while (~((x(1,i)>0)&&(x(2,i)>0)&&(x(1,i)<10)&&(x(2,i)<10)))% x(:,i)=mvnrnd(mu_real(:,1),cov_real(:,:,1),1)';% end% end%% for i=round(N*a_real(1))+1:N% while (~((x(1,i)>0)&&(x(2,i)>0)&&(x(1,i)<10)&&(x(2,i)<10)))% x(:,i)=mvnrnd(mu_real(:,1),cov_real(:,:,1),1)';% end% endfigure(1),plot(x(1,:),x(2,:),'.')%这里生成的数据全部符合标准%% %%%%%%%%%%%%%%%% 参数初始化a=[1/3,2/3];mu=[1 2;2 1];%均值初始化完毕cov(:,:,1)=[1 0;0 1];cov(:,:,2)=[1 0;0 1];%协方差初始化%% EM Algorothm% loopcount=0;figure(2),hold onwhile 1a_old = a;mu_old = mu;cov_old= cov;rznk_p=zeros(M,N);for cm=1:Mmu_cm=mu(:,cm);cov_cm=cov(:,:,cm);for cn=1:Np_cm=exp(-0.5*(x(:,cn)-mu_cm)'/cov_cm*(x(:,cn)-mu_cm));rznk_p(cm,cn)=p_cm;endrznk_p(cm,:)=rznk_p(cm,:)/sqrt(det(cov_cm));endrznk_p=rznk_p*(2*pi)^(-K/2);%E step%开始求rznkrznk=zeros(M,N);%r(Zpikn=zeros(1,M);%r(Zpikn_sum=0;for cn=1:Nfor cm=1:Mpikn(1,cm)=a(cm)*rznk_p(cm,cn);% pikn_sum=pikn_sum+pikn(1,cm);endfor cm=1:Mrznk(cm,cn)=pikn(1,cm)/sum(pikn);endend%求rank结束% M stepnk=zeros(1,M);for cm=1:Mfor cn=1:Nnk(1,cm)=nk(1,cm)+rznk(cm,cn);endenda=nk/N;rznk_sum_mu=zeros(M,1);% 求均值MUfor cm=1:Mrznk_sum_mu=0;%开始的时候就是错在这里,这里要置零。
EM算法原理简析——图解
EM算法原理简析——图解⼀、扯淡转眼间毕业快⼀年了,这期间混了两份⼯作,从游戏开发到算法。
感觉⾃⼰还是喜欢算法,可能是⼤学混了⼏年算法吧!所以不想浪费基础。
我是个懒得写博客的⼈,混了⼏年coding,写的博客不超过10篇。
现在参加⼯作,必须得改掉懒的坏习惯,以后多尝试写写,好总结总结,也⽅便以后复习⽤。
⼆、算法1. 前⾔1.1 EM会涉及⼀些数学知识,⽐如最⼤似然估计和Jensen不等式等知识,这些知识最烦了,动不动就⼀堆推导公式,看着就觉得蛋疼,经过它讲的原理⽐较简单,多以在此略过。
1.2 本⽂的侧重点是理解EM,试图以“数形结合”的⽅式来帮助⼤家理解其原理。
(因为博主看了很多相关的⽂章,⼤多是⼀堆数学公式,看了半天也不好理解,虽然感觉是这个样⼦)。
2. 算法描述给定样本T = {X1, X2, …, Xm},现在想给每个Xi⼀个Zi,即标出: {(X1,Z1), (X2,Z2),…,(Xm,Zm)}(z是隐形变量,zi=j可以看成是Xi被划分为j类),求对T的最⼤似然估计:其实Zi也是个向量,因为对于每⼀个Xi,都有多种分类的情况。
设第i个样本Xi在Z上的概率分布为Qi(Zi),即Qi(Zi=j)表⽰Xi被划分到类j的概率,因此有ΣQi(Zi) = 1。
(2)到(3)是利⽤Jensen不等式,因为log(x)为凹函数,且这个就是p(xi, zi; θ)/Qi(zi)的期望。
现在,根据Jensen不等式取等号的条件:因为这个式⼦对于Zi等于任何值时都成⽴,且有ΣQi(Zi) = 1,所以可以认为:Σp(xi, zi;θ) = c。
此时可以推出:式⼦中,Zi是⾃变量,若θ已知,则可计算出Qi(zi)。
⾄此,终于可以描述算法过程了:1)给θ⼀个初始值;2)固定当前的θ,让不等式(3)取等号,算出Qi(zi);-------> E 步3)将2)算出的Qi(zi)代⼊g(Q, θ) = ,并极⼤化g(Q,θ),得到新的θ。
r语言中混合高斯分布,em算法
R语言中混合高斯分布是一种常用的概率分布模型,它可以描述数据中存在的不同的分组或裙体,每个裙体都符合高斯分布。
而在对这种混合高斯分布进行参数估计时,EM算法则是一种非常有效的方法。
在本文中,将会详细介绍R语言中混合高斯分布和EM算法的相关概念、原理以及实际应用。
一、混合高斯分布的概念和原理混合高斯分布是指由多个高斯分布组成的一个更复杂的概率分布模型。
每个高斯分布被称为一个“组件”,而混合高斯分布则由这些不同组件的线性组合构成。
在实际数据中,往往存在着不同的裙体或分组,而这些裙体的数据往往都符合高斯分布,因此使用混合高斯分布模型可以更好地描述复杂的数据结构。
混合高斯分布的概率密度函数可以表示为:其中,k表示组件的数量,μi和σi表示第i个组件的均值和标准差,πi表示第i个组件出现的概率,并且满足∑πi=1。
二、EM算法的概念和原理EM算法是一种用于对存在隐变量的概率模型进行参数估计的迭代算法,它通过交替进行E步和M步来最大化对数似然函数,从而得到模型参数的估计值。
在混合高斯分布中,EM算法可以被用来对混合高斯分布的均值、方差和混合系数进行参数估计。
具体来说,EM算法可以分为以下几个步骤:1. 初始化模型参数:包括组件的数量k,均值μi,方差σi和混合系数πi的初始值。
2. E步(期望步):根据当前模型参数,计算每个样本属于每个组件的概率,即计算后验概率。
3. M步(最大化步):根据E步的结果,更新模型参数,使得对数似然函数最大化。
4. 重复进行E步和M步,直到模型参数收敛。
EM算法的目标是最大化对数似然函数,但由于对数似然函数的最大化过程中存在隐变量,所以无法直接通过求导来得到模型参数的解析解,而是必须通过迭代的方式来逐步逼近最优解。
三、在R语言中的实际应用在R语言中,混合高斯分布和EM算法都有很好的支持和实现。
可以使用mclust包来对数据进行混合高斯建模,并使用Mclust函数来进行参数估计。
EM算法及其应用实例
EM算法及其应用实例EM算法(Expectation-Maximization algorithm)是一种迭代算法,用于解决含有隐变量的概率模型的参数估计问题。
EM算法被广泛应用于许多领域,如机器学习、数据挖掘、自然语言处理等。
EM算法的主要思想是通过迭代的方式,交替进行两个步骤:E步骤(expectation)和M步骤(maximization)。
在每一次迭代中,E步骤用于计算模型在当前参数下对观测数据的期望,M步骤则用于更新模型参数,使得模型的对数似然函数得到最大化。
通过不断重复这两个步骤,最终获得模型的最优参数估计。
EM算法的应用实例有很多,下面以两个典型的应用实例进行说明。
1.高斯混合模型(GMM):高斯混合模型是一种概率密度模型,由多个高斯分布组成。
每个高斯分布对应一个隐藏变量,表示观测数据来自于哪个分布。
因此,高斯混合模型包含两部分参数:高斯分布的参数和隐藏变量的分布。
EM算法可以用于估计高斯混合模型的参数。
在E步骤中,根据当前参数,计算每个观测数据来自于每个高斯分布的概率。
在M步骤中,根据E步骤得到的概率,更新高斯混合模型的参数。
通过不断迭代E步骤和M步骤,最终可以得到高斯混合模型的最优参数估计。
2.隐马尔可夫模型(HMM):隐马尔可夫模型是一种概率图模型,用于描述时间序列数据的生成过程。
隐马尔可夫模型由两部分参数组成:状态转移概率和观测概率。
EM算法可以用于估计隐马尔可夫模型的参数。
在E步骤中,根据当前参数,计算观测数据在每个时间步上处于每个隐藏状态的概率。
在M步骤中,根据E步骤得到的概率,更新隐马尔可夫模型的参数。
通过不断迭代E步骤和M步骤,最终可以得到隐马尔可夫模型的最优参数估计。
除了高斯混合模型和隐马尔可夫模型,EM算法还可以应用于其他概率模型的参数估计问题,如朴素贝叶斯分类器、混合朴素贝叶斯分类器等。
总之,EM算法是一种有效的参数估计算法,广泛应用于各个领域。
它通过迭代的方式,交替进行E步骤和M步骤,不断更新模型参数,最终得到模型的最优参数估计。
EM算法(期望最大化算法)理论概述
EM算法(期望最大化算法)理论概述EM算法(Expectation-Maximization Algorithm)是一种用于参数估计的迭代算法,经常在概率统计和机器学习领域中被使用。
EM算法的基本思想是通过迭代地执行两个步骤:E步骤(Expectation Step)和M步骤(Maximization Step),以达到最大似然估计或最大后验概率估计。
EM算法的核心思想是通过隐变量的引入,将含有隐变量的模型转化为一个不含隐变量的模型,并通过迭代的方法估计模型的参数。
在介绍EM算法之前,首先需要了解一些概念。
对于一个统计模型,通常会包含两种变量,观测变量(O)和隐变量(Z)。
观测变量是可见的,而隐变量是不可见的,它们的具体取值需要通过推断来确定。
假设我们有一组观测数据X={x1,x2,...,xn},以及对应的隐变量Z={z1,z2,...,zn}。
我们的目标是通过观测数据X的分布来估计模型的参数。
然而在实际的场景下,往往只能观测到观测变量X,隐变量Z是未知的。
此时,我们可以引入一个完全数据集Y={X,Z},其中Z为隐变量。
EM算法就是通过观测数据和完全数据的两个步骤迭代地估计模型参数。
EM算法的E步骤即Expectation步骤,用于计算在给定当前模型参数下,隐变量的后验概率分布。
在E步骤中,我们需要计算完全数据集的似然函数,即p(Y,θ),其中θ表示模型的参数。
由于我们无法直接计算p(Z,X,θ),因此通过贝叶斯公式可以得到p(Z,X,θ) = p(Z,X,θ) / p(X,θ) = p(Z,X,θ) / Σp(Z,X,θ)。
在实际操作中,我们可以先猜测模型的参数值,然后根据猜测的参数值计算p(Z,X,θ),再根据这个后验概率分布,对完全数据集进行加权统计,得到完全数据集的似然函数。
EM算法的M步骤即Maximization步骤,用于最大化完全数据集的似然函数,即在给定隐变量的后验概率分布的情况下,找到最大化完全数据集似然函数的参数值。
使用EM算法进行参数估计方法介绍
使用EM算法进行参数估计方法介绍EM算法是一种常用的参数估计方法,它在统计学和机器学习领域中被广泛应用。
本文将介绍EM算法的基本原理、应用场景以及算法步骤。
一、EM算法的基本原理EM算法是一种迭代的最大似然估计方法,用于在观测数据不完全或存在隐变量的情况下,估计模型的参数。
它的基本思想是通过迭代的方式,通过两个步骤不断优化参数的估计值,直至收敛。
EM算法的全称是Expectation-Maximization,其中Expectation(E)步骤是根据当前的参数估计值,计算隐变量的期望值;Maximization(M)步骤是根据隐变量的期望值,重新估计参数。
通过交替进行E步骤和M步骤,可以逐步提高参数的估计精度。
二、EM算法的应用场景EM算法在许多领域中都有广泛的应用,特别是在混合模型、聚类分析和隐马尔可夫模型等领域。
在混合模型中,EM算法可以用于估计每个分量的权重、均值和协方差矩阵。
通过迭代优化这些参数,可以得到对数据分布的更准确的估计。
在聚类分析中,EM算法可以用于估计高斯混合模型,从而实现对数据的聚类。
通过迭代计算每个样本属于每个聚类的概率,可以得到对数据的更准确的聚类结果。
在隐马尔可夫模型中,EM算法可以用于估计模型的初始状态概率、转移概率和观测概率。
通过迭代计算隐变量的期望值和重新估计参数,可以得到对隐马尔可夫模型的更准确的估计。
三、EM算法的步骤EM算法的步骤可以总结为以下几个关键步骤:1. 初始化参数:根据实际情况,初始化模型的参数估计值。
2. E步骤:根据当前的参数估计值,计算隐变量的期望值。
这个步骤通常使用期望值来代替隐变量的实际观测值。
3. M步骤:根据隐变量的期望值,重新估计参数。
这个步骤通常是通过最大化似然函数来得到参数的最优估计。
4. 判断收敛:判断参数的估计值是否收敛,如果没有达到预设的收敛条件,则返回第2步继续迭代。
5. 输出结果:当参数的估计值收敛后,输出最终的参数估计结果。
聚类-EM算法解析
2023
聚类-em算法解析
聚类算法概述EM算法的基本原理聚类-EM算法的实现过程聚类-EM算法的性能分析聚类-EM算法的应用实例总结与展望
contents
目录
01
聚类算法概述
聚类算法是一种无监督学习方法,通过将数据集划分为若干个相似的子集(即聚类),从而发现数据集中的内在结构和类别。
聚类算法定义
聚类-em算法在处理复杂和大规模数据集时,具有良好的扩展性和高效性能。
下一步研究方向
针对不同类型的数据和问题,研究更加有效的聚类-em算法,提高聚类性能和准确率。
研究聚类-em算法的并行和分布式实现,提高算法在处理大规模数据集时的效率。
结合深度学习、强化学习等先进技术,探索更加智能和自适应的聚类方法。
蛋白质分类
利用聚类-EM算法对蛋白质进行聚类,可以发现蛋白质之间的相似性和关系,从而帮助生物学家更好地理解蛋白质的功能和作用机制。
在生物信息学领域的应用
06
总结与展望
总结
聚类-em算法是一种有效的聚类方法,通过迭代优化方式,不断改进聚类结果,提高聚类质量和准确率。
聚类-em算法具有广泛的适用性,可以应用于多种数据类型和领域,如文本、图像、音频等。
利用聚类-EM算法对图像进行聚类后,可以根据每个类别的特性来增强每个区域的视觉效果,从而改善图像的视觉效果和识别性能。
图像增强
在图像处理领域的应用
基因表达数据分析
通过聚类-EM算法,可以将基因表达数据集划分为多个类别,每个类别代表一种特定的细胞或组织状态。这种方法可以帮助生物学家了解基因表达模式与细胞或组织状态的关系。
聚类的目的通常包括数据压缩、分类、异常检测、特征提取等。
聚类目的
EM算法简介
(4) (5) (6) (7)
EM算法
定义函数 H (φ ' | φ ) = E (log(k ( x | y, φ ' )) | y, φ ) 则有(4),(5),(7)式可得 Q(φ ' | φ ) = L(φ ' ) + H (φ ' | φ )
(8) (9)
10
EM算法
目的: 计算后验分布 g ( y | φ ) 的众数.
17
GEM算法性质
推论2.对于一些 ∈ , 那么对于GEM算法有
φ
φ ∈ , L(φ ) ≥ L(φ ) ,其中 φ ≠ φ ,
M (φ ) = φ .
定理2.假设 φ , p = 0,1,2,... 是GEM算法的一个迭代序列,并且满足 ( p) a) 在 闭包中φ 收敛到 φ , b) D10Q (φ ( p +1) | φ ( p ) ) = 0 , c) D 20Q (φ ( p +1) | φ ( p ) ) 负定的,并且特征值都远离0. 那么
11
EM例子
有公式(1)(3)以及贝叶斯公式可得 p ( Z | Y , , Σ, π ) ∝
[π k N ( yn | k , Σ k )]znk ∏∏
n =1 k =1 N K
其中N表示观察样本数. 公式中 z nk 是未知的,需要求出它的期望
12
Z nk 的期望估计
E ( z nk | yn ) = ∑ z nk p( z nk | yn )
根据(12)式 (13) Jamshidian和Jenrish(1993)指出Aitken方法等价于运用Newton-Raph son方法来找 δ (θ ) = M (θ ) θ 的根.
em算法参数估计
em算法参数估计EM算法参数估计EM算法,全称Expectation-Maximization算法,是一种常用的参数估计方法,广泛应用于数据分析和机器学习领域。
它适用于存在隐变量和缺失数据的统计模型,通过迭代的方式逐步优化参数的估计结果。
本文将介绍EM算法的基本原理、步骤和应用,并分析其优缺点。
一、EM算法原理EM算法是一种迭代优化算法,通过交替进行E步(Expectation)和M步(Maximization)来估计参数。
其核心思想是,在每次迭代中,通过已知的观测数据和当前参数估计,计算隐变量的期望(E 步),然后利用这个期望更新参数估计(M步)。
这样不断迭代,直到参数估计收敛为止。
二、EM算法步骤1. 初始化参数:首先,需要对模型的参数进行初始化,可以使用随机值或根据经验设定初始值。
2. E步:在E步中,根据当前的参数估计,计算隐变量的期望。
这一步通常利用概率论中的条件概率公式进行计算。
3. M步:在M步中,利用E步计算得到的隐变量的期望,更新参数的估计值。
这一步通常使用最大似然估计法或梯度下降法来进行参数的优化。
4. 迭代更新:重复进行E步和M步,直到参数估计收敛或达到预定的迭代次数。
三、EM算法应用EM算法在实际应用中具有广泛的应用价值,以下列举几个常见的应用场景:1. 高斯混合模型:EM算法可以用于对高斯混合模型中的参数进行估计,从而实现对数据的聚类分析。
2. 隐马尔可夫模型:EM算法可以用于对隐马尔可夫模型中的参数进行估计,从而实现对序列数据的建模和预测。
3. 缺失数据处理:当数据中存在缺失值时,EM算法可以通过对缺失数据的估计,来完成对完整数据的分析。
4. 图像处理:EM算法可以用于图像分割、图像去噪等任务,通过对图像的概率模型进行参数估计,从而实现对图像的处理和分析。
四、EM算法优缺点EM算法具有以下优点:1. 简单易用:EM算法的原理简单、易于理解和实现,适用于多种模型和数据类型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最大期望算法(EM)
来自 WXin gong zhong 号 datadw
K 均值算法非常简单(可参见之前发布的博文),详细读者都可以轻松 地理解它。但下面将要介绍的 EM 算法就要困难许多了,它与极大似然 估计密切相关。
1 算法原理
不妨从一个例子开始我们的讨论,假设现在有 100 个人的身高数据,而 且这 100 条数据是随机抽取的。一个常识性的看法是,男性身高满足一 定的分布(例如正态分布),女性身高也满足一定的分布,但这两个分 布的参数不同。我们现在不仅不知道男女身高分布的参数,甚至不知道 这 100 条数据哪些是来自男性,哪些是来自女性。这正符合聚类问题的 假设,除了数据本身以外,并不知道其他任何信息。而我们的目的正是 推断每个数据应该属于哪个分类。所以对于每个样本,都有两个需要被 估计的项,一个就是它到底是来自男性身高的分布,还是来自女性身高 的分布。另外一个就是,男女身高分布的参数各是多少。
4.2 应用实例 软件包 mclust 提供了利用高斯混合模型对数据进行聚类分析的方法。 其中函数 Mclust()是进行 EM 聚类的核心函数,它的基本调用格式为
在正式介绍 EM 算法的原理和执行过程之前,此处首先对边缘分布的概 念稍作补充。
2. 收敛探讨
下面我们将讨论高斯混合模型(GMM),相当于是 EM 的一种实现。 并给出在 R 中进行数据挖掘的实例。
4. 高斯混合模型
高斯混合模型(GMM,Gaussian Mixture Model)可以看成பைடு நூலகம் EM 算 法的一种现实应用。利用这个模型可以解决聚类分析、机器视觉等领域 中的许多实际问题。
既然我们要估计知道 A 和 B 两组参数,在开始状态下二者都是未知的, 但如果知道了 A 的信息就可以得到 B 的信息,反过来知道了 B 也就得 到了 A。所以可能想到的一种方法就是考虑首先赋予 A 某种初值,以此 得到 B 的估计,然后从 B 的当前值出发,重新估计 A 的取值,这个过 程一直持续到收敛为止。你是否隐约想到了什么?是的,这恰恰是 K 均 值算法的本质,所以说 K 均值算法中其实蕴含了 EM 算法的本质。
EM 算法,又称期望最大化(Expectation Maximization)算法。在男 女身高的问题里面,可以先随便猜一下男生身高的正态分布参数:比如 可以假设男生身高的均值是 1.7 米,方差是 0.1 米。当然,这仅仅是我 们的一个猜测,最开始肯定不会太准确。但基于这个猜测,便可计算出 每个人更可能属于男性分布还是属于女性分布。例如有个人的身高是 1.75 米,显然它更可能属于男性身高这个分布。据此,我们为每条数据 都划定了一个归属。接下来就可以根据最大似然法,通过这些被大概认 为是男性的若干条数据来重新估计男性身高正态分布的参数,女性的那 个分布同样方法重新估计。然后,当更新了这两个分布的时候,每一个 属于这两个分布的概率又发生了改变,那么就再需要调整参数。如此迭 代,直到参数基本不再发生变化为止。
4.1 模型推导
在讨论 EM 算法时,我们并未指定样本来自于何种分布。实际应用中, 常常假定样本是来自正态分布之总体的。也就是说,在进行聚类分析时, 认为所有样本都来自具有不同参数控制的数个正态总体。例如前面讨论 的男性女性身高问题,我们就可以假定样本数据是来自如图 13-5 所示 的一个双正态分布混合模型。这便有了接下来要讨论的高斯混合模型。