51单片机定时器0中断服务
51单片机的内部资源

T1
RX TX
EX0 1 EA 1 IE0
ET0 1 TF0
EX1 1 IE1
ET1 1 TF1
RI TI ≥1
SCON
ES 1
IP
PX0 1 0
PT0 1 0
PX1 1 0
PT1 1 0
PS 1 0
硬件查询
自
高
然
级
1
优
先
级 中断入口
中断源
自
低
0
然
级
优
先
级 中断入口
中断源
三、中断请求源
51单片机的五个中断请求源 : (1)INT0—外部中断请求0,由引脚INT0 (P3.2)输入,中断
中断请求
执行主 程序
断点
继续执行 主程序
中断响应
执行 中断 处理 程序
中断返回
主程序:CPU正常情况下运行的程序称为主程序。
中断源:把向CPU提出中断申请的设备称为中断源。
中断请求:由中断源向CPU所发出的请求中断的信号称中断 请求。
中断响应:CPU在满足条件情况下接受中断申请,终止现行 程序执行转而为申请中断的对象服务称中断响应。
IE0=0,无中断请求。
IE0=1,外部中断0有中断请求。当CPU响应该中断,转向中 断服务程序时,由硬件清“0”IE0。
(3)IT1—外部中断请求1为跳沿触发方式还是电平触发方式, 意义与IT0类似。
(4)IE1—外部中断请求1的中断请求标志位,意义与IE0类似。
(5)TF0—T0溢出中断请求标志位。 T0计数后,溢出时,由硬件置“1”TF0,向CPU申请中断,
串行中断是为串行数据传送的需要而设置的。每当串行 口发送或接收一组串行数据时,就产生一个中断请求。
第05章 MCS-51单片机的中断与定时(1-4)

2
1
TH0
;P1.0输出“0” ;P1.0输出“1”
5.2 MCS-51单片机的中断系统
五、外中断应用举例
1. 中断初始化程序
设置外中断源的触发方式 设置中断允许寄存器IE 设置中断优先级寄存器IP
2. 中断服务程序
保护现场 中断处理 恢复现场
23/65
5.2 MCS-51单片机的中断系统
【例5-3】 设外部中断0为下降沿触发方 式,高优先级,试编写中断初始化程序
5.2 MCS-51单片机的中断系统
【例5-4】 将单脉冲接到外中断0(INT0)引脚,利 用P1.0作为输出,经反相器接发光二极管。编写程 序,每按动一次按钮,产生一个外中断信号,使发 光二极管的状态发生变化,由亮变暗,或反之
P1.0 单脉冲 发生器 INT0
1
+5V
8031
26/65
5.2 MCS-51单片机的中断系统
串口:0023H
20/65
5.2 MCS-51单片机的中断系统
四、中断请求的撤除
1.定时/计数器中断请求标志TF0/TF1会自动撤除 2.串行口中断请求标志TI/RI要用指令撤除
CLR TI ;清TI标志位 CLR RI ;清RI标志位
3.负脉冲触发的外中断请求标志IE0/IE1会自动撤除 4.低电平触发的外中断请求信号需要外加电路撤除
下次课前请预习5.3节
30/65
5.3 51单片机的定时器/计数器
MCS-51单片机内部有两个16位定时/计数器 T0和T1,简称定时器0和定时器1
在特殊功能寄存器TMOD和TCON的控制下, 它们既可以设定成定时器使用,也可以设定 成计数器使用
定时/计数器有4种工作方式,具有中断功能, 可以完成定时、计数、脉冲输出等任务
第3章MCS-51单片机的中断系统

3.3 MCS-51的中断系统 的中断系统
4、中断响应过程 、 关中断:屏蔽其它中断请求信号。 关中断:屏蔽其它中断请求信号。 保护断点:将断点地址压入堆栈保存,即当前 值入栈 值入栈。 保护断点:将断点地址压入堆栈保存,即当前PC值入栈。 寻找中断源:中断服务程序入口地址送 ,转入中断服务。 寻找中断源:中断服务程序入口地址送PC,转入中断服务。 保护现场:将中断服务程序使用的所有寄存器内容入栈。 保护现场:将中断服务程序使用的所有寄存器内容入栈。 中断处理:执行中断源所要求的程序段。 中断处理:执行中断源所要求的程序段。 恢复现场:恢复被使用寄存器的原有内容。 恢复现场:恢复被使用寄存器的原有内容。 开中断:允许接受其它中断请求信号。 开中断:允许接受其它中断请求信号。 中断返回:执行 指令, 中断返回:执行RETI指令,栈顶内容 指令 栈顶内容→PC,程序跳转回断点。 ,程序跳转回断点。
当前PC入栈 书中作记号 当前 入栈
主程序 执行主程序 中断请求 断点 继续执行主程序 中断返回 执行中断 处理程序 中断响应
中断与转子的区别 中断是随机的, 中断是随机的,转子事先编程决定
3.3.1 中断的定义 2、几个术语 、 主程序:原来正常运行的程序称为主程序。 主程序:原来正常运行的程序称为主程序。 断点: 主程序被断开的位置(或地址)称为“断点” 断点 主程序被断开的位置(或地址)称为“断点”。 中断源:引起中断的原因,或发出中断申请的来源。 中断源 引起中断的原因,或发出中断申请的来源。 引起中断的原因 中断请求:中断源要求服务的请求称为“中断请求” 中断请求 中断源要求服务的请求称为“中断请求” 。 中断源要求服务的请求称为 中断响应: 终止当前执行的程序, 中断响应:CPU终止当前执行的程序,去执行相应中断源 终止当前执行的程序 的中断请求。 的中断请求。 中断服务或中断处理程序: 中断服务或中断处理程序: “中断”之后所执行的相应的处理程序。 中断”之后所执行的相应的处理程序。 中断系统:能够实现中断处理功能的部件。 中断系统:能够实现中断处理功能的部件。
51单片机的定时器中断

51单⽚机的定时器中断⼀、中断的概念CPU在处理某⼀事件A时,发⽣了另⼀事件B请求CPU迅速去处理(中断产⽣);CPU暂时中断当前的⼯作,转去处理事件B(中断响应和中断服务);待CPU将事件B处理完毕后,再回到原来事件A中断的地⽅继续处理事件A(中断返回),这⼀过程称为中断。
⼆、中断的优先级51单⽚机⾥⼀共有5个中断源,分别是外部中断0,定时器0,外部中断1,定时器1,串⼝中断,中断优先级从⼤到⼩分别是0,1,2,3,4。
三、中断的优点1.分时操作。
CPU可以分时为多个I/O设备服务,提⾼了计算机的利⽤率;2.实时响应。
CPU能够及时处理应⽤系统的随机事件,系统的实时性⼤⼤增强;3.可靠性⾼。
CPU具有处理设备故障及掉电等突发性事件能⼒,从⽽使系统可靠性⾼。
四、定时器中断⼯作⽅式寄存器TMOD:GATE:门控位。
GATE=0时,只要⽤软件使TCON中的TR0或TR1为1,就可以启动定时/计数器⼯作;GATA=1时,要⽤软件使TR0或TR1为1,同时外部中断引脚或也为⾼电平时,才能启动定时/计数器⼯作。
即此时定时器的启动多了⼀个条件。
(默认情况下等于0不要设置)。
C/T:定时/计数模式选择位。
=0为定时模式;=1为计数模式。
M1M0:⼯作⽅式设置位。
定时/计数器有四种⼯作⽅式,由M1M0进⾏设置。
(正常情况旋⽅式1,即M1M0=01)。
中断寄存器:EA是总中断,ET0是定时器0中断,EX0是外部中断0,ET1是定时器1中断,EX1是外部中断1。
【参考资料】51单⽚机第⼆讲(定时器中断)。
51单片机中断程序大全

//实例42:用定时器T0查询方式P2口8位控制LED闪烁#include<> // 包含51单片机寄存器定义的头文件void main(void){// EA=1; //开总中断// ET0=1; //定时器T0中断允许TMOD=0x01; //使用定时器T0的模式1TH0=(65536-46083)/256; //定时器T0的高8位赋初值TL0=(65536-46083)%256; //定时器T0的高8位赋初值TR0=1; //启动定时器T0@TF0=0;P2=0xff;while(1)//无限循环等待查询{while(TF0==0);TF0=0;P2=~P2;TH0=(65536-46083)/256; //定时器T0的高8位赋初值TL0=(65536-46083)%256; //定时器T0的高8位赋初值|//实例43:用定时器T1查询方式控制单片机发出1KHz音频#include<> // 包含51单片机寄存器定义的头文件sbit sound=P3^7; //将sound位定义为引脚void main(void){// EA=1; //开总中断// ET0=1; //定时器T0中断允许TMOD=0x10; //使用定时器T1的模式1TH1=(65536-921)/256; //定时器T1的高8位赋初值TL1=(65536-921)%256; //定时器T1的高8位赋初值TR1=1; //启动定时器T1—TF1=0;while(1)//无限循环等待查询{while(TF1==0);TF1=0;sound=~sound; //将引脚输出电平取反TH1=(65536-921)/256; //定时器T0的高8位赋初值TL1=(65536-921)%256; //定时器T0的高8位赋初值}}://实例44:将计数器T0计数的结果送P1口8位LED显示#include<> // 包含51单片机寄存器定义的头文件sbit S=P3^4; //将S位定义为引脚void main(void){// EA=1; //开总中断// ET0=1; //定时器T0中断允许TMOD=0x02; //使用定时器T0的模式2TH0=256-156; //定时器T0的高8位赋初值TL0=256-156; //定时器T0的高8位赋初值#TR0=1; //启动定时器T0while(1)//无限循环等待查询{while(TF0==0) //如果未计满就等待{if(S==0) //按键S按下接地,电平为0P1=TL0; //计数器TL0加1后送P1口显示}TF0=0; //计数器溢出后,将TF0清0}}//实例45:用定时器T0的中断控制1位LED闪烁)#include<> // 包含51单片机寄存器定义的头文件sbit D1=P2^0; //将D1位定义为引脚void main(void){EA=1; //开总中断ET0=1; //定时器T0中断允许TMOD=0x01; //使用定时器T0的模式2TH0=(65536-46083)/256; //定时器T0的高8位赋初值TL0=(65536-46083)%256; //定时器T0的高8位赋初值TR0=1; //启动定时器T0^while(1);}函数功能:定时器T0的中断服务程序**************************************************************/void Time0(void) interrupt 1 using 0寄存器{D1=~D1; //按位取反操作,将引脚输出电平取反TH0=(65536-46083)/256; //定时器T0的高8位重新赋初值TL0=(65536-46083)%256; //定时器T0的高8位重新赋初值}|//实例46:用定时器T0的中断实现长时间定时#include<> // 包含51单片机寄存器定义的头文件sbit D1=P2^0; //将D1位定义为引脚unsigned char Countor; //设置全局变量,储存定时器T0中断次数void main(void){EA=1; //开总中断ET0=1; //定时器T0中断允许TMOD=0x01; //使用定时器T0的模式2;TH0=(65536-46083)/256; //定时器T0的高8位赋初值TL0=(65536-46083)%256; //定时器T0的高8位赋初值TR0=1; //启动定时器T0Countor=0; //从0开始累计中断次数while(1);}/**************************************************************函数功能:定时器T0的中断服务程序**************************************************************/ void Time0(void) interrupt 1 using 0{@Countor++; //中断次数自加1if(Countor==20) //若累计满20次,即计时满1s{D1=~D1; //按位取反操作,将引脚输出电平取反Countor=0; //将Countor清0,重新从0开始计数}TH0=(65536-46083)/256; //定时器T0的高8位重新赋初值TL0=(65536-46083)%256; //定时器T0的高8位重新赋初值}//实例47:用定时器T1中断控制两个LED以不同周期闪烁#include<> // 包含51单片机寄存器定义的头文件)sbit D1=P2^0; //将D1位定义为引脚sbit D2=P2^1; //将D2位定义为引脚unsigned char Countor1; //设置全局变量,储存定时器T1中断次数unsigned char Countor2; //设置全局变量,储存定时器T1中断次数void main(void){EA=1; //开总中断ET1=1; //定时器T1中断允许TMOD=0x10; //使用定时器T1的模式1TH1=(65536-46083)/256; //定时器T1的高8位赋初值—TL1=(65536-46083)%256; //定时器T1的高8位赋初值TR1=1; //启动定时器T1Countor1=0; //从0开始累计中断次数Countor2=0; //从0开始累计中断次数while(1);}void Time1(void) interrupt 3 using 0{Countor1++; //Countor1自加1Countor2++; //Countor2自加1。
51单片机定时器c语言程序实例与详解

4 串行中断
实际上编译的时候就是把你这个函数的入口地址方到这个对应中断的跳转地址
using y 这个y是说这个中断函数使用的那个寄存器组,51里面一般有4组 r0 -- r7寄存器,一共有32个,如果你的终端函数和别的程序用的不是同一个寄存器组则进入中断的时候就不会将寄存器组压入堆栈返回时也不会谈出来节省代码和时间
unsigned int SystemTime;
void timer0(void) interrupt 1 using 3 //中断部分代码,见下文的释疑
{
TH0 = 0xdb;
TL0 = 0xff;
// TF0 = 0;
SystemTime++;
}
void main()
{
TMOD &= 0xF0;
TMOD |= 0x01; //TMOD的值表示定时器工作方式选择
TH0 = 0xdb; //写入初始值,初始值可以决定定时多久
TL0 = 0xff;
//根据下文的木桶比喻的话,如果TH0 = 0x00;TL0 = 0x00;则表示从桶底开始装水。
在定时器服务函数里,需要重新置入定时器的值,这样才能保证每次溢出时,都是你指定的时间。这里置入的是0x0006,还需要走 0x10000-0x0006个机器周期才溢出。换成10进制也就是每65530个机器周期中断一次。我们仿真的晶振是22118400HZ,每12个时钟一个机器周期。65530×12/22118400=0.036秒。也就是差不多28HZ的闪烁频率。
单片机的主程序是从0x0000开始运行的,单片机服务程序从哪里开始运行呢?在51里,有多个中断服务程序入口,0号入口是外中断0,地址在0x0003;1号入口是定时器0,在 0x000B;2号入口是外中断1;地址在0x0013,3号入口是定时器2;地址在0x001B,等等。当中断发生时,程序就记下当前运行的位置,跳到对应的中断入口去运行中断服务程序,运行完之后,又跳回到原来的位置继续运行。
51单片机中断系统详解

51单片机中断系统详解51 单片机中断系统详解(定时器、计数器)51 单片机中断级别中断源INT0---外部中断0/P3.2 T0---定时器/计数器0 中断/P3.4 INT1---外部中断1/P3.3 T1----定时器/计数器1 中断/P3.5 TX/RX---串行口中断T2---定时器/计数器 2 中断第5 最低4 5 默认中断级别最高第2 第3 第4 序号(C 语言用) 0 1 2 3 intrrupt 0中断允许寄存器IE位序号符号位EA/0 ------ET2/1 ES ET1 EX1 ET0 EX0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 EA---全局中允许位。
EA=1,打开全局中断控制,在此条件下,由各个中断控制位确定相应中断的打开或关闭。
EA=0,关闭全部中断。
-------,无效位。
ET2---定时器/计数器2 中断允许位。
ET2=1, 打开T2 中断。
ET2=0,关闭T2 中断。
关,。
ES---串行口中断允许位。
关,。
ES=1,打开串行口中断。
关,。
ES=0,关闭串行口中断。
关,。
ET1---定时器/计数器1 中断允许位。
关,。
ET1=1,打开T1 中断。
ET1=0,关闭T1 中断。
EX1---外部中断1 中断允许位。
EX1=1,打开外部中断1 中断。
EX1=0,关闭外部中断1 中断。
ET0---定时器/计数器0 中断允许位。
ET0=1,打开T0 中断。
EA 总中断开关,置1 为开;EX0 为外部中断0 (INT0) 开关,。
ET0 为定时器/计数器0(T0)开EX1 为外部中断1(INT1)开ET1 为定时器/计数器1(T1)开ES 为串行口(TX/RX)中断开ET2 为定时器/计数器2(T2)开ET0=0,关闭T0 中断。
EX0---外部中断0 中断允许位。
EX0=1,打开外部中断0 中断。
EX0=0,关闭外部中断0 中断。
中断优先级寄存器IP位序号位地址------PS/0 PT1/0 PX1/0 PT0/0 PX0/0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 -------,无效位。
51单片机中的中断优先级总结

51单片机中的中断优先级总结这段时间编写51的控制板程序,两个大牛技术指导对51中断嵌套问题的看法不一样,后来亲自验证了一下,得到了一下的一些结论,发上来大家参考,表达不清的地方还望理解,呵呵。
51单片机的中断可嵌套,但至多支持二级嵌套。
51单片机的默认(此时的IP寄存器不做设置)中断优先级为:外部中断0 > 定时/计数器0 > 外部中断1 > 定时/计数器1 > 串行中断;但这种优先级只是逻辑上的优先级,当同时有几种中断到达时,高优先级中断会先得到服务。
这种优先级实际上是中断同时到达的情况下,谁先得到服务的优先级,而不是可提供中断嵌套能力的优先级。
这种优先级被称为逻辑优先级。
例如:当计数器0中断和外部中断1(优先级计数器0中断>外部中断1)同时到达时,会进入计时器0的中断服务函数;但是在外部中断1的中断服务函数正在服务的情况下,这时候任何中断都是打断不了它的,包括逻辑优先级比它高的外部中断0计数器0中断。
要实现真正的嵌套形式的优先级,也即高优先级中断服务可以打断低优先级中断服务的情况,必须通过设置中断优先级寄存器IP来实现;这种优先级被称为物理优先级。
例如:设置IP = 0x10,即设置串口中断为最高优先级,则串口中断可以打断任何其他的中断服务函数实现嵌套,且只有串口中断能打断其他中断的服务函数。
若串口中断没有触发,则其他几个中断之间还是保持逻辑优先级,相互之间无法嵌套。
回复于:2009-10-26 16:09:35只要硬件堆栈足够.嵌套没有级数限制。
#4楼得分:0回复于:2009-10-28 10:57:5851只有两个优先级所以只能有两级嵌套!SEI是AVR单片机的,他没有分优先级,所以支持这种嵌套!C51中interrupt和using的用法void INT0()interrupt 0 using 1{.........}interrupt 0 指明是外部中断0;interrupt 1 指明是定时器中断0;interrupt 2 指明是外部中断1;interrupt 3 指明是定时器中断1;interrupt 4 指明是串行口中断;using 0 是第0组寄存器;using 1 是第1组寄存器;using 2 是第2组寄存器;using 3 是第3组寄存器;51单片机内的寄存器是R0--R7(不是R0-R3)R0-R7在数据存储器里的实际地址是由特殊功能寄存器PSW里的RS1、RS0位决定的。
51单片机中断程序例子

51单片机中断程序例子1. 外部中断程序:外部中断是指由外部设备或外部信号触发的中断。
在51单片机中,通过设置中断允许位和中断优先级来实现对外部中断的响应。
例如,当外部设备发出一个信号时,单片机可以立即停止当前任务,转而执行外部中断程序。
外部中断程序的编写需要根据具体的外部设备和信号进行相应的处理,如读取设备状态、处理数据等。
通过外部中断程序,可以实现单片机与外部设备的互动和数据交换。
2. 定时器中断程序:定时器中断是指通过设置定时器的计数值和中断允许位,使得在指定的时间间隔内触发中断。
在51单片机中,可以通过定时器中断来实现定时任务的执行。
例如,可以设置一个定时器,在每隔一定的时间就触发中断,然后在中断程序中执行相应的任务,如数据采集、数据处理等。
通过定时器中断程序,可以实现定时任务的自动执行,提高系统的实时性和可靠性。
3.串口中断程序:串口中断是指通过串口通信接口接收或发送数据时触发的中断。
在51单片机中,可以通过设置串口中断允许位和中断优先级来实现对串口数据的中断处理。
例如,当接收到一个完整的数据包时,单片机可以立即停止当前任务,转而执行串口中断程序,对接收到的数据进行处理。
通过串口中断程序,可以实现单片机与外部设备的数据交换和通信。
4. ADC中断程序:ADC(模数转换器)中断是指在进行模数转换时触发的中断。
在51单片机中,可以通过设置ADC中断允许位和中断优先级来实现对模数转换结果的中断处理。
例如,当模数转换完成后,单片机可以立即停止当前任务,转而执行ADC中断程序,对转换结果进行处理和分析。
通过ADC中断程序,可以实现对模拟信号的采集和处理,用于实时监测和控制。
5. 外部中断优先级设置:在51单片机中,可以通过设置外部中断的中断优先级来确定中断的响应顺序。
中断优先级越高,优先级越高的中断会先被响应。
通过合理设置中断优先级,可以确保关键任务的及时响应和执行。
例如,当多个外部设备同时发出中断信号时,可以通过设置优先级,确保先响应优先级高的设备,保证系统的正常运行。
51单片机串行口中断服务程序

51单片机串行口中断服务程序单片机串行口中断服务程序是指在单片机进行串行通信时,当接收到数据时会触发中断,然后执行相应的中断服务程序。
下面是一个示例的单片机串行口中断服务程序,共计1200字以上。
#include <reg51.h> // 引入reg51.h头文件//定义串行口中断标志sbit RI_FLAG = P3^0; // 数据接收中断标志sbit TI_FLAG = P3^1; // 数据发送中断标志//定义串行口接收数据缓冲区unsigned char receiveBuffer[10];unsigned char receiveCount = 0;//定义串行口发送数据缓冲区unsigned char sendBuffer[10];unsigned char sendCount = 0;//串行口中断服务函数void serialInterrupt( interrupt 4if(RI_FLAG) // 判断是否是数据接收中断receiveBuffer[receiveCount] = SBUF; // 读取串行口接收数据receiveCount++; // 接收计数加1RI_FLAG=0;//清除中断标志位}if(TI_FLAG) // 判断是否是数据发送中断if(sendCount < 10) // 判断是否还有数据需要发送SBUF = sendBuffer[sendCount]; // 发送串行口数据sendCount++; // 发送计数加1}elsesendCount = 0; // 重置发送计数TI_FLAG=0;//清除中断标志位}}//主函数void mainES=1;//允许串行口中断TMOD=0x20;//设置定时器1为模式2,串行口使用定时器1 TH1=0xFD;//设置波特率为9600,定时器初值为0xFDTL1=0xFD;//定时器初值为0xFDSCON=0x50;//设置串行口工作在方式1,允许接收TR1=1;//启动定时器1while(1)//主程序逻辑//将数据存入发送缓冲区sendBuffer[0] = 'H';sendBuffer[1] = 'e';sendBuffer[2] = 'l';sendBuffer[3] = 'l';sendBuffer[4] = 'o';sendBuffer[5] = '\r'; // 发送回车符sendBuffer[6] = '\n'; // 发送换行符while(sendCount != 0) //等待数据发送完毕//主程序逻辑}}。
51单片机各种中断源的中断请求原理

51单片机各种中断源的中断请求原理
1. 外部中断:51 单片机有两个外部中断源,分别为 INT0 和 INT1。
当外部中断源输入一个低电平信号时,会触发中断请求。
在中断服务程序中,可以通过查询中断标志位来确定是哪个外部中断源触发了中断。
2. 定时器中断:51 单片机有两个定时器/计数器,分别为 T0 和 T1。
当定时器计数溢出时,会触发中断请求。
在中断服务程序中,可以通过查询定时器的计数寄存器来确定定时器是否溢出。
3. 串口中断:51 单片机有一个全双工的串口,可以接收和发送数据。
当串口接收到数据或发送完数据时,会触发中断请求。
在中断服务程序中,可以通过查询串口的控制寄存器来确定是接收还是发送中断。
51 单片机的各种中断源都是通过硬件信号或计数器溢出等方式触发中断请求,然后在中断服务程序中进行相应的处理。
在编写中断服务程序时,需要注意保护现场和恢复现场,以确保程序的正确性和稳定性。
51单片机中断系统含动态演示.

IP
PS PT1 PX1 PT0 PX0
位地址 BFH BEH BDH BCH BBH BAH B9H B8H
B8H
1:高优先级 0:低优先级
系统复位后,IP各位为0,所有中断源设置为低优先级,(中断顺序按 默认优先顺序响应)通过更新IP的值,就可以容易地改变中断源的优先级。
高优先级 低优先级
INT0 T0 INT1 T1 TX/RX
低优先级中断服务
高
优
先
断点2
级 中
断
服
务
IT0=0 INT0
IT0=1
T0
IT1=0 INT1
IT1=1 T1
TXD RXD
中断标 志位
第六章 51单片机内部功能单元及应用
51单片机中断系统结构示意
TCON
IE
IP
IE0
PX0
EX0
PT0
TF0 ET0
PX1
IE1 EX1
自 然 优 先 级
高 级 中 断 请
IE interrupt enable 中断使能寄存器 A8H
IP interrupt priority 中断优先级寄存器 B8H
第六章 51单片机内部功能单元及应用
定时器控制寄存器TCON位定义
位
D7 D6 D5 D4 D3 D2 D1 D0 字节地址
TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 位地址 8FH 8EH 8DH 8CH 8BH 8AH 89H 88H
第六章 51单片机内部功能单元及应用
中断过程示意
中断请求
中断源
中断响应
中断服务
中断返回
主程序
中断服务
单片机定时器中断程序实例

单片机定时器中断程序实例在单片机编程中,定时器是一种非常重要的功能模块。
它可以用来产生精确的时间延迟,实现定时触发事件等功能。
而定时器中断则是利用定时器来实现中断功能的一种方式。
下面是一个单片机定时器中断程序实例,供大家参考。
首先,我们需要初始化定时器。
以51单片机为例,定时器的初始化函数如下所示:void Init_Timer0(void){TMOD |= 0x01; //设置为模式1TH0 = (65536 - 50000) / 256; //设置初值TL0 = (65536 - 50000) % 256;EA = 1; //打开总中断ET0 = 1; //打开定时器0中断TR0 = 1; //启动定时器0}其中,TMOD寄存器用于设置定时器的工作模式。
这里设置为模式1,即16位定时器模式。
TH0和TL0寄存器则是定时器的计数器。
我们需要通过初值来设置定时时间。
在这个例子中,我们设置的定时时间为50ms。
接下来,我们需要编写定时器中断服务程序。
定时器中断服务程序是由中断向量表中的相应位置调用的,用于响应定时器中断。
在这个例子中,我们将定时器中断服务程序命名为Timer0_isr,定义如下:void Timer0_isr(void) interrupt 1{TH0 = (65536 - 50000) / 256;TL0 = (65536 - 50000) % 256;//定时器中断处理代码}在定时器中断服务程序中,我们需要重新设置计数器的初值,以实现定时器的循环工作。
同时,在这个例子中,我们需要在定时器中断处理代码中实现某些功能,例如周期性的输出一个信号、更新某个计数值等等。
最后,在主程序中,我们只需要调用Init_Timer0函数即可开始定时器的工作。
当定时器中断发生时,定时器中断服务程序会被自动调用。
这样,我们就实现了一个简单的单片机定时器中断程序。
51单片机空闲和掉电模式详解

51单片机空闲和掉电模式应用我们知道单片机内部有一个电源管理寄存器PCON,这个寄存器的最低两位,IDL和PD这两位分别用来设定是否使单片机进入空闲模式和掉电模式。
1. 空闲模式当单片机进入空闲模式时,除CPU处于休眠状态外,其余硬件全部处于活动状态,芯片中程序未涉及到的数据存储器和特殊功能寄存器中的数据在空闲模式期间都将保持原值。
但假若定时器正在运行,那么计数器寄存器中的值还将会增加。
单片机在空闲模式下可由任一个中断或硬件复位唤醒,需要注意的是,使用中断唤醒单片机时,程序从原来停止处继续运行,当使用硬件复位唤醒单片机时,程序将从头开始执行。
让单片机进入空闲模式的目的通常是为了降低系统的功耗,举个很简单的例子,大家都用过数字万用表,在正常使用的时候表内部的单片机处于正常工作模式,当不用时,又忘记了关掉万用表的电源,大多数表在等待数分钟后,若没有人为操作,它便会自动将液晶显示关闭,以降低系统功耗,通常类似这种功能的实现就是使用了单片机的空闲模式或是掉电模式。
以STC89系列单片机为例,当单片机正常工作时的功耗通常为4mA~7mA,进入空闲模式时其功耗降至2mA,当进入掉电模式时功耗可降至0.1μA以下。
2. 休眠-掉电模式当单片机进入掉电模式时,外部晶振停振、CPU、定时器、串行口全部停止工作,只有外部中断继续工作。
使单片机进入休眠模式的指令将成为休眠前单片机执行的最后一条指令,进入休眠模式后,芯片中程序未涉及到的数据存储器和特殊功能寄存器中的数据都将保持原值。
可由外部中断低电平触发或由下降沿触发中断或者硬件复位模式换醒单片机,需要注意的是,使用中断唤醒单片机时,程序从原来停止处继续运行,当使用硬件复位唤醒单片机时,程序将从头开始执行。
【例】:开启两个外部中断,设置低电平触发中断,用定时器计数并且显示在数码管的前两位,当计到5时,使单片机进入空闲(休眠)模式,同时关闭定时器,当单片机响应外部中断后,从空闲(休眠)模式返回,同时开启定时器。
51单片机中断详解

一、中断的概念CPU在处理某一事件A时,发生了另一事件B请求C PU迅速去处理(中断发生);CPU暂时中断当前的工作,转去处理事件B(中断响应和中断服务);待C PU将事件B处理完毕后,再回到原来事件A被中断的地方继续处理事件A(中断返回),这一过程称为中断二、中断源在51单片机中有5个中断源中断号优先级中断源中断入口地址0 1(最高)外部中断0 0003H1 2 定时器0 000BH2 3 外部中断1 0013H3 4 定时器1 0018H4 5 串口总段0023H三、中断寄存器单片机有10个寄存器主要与中断程序的书写控制有关1.中断允许控制寄存器IE2.定时器控制寄存器TC ON3.串口控制寄存器SCON4.中断优先控制寄存器IP5.定时器工作方式控制寄存器TMOD6.定时器初值赋予寄存器(TH0/TH1,TL0/TL1)四、寄存器功能与赋值说明注:在用到中断时,必须要开总中断EA,即EA=1。
//开总中断1.中断允许控制寄存器IEEX0(EX1):外部中断允许控制位EX0=1 外部中断0开关闭合//开外部0中断EX0=0 外部中断0开关断开ET0(ET1):定时中断允许控制位ET0=1 定时器中断0开关闭合//开内部中断0ET0=0 定时器中断0开关断开ES: 串口中断允许控制位ES=1 串口中断开关闭合//开串口中断ES=0 串口中断开关断开2.定时器控制寄存器TCON //控制外部中断和定时器中断外部中断:IE0(IE1):外部中断请求标志位当INT0(INT1)引脚出现有效的请求信号,此位由单片机自动置1,cpu开始响应,处理终端,而当入中断程序后由单片机自动置0.//外部中断,即外部中断相应的引脚接入低电平或下降沿信号时,中断开始响应。
IT0(IT1):外部中断触发方式控制位//选择有效信号IT0(IT1)=1:脉冲触发方式,下降沿有效。
IT0(IT1)=0:电平触发方式,低电平有效。
51单片机定时器设置

51单片机定时器设置51单片机,也被称为8051微控制器,是一种广泛应用的嵌入式系统。
它具有4个16位的定时器/计数器,可以用于实现定时、计数、脉冲生成等功能。
通过设置相应的控制位和计数初值,可以控制定时器的启动、停止和溢出等行为,从而实现精确的定时控制。
确定应用需求:首先需要明确应用的需求,包括需要定时的时间、计数的数量等。
根据需求选择合适的定时器型号和操作模式。
设置计数初值:根据需要的定时时间,计算出对应的计数初值。
计数初值需要根据定时器的位数和时钟频率进行计算。
设置控制位:控制位包括定时器控制寄存器(TCON)和中断控制寄存器(IE)。
通过设置控制位,可以控制定时器的启动、停止、溢出等行为,以及是否开启中断等功能。
编写程序代码:根据需求和应用场景,编写相应的程序代码。
程序代码需要包括初始化代码和主循环代码。
调试和测试:在完成设置和编程后,需要进行调试和测试。
可以通过观察定时器的状态和输出结果,检查定时器是否按照预期工作。
计数初值的计算要准确,否则会影响定时的精度。
控制位的设置要正确,否则会导致定时器无法正常工作。
需要考虑定时器的溢出情况,以及如何处理溢出中断。
需要考虑定时器的抗干扰能力,以及如何避免干扰对定时精度的影响。
需要根据具体应用场景进行优化,例如调整计数初值或控制位等,以达到更好的性能和精度。
51单片机的定时器是一个非常实用的功能模块,可以用于实现各种定时控制和计数操作。
在进行定时器设置时,需要注意计数初值的计算、控制位的设置、溢出处理以及抗干扰等问题。
同时需要根据具体应用场景进行优化,以达到更好的性能和精度。
在实际应用中,使用51单片机的定时器可以很方便地实现各种定时控制和计数操作,为嵌入式系统的开发提供了便利。
在嵌入式系统和微控制器领域,51单片机因其功能强大、使用广泛而备受。
其中,定时器中断功能是51单片机的重要特性之一,它为系统提供了高精度的定时和计数能力。
本文将详细介绍51单片机定时器中断的工作原理、配置和使用方法。
51单片机的中断嵌套怎么实现呢?

51单⽚机的中断嵌套怎么实现呢?今天在练习51单⽚机的嵌套中断时,发现了⼀个奇怪的点,就是中断服务函数在执⾏的时候,⽆论优先级的⾼低,都不能被打断。
嗯,就是外部中断0和外部中断1都不能打断定时器0的中断服务函数。
(优先级:外部中断0>定时器0>外部中断1).我本来想开启定时器0,外部中断0和外部中断1,实现中断嵌套.⽐如外部中断0到达时,执⾏中断服务函数Int0,因为它的优先级⾼,所以当外部中断1和定时器0到达时,不会打断外部中断0的中断服务函数。
⽽当定时器0中断时,外部中断0到达可以打断其执⾏,外部中断1到达不可打断。
但是很难实现,因为开启三个中断后,每个中断的服务函数执⾏函数超级短,当出现现象的时候(我设置了LED灯状态翻转表⽰中断到达),即⼩灯亮起或熄灭中断函数就已经执⾏完了,很难控制让中断同时到达。
所以我这样写了代码测试:interrupt.c#include<reg52.h>#include<interrupt.h>//外部中断0初始化void Int0_Init(){ IT0=1;EX0=1;EA=1;}//外部中断1初始化void Int1_Init(){IT1=1;EX1=1;EA=1;}//定时器0初始化,模式1,16位计数模式,1msvoid Timer0_Init(){ TMOD|=0x01;TH0=0xfc;//TL0=0x18;ET0=1;EA=1;TR0=1;}//中断服务函数void Int0() interrupt 0{ delay(1000);if(key1==0){ led1=~led1;}}void Int1() interrupt 2{ delay(1000);if(key2==0){ led1=~led1;}}void Timer0() interrupt 1{TH0=0xfc;TL0=0x18;i++;if(i==10000){led1=~led1;i=0;while(1);}}//延时函数,为了消抖void delay(u16 j){ while(j--);}interrupt.h#include<reg52.h>typedef unsigned char u8;typedef unsigned int u16;//初始化函数void Int0_Init();void Int1_Init();void Timer0_Init();void Timer1_Init();//中断服务函数void Int0();void Int1();void Timer0();void Timer1();void delay(u16 j);static u16 i=0;sbit key1=P3^2;sbit key2=P3^3;sbit led1=P0^0;main.c#include<reg52.h>#include<interrupt.h>int main(){ Int0_Init();Int1_Init();led1=0;Timer0_Init();// Timer1_Init();while(1);}嗯,这样写完后,我以为能实现我想要的结果,但是现象是这样的:我在定时器0的中断服务函数中加⼊的while(1)循环,Timer0函数就不会退出。
51单片机(STC89C52)的中断和定时器

51单⽚机(STC89C52)的中断和定时器STC89C51/STC89C52 Timer内部不带振荡源, 必须外接晶振采⽤11.0592MHz,或22.1184MHz,可⽅便得到串⼝通讯的标准时钟.STC89和STC90系列为12T, STC11/STC12系列为1T, 也就是⼀个指令⼀个机器周期, 这些都需要外置晶振; STC15系列有内置晶振.中断中断允许控制寄存器 IE字节地址A8H, CPU对中断系统所有中断以及某个中断源的开放和屏蔽是由中断允许寄存器IE控制的D7D6D5D4D3D2D1D0EA—ET2ES ET1EX1ET0EX0EA (IE.7): 整体中断允许位, 1:允许ET2(IE.5): T2中断允许位, 1:允许(for C52)ES (IE.4): 串⼝中断允许位, 1:允许ET1(IE.3): T1中断允许位, 1:允许EX1(IE.2): 外部中断INT1允许位, 1:允许ET0(IE.1): T0中断允许位, 1:允许EX0(IE.0): 外部中断INT0允许位, 1:允许52单⽚机⼀共有6个中断源, 它们的符号, 名称以及各产⽣的条件分别如下1. INT0 - 外部中断0, 由P3.2端⼝线引⼊, 低电平或下降沿引起2. INT1 - 外部中断1, 由P3.3端⼝线引⼊, 低电平或下降沿引起3. T0 - 定时器/计数器0中断, 由T0计数器计满回零引起4. T1 - 定时器/计数器1中断, 由T1计数器计满回零引起5. T2 - 定时器/计数器2中断, 由T2计数器计满回零引起 <--这个是52特有的6. TI/RI - 串⾏⼝中断, 串⾏端⼝完成⼀帧字符发送/接收后引起定时器中断51单⽚机内部共有两个16位可编程的定时器,即定时器T0和定时器T1, 52单⽚机内部多⼀个T2定时器. 它们既有定时功能,也有计数功能。
可通过设置与它们相关的特殊功能寄存器选择启⽤定时功能还是计数功能. 这个定时器系统是单⽚机内部⼀个独⽴的硬件部分,它与CPU和晶振通过内部某些控制线连接并相互作⽤,CPU⼀旦设置开启定时功能后,定时器便在晶振的作⽤下⾃动开始计时,但定时器的计数器计满后,会产⽣中断。
第4章 MCS-51单片机中断、定时系统及串行数据通信

表4-2 中断源入口地址表 中断源 外部中断0 中断服务程序入口地址 0003H
定时器/计数器T0 外部中断1 定时器/计数器T1 串行口中断
000BH 0013H 001BH 0023H
单片机的两个相邻中断源中断服务程序入口地址 相距只有8个单元,一般中断服务程序容纳不下,因此 在该中断的入口地址处放一条长跳转指令LJMP,这 样就可以转到64KB的任何可用区域了。在2KB范围内 转移可用短跳转AJMP指令。
表4-1 同级中断源优先级排列顺序
中断源
外部中断0(IE0) 定时器/计数器T0中断(TF0) 外部中断1(IE1) 定时器/计数器T1中断(TF1)
同级内的优先级
最低级
串行口中断(RI+TI)
最高级
当单片机系统复位后,IE中各位均被清0,所有 中断源禁止;IP中各位均被清0,5个中断源均为低优 先级。
SET SET
SET
ET0 ET1
EA
;定时器/计数器0允许中断 ;定时器/计数器1允许中断
;CPU开中断
用字节操作指令 MOV IE,#8AH 或 MOV A8H,#8AH
(2)中断优先级控制寄存器(IP) MCS-51单片机系统的中断源有两个优先级,每 个中断源均可由中断优先级寄存器IP来设置优先级别。 IP的字节地址为0B8H,位地址为0B8H~0BFH。与 中断有关的控制位如下: 位地址 0BFH 0BEH 0BDH 0BCH 0BBH 0BAH 0B9H 0B8H
TMOD是定时器的工作方式寄存器,TCON是控制 寄存器,用于对T0和T1的管理和控制。
2.定时器/计数器的结构的工作原理 16位定时器/计数器的核心是一个加1计数器,如图 4-4所示。