吉林省长春市东北师大附中明珠校区2020-2021学年七年级上学期期中数学试题

合集下载

2020-2021学年吉林省长春市朝阳区七年级(上)期中数学试卷 (解析版)

2020-2021学年吉林省长春市朝阳区七年级(上)期中数学试卷 (解析版)

2020-2021学年吉林省长春市朝阳区七年级(上)期中数学试卷一、选择题(共8小题).1.5的绝对值是()A.﹣5B.C.﹣D.52.单项式﹣2xy的系数为()A.﹣2B.﹣1C.1D.23.多项式x5y2+2x4y3﹣3x2y2﹣4xy是()A.按x的升幂排列B.按x的降幂排列C.按y的升幂排列D.按y的降幂排列4.为了增加青少年的校外教育活动场所,长春市将建成面积约为79000平方米的新少年宫,预计2020年12月正式投入使用.79000这个数用科学记数法表示为()A.79×103B.7.9×104C.0.79×105D.7.9×1055.下列各式中,正确的是()A.﹣4﹣2=﹣2B.3﹣(﹣3)=0C.10+(﹣8)=﹣2D.﹣5﹣4﹣(﹣4)=﹣56.某种药品说明书上标明保存温度是(20±3)℃,则该药品在()范围内保存最合适.A.17℃~20℃B.20℃~23℃C.17℃~23℃D.17℃~24℃7.若a2+3a=1,则代数式2a2+6a﹣2的值为()A.0B.1C.2D.38.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,……,归纳计算结果中的个位数字的规律,猜想32020+1的个位数字是()A.0B.2C.4D.8二、填空题(共6小题).9.﹣的相反数是.10.计算:(﹣5)××0×(﹣32)=.11.若关于x的多项式6x2﹣7x+2mx2+3不含x的二次项,则m=.12.用四舍五入法将2.018精确到百分位得到的近似数是.13.计算:﹣12020+(﹣1)2019=.14.若|x|=5,|y|=2,且xy>0,x<y,则x+y=.三、解答题(本大题共9小题,共78分)15.用代数式表示:(1)比x的小6的数.(2)m的相反数与n的和.(3)a、b两数差的平方.16.(24分)计算:(1)5﹣(﹣3);(2)(﹣)÷;(3)﹣0.5+2+4.75+(﹣6);(4)48×();(5)﹣125×0.3×(﹣8)×(﹣3);(6)﹣42+×[10﹣(﹣2)3].17.定义新运算:对于有理数a、b,规定a⊗b=a2b﹣a.求3⊗5的值.18.如图,在数轴上,A、B、C三点所表示的数分别为a、b、c,且A、B两点到原点的距离相等.(1)a+b=;=.(2)将a、b、c、﹣c按从小到大的顺序排列,并用“<”连接起来.19.已知多项式x|m|﹣(m+2)x+12是关于x的二次二项式,求m的值.20.某公园准备修建一块长方形草坪,长为a米,宽为b米,并在草坪上修建如图所示的十字路,已知十字路宽为2米.(1)用含a、b的代数式表示修建的十字路的面积.(2)当a=40,b=30时,求修建的十字路的面积.21.计算:(﹣)÷(﹣).甲同学的解法:(﹣)÷(﹣)=﹣÷﹣(﹣)÷=﹣.乙同学的解法:原式的倒数为:(﹣)÷(﹣)=(﹣)×(﹣12)=﹣4+10=6.所以(﹣)÷(﹣)=.(1)判断:同学的解法正确.(2)运用上述两位同学中的正确解法解答下面的问题:计算:(﹣)÷(+).22.随着微信的普及,许多人利用微信平台做“微商”.张师傅也将自家种植的冬枣进行网上销售,原计划每天销售100斤冬枣,由于受到实际产量的影响,每天的实际销售量与计划销售量相比略有不同.第一周的销售情况如表所示(超额记为正,不足记为负.单位:斤):星期一二三四五六日+4﹣3﹣5+10﹣8+23﹣6与计划销售量的差值根据表格回答下列问题:(1)张师傅前三天共卖出斤冬枣.(2)销售量最多的一天比销售量最少的一天多销售斤冬枣.(3)若冬枣的售价为每斤7元,运费为每斤2元,求张师傅本周的总收入.23.如图,在数轴上,点A表示的数为﹣12.点B是数轴上位于点A右侧的一点,且A,B 两点间的距离为32.动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设点P的运动时间为t(t>0)秒.(1)点B表示的数是.(2)①点P表示的数是(用含t的代数式表示).②当点P将线段AB分成的两部分的比为1:2时,求t的值.(3)若点P从原点出发,沿数轴移动.第1次向左移动1个单位长度,第2次向右移动3个单位长度,第3次向左移动5个单位长度,第4次向右移动7个单位长度,……①点P第9次移动后,表示的数是.②点P在运动过程中,(填“能”或“不能”)与点A重合.当点P与B重合时,移动了次.参考答案一、选择题(每小题3分,共24分)1.5的绝对值是()A.﹣5B.C.﹣D.5【分析】根据绝对值的性质求解.解:根据正数的绝对值是它本身,得|5|=5.故选:D.2.单项式﹣2xy的系数为()A.﹣2B.﹣1C.1D.2【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.解:根据单项式系数的定义,单项式﹣2xy的系数是﹣2.故选:A.3.多项式x5y2+2x4y3﹣3x2y2﹣4xy是()A.按x的升幂排列B.按x的降幂排列C.按y的升幂排列D.按y的降幂排列【分析】根据降幂排列和升幂排列的定义,依据不同的字母进行排列.解:按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,降幂正好相反,常数项应放在最前面.多项式x5y2+2x4y3﹣3x2y2﹣4xy中,x的指数依次5、4、2、1;因此A不正确;y的指数依次是2、3、2、1,因此C、D不正确.故选:B.4.为了增加青少年的校外教育活动场所,长春市将建成面积约为79000平方米的新少年宫,预计2020年12月正式投入使用.79000这个数用科学记数法表示为()A.79×103B.7.9×104C.0.79×105D.7.9×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值小于1时,n是负数.解:79000这个数用科学记数法表示为:7.9×104.故选:B.5.下列各式中,正确的是()A.﹣4﹣2=﹣2B.3﹣(﹣3)=0C.10+(﹣8)=﹣2D.﹣5﹣4﹣(﹣4)=﹣5【分析】直接利用有理数的混合运算法则计算得出答案.解:A、﹣4﹣2=﹣6,故此选项不合题意;B、3﹣(﹣3)=6,故此选项不合题意;C、10+(﹣8)=2,故此选项不合题意;D、﹣5﹣4﹣(﹣4)=﹣5,正确,符合题意.故选:D.6.某种药品说明书上标明保存温度是(20±3)℃,则该药品在()范围内保存最合适.A.17℃~20℃B.20℃~23℃C.17℃~23℃D.17℃~24℃【分析】此题主要用正负数来表示具有意义相反的两种量:选20℃为标准记为0,超过部分为正,不足的部分为负,直接计算得出结论即可.解:20℃﹣3℃=17℃20℃+3℃=23℃所以该药品在17℃~23℃范围内保存才合适.故选:C.7.若a2+3a=1,则代数式2a2+6a﹣2的值为()A.0B.1C.2D.3【分析】直接将原式变形,进而把已知代入求出答案.解:∵a2+3a=1,∴2a2+6a﹣2=2(a2+3a)﹣2=2﹣2=0.故选:A.8.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,……,归纳计算结果中的个位数字的规律,猜想32020+1的个位数字是()A.0B.2C.4D.8【分析】由题意可知:第一个式子结果的个位数字为4,第二个式子结果的个位数字为0,第三个式子结果的个位数字为8,第四个式子结果的个位数字为2,第五个式子结果的个位数字为4,第一六个式子结果的个位数字为0,…,四个一循环,所以用2020÷4=505,所以32020+1结果的个位数字和第四个式子的结果的个位数字相同.解:由题意知:各个式子计算结果的个位数字为:4,0,8,2,4,0,8,2,…,四个一循环,∵2020÷4=505,∴32020+1结果的个位数字和第四个式子的结果的个位数字相同,即32020+1结果的个位数字为2.故选:B.二、填空题(每小题3分,共18分)9.﹣的相反数是.【分析】求一个数的相反数就是在这个数前面添上“﹣”号.解:﹣的相反数是﹣(﹣)=.故答案为:.10.计算:(﹣5)××0×(﹣32)=0.【分析】根据任何数与0相乘都得0可得结果.解:(﹣5)××0×(﹣32)=0.故答案为:0.11.若关于x的多项式6x2﹣7x+2mx2+3不含x的二次项,则m=﹣3.【分析】根据合并同类项,可化简整式,根据多项式不含x2项,可得x2项的系数为零.解:6x2﹣7x+2mx2+3=(6+2m)x2﹣7x+3,由关于x的多项式6x2﹣7x+2mx2+3不含x的二次项,6+2m=0.解得m=﹣3,故答案为:﹣3.12.用四舍五入法将2.018精确到百分位得到的近似数是 2.02.【分析】把千分位上的数字8进行四舍五入即可.解:2.018精确到百分位得到的近似数是2.02.故答案为2.02.13.计算:﹣12020+(﹣1)2019=﹣2.【分析】首先计算乘方,然后计算加法,求出算式的值是多少即可.解:﹣12020+(﹣1)2019=﹣1+(﹣1)=﹣2.故答案为:﹣2.14.若|x|=5,|y|=2,且xy>0,x<y,则x+y=﹣7.【分析】根据绝对值的意义,得到x、y,再根据乘法法则和两数的大小确定x、y的值,最后求和.解:∵|x|=5,|y|=2,∴x=±5,y=±2.∵xy>0,∴x=5,y=2或x=﹣5,y=﹣2.又∵x<y∴x=﹣5,y=﹣2.当x=﹣5,y=﹣2时,x+y=﹣5﹣2=﹣7.故答案为:﹣7.三、解答题(本大题共9小题,共78分)15.用代数式表示:(1)比x的小6的数.(2)m的相反数与n的和.(3)a、b两数差的平方.【分析】(1)表示出x的,再减去6即可求解;(2)表示出m的相反数,再加上n即可求解;(3)先求出的a、b两数差,再平分即可求解.解:(1)根据题意得x﹣6;(2)根据题意得﹣m+n;(3)根据题意得(a﹣b)2.16.(24分)计算:(1)5﹣(﹣3);(2)(﹣)÷;(3)﹣0.5+2+4.75+(﹣6);(4)48×();(5)﹣125×0.3×(﹣8)×(﹣3);(6)﹣42+×[10﹣(﹣2)3].【分析】(1)根据有理数的减法法则计算即可求解;(2)根据有理数的除法法则计算即可求解;(3)利用加法的交换律和结合律进行计算即可;(4)根据乘法分配律计算即可求解;(5)根据乘法交换律和结合律简便计算;(6)先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算.解:(1)5﹣(﹣3)=8;(2)(﹣)÷=﹣;(3)﹣0.5+2+4.75+(﹣6)=(2+4.75)+(﹣0.5﹣6)=7﹣7=0;(4)48×()=48×+48×﹣48×=16+18﹣20=14;(5)﹣125×0.3×(﹣8)×(﹣3)=[﹣125×(﹣8)]×[0.3×(﹣3)]=1000×(﹣1)=﹣1000;(6)﹣42+×[10﹣(﹣2)3]=﹣16+×[10+8]=﹣16+×18=﹣16+3=﹣13.17.定义新运算:对于有理数a、b,规定a⊗b=a2b﹣a.求3⊗5的值.【分析】根据⊗的含义,以及有理数的混合运算的运算方法,求出3⊗5的值是多少即可.解:由题意得:3⊗5=32×5﹣3=9×5﹣3=45﹣3=42.18.如图,在数轴上,A、B、C三点所表示的数分别为a、b、c,且A、B两点到原点的距离相等.(1)a+b=0;=﹣1.(2)将a、b、c、﹣c按从小到大的顺序排列,并用“<”连接起来.【分析】(1)根据互为相反数的两个数的和为0,商为﹣1填空即可.(2)根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.解:(1)根据题意可知,a=﹣b,∴a+b=0,,故答案为:0;﹣1;(2)根据当数轴方向朝右时,右边的数总比左边的数大,可得c<b<a<﹣c.19.已知多项式x|m|﹣(m+2)x+12是关于x的二次二项式,求m的值.【分析】利用多项式的次数与项数的定义得出m的值.解:∵多项式x|m|﹣(m+2)x+12是关于x的二次二项式,∴|m|=2,且m+2=0,∴m=﹣2.即m的值是﹣2.20.某公园准备修建一块长方形草坪,长为a米,宽为b米,并在草坪上修建如图所示的十字路,已知十字路宽为2米.(1)用含a、b的代数式表示修建的十字路的面积.(2)当a=40,b=30时,求修建的十字路的面积.【分析】(1)根据题意表示出十字路的面积即可;(2)根据(1)表示出的式子,把a与b的值代入计算即可得出答案.解:(1)根据题意得:(2a+2b﹣4)米2;(2)当a=40,b=30时,原式=2×40+2×30﹣4=136(平方米),答:修建十字路的面积为136平方米.21.计算:(﹣)÷(﹣).甲同学的解法:(﹣)÷(﹣)=﹣÷﹣(﹣)÷=﹣.乙同学的解法:原式的倒数为:(﹣)÷(﹣)=(﹣)×(﹣12)=﹣4+10=6.所以(﹣)÷(﹣)=.(1)判断:乙同学的解法正确.(2)运用上述两位同学中的正确解法解答下面的问题:计算:(﹣)÷(+).【分析】(1)利用有理数的混合运算的运算顺序和倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.解:(1)乙同学的解法正确.故答案为:乙;(2)原式的倒数为(+)÷(﹣),(+)÷(﹣)=(+)×(﹣24)=×(﹣24)×(﹣24)+×(﹣24)=﹣8+4﹣9=﹣13,所以(﹣)÷(+)=﹣.22.随着微信的普及,许多人利用微信平台做“微商”.张师傅也将自家种植的冬枣进行网上销售,原计划每天销售100斤冬枣,由于受到实际产量的影响,每天的实际销售量与计划销售量相比略有不同.第一周的销售情况如表所示(超额记为正,不足记为负.单位:斤):星期一二三四五六日+4﹣3﹣5+10﹣8+23﹣6与计划销售量的差值根据表格回答下列问题:(1)张师傅前三天共卖出296斤冬枣.(2)销售量最多的一天比销售量最少的一天多销售31斤冬枣.(3)若冬枣的售价为每斤7元,运费为每斤2元,求张师傅本周的总收入.【分析】(1)根据前三天销售量相加计算即可;(2)将销售量最多的一天与销售量最少的一天相减计算即可;(3)将总数量乘以价格差解答即可.解:(1)4﹣3﹣5+300=296(斤).答:根据记录的数据可知前三天共卖出296斤.(2)23+8=31(斤).答:根据记录的数据可知销售量最多的一天比销售量最少的一天多销售31斤.(3)[(+4﹣3﹣5+10﹣8+23﹣6)+100×7]×(7﹣2)=715×5=3575(元).答:张师傅本周一共收入3575元.23.如图,在数轴上,点A表示的数为﹣12.点B是数轴上位于点A右侧的一点,且A,B 两点间的距离为32.动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设点P的运动时间为t(t>0)秒.(1)点B表示的数是20.(2)①点P表示的数是(﹣12+32)(用含t的代数式表示).②当点P将线段AB分成的两部分的比为1:2时,求t的值.(3)若点P从原点出发,沿数轴移动.第1次向左移动1个单位长度,第2次向右移动3个单位长度,第3次向左移动5个单位长度,第4次向右移动7个单位长度,……①点P第9次移动后,表示的数是﹣9.②点P在运动过程中,不能(填“能”或“不能”)与点A重合.当点P与B重合时,移动了20次.【分析】(1)考察数轴上距离计算,p表示的数为(﹣12+32);(2)①考察代数式,可先求出p的运动路程2t,根据数轴上A点即可表示出p为(2t ﹣12),②由①可表示出PA,PB,因为分为1:2两部分,分两种情况,分别为和,根据比例列出方程即可;(3)①规定向左运动记为﹣,向右运动记+,可计算出运动9次后的变化量为﹣9,所以P表示的数就是﹣9,②计算运动的变化量是否可以等于0,即可解答.解:(1)﹣12+32=20(2)①p的运动路程2t,则P为(2t﹣12);②因为P为(2t﹣12),所以PA为2t,PB为(32﹣2t)当时,,所以t=当时,,所以t=∴t的值为,(3)①规定向左运动记为﹣,向右运动记+,则记为:﹣1,+3,﹣5,+7,﹣9,+11,﹣13,+15,﹣17,(﹣1)+(+3)+(﹣5)+(+7)+(﹣9)+(+11)+(﹣13)+(+15)+(﹣17)=﹣9②因为运动量加起来不等于0,所以不能;P与B重合时则加起来等于20,经计算总共运动了20次.。

吉林省长春市东北师大附中明珠校区2020-2021学年七年级上学期期中数学试题

吉林省长春市东北师大附中明珠校区2020-2021学年七年级上学期期中数学试题

吉林省长春市东北师大附中明珠校区2020-2021学年七年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.中国古代数学著作《九章算术》在世界数学史上首次正式引入负数,如果收入100元记作+100元,那么-70元表示( )A .支出70元B .支出30元C .收入70元D .收入30元 2.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就,数据11090000用科学记数法表示为( ) A .4110910⨯ B .611.0910⨯ C .81.10910⨯ D .71.10910⨯ 3.下列各数中最小的是( )A .3B .-2.5C .-95D .04.下列四个数中,是负分数的是( )A .211B .0.23-C .34D .20- 5.多项式243x x +-的次数是( )A .3B .2C .1D .06.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A .0a b +>B .0a b ->C .0ab >D .0a b -> 7.已知|x|=2,y 2=9且xy<0,那么x-y 的值为( )A .5B . 1C .5或1D .-5或5 8.如图,是一个运算程序的示意图,若第一次输入x 的值为625,则第2020次输出的结果为( )A .25B .5C .1D .0二、填空题9.-6的相反数是 .10.单项式-243a bc 的系数是______________. 11.A 、B 两地之间相距440千米,一辆汽车以110千米/时的速度从A 地前往B 地,x (x <4)小时后距离B 地___________千米.12.用四舍五入法将7.865精确到百分位:7.865≈___________.13.单项式23m x y 是六次单项式,则m =_______.14.用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是_____________.三、解答题15.(1)1132-+; (2)()()()9115+-++-;(3)()()30.7 1.7204⎛⎫-⨯-÷-⨯ ⎪⎝⎭; (4)27332384⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (5)()2114121133⎛⎫⎛⎫--⨯-÷- ⎪ ⎪⎝⎭⎝⎭; (6)()()32110.5413⎡⎤-+-÷⨯--⎣⎦. 16.简便运算:(1)110.53 2.75742⎛⎫⎛⎫---+-+ ⎪ ⎪⎝⎭⎝⎭ (2)()11825 3.794067411⨯⨯⨯-⨯ (3)357241468⎛⎫-⨯-+- ⎪⎝⎭ (4)()11175250.1255088⎛⎫⨯+-⨯--⨯ ⎪⎝⎭17.列式计算:(1)3-与213的和的平方是多少? (2)4-、5-、7+三个数的和比这三个数绝对值的和小多少?18.如图,有两摞规格完全相同的课本叠放在桌子上,一摞有6本,距离地面的最大高度为90.4cm ;另一摞有3本,距离地面的最大高度为87.7cm ,请根据图中所给的信息,解答下列问题.(1)一本书的厚度是 cm ,桌子的高度是 cm .(2)当桌子上以相同方式整齐摆放的课本为x (本)时,请写出这摞课本距离地面的最大高度___cm (用含x 的代数式表示)(3)桌面上有56本相同规格的数学课本,整齐地摆成一摞,若有19名同学各取走一本,求余下的课本距离地面的最大高度.19.如果()2120a b ++-=(1)求a 、b 的值;(2)求()20202019a b a ++的值.20.出租车司机小李某天上午营运是在儿公园门口出发,沿南北走向的人民大街上进行的,如果规定向北为正,向南为负,他这天上午所接送八位乘客的行车里程(单位:km ) 如下:3-,6+, 1.8-, 2.8+,5-,2-,9+,6-,(1)将最后一位乘客送到目的地时,小李在儿童公园的哪个方向?距离是多少? (2)若出租车消耗天然气量为30.2m /km ,小李接送八位乘客,出租车共消耗天然气多少立方米?(3)若出租车起步价为8元,起步里程为3km (包括3km ),超过3km 的部分每千米2.2元,接送完第四个乘客后,小李得车费_______元.21.(概念学习)我们知道:求几个相同 加数的和的简便运算是乘法,也可以叫做连加.例如:22223++=⨯,55555556+++++=⨯类似地,求若干个相同的有理数的减法运算叫做连减,例如222--,,记作32↓.一般地,把n 个a 连减记作n a ↓,()2n n a n a a a a a a a a a -↓=---=---个个(n 为整数,且n ≥2) (初步探究)直接写出计算结果:42↓= ,53↓= ;543⎛⎫↓ ⎪⎝⎭= ; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,相同加数的加法运算可以转化为乘法运算,那么有理数的连减运算如何转化为乘法运算呢?例如:()3222221↓=--=-⨯,()6555555554↓=-----=-⨯41111112222222⎛⎫⎛⎫↓=---=-⨯ ⎪ ⎪⎝⎭⎝⎭ (1)试一试:将下列连减运算直接写成两数相乘的形式.78↓= ,()81-↓= ,n a ↓= (n 为整数,且n ≥2)(2)算一算:()75124422⎛⎫-↓⨯+↓÷- ⎪⎝⎭22.如图,数轴上点A 表示的有理数为-4,点B 表示的有理数为6,点P 从点A 出发以每秒2个单位长度的速度在数轴上沿由A 到B 方向运动,当点P 到达点B 后立即返回,仍然以每秒2个单位长度的速度点运动至点A 停止运动,设运动时间为t (单位:秒).(1)当t =2时,点P 表示的有理数为 .(2)当点P 与点B 重合时t 的值为 .(3)①在点P 由A 到点B 的运动过程中,点P 与点A 的距离为 (用含t 的代数式表示)②在点P 由点A 到点B 的运动过程中,点P 表示的有理数为 (用含t 的代数式表示)(4)当点P 表示的有理数与原点距离是2的单位长度时,t 的值为 .参考答案1.A【分析】根据题意可知因为收入与支出相反,所以由收入100元记作+100元,可得到-70元表示支出70元.【详解】解:如果收入100元记作+100元.那么-70元表示支出70元.故选:A .【点睛】本题考查正负数的意义,熟练运用负数来描述生活中的实例是解题关键.2.D【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 1.109a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往左移动到1的后面,所以7.n =【详解】解:711090000 1.10910⨯=,故选D .【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.3.B【分析】根据正数大于负数,正数大于0,0大于负数;两个负数,绝对值大的反而小,即可作出判断.【详解】解:∵|-2.5|=2.5,|-95|=95=1.8, 2.5>1.8,∴-2.5<-95,∴-2.5<-95<0<3, ∴最小的是-2.5.故选B .【点睛】本题考查了有理数的大小比较.掌握正数大于负数,正数大于0,0大于负数;两个负数,绝对值大的反而小是解题的关键.4.B【分析】根据负分数的定义选出正确选项.【详解】A 选项是正分数;B 选项是负分数;C 选项是正整数;D 选项是负整数.故选:B .【点睛】本题考查有理数的分类,解题的关键是掌握有理数的分类.5.B【分析】根据多项式的次数是多项式中次数最高的项的次数解答即可.【详解】解:∵多项式243+-x x 中x 2项的次数最高,且次数为2,∴多项式243+-x x 的次数为2,故选:B .【点睛】本题考查了多项式的次数,熟知多项式的次数是多项式中次数最高的项的次数是解答的关键. 6.B【分析】先根据数轴的定义得出a 、b 的符号和绝对值大小,再逐项判断即可得.【详解】 由数轴的定义得:101,b a b a <-<<<>A 、0a b +<,此项错误B 、0a b ->,此项正确C 、0ab <,此项错误D 、0a b -<,此项错误故选:B .【点睛】本题考查了数轴的定义、绝对值运算,掌握理解数轴的定义是解题关键.7.D【分析】先根据有理数的绝对值和乘方的意义求出x 、y ,然后根据xy <0即可确定x 、y 的值,再代入所求式子计算即可.【详解】 解:因为2x =,所以2x =±,因为29y =,所以3=±y , 因为xy <0,所以x=2,y=﹣3或x=﹣2,y=3;当x=2,y=﹣3时,x -y=2-(﹣3)=2+3=5;当x=﹣2,y=3时,x -y=﹣2-3=﹣5.故选:D .【点睛】本题考查了有理数的绝对值、乘方和有理数的减法运算,属于常考题型,熟练掌握基本知识是解题的关键.8.C【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【详解】解:当x=625时,15x=15×625=125;当x=125时,15x=15×125=25;当x=25时,15x=15×25=5;当x=5时,15x=15×5=1;当x=1时,x+4=5;当x=5时,15x=15×5=1;……依次类推,以5,1循环,(2020-2)÷2=1009,能够整除,所以输出的结果为1,故选C.【点睛】本题考查了求代数式的值.能根据求出的结果得出规律是解题的关键.9.6【解析】求一个数的相反数,即在这个数的前面加负号.解:根据相反数的概念,得-6的相反数是-(-6)=6.10.4 3 -【分析】根据单项式的系数是指数字因数部分可得到答案. 【详解】-243a bc=243a bc-⋅则系数为4 3 -【点睛】本题考查了单项式的系数的概念,务必清楚的是单项式的系数指的是与字母相乘的数字因数.11.()440110x -【分析】根据题意易得汽车的运动路程,然后直接进行求解即可.【详解】解:由题意得:汽车的运动路程为:()1104S x x =<,∴汽车x (x <4)小时后距离B 地的距离为:()440110x -千米;故答案为()440110x -.【点睛】本题主要考查代数式的书写,熟练掌握代数式的概念是解题的关键.12.7.87【分析】把千分位上的数字5进行四舍五入即可.【详解】解:7.865≈7.87(精确到百分位).故答案为7.87.【点睛】本题考查了近似数:精确到第几位是精确度的常用的表示形式.13.4【分析】根据单项式的次数是所有字母指数之和即可解答.【详解】解:∵单项式23m x y 是六次单项式,∴2+m=6,解得:m=4,故答案为:4.【点睛】本题考查单项式的次数、解一元一次方程,熟知单项式的次数是所有字母指数之和是解答的关键.14.3n+2【解析】试题分析:根据图示可知:第一个为3×1+2=5, 第二个为3×2+2=8, 第三个为3×3+2=11, ……第n 个为3n+2.故答案为:3n+2.15.(1)16;(2)-7;(3)0;(4)76-;(5)10;(6)52【分析】(1)根据有理数的加法法则计算;(2)根据有理数的加减混合运算法则计算;(3)根据有理数的乘除混合运算法则计算;(4)根据有理数的乘除混合运算法则计算;(5)先计算乘方与括号内的,再计算乘除,最后计算加减; (6)根据有理数的混合运算法则计算.【详解】解:(1)原式2366=-+16=; (2)原式9115=--7=-;(3)原式0=;(4)原式11743811⎛⎫⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭76=-; (5)原式23161234⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭166=-10=; (6)原式1112824=-+⨯⨯712=-+52=.【点睛】本题考查了有理数的混合运算,属于基础题目,熟练掌握运算法则是解题的关键. 16.(1)﹣2;(2)﹣3790;(3)﹣5;(4)25【分析】(1)先将分数化为小数,再去括号进行加减运算即可;(2)先将小数化为分数、带分数化为假分数,再利用乘法运算律进行计算即可; (3)利用乘法分配律简便计算即可;(4)先将小数化为分数,再利用乘法分配律的逆运算计算即可.【详解】解:(1)110.53 2.75742⎛⎫⎛⎫---+-+ ⎪ ⎪⎝⎭⎝⎭=()()0.5 3.25 2.757.5---+-+=0.5 3.25 2.757.5-++-=86-+=2-; (2)()11825 3.794067411⨯⨯⨯-⨯ =()113797425407410011⨯⨯⨯-⨯ =1174379(2540)()7411100-⨯⨯⨯⨯ =3791000100-⨯ =3790-;(3)357241468⎛⎫-⨯-+- ⎪⎝⎭ =3117242424468⨯-⨯+⨯ =184421-+=5-;(4)()11175250.1255088⎛⎫⨯+-⨯--⨯ ⎪⎝⎭=()1111752550888⎛⎫⨯+-⨯--⨯ ⎪⎝⎭=1(1752550)8⨯-+ =12008⨯ =25.【点睛】 本题考查有理数的加减乘除混合运算,解答的关键是熟练掌握运算法则,适当运用运算律进行简便运算.17.(1)169;(2)小4-、5-、7+三个数的和比这三个数绝对值的和小18 【分析】(1)根据题意列出算式,再进行有理数运算即可解答;(2)根据题意列出算式,再进行有理数的加减运算即可解答.【详解】(1)根据题意得:222416(31)()339-+=-=, (2)根据题意得:(∣﹣4∣+∣﹣5∣+∣7∣)﹣(﹣4﹣5+7)=4+5+7﹣(﹣2)=18,故4-、5-、7+三个数的和比这三个数绝对值的和小18.【点睛】本题考查有理数的混合运算,熟练掌握运算法则,正确列出算式是解答的关键.18.(1)0.9,85;(2)85+0.9x ;(3)余下的课本的顶部距离地面的高度118.3cm .【分析】(1)利用提供数据90.4-87.7等于3本书的高度,即可求出一本课本的厚度,进而得出课桌的高度;(2)高出地面的距离=课桌的高度+x 本书的高度,把相关数值代入即可;(3)把x=56-19代入(2)得到的代数式求值即可.【详解】解:(1)书的厚度为:(90.4-87.7)÷(6-3)=0.9cm ;课桌的高度:87.7-3×0.9=85cm ;故答案为:0.9,85;(2)∵x 本书的高度为0.9x ,课桌的高度为85,∴高出地面的距离为85+0.9x (cm );故答案为:85+0.9x ;(3)当x=56时,∴19名学生各取走一本后所剩数学课本数量为:56-19=37本,∴剩余课本距离地面的最大高度为:85+37×0.9=118.3cm ,答:余下的课本的顶部距离地面的高度118.3cm .【点睛】考查列代数式及代数式求值问题;得到课桌的高度及每本书的厚度是解决本题的突破点. 19.(1)1,2a b =-=;(2)0【分析】(1)根据绝对值及偶次方的非负性进行求解即可;(2)把a 、b 的值代入求解即可.【详解】解:(1)∵()2120a b ++-=,∴10,20a b +=-=,解得1,2a b =-=;(2)把1,2a b =-=代入()20202019a b a ++得:()()20202019121011-=+-+=-.【点睛】本题主要考查绝对值、偶次方的非负性及有理数的乘方,熟练掌握绝对值、偶次方的非负性及有理数的乘方是解题的关键.20.(1)儿童公园门口,距离儿童公园0千米;(2)37.12m ;(3)38.6【分析】全部相加便可得到答案.先求个数绝对值,再求和,便知道路程了,最后计算消耗的天然气.起步价+超出部分的钱=乘客车费,把四位乘客的钱相加即可.【详解】(1)()36 1.8 2.852960km -+-+--+-=小李在儿童公园门口,距离儿童公园0km(2)36 1.8 2.8529635.6km -+++-+++-+-+++-=335.60.27.12m ⨯=出租车共消耗天然气7.12立方米(3)()8863 2.28838.6++-⨯++=元【点睛】本题考查有理数加减法的应用,读懂题意是关键.21.初步探究:-4,-9,-4;深入思考:(1)-8×5,1×6,-a×(n-2);(2)66.【分析】初步探究:根据连减的概念进行代入计算即可得到结果;深入思考:(1)根据示例进行计算,最后得出连减规律即可;(2)运用规律进行计算即可.【详解】初步探究:42↓=2-2-2-2=-4;53↓=3-3-3-3-3=-9;543⎛⎫↓ ⎪⎝⎭=44444433333----=- ; 故答案为:-4,-9,-4;深入思考:(1)78↓==8-8-8-8-8-8-8=-8×5; ()81-↓=-1-(-1)-(-1)-(-1)-(-1)-(-1)-(-1)-(-1)=1×6;n a ↓=-a×(n-2)(n 为整数,且n ≥2)故答案为:-8×5,1×6,-a×(n-2);(2)()75124422⎛⎫-↓⨯+↓÷- ⎪⎝⎭=1()(72)24(4)(52)(2)2--⨯-⨯+-⨯-÷- =1524+(4)3(2)2⨯⨯-⨯÷- =60+6=66.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘法运算,另一方面也考查了学生的阅读理解能力.22.(1)0;(2)5;(3)2t ,2t-4;(4)1,3,7,9.【分析】(1)计算出点P 移动的距离,点A 的坐标加上点P 移动的距离,即可得到答案;(2)求出点P 与点B 重合时,点P 移动的距离,根据时间=距离÷速度,即可得到答案; (3)①在点P 由点A 到点B 的运动过程中,点P 与点A 的距离为:速度×时间,即可得到答案,②在点P 由点A 到点B 的运动过程中,点P 表示的有理数是:点P 与点A 的距离+点A 的坐标,即可得到答案,(4)设在点P 由点A 到点B 的运动过程中,当点P 移动到点-2时,与原点距离是2个单位,所用时间为t 1,在点P 由点A 到点B 的运动过程中,当点P 移动到点2时,与原点距离是2个单位,所用时间为t 2,点P 到达点B 后,返回过程中,当点P 移动到点2时,与原点距离是2个单位,所用时间为t 3,点P 到达点B 后,返回过程中,当点P 移动到点-2时,与原点距离是2个单位,所用时间为t 4,列出四个一元一次方程,解之即可.【详解】解:(1)当t=2时,点P 移动的距离为:2×2=4, 此时点P 表示的有理数为:-4+4=0,即t=2时点P 表示的有理数为0,故答案为:0;(2)当点P 与点B 重合时,点P 移动的距离为:6-(-4)=10,移动的时间t=10÷2=5(秒),即点P与点B重合时t的值为5,故答案为:5;(3)①在点P由点A到点B的运动过程中,点P与点A的距离为:2t,②在点P由点A到点B的运动过程中,点P表示的有理数是2t-4,故答案为:2t,2t-4;(4)设在点P由点A到点B的运动过程中,当点P移动到点-2时,与原点距离是2个单位,所用时间为t1,2t1-4=-2,解得:t1=1,设在点P由点A到点B的运动过程中,当点P移动到点2时,与原点距离是2个单位,所用时间为t2,2t2-4=2,解得:t2=3,设点P到达点B后,返回过程中,当点P移动到点2时,与原点距离是2个单位,所用时间为t3,2t3=10+(6-2),解得:t3=7,设点P到达点B后,返回过程中,当点P移动到点-2时,与原点距离是2个单位,所用时间为t4,2t4=10+[6-(-2)],解得:t4=9,即所有满足条件的t的值为:1,3,7,9.故答案为:1,3,7,9.【点睛】本题考查了一元一次方程的应用和数轴,解题的关键是:正确掌握速度,时间,距离公式,数轴的定义,正确找出等量关系,列出一元一次方程.。

2020-2021学年初一(上)期中考试数学试卷(含答案)

2020-2021学年初一(上)期中考试数学试卷(含答案)

2020-2021学年初一(上)期中考试数 学(考试时间90分钟 满分100分)18分)1.如图是加工零件尺寸的要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .44.98D .Φ45.012.下列运算中正确的是( )A .2(2)4-=- B .224-= C .3(3)27-=- D .236= 3.若37x =是关于x 的方程70x m +=的解,则m 的值为( ) A .3- B .13- C .3 D .134.若单项式12m a b -与212n a b 是同类项,则mn 的值是( ) A .3 B .6 C .8 D .95.下列各式中,是一元一次方程的是( )A .852020x y -=B .26x -C .212191y y =+D .582x x +=6.下列计算正确的是( )A .8(42)8482÷+=÷+÷B .1(1)(2)(1)(1)12-÷-⨯=-÷-= C .3311311636624433434⎛⎫⎛⎫⎛⎫-÷=-⨯=-⨯+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .[](2)(2)40--+÷= 7.下列方程的解法,其中正确的个数是( ) ①14136x x ---=,去分母得2(1)46x x ---= ②24132x x ---=,去分母得2(2)3(4)1x x ---= ③2(1)3(2)5x x ---=,去括号得22635x x ---=④32x =-,系数化为1得32x =- A .3 B .2 C .1 D .08.2020年国庆档电影《我和我的家乡》上映13天票房收入达到21.94亿元,并连续10天拿下票房单日冠军.其中21.94亿元用科学记数法可表示为( )A .821.9410⨯元B .82.19410⨯元C .100.219410⨯元D .92.19410⨯元9.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n二、填空题(本题共有9小题,每小题3分,共27分)10.如果数轴上A 点表示3-,那么与点A 距离2个单位的点所表示的数是 .11.比较大小:78- 89-(填“>”“<”或“=”) 12.历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示,例如多项式2()25f x x x =+-,则(1)f -= .13.用四舍五入法将3.694精确到0.01,所得到的近似值为 .14.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如()2222153x x x x --+=-+-,则所捂住的多项式为 .15.“☆”是新规定的某种运算符号,设a ☆b =ab a b +-,若2 ☆8n =-,则n = .16.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知2m n +=-,4mn =-,则2(3)3(2)mn m n mn ---的值为 .17.某校为学生购买名著《三国演义》100套、《西游记》80套,共用12 000元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x 元,可列方程为 .18.观察下列一组算式:2231881-==⨯,22531682-==⨯,22752483-==⨯,22973284-==⨯……根据你所发现的规律,猜想22201920178-=⨯ .三、按要求解答(第19小题8分,第20小题5分,第21小题10分,共23分)19.计算题(每小题4分,共8分) ①3511114662⎛⎫---- ⎪⎝⎭ ②[]31452(3)5211⎛⎫-⨯-÷-+ ⎪⎝⎭20.(本题5分)化简并求值:222212(2)()2x xy y xy x y ⎡⎤⎛⎫---+- ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 的取值如图所示.21.解方程(每小题5分,共10分)①3(202)10y y --= ②243146x x --=-四、解答题(第22、23小题4分,第24小题5分,共13分)22.(本题4分)解一元一次方程的过程就是通过变形,把一元一次方程转化为x a =的形式.下面是解方程20.30.410.50.3x x -+-=的主要过程,请在如图的矩形框中选择与方程变形对应的依据,并将它前面的序号填入相应的括号中.解:原方程可化为4153x +-=( ) 去分母,得3(203)5(104)15x x --+=( )去括号,得609502015x x ---=( )移项,得605015920x x -=++( )合并同类项,得1044x =(合并同类项法则) 系数化为1,得 4.4x =(等式的基本性质2)23.(本题4分)阅读材料,回答问题.计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭解:原式的倒数为211213106530⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭ =2112(30)31065⎛⎫-+-⨯- ⎪⎝⎭=203512-+-+=10-故原式=110- 根据材料中的方法计算113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭. 24.(本题5分)在某地住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示). (1)用含m ,n 的代数式表示该广场的面积S ;(2)若m ,n 满足2(6)50m n -+-=,求出该广场的面积.五、解答题(第25、26小题6分,第27小题7分,共19分)25.(本题6分)列代数式或一元一次方程解应用题请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打8折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.26.(本题6分)下表中的字母都是按一定规律排列的.我们把某格中的字母的和所得多项式称为特征多项式,例如第1格的“特征多项式”为62x y +,第2格的“特征多项式”为94x y +,回答下列问题.(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n 格的“特征多项式”为 ;(n 为正整数)(2)求第6格的“特征多项式”与第5格的“特征多项式”的差.27.(本题7分)在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的13倍,我们就把点C叫做【A,B】的理想点.例如:图中,点A表示的数为-1,点B表示的数为3.表示数0的点C到点A的距离是1,到点B的距离是3,那么点C是【A,B】的理想点;又如,表示数2的点D到点A的距离是3,到点B的距离是1,那么点D 就不是【A,B】的理想点,但点D是【B,A】的理想点.(1)当点A表示的数为-1,点B表示的数为7时,①若点C表示的数为1,则点C(填“是”或“不是”)【A,B】的理想点;②若点D是【B,A】的理想点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为-2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止.请直接写出点C运动多少秒时,C,A,B中恰有一个点为其余两点的理想点?参考答案一、选择题(每小题2分,共18分)二、填空题(每小题3分,共27分)19.计算题(每小题4分,共8分)①原式=3511114662--+┈┈┈┈┈┈┈┈┈┈1分 =5131116642--++ =1224-+┈┈┈┈┈┈┈┈┈┈3分 =14┈┈┈┈┈┈┈┈┈┈4分 ②原式=14582211⎛⎫-⨯-÷ ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈2分 =24--┈┈┈┈┈┈┈┈┈┈3分=6-┈┈┈┈┈┈┈┈┈┈4分20.解:原式=22221242x xy y xy x y ⎛⎫---+- ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈1分 =22221242x xy y xy x y --+-+┈┈┈┈┈┈┈┈┈┈2分 =272x xy -┈┈┈┈┈┈┈┈┈┈3分 当2x =,1y =-时┈┈┈┈┈┈┈┈┈┈4分原式=2722(1)112-⨯⨯-=┈┈┈┈┈┈┈┈┈┈5分21.解方程(每小题5分,共10分)①3(202)10y y --=解:60610y y -+=┈┈┈┈┈┈┈┈┈┈2分61060y y +=+┈┈┈┈┈┈┈┈┈┈3分770y =┈┈┈┈┈┈┈┈┈┈4分10y =┈┈┈┈┈┈┈┈┈┈5分 ②243146x x --=- 解:3(2)122(43)x x -=--┈┈┈┈┈┈┈┈┈┈1分361286x x -=-+┈┈┈┈┈┈┈┈┈┈2分361286x x -=-+┈┈┈┈┈┈┈┈┈┈3分310x -=┈┈┈┈┈┈┈┈┈┈4分103x =-┈┈┈┈┈┈┈┈┈┈5分 四、解答题(第22、23小题4分,第24小题5分,共13分)22.③;②;④;①┈┈┈┈┈┈┈┈┈┈4分23.解:原式的倒数为132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭┈┈┈┈┈┈┈┈┈┈1分 1322(42)61437⎛⎫=-+-⨯- ⎪⎝⎭792812=-+-+14=-┈┈┈┈┈┈┈┈┈┈3分故原式=114-┈┈┈┈┈┈┈┈┈┈4分 24.解:(1)S 7220.52m n n m mn =⋅-⋅=┈┈┈┈┈┈┈┈┈┈2分 (2)由题意得6050m n -=⎧⎨-=⎩,解得65m n =⎧⎨=⎩┈┈┈┈┈┈┈┈┈┈3分当6m =,5n =时 S 7651052=⨯⨯=┈┈┈┈┈┈┈┈┈┈5分五、解答题(第25、26小题6分,第27小题7分,共19分)25.解:(1)设一个水瓶x 元,则一个水杯是(48)x -元┈┈┈┈┈┈┈┈┈┈1分34(48)152x x +-=┈┈┈┈┈┈┈┈┈┈2分40x =┈┈┈┈┈┈┈┈┈┈3分∴4848408x -=-=┈┈┈┈┈┈┈┈┈┈4分答:一个水瓶40元,一个水杯8元.(2)甲商场需付款:80%(540208)288⨯⨯+⨯=(元)┈┈┈┈┈┈┈┈┈┈5分 乙商场需付款:5408(2052)280⨯+⨯-⨯=(元)┈┈┈┈┈┈┈┈┈┈6分 ∴选择乙商场更划算.26.解:(1)126x y +;158x y +;3(1)2n x ny ++┈┈┈┈┈┈┈┈┈┈3分(2)(2112)(1810)x y x y +-+┈┈┈┈┈┈┈┈┈┈5分32x y =+┈┈┈┈┈┈┈┈┈┈6分27.(1)①是┈┈┈┈┈┈┈┈┈┈1分②5或11┈┈┈┈┈┈┈┈┈┈3分(2)设运动时间为t 秒,则BC t =,6AC t =-依题意,得C 是【A ,B 】的理想点时有16=3t t -,∴92t = C 是【B ,A 】的理想点时有1(6)3t t =-,∴32t = A 是【C ,B 】的理想点时有16=63t -⨯,∴4t =B 是【C ,A 】的理想点时有1=6=23t ⨯ 答:点C 运动92秒、32秒、4秒、2秒时,C ,A ,B 中恰有一个点为其余两点的理想点.┈┈┈┈┈┈┈┈┈┈7分。

2020-2021学年北师大版七年级第一学期期中考试数学试卷(含答案)

2020-2021学年北师大版七年级第一学期期中考试数学试卷(含答案)

七年级上学期期中考试数学试卷一、选择题(共12小题;共36分)1.在-3,-1,0,1四个数中,比-2小的数是( )A .-3B .-1C .0D .12.据世界卫生组织2020年10月21日公布的数据显示,全球累计新冠确诊病例达4066万多例,将数据4066万用科学记数法表示为( )A .4.066×105B .4.066×106C .4.066×107D .4.066×1083.下列正方体的展开图上每个面上都有一个汉字.其中,手的对面是口的是( )A .B .C .D .4.下列计算正确的是( ) A .-2a +5b =3abB .-22+│-3│=7C .3ab 2-5b 2a =-2ab 2D .-5÷3×(-13)=55.下列说法中,正确的是( ) A .有理数就是有限小数和无限小数的统称 B .数轴上的点表示的数都是有理数 C .一个有理数不是整数就是分数 D .正分数、零、负分数统称为分数 6.若a ,b 互为相反数,c ,d 互为倒数,则代数式(a +b -1)(cd +1)的值是( ) A .1 B .0 C .-1 D .-2 7.已知│a -2│+(b +3)2=0,则b a 的值是( )A .-6B .6C .-9D .98.如果12a x y +与21b x y -是同类项,那么a b的值是( )A .12B .32C .1D .39.数a ,b 在数轴上的位置如图所示,下列式子中错误的是( )A .a <bB .-a <bC .a +b <0D .b -a >010.计算-3(x -2y )+4(x -2y )的结果是( ) A .x -2y B .x +2y C .-x -2y D .-x +2y 11.已知x -2y =1,则3-2x +4y 的值为( )A .-1B .0C .1D .212.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( ) A .13=3+10 B .25=9+16 C .36=15+21 D .49=18+31二、填空题(共4小题;共12分)13.如果风车顺时针旋转60°记作+60°,那么逆时针旋转80°记作________.14.如果数轴上点A 表示3,将点A 向左移动6个单位长度;再向右移动4个单位长度,那么终点表示的数是________.15.如果对于任何非零有理数a ,b 定义一种新的运算“”如下:a b =1b a-,则(-4)★2的值为________.16.计算:(-1)+(-1)2+(-1)3+……+(-1)2020=________.三、解答题(共7小题;共52分) 17.(20分)计算与化简: (1)-9+5-(-12)+(-3) (2)-2÷(-124)×(-4.5)(3)(-32)×(316-58+74) (4)-34×[-32×(-23)2+(-22)]18.(10分)化简:(1)(-2ab+3a)-2(2a-b)+2ab.(2)先化简,再求值:5a2+3b2+2(a2-b2)-(5a2-3b2),其中a=-1,b=12.19.(4分) 小明用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,请你帮助小明在①上补全.(作图要求:先用尺和铅笔画图,再用黑色的签字笔描一遍) (3)小明说:已知这个长方形纸盒高为3cm,底面是一个正方形,并且这个长方形纸盒所有棱长的和是92cm,请计算,这个长方体纸盒的体积是___________cm3.20.(4分)体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组10名女生的成绩记录,其中“”号表示成绩大于18秒,“-”号表示成绩小于18秒.-1 +0.8 -1.2 -0.5 +0.6 0-0.4-0.2 -0.1 +121.(4分) 若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为h (单位为:cm).(1)用m,n,h表示所需地毯的面积;(2)若m=160,n=60,h=75,求地毯的面积.22.(4分)福田农批市场某商店出售茶杯和茶壶,茶杯每个定价4元,茶壶每个定价20元.该商店的优惠办法是买一个茶壶赠一个茶杯.某顾客欲购买茶壶5个,购买(包括送的)茶杯x个(x>5).(1)用含x的式子表示这位顾客应付的钱数;(2)当x=12时,该顾客应付多少元?23.(6分)“数形结合”是重要的数学思想.请你结合数轴与绝对值的知识回答下列问题:(1)一般地,数轴上表示数m和数n的两点之间的距离等于│m-n│.如果表示数a和-2的两点之间的距离是3,记作│a-(-2)│=3,那么a=.(2)利用绝对值的几何意义,探索│a+4│+│a-2│的最小值为______,若│a+4│+│a-2│=10,则a的值为________.(3)当a=______时,│a+5│+│a-1│+│a-4│的值最小.(4)如图,已知数轴上点A表示的数为4,点B表示的数为1,C是数轴上一点,且AC=8,动点P从点B出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.点M是AP的中点,点N是CP的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,求线段MN的长度.参考答案一、选择题:17.(1)5;(2)-4;(3)-42;(4)618.(1).(2),当,,.19.(1)8(2)如图,四种情况.(3)这个长方体纸盒的体积为:300立方厘米.20.达标率为70%;平均成绩为17.9秒.21.(1)地毯的面积为:;(2)地毯的面积为18600cm2.22.(1);(2)128元.23.(1)1或-5(2)最小值为6;a的值为4或-6(3)当时,式子的值最小,最小值是9.(4)线段MN的长度不发生变化.理由:分两种情况:①当点P在A,C两点之间运动时,如图:;②当点P运动到点C的左边时,如图:.综上所述,线段MN的长度不发生变化,其值为4.。

吉林省长春市2020版七年级上学期数学期中考试试卷A卷

吉林省长春市2020版七年级上学期数学期中考试试卷A卷

吉林省长春市2020版七年级上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2015七上·海南期末) 数轴上的点A到原点的距离是6,则点A表示的数为()A . 6或﹣6B . 6C . ﹣6D . 3或﹣32. (2分)(2019·龙湾模拟) 计算:的结果是()A .B .C . 2D . 123. (2分)小明的存款是a元,小华的存款是小明存款的一半还多2元,则小华存款()A . a-2元B . a+2元C . (a+2)元D . (a-2)元4. (2分)下列四个等式中,一元一次方程是()A . =1B . x=0C . x2﹣1=0D . x+y=15. (2分)下列计算中,不正确的是()A . 5x5-x5=4x5B . x3÷x=x2C . (-2ab)3=-6a3b3D . 2a•3a=6a26. (2分)下列定义一种关于n的运算:①当n是奇数时,结果为3n+5 ②当n为偶数时,结果是(其中k是使是奇数的正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是()A . 1B . 2C . 7D . 8二、填空题 (共10题;共10分)7. (1分) (2019七上·高港月考) ________的平方等于 .8. (1分) (2019七下·合浦期中) 若与是同类项,则 ________.9. (1分) (2018七上·郓城期中) 画出数轴,在数轴上表示下列各数:-2,1.5,0,,4,并回答问题:按从小到大的顺序用“<”连接上面各数;________;10. (1分) (2019七上·简阳期末) 下列说法错误的是________ (只填序号).①有理数分为正数和负数;②所有的有理数都能用数轴上的点表示:③符号不同的两个数互为相反数;④两数相加,和一定大于任何一个加数;⑤两数相减,差一定小于被减数.11. (1分) (2019七下·新田期中) 已知a,b,m,n满足am + bn = 9,an - bm = 3 ,则(a2+b2)(m2+n2)的值为________.12. (1分)一件商品按成本价提高20%标价,然后打9折出售,此时仍可获利16元,则商品的成本价为________元.13. (1分) (2018七上·庐江期中) 如果m是最大的负整数,n是绝对值最小的有理数,那么代数式2017m+2018n 的值为________.14. (1分)已知关于x的方程ax+b=0,有以下四种说法:①若x=1是该方程的解,则a+b=0;②若a=﹣1,则x=b是该方程的解;③若a≠0,则该方程的解是x=﹣;④若a=0,b≠0,则该方程无解.其中所有正确说法的序号是________.15. (1分)(2018·秀洲模拟) 数轴上有三点A,B,C,且A,B两点间的距离是3,B,C两点的距离是1.若点A表示的数是﹣2,则点C表示的数是________.16. (1分)一列分数的前4个是,,,,根据这4个分数的规律可知,第8个分数是 ________.三、解答题 (共12题;共84分)17. (5分) (2017七上·西城期末) 36×( - - )18. (5分) (2017七上·重庆期中) 化简:①(4x2y﹣3xy2)﹣(1+4x2y﹣3xy2);②4y2﹣[3y﹣(3﹣2y)+2y2].19. (5分)解方程:20. (5分) (2020七上·鹿邑期末) 先化简,再求值:,其中 .21. (5分) (2017七上·上城期中) 把下列各数在数轴上表示出来,并按从小到大的顺序用“ ”号连起来.,,,22. (10分) (2018七上·自贡期末) 若、互为相反数,、互为倒数,的绝对值为2.(1)分别直接写出,,的值;(2)求的值.23. (1分)已知单项式与﹣3x2n﹣3y8是同类项,则3m﹣5n的值为________.24. (15分)兴泰公路养护小组乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+8,-9,+4,-3,+11,-6,-8.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车行驶每千米耗油量为a升,求这次养护小组的汽车共耗油多少升.25. (10分) (2019七上·江苏期中) 已知A=﹣xy+x+1,B=4x+3y,(1)当x=﹣2, y=0.6时,求A+2B的值;(2)若代数式2A﹣B的结果与字母y的取值无关,求x的值26. (10分)根据给出的数轴,回答下列问题:(1)写出点A表示的数的相反数和点B表示的数的绝对值(2)将点A先向右移动1.5个单位长度,再向左移动5个单位长度,得到点C,在数轴上表示出点C,并写出点C 表示的数.27. (4分) (2019七上·温岭期中) 定义:如果10b=n ,那么称b为n的劳格数,记为b=d(n).(1)根据劳格数的定义,可知:d(10)=1,d(102)=2,那么:d(103)=________.(2)劳格数有如下运算性质:若m,n为正数,则d(mn)=d(m)+d(n); d()=d(m)﹣d(n).若d(3)=0.48,d(2)=0.3,根据运算性质,填空:d(6)=________,则d()=________,d()=________.28. (9分) (2016七上·鄱阳期中) 如图是由边长为1cm的若干个正方形叠加行成的图形,其中第一个图形由1个正方形组成,周长为4cm,第二个图形由4个正方形组成,周长为10cm.第三个图形由9个正方形组成,周长为16cm,依次规律…(1)第四个图形有________个正方形组成,周长为________ cm.(2)第n个图形有________个正方形组成,周长为________ cm.(3)若某图形的周长为58cm,计算该图形由多少个正方形叠加形成.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共12题;共84分)17-1、18-1、19-1、20-1、21-1、22-1、22-2、23-1、24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。

2023-2024学年吉林省长春市七年级上册期中数学学情调研模拟试题(附答案)

2023-2024学年吉林省长春市七年级上册期中数学学情调研模拟试题(附答案)

2023-2024学年吉林省长春市七年级上学期期中数学质量检测模拟试题一、选择题(本大题共8小题,每小题3分,共24分)1.冬天的脚步近了,白天和夜晚的温差很大,白天的最高气温能达到2℃左右。

夜晚的最低气温为﹣13℃左右,则白天最高气温与夜晚最低气温的温差是()A.15℃B.11℃C.﹣15℃D.﹣11℃2.如图,是一个正方体的表面展开图,原正方体中与“旺”字所在的对的面上的字是()A.实B.验C.中D.学3.长春市地铁6号线于2019年9月底开工,工程总投资的12400000000元,预计于2024年开通运营,其中12400000000这个数用科学记数法表示为()A.0.124×1011B.1.24×108C.1.24×1010D.1.24×10114.下列说法正确的是()A.0是最小的有理数B.整数和分数统称有理数C.所有的整数都是正数D.零既可以是正整数,也可以是负整数5.下列互为相反数的是()A.﹣(+5)与+(﹣5)B.13与﹣0.33C.2--与2D.﹣(﹣4)与46.按括号内的要求用四舍五入法取近似数,其中正确的是()A.0.0136≈0.013(精确到0.001)B.2.705≈2.71(精确到十分位)C.0.172≈0.2(精确到0.1)D.104.58≈105.0(精确到个位)7.下列说法正确的是()A.4a3b的次数是3B.23x yπ-的系数是13-C.2a+b﹣1的各项分别为2a,b,1D.多项式2x2+xy+3是二次三项式.8.如图,数轴上点A、B、C分别表示有理数a、b、c,若ac<0,a+b>0,则原点位于()A .点A 的左侧B .点A 与点B 之间C .点B 与点C 之间D .在点C 的右侧二、填空题(本大题共6小题,每小题3分,共18分)9.比较大小:43-______54-(填“<”或“>”或“=”).10.“九台卡伦湖半程马拉松”活动于2023年9月23日在卡伦湖力旺实验学校鸣枪开跑,某同学参加了5公里的欢乐跑项目,他从起点开始以平均每分钟x 公里的速度跑了8分钟,此对他离欢乐跑终点的路程为______公里.(用含x 的代数式表示)11.将多项式:x 2﹣1+2x ﹣3x 3按字母x 的降幂排列为______.12.当k =______时,多项式22(1)342x k xy y xy ++---中不含xy 项.13.如图,已知线段AB =4m ,延长线段AB 至点C ,使得BC =2AB .若点D 是线段AC 的中点,则线段BD =______cm .(13题)14.如图是一个有理数运算程序的流程图,请根据这个程序回答问题,当输入的数为﹣4时,最后输出的结果是______.(14题)三、解答题(本大题共10小题,共78分)15.(9分)计算:(1)(﹣7)﹣(﹣10)+(﹣8)﹣(+2);(2)23142344⎛⎫⎛⎫⎛⎫⨯-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)()22022315364⎛⎫⎡⎤-⨯--+÷- ⎪⎣⎦⎝⎭.6.(6分)计算:(1)()99341713⨯-.(2)5121129336⎛⎫-+÷ ⎪⎝⎭.17.(6分)如图是由一些大小相同的小正方体组合成的简单几何体,请在方格纸中分别截出它的主视图、左视图和俯视图.正面主视图左视图俯视图18.(6分)化简:(1)(6a ﹣4b )﹣(7a ﹣9b )(2)4(3x 2y ﹣xy 3)﹣3(﹣xy 3+2x 2y ).19.(6分)先化简,再求值:()()2232322x xy x y xy y ⎡⎤---++⎣⎦,其中12x =-,y =﹣3.20.(7分)某超市销售茶壶茶杯,茶壶每只定价40元,茶杯每只5元,超市在“双十一”期间开展促销活动,向顾客提供两种优惠方案:①买一只茶壶赠一只茶杯;②茶壶和茶杯都按定价的90%付款,现某顾客要到该超市购买茶壶7只,茶杯x 只(茶杯数多于7只)。

北师大版2020-2021学年度七年级(上)期中数学试卷(附答案)

北师大版2020-2021学年度七年级(上)期中数学试卷(附答案)

2020-2021学年度七年级(上)期中数学试卷1.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是( )A. 6.75×103B. 67.5×103C. 6.75×104D. 6.75×1052.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“神”相对的面上的汉字是( )A. 太B. 空C. 漫D. 步3.多项式52x2−2x+1的次数是( )A. 4B. 3C. 2D. 14.如果|a|=|b|,那么a与b的关系是( )A. 相等B. 互为相反数C. 都是零D. 相等或互为相反数5.下列各组中的两项属于同类项的是( )A. 52x2y与−32xy3 B. −8a2b与5a2cC. 14pq与−52qp D. 19abc与−28ab6.如图是从一个几何体的上面看到的图形,其中数字代表几何体的高度,那么从这个几何体左面看到的图形是( )A. B. C. D.7.下列结果运算为负值的是( )A. (−7)×(−67) B. (−213)+52C. 0×(−2)D. 6÷(−15)8.一个直角三角形的三条边分别为3、4、5,将这个三角形绕它的直角边所在直线旋转一周得到的几何体的体积是( )A. 12πB. 16πC. 12π或16πD. 36π或48π9.将半圆绕它的直径旋转一周形成的几何体是______ .10.若火箭发射点火前5秒记为−5秒,那么火箭发射点火后10秒应记为______ .11.在式子:−8、−6mn7、2a2+3a−1、3b2a、0中,单项式有______ 个.12.用一个平面去截下列几何体:①正方体;②圆柱;③长方体;④四棱柱.截面可能是三角形的有______.(填写序号)13.下面是一个简单的数值运算程序,当输入x的值为2时,输出的数值是______ .14.由一些大小相同的小正方体组成一个几何体,从正面看和从上面看的形状图如图所示,那么组成该几何体所需小正方体的个数最少为______ .15.化简−1−(2a−1)的结果是______ .16.在数轴上有示a、b、c三个实数的点的位置如图所示化简式子:|b−a|+|c−a|−|c−b|=______ .17.(1)32.54+(−5.4)+(−12.54)−(−5.4)(2)(−56+38)÷(−124)(3)18+6÷(−2)×(−1 3 )(4)−14−23÷(−4)3−(14−18)(5)化简:3a+2b−5a−b(6)化简:−(b−4)+4(−b−3)(7)化简,求值:2(a2b+ab2)−2(a2b−1)−3ab2+2,其中a=−2,b=2.18.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.19.某品牌的太阳能热水器在夏季的一天中午12点时水的温度是53℃,下午每小时下降0.8℃,求18点时水的温度.(列式计算)20.今年“十一”黄金周期间,某风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数,单位:万人):日期1日2日3日4日5日6日7日人数变化+1.8+0.8+0.2−0.4−0.8+0.2−1.0(1)若9月30日的游客人数为0.3万人,求10月5日的游客人数;(列式计算)(2)七天内游客人数最多的是______ 日,最少的是______ 日;(3)若以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数变化情况.21.某公园的成人票价每张50元,儿童票价每张30元;甲旅游团有a名成人和b名儿童,乙旅游团的成。

2020-2021学年七年级上学期期中考试数学试题(含答案)

2020-2021学年七年级上学期期中考试数学试题(含答案)

2020-2021学年七年级上学期期中考试数学试题一、选择题1.在1,−2,−3,4这四个数中,任取两个数相乘,所得积最大的是()A. −12B. −2C. 4D. 62.下列说法中,正确的个数是()①一个负数的相反数大于这个负数;②互为倒数的两个数符号相反;③一个正数的相反数小于这个正数;④互为相反数的两个数的和为0.A. 1个B. 2个C. 3个D. 4个3.数轴上表示互为相反数m与−m的点到原点的距离()A. 表示数m的点离原点较远B. 表示数−m的点距原点较远C. 一样远D. 无法比较4.下列说法,错误的是()A. 所有的有理数都可以用数轴上的点表示B. 数轴上的原点表示0C. 在数轴上表示−3的点与表示+1的点的距离是2D. 数轴上表示−513的点在原点负方向513个单位5.2019年“国庆”期间,我市接待海内外游客共690000人次,将690000这个数用科学记数法表示为()A. 6.9×105B. 0.69×106C. 69×104D. 6.9×1066.下列式子中,符合书写规范的是()A. m÷nB. 235x C. yx D. a×20%7.π2与下列哪一个是同类项()A. abB. ab2 C. 22 D. m8.如图所示,边长为a的正方形中阴影部分的面积为()A. a2−π(a2)2 B. a2−πa2 C. a2−πa D. a2−2πa9.下列运算正确的是()A. 3a+2a=5a2B. 3a+3b=3abC. 2a2bc−a2bc=a2bcD. a5−a2=a310.代数式7a3−6a3b+3a2b+3a2+6a3b−3a2b−10a3的值()A. 与字母a,b都有关B. 只与a有关C. 只与b有关D. 与字母a,b都无关11.若当x=3时,代数式x2+mx+2有最小值,则当x2+mx=7时,x的值为()A. x=0或x=6B. x=1或x=7C. x=1或x=−7D. x=−1或x=7二、填空题12.如下图是一个运算程序的示意图,若开始输入x的值为625,则第2020次输出的结果为.(1)若单项式−58a2b m与−117x3y4是次数相同的单项式,则m的值为;(2)如果−axy b是关于x、y的四次单项式,且系数为7,那么a+b=.13.用含字母的式子表示:(1)若三角形的底边长是x,底边上的高是y,则该三角形的面积为________;(2)21的n倍可以表示为________;2(3)一个三位数,个位上的数字为a,十位上的数字为b,百位上的数字为c.则这个三位数为________.14.今年1~5月份,深圳市累计完成地方一般预算收入216.58亿元,数据216.50亿精确到__________,有效数字有________ 个。

2020-2021长春市初一数学上期中试题带答案

2020-2021长春市初一数学上期中试题带答案
【详解】
解:设摆出第n个图案用火柴棍为Sn.
①图,S1=1×(1+1)+1×(1+1);
②图,S2=2×(2+1)+2×(2+1);
③图,S3=3×(3+1)+3×(3+1);
…;
第n个图案,Sn=n(n+1)+n(n+1)=2n(n+1).
则第⑥个图案为:2×6×(6+1)=84.
故选A.
【点睛】
20.若a与b互为相反数,c与d互为倒数,则a+b+3cd=_____.
三、解答题
21.一个角的余角比这个角的补角的 还小10°,求这个角.
22.先化简,再求值:2(x2y+3xy)﹣3(x2y﹣1)﹣2xy﹣2,其中x=﹣2,y=2.
23.在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示)
16.用科学记数法表示:-206亿=______.
17.已知 ,化简 =_______.
18.下列图形都是由大小相同的小正方形按一定规律组成的,其中第1个图形的周长为4,第2个图形的周长为10,第3个图形的周长为18,…,按此规律排列,第5个图形的周长为______.
19.一只蚂蚁从数轴上一点A出发,爬了7个单位长度到了+1,则点A所表示的数是_____
【详解】
设小长方形的宽为x,则其长为 -6x=34-6x,
所以AD=5x,CD=2(34-6x)=68-12x,
则有5x=68-12x,
解得:x=4,
则大长方形的面积为7×4×(34-6×4)=280,
故选C.
8.A
解析:A

吉林省长春市东北师大附中明珠学校2024-2025学年七年级上学期期中数学测试卷

吉林省长春市东北师大附中明珠学校2024-2025学年七年级上学期期中数学测试卷

吉林省长春市东北师大附中明珠学校2024-2025学年七年级上学期期中数学测试卷一、单选题1.在初一年级“数式龙舟渡”活动中,年级的平均分是86分,小亮得了92分,记作6+分,若小敏的成绩记作4-分,则她的实际得分为()A .80分B .82分C .84分D .90分2.“染色体”是人类“生命之书n 中最长也是最后被破解的一章,据报道,第一号染色体中共有223000000个碱基对,223000000用科学记数法可表示为()A .62.2310⨯B .622310⨯C .722.310⨯D .82.2310⨯3.下列说法正确的是()A .一个有理数不是正数就是负数;B .分数包括正分数、负分数和零;C .有理数分为正有理数、负有理数和零;D .整数包括正整数和负整数.4.下列各组有理数的大小比较,正确的是()A .12<-B .()10.33--<-C .83217-<-D .()70--<5.下列去括号的变形中,正确的是()A .()2323a b c a b c --=--B .()3221341a b a b +-=+-C .()2323a b c a b c+-=+-D .()m n a b m n a b-+-=-+-6.下列赋予代数式“3a ”实际意义的例子中,错误的是()A .如果一个篮球的价格是a 元,那么3a 表示3个篮球的总价B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,销售这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数7.如图,数轴上依次有A ,B ,C 三点,它们对应的数分别是a ,b ,c ,若212,0BC AB a b c ==++=,则点C 对应的数为()A .8B .10C .12D .168.如图是一个运算程序的示意图,若输入x 的值为81,则第2024次输出的结果为()A .1B .3C .9D .无法确定二、填空题9.﹣34的相反数是.10.单项式225xy 的次数是.11.用四舍五入法将8.235精确到百分位,结果是.12.用代数式表示:a 的平方与(0)b b ≠的倒数的和.13.一批零件共有m 个,乙先加工n 个零件后()m n >,余下的任务由甲再做5天完成,则甲平均每天加工的零件数是个.14.如果2223m x y +-与412n x y +是同类项,那么3n m ⎛⎫=⎪⎝⎭.15.如果252a b -=-,那么代数式28410a b -+的值是.16.找出图形变化的规律,则第2024个图形中黑色正方形的数量是.三、解答题17.计算:(1)()()7159+---;(2)51362⎛⎫-+- ⎪⎝⎭(3)()15672÷-⨯;(4)512.584⎛⎫⎛⎫÷-⨯- ⎪ ⎪⎝⎭⎝⎭(5)23324372⎛⎫⎛⎫⨯---÷⎪ ⎪⎝⎭⎝⎭(6)()420231928⎡⎤---+-÷⎣⎦18.简便计算:(1)51310.75848-+-;(2)()4153691218⎛⎫-⨯-- ⎪⎝⎭;(3)()4200045÷-;(4)()511212121848⨯--⨯+⨯.19.计算:(1)2222573x y xy xy x y ---;(2)()22113242a ab a ab ---20.如图所示是一个长方形.(1)根据图中尺寸大小,用含x 的代数式表示阴影部分的面积S ;(2)若4x =,求S 的值.21.已知有理数0,0,0a b c >><,且||||||a c b <<.(1)在如图所示的数轴上将,,a b c 三个数表示出来;(2)化简:||||||a b c a b ++--.22.某自行车厂计划一周生产自行车2100辆,平均每天生产300辆.由于各种原因实际每天生产量与计划量相比有出入.规定当天超过300辆的部分记为“+”,不足300辆的部分记为“-”,下表是这一周的生产情况:星期星期一星期二星期三星期四星期五星期六星期日记录4+3-5-12+11-18+9-(1)产量最多的一天比产量最少的一天多生产____辆;(2)求这一周实际生产自行车的数量;(3)该厂实行计件工资,每生产一辆车可得70元.每天以300辆为基准,若当天超额完成,则超过部分每辆奖励20元;若当天没有完成,则每少生产一辆扣20元,求这一周工人的工资总额.23.阅读材料,并回答问题.钟表中蕴含着有趣的数学运算,不用负数也可以作减法.例如现在是10时,4小时以后是几时虽然10414+=,但在表盘上看到的是2时.如果用符号“⊕”表示钟表上的加法,则1042⊕=.若问3时之前5小时是几时,就得到钟表上的减法概念,用符号“!”表示钟表上的减法,则3510=!.(注:用.0时代替...12时.)根据上述材料解决下列问题:(1)79⊕=____,15=!____;(2)①在有理数运算中,相加得零的两个数互为相反数,如果在钟表运算中沿用这个概念,则8的相反数是____,a 的相反数是____(用含a 的代数式表达);②判断有理数减法法则“减去一个数等于加上这个数的相反数”在钟表运算中是否仍然成立?____(填“是”或“否”);(3)规定在钟表运算中也有01234567891011<<<<<<<<<<<,对于钟表上的任意数字s s ,若a b <,判断a c b c ⊕<⊕是否一定成立,若一定成立,说明理由;若不一定成立,请举出一个反例加以说明.24.如图,在数轴上有两条线段,AB CD ,其中线段AB 的长为1个单位长度,线段CD 的长为3个单位长度,且点B 表示的数是9-,点D 表示的数是15.(1)在数轴上,点A 表示的数是_____,点C 表示的数是____;(2)在数轴上,若线段AB 以每秒3个单位长度的速度向右匀速运动,同时线段CD 以每秒1个单位长度的速度向左匀速运动.当点B 与点C 重合时,求点A 表示的数.(3)在数轴上,若线段AB 以每秒4个单位长度的速度向右匀速运动,同时线段CD 以每秒2个单位长度的速度也向右匀速运动.设两条线段的运动时间为t 秒.①若点B 与点C 相距10个单位长度,求对应的t 值;②若点P 为线段AB 上的一点.有一位同学发现:在线段,AB CD 运动的过程中有一段时间,点P 到两条线段的端点,,,A B C D 的距离和是一个不变的值(即PA PB PC PD +++为定值).你认为该同学发现的这一结论是否正确若正确,直接写出这个定值以及这段时间的时长,若不正确,请说明理由.。

2020-2021学年北师大版七年级(上)期中数学试卷 含答案

2020-2021学年北师大版七年级(上)期中数学试卷 含答案

七年级(上)期中数学试卷一、选择(本大题共10小题,每小题2分,共20分)1.(2分)在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行2.(2分)如果温泉河的水位升高0.8m时,水位变化记作+0.8m,那么水位下降0.5m时,水位变化记作()A.0m B.0.5m C.﹣0.8m D.﹣0.5m 3.(2分)把一条弯曲的公路改为直路,可以缩短路程,其理由是()A.两点之间,线段最短B.两点确定一条直线C.线段有两个端点D.线段可以比较大小4.(2分)国家提倡“低碳减排”,湛江某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为()A.213×106B.21.3×107C.2.13×108D.2.13×109 5.(2分)①﹣a一定是负数;②若|a|=|b|,则a=b;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.上述说法错误的有()A.1个B.2个C.3个D.4个6.(2分)下列说法正确的是()A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离7.(2分)下列平面图形不能够围成正方体的是()A.B.C.D.8.(2分)长方形的周长为4a,一边长为(a﹣b),则另一边长为()A.3a+b B.2a+2b C.a+b D.a+3b9.(2分)如图,AB=12,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度为()A.4B.6C.8D.1010.(2分)一个正方体礼盒如图所示,六个面分别写有“祝”“福”“祖”“国”“万”“岁”,其中“祝”的对面是“祖”,“万”的对面是“岁”,则它的表面展开图可能是()A.B.C.D.二、填空(本大题高空6小题,每小题2分,共12分)11.(2分)一个棱柱有8个面,则这个棱柱有条侧棱.12.(2分)如果a与1互为相反数,则|a+2|等于.13.(2分)若m﹣n=﹣1,则(m﹣n)2﹣2m+2n=.14.(2分)如图图中有条射线,条线段.15.(2分)若点B在直线AC上,AB=12,BC=7,点M是线段AB的中点,则C,M两点的距离是.16.(2分)若a是不为1的实数,我们把1﹣称为a的差倒数,设a1=﹣,若a2是a1的差倒数,a3是a2的差倒数,a4是a3是差倒数,…,依此类推,a2017的值是.三、计算(本大题共2小题,每小题6分,共12分)17.(6分)(1)(﹣+)÷(﹣)×(2)(﹣1)2÷×[6﹣(﹣2)3]18.(6分)化简求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.四、作图19.(9分)由7个相同的小立方块搭成的几何体如图所示,请画出从正面、左面、上面看到的几何体的形状图.20.(6分)如图,已知线段m,n,作一条线段AB,使它等于m+n.五、解答题(共15分)21.(7分)在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.22.(8分)猕猴桃是陕西周至的一大特产,现有20筐猕猴桃,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克)﹣3﹣2﹣1.501 2.5筐数142328(1)20筐猕猴桃中,最重的一筐比最轻的一筐重多少千克?(2)与标准重量比较,20筐猕猴桃总计超过或不足多少千克?(3)若猕猴桃每千克售价5元,则这20筐猕猴桃可卖多少元?23.(6分)如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.24.(8分)某地电话拨号入网有两种收费方式,用户可任选其一:A.记时制:3元/时;B.包月制:50元/月(限一部个人住宅电话入网).此外,每一种上网方式都得加收通讯费1.2元/时.(1)某用户某月的上网时间为x小时,请写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月的上网时间为25小时,你认为选择哪种方式较合算.25.(12分)如图,点A、B和线段CD都在数轴上,点A、C、D、B起始位置所表示的数分别为﹣2、0、3、12;线段CD沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)当t=0秒时,AC的长为,当t=2秒时,AC的长为.(2)用含有t的代数式表示AC的长为.(3)当t=秒时AC﹣BD=5,当t=秒时AC+BD=15.(4)若点A与线段CD同时出发沿数轴的正方向移动,点A的速度为每秒2个单位,在移动过程中,是否存在某一时刻使得AC=2BD,若存在,请求出t的值;若不存在,请说明理由.参考答案与试题解析一、选择(本大题共10小题,每小题2分,共20分)1.(2分)在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行【分析】利用列举反例法分别分析各选项得出答案即可.【解答】解:A、如果是长方体,不止有两个面平行,故此选项错误;B、如果是长方体,不可能所有的棱都平行,只是所有的侧棱都平行,故此选项错误;C、如果是底面为梯形的棱柱,不是所有的面都是平行四边形,故此选项错误;D、根据棱柱的定义知其正确,故选:D.2.(2分)如果温泉河的水位升高0.8m时,水位变化记作+0.8m,那么水位下降0.5m时,水位变化记作()A.0m B.0.5m C.﹣0.8m D.﹣0.5m【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【解答】解∵水位升高0.8 m时水位变化记作+0.8 m,∴水位下降0.5 m时水位变化记作﹣0.5 m,故选:D.3.(2分)把一条弯曲的公路改为直路,可以缩短路程,其理由是()A.两点之间,线段最短B.两点确定一条直线C.线段有两个端点D.线段可以比较大小【分析】一条弯曲的公路改为直路,必定是为了缩短距离,即需应用“两点间线段最短”来解答.【解答】解:把一条弯曲的公路改为直路,其理由是:两点之间,线段最短.故选:A.4.(2分)国家提倡“低碳减排”,湛江某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为()A.213×106B.21.3×107C.2.13×108D.2.13×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将213000000用科学记数法表示为2.13×108.故选:C.5.(2分)①﹣a一定是负数;②若|a|=|b|,则a=b;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.上述说法错误的有()A.1个B.2个C.3个D.4个【分析】根据有理数的分类和有理数的有关定义解答即可.【解答】解:①﹣a不一定是负数,原说法错误;②若|a|=|b|,则a=b或a=﹣b,原说法错误;③一个有理数不是整数就是分数,原说法正确;④一个有理数不是正数就是负数,也可能是0,原说法错误.上述说法错误的有3个,故选:C.6.(2分)下列说法正确的是()A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离【分析】根据直线的定义、线段中点的性质、点到点的距离的概念利用排除法求解.【解答】解:A、两点之间的连线中,线段最短,错误;B、根据中点的定义可知若P是线段AB的中点,则AP=BP,正确;C、只有当点P在线段AB上,且AP=BP时,点P才是线段AB的中点,错误;D、连接两点的线段的长度叫做两点的距离,错误.故选:B.7.(2分)下列平面图形不能够围成正方体的是()A.B.C.D.【分析】直接利用正方体的表面展开图特点判断即可.【解答】解:根据正方体展开图的特点可判断A、D属于“1,4,1”格式,能围成正方体,C、属于“2,2,2”的格式也能围成正方体,B、不能围成正方体.故选:B.8.(2分)长方形的周长为4a,一边长为(a﹣b),则另一边长为()A.3a+b B.2a+2b C.a+b D.a+3b【分析】因为长方形的周长等于长与宽和的二倍,所以求一边等于周长的一半减去另一边.【解答】解:×4a﹣(a﹣b)=2a﹣a+b=a+b.故选:C.9.(2分)如图,AB=12,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度为()A.4B.6C.8D.10【分析】根据线段中点的定义得BC=AB=6,再由AD:CB=1:3可得AD =2,然后利用DB=AB﹣AD进行计算即可.【解答】解:∵C为AB的中点,∴AC=BC=AB=×12=6,∵AD:CB=1:3,∴AD=2,∴DB=AB﹣AD=12﹣2=10(cm).故选:D.10.(2分)一个正方体礼盒如图所示,六个面分别写有“祝”“福”“祖”“国”“万”“岁”,其中“祝”的对面是“祖”,“万”的对面是“岁”,则它的表面展开图可能是()A.B.C.D.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:A、“福”的对面是“万”,故本选项错误;B、“祝”的对面是“岁”,故本选项错误;C、符合,故本选项正确;D、“万”的对面是“福”,故本选项错误.故选:C.二、填空(本大题高空6小题,每小题2分,共12分)11.(2分)一个棱柱有8个面,则这个棱柱有6条侧棱.【分析】据棱柱是由8个面围成的,则有2个底面,6个侧面,可得此立体图形是六棱柱,再根据六棱柱的特点可得答案.【解答】解:一个棱柱是由8个面围成的,则有2个底面,6个侧面,因此此立体图形是六棱柱,六棱柱有6条侧棱,故答案为:6.12.(2分)如果a与1互为相反数,则|a+2|等于1.【分析】根据相反数的定义,求出a的值为﹣1,将a=﹣1代入|a+2|,再根据绝对值的性质去绝对值即可.【解答】解:∵a与1互为相反数,∴a=﹣1,把a=﹣1代入|a+2|得,|a+2|=|﹣1+2|=1.故答案为1.13.(2分)若m﹣n=﹣1,则(m﹣n)2﹣2m+2n=3.【分析】把m﹣n=﹣1看作一个整体,代入代数式(m﹣n)2﹣2m+2n求得数值即可.【解答】解:∵m﹣n=﹣1,∴(m﹣n)2﹣2m+2n=(m﹣n)2﹣2(m﹣n)=(﹣1)2﹣2×(﹣1)=1+2=3.故答案为:3.14.(2分)如图图中有6条射线,6条线段.【分析】直接利用射线以及线段的定义分别分析得出答案.【解答】解:如图所示:6条射线分别为:以A为端点3条,以B为端点1条,以D为端点2条;6条线段分别是:AB、AC、AD、BC、CD、BD.故答案为:6,6.15.(2分)若点B在直线AC上,AB=12,BC=7,点M是线段AB的中点,则C,M两点的距离是1或13.【分析】因为不确定C点是在AB之间还是AB延长线上,所以两种可能:当C点在AB之间;当C点在AB延长线上.分别进行解答便可.【解答】解:∵点M是线段AB的中点,∴BM==6,①当点C在A、B之间时,如图1,CM=BC+BM=7+6=13;②当点C在AB的延长线上时,如图2,CM=BC﹣BM=7﹣6=1,综上,CM=1或13.16.(2分)若a是不为1的实数,我们把1﹣称为a的差倒数,设a1=﹣,若a2是a1的差倒数,a3是a2的差倒数,a4是a3是差倒数,…,依此类推,a2017的值是﹣.【分析】根据差倒数的定义分别计算出a1,a2,a3,a4,…则得到从a1开始每3个值就循环,而2017=3×672+1,所以a2017=a1=﹣.【解答】解:∵a1=﹣,a2==,a3==4,a4==﹣,∴每3个数为一周期循环,∵2017÷3=672…1,∴a2017=a1=﹣,故答案为:﹣三、计算(本大题共2小题,每小题6分,共12分)17.(6分)(1)(﹣+)÷(﹣)×(2)(﹣1)2÷×[6﹣(﹣2)3]【分析】(1)原式利用除法法则变形,约分后利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算即可求出值.【解答】解:(1)原式=(﹣+)×(﹣)×=(﹣+)×(﹣6)=﹣×(﹣6)+×(﹣6)=5﹣4=1;(2)原式=1×2×[6﹣(﹣8)]=2×14=28.18.(6分)化简求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.【分析】首先去括号,然后合并同类项,化简后再把x、y的值代入求解即可.【解答】解:原式=3x2y﹣(2xy2﹣2xy+3x2y+xy)+3xy2,=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2,=xy2+xy,当中x=3,y=﹣时,原式=3×+3×(﹣)=﹣1=﹣.四、作图19.(9分)由7个相同的小立方块搭成的几何体如图所示,请画出从正面、左面、上面看到的几何体的形状图.【分析】从正面看:共有3列,从左往右分别有2,1,2个小正方形;从左面看:共有2列,从左往右分别有2,1个小正方形;从上面看:共分3列,从左往右分别有2,2,1个小正方形.据此可画出图形.【解答】解:如图所示:20.(6分)如图,已知线段m,n,作一条线段AB,使它等于m+n.【分析】作射线AP,在射线AP上截取AC=m,CB=n,线段AB即为所求.【解答】解:如图,线段AB即为所求.五、解答题(共15分)21.(7分)在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.【分析】(1)由广场的面积等于大矩形面积减去小矩形面积表示出S即可;(2)利用非负数的性质求出m与n的值,代入S中计算即可得到结果.【解答】解:(1)S=2m×2n﹣m(2n﹣n﹣0.5n)=4mn﹣0.5mn=3.5mn;(2)由题意得m﹣6=0,n﹣8=0,∴m=6,n=8,代入,可得原式=3.5×6×8=168.22.(8分)猕猴桃是陕西周至的一大特产,现有20筐猕猴桃,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:﹣3﹣2﹣1.501 2.5与标准质量的差值(单位:千克)筐数142328(1)20筐猕猴桃中,最重的一筐比最轻的一筐重多少千克?(2)与标准重量比较,20筐猕猴桃总计超过或不足多少千克?(3)若猕猴桃每千克售价5元,则这20筐猕猴桃可卖多少元?【分析】(1)根据有理数的大小,确定最重的和最轻的质量,相减即可得;(2)根据图表数据列出算式,然后计算即可得解;(3)求出20框猕猴桃的总质量,乘以5即可得.【解答】解:(1)2.5﹣(﹣3)=5.5(千克).答:最重的一筐比最轻的一筐重5.5千克.(2)1×(﹣3)+4×(﹣2)+2×(﹣1.5)+3×0+2×1+8×2.5=﹣3﹣8﹣3+2+20=8(千克).答:20筐猕猴桃总计超过8千克.(3)5×(25×20+8)=2540(元).答:这20筐猕猴桃可卖2540元.23.(6分)如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.【分析】求DE的长度,即求出AD和AE的长度.因为D、E分别为AC、AB 的中点,故DE=,又AC=12cm,CB=AC,可求出CB,即可求出CB,代入上述代数式,即可求出DE的长度.【解答】解:根据题意,AC=12cm,CB=AC,所以CB=8cm,所以AB=AC+CB=20cm,又D、E分别为AC、AB的中点,所以DE=AE﹣AD=(AB﹣AC)=4cm.即DE=4cm.故答案为4cm.24.(8分)某地电话拨号入网有两种收费方式,用户可任选其一:A.记时制:3元/时;B.包月制:50元/月(限一部个人住宅电话入网).此外,每一种上网方式都得加收通讯费1.2元/时.(1)某用户某月的上网时间为x小时,请写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月的上网时间为25小时,你认为选择哪种方式较合算.【分析】(1)根据第一种是费用=每小时的费用×时间+通讯费,第二种的费用=包月费+通讯费,列出代数式即可.(2)将25小时分别代入(1)计算出费用的大小,再进行比较就可以得出结论.【解答】解:(1)采用记时制应付的费用为3x+1.2x=4.2x(元),采用包月制应付的费用为(50+1.2x)元;(2)若一个月内上网的时间为25小时,则计时制应付的费用为4.2×25=105(元),包月制应付的费用为50+1.2×25=80(元).∵105>80∴包月制合算.25.(12分)如图,点A、B和线段CD都在数轴上,点A、C、D、B起始位置所表示的数分别为﹣2、0、3、12;线段CD沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)当t=0秒时,AC的长为2,当t=2秒时,AC的长为4.(2)用含有t的代数式表示AC的长为t+2.(3)当t=6秒时AC﹣BD=5,当t=11秒时AC+BD=15.(4)若点A与线段CD同时出发沿数轴的正方向移动,点A的速度为每秒2个单位,在移动过程中,是否存在某一时刻使得AC=2BD,若存在,请求出t的值;若不存在,请说明理由.【分析】(1)依据A、C两点间的距离=|a﹣b|求解即可;(2)t秒后点C运动的距离为t个单位长度,从而点C表示的数;根据A、C 两点间的距离=|a﹣b|求解即可.(3)t秒后点C运动的距离为t个单位长度,点D运动的距离为t个单位长度,从而可得到点A、点D表示的数;根据两点间的距离=|a﹣b|表示出AC、BD,.根据AC﹣BD=5和AC+BD=15得到关于t的含绝对值符号的一元一次方程,分别解方程即可得出结论;(4)假设能够相等,找出AC、BD,根据AC=2BD即可列出关于t的含绝对值符号的一元一次方程,解方程即可得出结论.【解答】解:(1)当t=0秒时,AC=|﹣2﹣0|=|﹣2|=2;当t=2秒时,移动后C表示的数为2,∴AC=|﹣2﹣2|=4.故答案为:2;4.(2)点A表示的数为﹣2,点C表示的数为t;∴AC=|﹣2﹣t|=t+2.故答案为t+2.(3)∵t秒后点C运动的距离为t个单位长度,点D运动的距离为t个单位长度,∴C表示的数是t,D表示的数是3+t,∴AC=t+2,BD=|12﹣(3+t)|,∵AC﹣BD=5,∴t+2﹣|12﹣(t+3)|=5.解得:t=6.∴当t=6秒时AC﹣BD=5;∵AC+BD=15,∴t+2+|12﹣(t+3)|=15,t=11;当t=11秒时AC+BD=15,故答案为6,11;(4)假设能相等,则点A表示的数为2t﹣2,C表示的数为t,D表示的数为t+3,B表示的数为12,∴AC=|2t﹣2﹣t|=|t﹣2|,BD=|t+3﹣12|=|t﹣9|,∵AC=2BD,∴|t﹣2|=2|t﹣9|,解得:t1=16,t2=.故在运动的过程中使得AC=2BD,此时运动的时间为16秒和秒.。

2020—2021 学年上学期七年级数学期中考试试卷(含答案)

2020—2021 学年上学期七年级数学期中考试试卷(含答案)

I-1I-22020-2021学年上学期七年级期中考试试卷数学I 卷时间:90分钟满分:100分一、选择题(每小题3分共30分)1.2019年暑期爆款国产动漫《哪吒之魔童降世》票房已斩获49.3亿,开启了国漫市场崛起新篇章,49.3亿用科学记数法可表示为()A.849.310⨯B.94.9310⨯C.84.9310⨯D.749310⨯2.桌上摆着一个由若干个相同小正方体组成的几何体,其三视图如图所示,则组成此几何体需要的小正方体的个数是()A.5B.6C.7D.83.下列计算正确的是()A.347a b ab+= B.321a a -= C.22232a b ab a b -=D.222235a a a +=4.在数(3)--,0,2(3)-,|9|-,41-中,正数的有()个.A.2B.3C.4D.55.下列说法中,不正确的个数有()①有理数分为正有理数和负有理数,②绝对值等于本身的数是正数,③平方等于本身的数是1±,④只有符号不同的两个数是相反数,⑤多项式2531x x --是二次三项式,常数项是1.A.2个B.3个C.4个D.5个6.若单项式12m a b -与212na b 的和仍是单项式,则2m n -的值是()A.3B.4C.6D.87.下列各式中,不能由3a ﹣2b +c 经过变形得到的是()A.3a ﹣(2b +c )B.c ﹣(2b ﹣3a )C.(3a ﹣2b )+c D.3a ﹣(2b ﹣c )8.若数轴上,点A 表示﹣1,AB 距离是3,点C 与点B 互为相反数,则点C 表示()A.﹣2B.2C.﹣4或2D.4或﹣29.设232A x x =--,2231B x x =--,若x 取任意有理数.则A 与B 的大小关系为()A.A B<B.A B=C.A B>D.无法比较10.程序框图的算法思路源于我国古代数学名著《九章算术》,如图所示的程序框图,当输入x 的值是17时,根据程序,第一次计算输出的结果是10,第二次计算输出的结果是5,……,这样下去第2020算输出的结果是()A .-2B .-1C .-8D .-4二、填空题(每小题3分共15分)11.243a b π-的系数是.12.若49a +与35a +互为相反数,则a 的值为13.若2(2)|2|0a b -++=,则a b =.14.多项式()22321m x y m x y ++-是关于x,y 的四次三项式,则m 的值为15.将边长为1的正方形纸片按如图所示方法进行对折,第1次对折后得到的图形面积为1S ,第2次对折后得到的图形面积为2S ,依此类推,则3S =;若123n nA S S S S =+++⋯+,则352A A A =-.I-3I-4三、解答题16.(每题4分共8分)()()2020131312+24512864⎡⎤⎛⎫⨯÷⨯ ⎪⎢⎥⎝⎭⎣⎦-()223123(2)|1|6(2)3-÷-⨯-⨯+-17.(8分)先化简下式,再求值:22221132224a ab b a ab b ⎛⎫⎛⎫-+---+- ⎪ ⎪⎝⎭⎝⎭,其中1,12ab ==,18.(6分)若用点A ,B ,C 分别表示有理数a ,b ,c,它们在数轴上的位置如图所示.(1)请在横线上填上>,<或=:a +b 0,b ﹣c 0;(2)化简:2c +|a +b |+|c ﹣b |﹣|c ﹣a |.19.(8)如图,是由12个大小相同的小正方体组合成的简单几何体.(1)请在下面方格纸中分别画出它的左视图和俯视图;(2)若小正方体的棱长为1,求出该几何体的表面积。

吉林省2020-2021学年七年级上学期期中数学试题

吉林省2020-2021学年七年级上学期期中数学试题

吉林省2020-2021学年七年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣52的绝对值是( ) A .﹣25 B .52 C .25 D .﹣522.下列各式中,是一元一次方程的是( )A .4x +2y =3B .y +5=0C .x 2=2x ﹣1D .14x ﹣4 3.若使等式(﹣10)□(﹣5)=2成立,则□中应填入的运算符号是( ) A .+ B .﹣ C .× D .÷ 4.方程5x +1=x ﹣7的解是( )A .x =﹣2B .x =2C .x =﹣1D .x =1 5.若ma mb =,那么下列等式不一定成立的是( )A .22ma mb +=+B .a b =C .ma mb-=- D .66ma mb -=- 6.下列说法中正确的是( )A .2t 不是整式B .﹣3x 9y 的次数是10C .4ab 与4xy 是同类项D .1y是单项式二、填空题 7.截至2021年4月份,全国参加汉语考试的人数约为3490000人,数据3490000用科学记数法表示为__.8.关于x 的多项式6x 2﹣11x +10的一次项系数是___.9.“x 的19与7的差等于x 的2倍与5的和”用方程表示为___. 10.已知3x =是关于x 方程810mx -=的解,则m =__________. 11.长方形的长是3a ,宽是2a -b ,则长方形的周长是___________.12.方程312x x =+的解是___. 13.已知a 与b 的和是最小的正整数,则(a +b ﹣4)3的值为__.三、解答题14.化简:1(93)2(1)3x x --+.15.计算:()2211236⎡⎤--⨯--⎣⎦. 16.化简:5x 2﹣3y ﹣3(x 2﹣2y ).17.解方程:4x ﹣7=﹣32﹣x .18.先化简再求值:(b+3a )+2(3﹣5a )﹣(6﹣2b ),其中:a =﹣1,b =2.19.已知关于x 、y 的多项式21222313852m x y x y y +-+-+是八次四项式,单项式5x n y 6﹣m 的次数与该多项式的次数相同,求m 、n 的值.20.种一批树苗,如果每人种7棵,则剩余3棵树苗没有种,如果每人种9棵,则缺少7棵树苗,有多少人种树?共有多少棵树苗?21.已知A =﹣3x 2﹣2mx +3x +1,B =2x 2+2mx ﹣1.若4A +6B 的值与x 的取值无关,求m 的值.22.在某地区,夏季高山上的温度从山脚起每升高40米平均降低0.3℃,已知山脚的温度是23℃,山顶的温度是2℃,求这座山的高度.23.已知y 1=﹣2x +3,y 2=3x ﹣2.(1)当x 取何值时,y 1=y 2?(2)当x 取何值时,y 1比y 2小5?24.如图(图中单位长度:cm )求:(1)阴影部分面积(用含x 的代数式表示);(2)当x=89求阴影部分的面积(π取3.14,结果糟确到0.01).25.数学课上,高老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式.然后翻开纸片②是4x 2+5x +6,翻开纸片③是-3x 2-x -2.解答下列问题:(1)求纸片①上的代数式;(2)若x是方程2x=-x-9的解,求纸片①上代数式的值.26.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.(1)数轴上点B表示的数是,点P表示的数是;(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时,P、Q之间的距离恰好等于2;(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,直接写出多少秒时,P、Q之间的距离恰好等于2.参考答案1.B【解析】【分析】根据绝对值的性质:负数的绝对值是它的相反数即可得出答案.【详解】﹣52的绝对值是52,故选:B.【点睛】本题主要考查绝对值,掌握绝对值的性质是解题的关键.2.B【分析】根据一元一次方程的定义:含有一个未知数,并且所含未知数的项的次数也是1的方程叫一元一次方程,逐一进行判断即可.【详解】A、4x+2y=3,有两个未知数,不是一元一次方程,故不符合题意;B、y+5=0,是一元一次方程,故符合题意;C、x2=2x﹣1,未知数的最高次数是2,不是一元一次方程,故不符合题意;D、14x﹣4,不是等式,不是一元一次方程,故不符合题意;故选:B.【点睛】本题主要考查一元一次方程的概念,掌握一元一次方程的概念是解题的关键.3.D【分析】根据有理数的运算即可确定出符号.【详解】2(5)10⨯-=-∴若使等式(﹣10)□(﹣5)=2成立,则□中应填入的运算符号是÷,故选:D .【点睛】本题主要考查有理数的乘除运算,掌握有理数的乘除运算是解题的关键.4.A【分析】按照移项,合并同类项,系数化为1的步骤解题即可.【详解】方程移项得,571x x -=--合并同类项得:4x =﹣8,系数化为1得:x =﹣2,故选:A .【点睛】本题主要考查解一元一次方程,掌握一元一次方程的解法是解题的关键.5.B【解析】试题解析:0m =时,a b =不一定成立.故错误.故选B.6.B【分析】逐一对选项进行判断即可.【详解】A .2t 是整式,故本选项不符合题意; B .﹣3x 9y 的次数是10,正确,故本选项符合题意;C .4ab 与4xy 所含字母不同,不是同类项,故本选项不符合题意;D .1y不是整式,所以不是单项式,故本选项不符合题意. 故选:B .【点睛】本题主要考查整式,单项式,同类项的概念及单项式的次数,掌握整式,单项式,同类项的概念及单项式的次数的求法是解题的关键.7.3.49×106.【分析】用科学记数法表示较大数时的形式是10n a ⨯ ,其中110a ≤< ,n 比整数位数小1,即可确定a,n 的值.【详解】3490000=3.49×106,故答案为:3.49×106.【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.8.﹣11【分析】先找到多项式中的一次项,然后找到它的系数即可.【详解】多项式6x 2﹣11x +10的一次项系数是:﹣11.故答案为:﹣11.【点睛】本题主要考查多项式中某一项的系数,掌握多项式的有关概念是解题的关键.9.19x ﹣7=2x +5. 【分析】根据列代数式的方法将等号左右两边的代数式表示出来,然后用等号连接即可.【详解】 由题意可得:19x ﹣7=2x +5. 故答案为:19x ﹣7=2x +5. 【点睛】本题主要考查列一元一次方程,掌握列代数式的方法是解题的关键.10.6【分析】将x =3代入原方程即可求出答案.【详解】将x=3代入mx−8=10,∴3m=18,∴m=6,故答案为6【点睛】本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.11.10a-2b【分析】根据长方形的周长公式,结合整式加减运算法则进行计算即可.【详解】由题意得:2(3a+2a-b)=2(5a-b)=10a-2b,故答案为10a-2b.【点睛】此题考查了整式加减的应用及长方形周长的计算,熟练掌握整式加减法则是解题关键. 12.x=2.【分析】按照移项,合并同类项,系数化为1的步骤解一元一次方程即可.【详解】3x=x+1,23x﹣x=1,21x=1,2x=2,故答案为:x=2.【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.13.-27.【分析】先根据最小的正整数为1得出a +b =1,然后整体代入即可求出代数式的值.【详解】∵a 与b 的和是最小的正整数,∴a +b =1,则原式=(1﹣4)3=(﹣3)3=-27,故答案为:-27.【点睛】本题主要考查代数式求值,掌握整体代入法和最小的正整数是解题的关键.14.3x -【分析】根据整式的加减运算法则即可求解.【详解】1(93)2(1)3x x --+ 3122x x =---3x =-【点睛】此题主要考查整式的加减,解题的关键是熟知其运算法则.15.16【分析】根据有理数的混合运算顺序依次计算即可.【详解】 原式()11296=--⨯- ()1176=--⨯- 16= 16.2x 2+3y .【分析】先去括号,然后合并同类项即可得出答案.【详解】原式=5x 2﹣3y ﹣3x 2+6y=(5x 2﹣3x 2)+(6y ﹣3y )=2x 2+3y .【点睛】本题主要考查整式的加减,掌握去括号,合并同类项的法则是解题的关键.17.x =﹣5.【分析】按照移项,合并同类项,系数化为1的步骤解方程即可.【详解】方程移项得,4327x x +=-+合并同类项得:5x =﹣25,系数化为1得:x =﹣5.【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.18.﹣7a+3b ,13.【解析】【分析】先算乘法,再合并同类项,最后代入求出即可.【详解】(b +3a )+2(3﹣5a )﹣(6﹣2b )=b +3a +6﹣10a ﹣6+2b=3a ﹣10a +b +2b +6﹣6=﹣7a +3b当a =﹣1,b =2时,原式=﹣7×(﹣1)+3×2=7+6=13.【点睛】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解答此题的关键.19.m =5,n =7.【分析】先根据多项式为八次四项式,求出m 的值,再根据5x n y 6﹣m 的次数与该多项式的次数相同说明5x n y 6﹣m 的次数也是八次,即可求出n 的值.【详解】 ∵多项式21222313852m x y x y y +-+-+是八次四项式, 所以2+m +1=8,解得m =5又因为5x n y 6﹣m 的次数与该多项式的次数相同,所以n +6﹣m =8即n =7.【点睛】本题主要考查多项式和单项式的次数,掌握多项式和单项式次数的求法是解题的关键. 20.应该有5人种树,共有38棵树苗.【分析】设有x 人种树,根据等量关系“每人种7棵,则剩3棵树苗未种;每人种9棵,则缺7棵树苗”列方程求解即可.【详解】设有x 人种树,根据题意,得:7x +3=9x ﹣7解得:x =5.所以7x +3=7×5+3=38(棵).答:应该有5人种树,共有38棵树苗.【点睛】本题考查了一元一次方程的应用,关键是找出等量关系.21.m =﹣3.【分析】先对4A +6B 进行合并同类项化简,再根据4A +6B 的值与x 的取值无关,令x 这一项前的系数为0即可求出m 的值.【详解】∵A =﹣3x 2﹣2mx +3x +1,B =2x 2+2mx ﹣1,∴4(﹣3x 2﹣2mx +3x +1)+6(2x 2+2mx ﹣1)=﹣12x 2﹣8mx +12x +4+12x 2+12mx ﹣6=(﹣12x 2+12x 2)+(﹣8mx +12mx +12x )+(4﹣6)=(4m +12)x ﹣2,∵4A +6B 的值与x 的取值无关∴4m +12=0,解得:m =﹣3.【点睛】本题主要考查整式的化简,掌握整式中不含某一项说明某一项的系数为0是解题的关键. 22.这座山的高度是2800米.【分析】先求出山脚与山顶的温差,然后除以0.3算出有多少个40米,再乘以40即可求出答案.【详解】根据题意得:(23﹣2)÷0.3×40=2800(米),则这座山的高度是2800米.【点睛】本题主要考查有理数的混合运算的应用,掌握有理数的混合运算顺序和法则是解题的关键. 23.(1)x =1;(2)x =2.【分析】(1)根据“y 1=y 2”建立一个关于x 的方程,解方程即可;(2)根据“y 1比y 2小5”建立一个关于x 的方程,解方程即可.【详解】(1)根据题意得:﹣2x +3=3x ﹣2,移项得,2323x x --=--合并同类项得,55x -=-解得:x =1;(2)根据题意得:﹣2x +3+5=3x ﹣2,移项得,23235x x --=---合并同类项得,510-=-x解得:x =2.【点睛】本题主要考查一元一次方程的简单应用,能够根据题意列出方程是解题的关键. 24.(1)x +19−18π;(2)0.61.【解析】【分析】根据“阴影部分面积=两个矩形的面积和-半圆的面积”列式,化简即可得;将x 的值代入计算可得.【详解】解:(1)阴影部分面积=13×(x+13)+23×(x+13﹣13)﹣12×π×[12×(13+23)]2=x+19﹣18π; (2)当x=89时,阴影部分的面积为89+19﹣18π≈1﹣18×3.14≈0.61(cm 2).【点睛】本题考查的知识点是列代数式,解题关键是根据题意列出式子进行作答.25.(1)244x x ++;(2)1.【分析】(1)由①=②+③即可求解;(2)由方程2x =-x -9求出x 值,再代入纸片①上的代数式求值即可.【详解】解:(1)222456(32)44x x x x x x =+=+--=+-+①②③++,所以纸片①上的代数式为244x x ++;(2)解2x =-x -9得3x =-,将3x =-代入244x x ++得2(3)4(3)491241-+⨯-+=-+=,所以纸片①上代数式的值为1.【点睛】本题考查了整式的加减运算及代入求值,同时涉及了解一元一次方程,灵活掌握整式的加减运算是解题的关键.26.(1)﹣12;8﹣5t;(2)若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2;(3)若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2.【分析】(1)根据A点表示的数和AB=20即可求出点B表示的数;同样可以利用点A和A,P之间的距离求P点表示的数;(2)分两种情况:两点相遇之前和相遇之后,相遇之前有3t+2+5t=20,相遇之后有3t﹣2+5t =20,分别解方程即可(3)同样分两种情况:点P追上点Q之前和点P追上点Q之后,追上之前有5x﹣3x=20﹣2,追上之后有5x﹣3x=20+2,分别解方程即可.【详解】(1)∵数轴上点A表示的数为8,AB=20,AP=5t,∴数轴上点B表示的数为8﹣20=﹣12;点P表示的数为8﹣5t;故答案是:﹣12;8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=2.75.答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P追上点Q之前,则5x﹣3x=20﹣2,解得:x=9;②点P追上点Q之后,则5x﹣3x=20+2解得:x=11.答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2.【点睛】本题主要结合数轴考查动点问题,一元一次方程的应用,掌握数轴的知识和行程问题的解法是解题的关键.。

2020-2021长春市七年级数学上期中一模试卷含答案

2020-2021长春市七年级数学上期中一模试卷含答案

2020-2021长春市七年级数学上期中一模试卷含答案一、选择题1.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为()A.58°B.59°C.60°D.61°2.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出 (1)225310417526…那么,当输入数据8时,输出的数据是()A.861B.863C.865D.8673.7-的绝对值是()A.17-B.17C.7D.7-4.2019的倒数的相反数是()A.-2019B.12019-C.12019D.20195.如图,用火柴棒摆出一列正方形图案,第①个图案用了 4 根,第②个图案用了 12 根,第③个图案用了 24 根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是()A.84B.81C.78D.766.如图,O是直线AB上一点,OD平分∠BOC,OE平分∠AOC,则下列说法错误的是()A.∠DOE为直角B.∠DOC和∠AOE互余C .∠AOD 和∠DOC 互补 D .∠AOE 和∠BOC 互补7.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④ 8.下列数中,最小的负数是( )A .-2B .-1C .0D .1 9.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我 10.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( ) A .1B .2C .3D .4 11.若代数式x +2的值为1,则x 等于( ) A .1B .-1C .3D .-3 12.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤ 二、填空题13.我国明代数学读书《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么设竿子长为x 尺,依据题意,可列出方程得____________.14.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是____.15.已知3x -8与2互为相反数,则x = ________.16.某商店一套夏装进价为200元,按标价8折出售可获利72元,则该套夏装标价为______________元.17.把六张形状大小完全相同的小长方形卡片(如图 1)不重叠地放在一个底面为长方形(长为 20cm ,宽为 16cm )的盒子底部(如图 2),盒子底面未被卡片覆盖的部分用阴影表示.则图 2 中两块阴影部分周长的和是_________ .18.观察以下一列数:3,54,79,916,1125,…则第20个数是_____.19.近似数2.30万精确到________位,用科学记数法表示为__________.20.如图,AB∥ED,AG平分∠BAC,∠ECF=80°,则∠F AG=_____.三、解答题21.已知关于x的方程(m+3)x|m+4|+18=0是一元一次方程,试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值.22.用代数式表示:(1)a,b两数的平方和减去它们乘积的2倍;(2)a,b两数的和的平方减去它们的差的平方;(3)一个两位数,个位上的数字为a,十位上的数字为b,请表示这个两位数;(4)若a表示三位数,现把2放在它的右边,得到一个四位数,请表示这个四位数.23.我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则该方程2x=4是差解方程.请根据上边规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程6x=m+2是差解方程,求m的值.24.如图,直线BC与MN相交于点O,AO丄OC,OE平分∠BON,若∠EON=20°,求∠AOM 的度数.25.用四个长为m,宽为n的相同长方形按如图方式拼成一个正方形.(1).请用两种不同的方法表示图中阴影部分的面积.方法①: ;方法②: .(2).由 (1)可得出()m n +2,2()m n - ,4mn 这三个代数式之间的一个等量关系为: .(3)利用(2)中得到的公式解决问题:已知2a+b=6,ab =4,试求2(2)a b -的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据特殊直角三角形的角度即可解题.【详解】解:由特殊直角三角形可知,∠1=90°-30°=60°, 故选C.【点睛】本题考查了特殊直角三角形的认识,属于简单题,熟悉特殊三角形的角度是解题关键.2.C解析:C【解析】【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【详解】 输出数据的规律为2+1n n , 当输入数据为8时,输出的数据为288+1=865.故答案选:C.【点睛】本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算. 3.C解析:C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.4.B解析:B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是1 2019,1 2019的相反数为12019-,所以2019的倒数的相反数是1 2019 -,故选B.【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.5.A解析:A【解析】【分析】图形从上到下可以分成几行,第n个图形中,竖放的火柴有n(n+1)根,横放的有n(n+1)根,因而第n个图案中火柴的根数是:n(n+1)+n(n+1)=2n(n+1).把n=6代入就可以求出.【详解】解:设摆出第n个图案用火柴棍为S n.①图,S1=1×(1+1)+1×(1+1);②图,S2=2×(2+1)+2×(2+1);③图,S3=3×(3+1)+3×(3+1);…;第n个图案,S n=n(n+1)+n(n+1)=2n(n+1).则第⑥个图案为:2×6×(6+1)=84.故选A.【点睛】本题考查了规律型:图形的变化,此题注意第n个图案用火柴棍为2n(n+1).6.D解析:D【解析】【分析】根据角平分线的性质,可得∠BOD=∠COD,∠COE=∠AOE,再根据余角和补角的定义求解即可.【详解】解:∵OD平分∠BOC,OE平分∠AOC,∴∠BOD=∠COD=12∠BOC,∠AOE=∠COE=12∠AOC,∵∠AOC+∠COB=180°,∴∠COE+∠COD=90°,A、∠DOE为直角,说法正确;B、∠DOC和∠AOE互余,说法正确;C、∠AOD和∠DOC互补,说法正确;D、∠AOE和∠BOC互补,说法错误;故选D.【点睛】本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.7.A解析:A【解析】【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【详解】将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选A.【点睛】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.8.A解析:A试题分析:根据数轴上的数,左边的地总比右边的小,两个负数相比较,绝对值大的反而小.解:∵ 最小的负数,∴ C 、D 不对, ∵21->-,绝对值大的反而小,∴-2最小.故选A考点:正数和负数.9.D解析:D【解析】分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D .点睛:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.10.D解析:D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项,n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.11.B解析:B【解析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B .【点睛】本题考查解一元一次方程,题目简单.12.D解析:D【解析】【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【详解】如果||a a =-,即一个数的绝对值等于它的相反数,则0a ≤.故选D .【点睛】本题考查绝对值,熟练掌握绝对值的性质是解题关键.二、填空题13.【解析】【分析】设竿子为x 尺则绳索长为(x+5)根据对折索子来量竿却比竿子短一托即可得出关于x 的一元一次方程【详解】解:设竿子为x 尺则绳索长为(x+5)根据题意得:【点睛】本题考查了一元一次方程的应 解析:()1552x x -+= 【解析】【分析】设竿子为x 尺,则绳索长为(x+5),根据“对折索子来量竿,却比竿子短一托”,即可得出关于x 的一元一次方程.【详解】解:设竿子为x 尺,则绳索长为(x+5),根据题意得: ()1552x x -+= 【点睛】本题考查了一元一次方程的应用,找准等量关系是解题的关键. 14.【解析】寻找规律:上面是1234…;左下是14=229=3216=42…;右下是:从第二个图形开始左下数字减上面数字差的平方:(4-2)2(9-3)2(16-4)2…∴a=(36-6)2=900解析:【解析】寻找规律:上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:从第二个图形开始,左下数字减上面数字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=900.15.2【解析】根据互为相反数的两个数的和为0可得3x-8+2=0解得x=2点睛:根据互为相反数的和为零可得关于x的一元一次方程解方程即可得答案解析:2【解析】根据互为相反数的两个数的和为0可得,3x-8+2=0,解得x=2.点睛:根据互为相反数的和为零,可得关于x的一元一次方程,解方程即可得答案.16.340【解析】【分析】设该服装标签价格为x元根据售价-进价=利润即可得出关于x的一元一次方程解之即可得出结论【详解】解:设该服装标签价格为x元根据题意得:x-200=72解得:x=340答:该服装标解析:340【解析】【分析】设该服装标签价格为x元,根据售价-进价=利润,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设该服装标签价格为x元,根据题意得:810x-200=72,解得:x=340.答:该服装标签价格为340元.故答案为:340.【点睛】本题考查了一元一次方程的应用,根据售价-进价=利润,列出关于x的一元一次方程是解题的关键.17.64【解析】试题分析:设小长方形的长为xcm宽为ycm根据题意得:20=x+3y则图②中两块阴影部分周长和是:40+2(16-3y)+2(16-x)=40+64-6y-2x=40+64-2(x+3y解析:64【解析】试题分析:设小长方形的长为xcm,宽为ycm,根据题意得:20=x+3y,则图②中两块阴影部分周长和是:40+2(16-3y)+2(16-x)=40+64-6y-2x=40+64-2(x+3y)=40+64-40=64(cm)考点:代数式的应用.18.【解析】【分析】观察已知数列得到一般性规律写出第20个数即可【详解】解:观察数列得:第n 个数为则第20个数是故答案为【点睛】本题考查了规律型:数字的变化类弄清题中的规律是解答本题的关键 解析:41400【解析】【分析】 观察已知数列得到一般性规律,写出第20个数即可.【详解】解:观察数列得:第n 个数为221n n +,则第20个数是41400. 故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键. 19.百【解析】解析:百 42.3010⨯【解析】20.140°【解析】【分析】根据平行线的性质求出∠BAC 求出∠BAF 和∠BAG 即可得出答案【详解】∵AB ∥ED ∠ECF =80°∴∠BAC =∠FCE =80°∴∠BAF =180°﹣80°=100°∵AG 平分解析:140°.【解析】【分析】根据平行线的性质求出∠BAC ,求出∠BAF 和∠BAG ,即可得出答案.【详解】∵AB ∥ED ,∠ECF =80°,∴∠BAC =∠FCE =80°,∴∠BAF =180°﹣80°=100°,∵AG 平分∠BAC ,∴∠BAG =12∠BAC =40°, ∴∠F AG =∠BAF +∠BAG =100°+40°=140°,故答案为140°.【点睛】本题考查了平行线的性质和角平分线定义,能正确根据平行线的性质求出∠BAC 是解此题的关键,注意:两直线平行,内错角相等.三、解答题21.(1)m=-5 (2)37【解析】(1)依题意有|m+4|=1,解之得m=-3(舍去),m=-5,故m=-5,(2)()()232341m m +--= 6m+4-12m+3=-6m+7当m=-5时,原式= 37.22.(1)222a b ab +-;(2)22(a b)(a b)+--;(3)10b a +;(4)10a +2【解析】【分析】(1)关系式为:a 、b 两数的平方和−a ,b 乘积的2倍,列出代数式即可;(2)分别表示出a 与b 两数和的平方、a 与b 差的平方,然后用前者减去后者即可;(3)两位数=十位数字×10+个位数字,根据此关系可列出代数式; (4)只需将原先的三位数扩大十倍再加上数字1即可得到四位数.【详解】解:(1)a ,b 两数的平方和减去它们乘积的2倍,代数式表示为:222a b ab +-;(2)a ,b 两数的和的平方减去它们的差的平方,代数式表示为:22(a b)(a b)+--; (3)这个两位数为:10b a +;(4)由题意得,这个四位数可表示为:10a +2.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式. 列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.23.(1)是;见解析;(2)265. 【解析】【分析】(1)求出方程的解,再根据差解方程的意义得出即可;(2)根据差解方程得出关于m 的方程,求出方程的解即可.【详解】解:(1)∵3x =4.5,∴x =1.5,∵4.5﹣3=1.5,∴3x =4.5是差解方程;(2)∵关于x 的一元一次方程6x =m +2是差解方程,∴m +2﹣6=26m +,解得:m =265. 【点睛】 本题考查了一元一次方程的解的应用,能理解差解方程的意义是解此题的关键.24.o【解析】【分析】首先根据角的平分线的定义求得∠BON ,然后根据对顶角相等求得∠MOC ,然后根据∠AOM=90°-∠COM 即可求解. 【详解】解:∵OE 平分∠BON ,∴∠BON=2∠EON=40°,∴∠COM=∠BON=40°,∵AO ⊥BC ,∴∠AOC=90°,∴∠AOM=90°-∠COM=90°-40°=50°.25.(1) 2()m n -;2()4m n mn +-;(2)2()m n -=2()4m n mn +-;(3)4.【解析】【分析】(1)直接利用正方形的面积公式得到图中阴影部分的面积为(m-n )2;也可以用大正方形的面积减去4个长方形的面积得到图中阴影部分的面积为(m+n )2-4mn ;(2)根据图中阴影部分的面积是定值得到等量关系式;(3)利用(2)中的公式得到(2a-b )2=(2a+b )2-4×2ab . 【详解】方法①:()2m n -;方法②:()24m n mn +-(2)()2m n -=()24m n mn +-(3) (2a-b)2=(2a+b)2-8ab=36-32=4【点睛】考查了列代数式:根据题中的已知数量利用代数式表示其他相关的量.。

2020-2021长春市初一数学上期中试题附答案

2020-2021长春市初一数学上期中试题附答案

倒数:乘积为 1 的两数互为倒数.
10.A
解析:A 【解析】

代入方程得:
,解得:
,故选 A.
11.C
解析:C 【解析】
【分析】
根据互为相反数的两个数的和等于 0 列出方程,再根据非负数的性质列方程求出 m、n 的
值,然后代入代数式进行计算即可得解.
【详解】
∵|m+3|与(n﹣2)2 互为相反数, ∴|m+3|+(n﹣2)2=0,
A.1 个
B.2 个
C.3 个
D.4 个
10.已知 x=2 是关于 x 的一元一次方程 mx+2=0 的解,则 m 的值为( )
A.﹣1 B.0 C.1 D.2
11.已知|m+3|与(n﹣2)2 互为相反数,那么 mn 等于( )
A.6
B.﹣6
C.9
D.﹣9
12.我县人口约为 530060 人,用科学记数法可表示为( )
2020-2021 长春市初一数学上期中试题附答案
一、选择题
1.为庆祝“六·一”儿童节,綦江区某中学初一年级学生举行火柴棒摆“金鱼”比赛.如 图所示:
……
按照上面的规律,摆 n 个“金鱼”需用火柴棒的根数为( )
A. 2 6n
B. 8 6n
C. 4 4n
D. 8n
2.大于 1 的正整数 m 的三次幂可“分裂”成若干个连续奇数的和,如 23=3+5,33=7+9+11,
A.-2
B.-1
C.0
D.1
8.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC 的度数为( )
A.30°
B.150°

长春市2021版七年级上学期期中数学试卷A卷

长春市2021版七年级上学期期中数学试卷A卷

长春市2021版七年级上学期期中数学试卷A卷姓名:________ 班级:________ 成绩:________一、精心选一选,并把答案填涂在答题卡上 (共10题;共20分)1. (2分)如果零上2℃记作+2℃,那么零下3℃记作()A . -3℃B . -2℃C . +3℃D . +2℃2. (2分) |-2|的相反数是()A .B . -2C .D . 223. (2分) a、b在数轴上的位置如图所示,则下列式子正确的是()A . a+b>0B . a+b>a﹣bC . |a|>|b|D . ab<04. (2分) (2019七上·鼓楼期末) 相反数的倒数是()A .B .C . 5D .5. (2分)下列说法正确的是()A . 近似数4.3万精确到千位B . 近似数0.010只有一个有效数字C . 近似数2.8与2.80表示的意义相同D . 近似数43.0精确到个位6. (2分)下列各式结果是负数的是()A . ﹣(﹣3)B . ﹣|﹣3|C . 3﹣2D .7. (2分)如果a的倒数是-1,那么a2013等于()A . 1B . -1C . 2 013D . -2 0138. (2分)下列说法错误的有()①1的平方根与立方根都是1②大于1小于2的无理数只有和③单项式﹣πa2b的次数是4④x=1是方程2+ = +1的解.A . 1个B . 2个C . 3个D . 4个9. (2分) (2017七上·东城期末) 下列计算正确的是()A . x2+x2=x4B . x2+x3=2x5C . 3x-2x=1D . x2y-2x2y=-x2y10. (2分)(2016·凉山) 的倒数的绝对值是()A . ﹣2016B .C . 2016D .二、细心填一填: (共6题;共6分)11. (1分)(2012·资阳) 为了保护人类居住环境,我国的火电企业积极做好节能环保工作.2011年,我国火电企业的平均煤耗继续降低,仅为330000毫克/千瓦时,用科学记数法表示并保留三个有效数字为________毫克/千瓦时.12. (1分) (2016七上·滨州期中) 观察下列单项式:3a2、5a5、7a10、9a17、11a26…它们是按一定规律排列的,那么这列式子的第n个单项式是________.13. (1分) (2016九下·澧县开学考) 如图,已知点A1 , A2 ,…,A2011在函数y=x2位于第二象限的图象上,点B1 , B2 ,…,B2011在函数y=x2位于第一象限的图象上,点C1 , C2 ,…,C2011在y轴的正半轴上,若四边形OA1C1B1、C1A2C2B2 ,…,C2010A2011C2011B2011都是正方形,则正方形C2010A2011C2011B2011的边长为________.14. (1分)“x的3倍与y的平方的差”用代数式表示为________ .15. (1分) (2015七上·句容期末) 若x2+2x+1的值是5,则2x2+4x﹣5的值是________.16. (1分)当b为________时,5﹣|2b﹣4|有最大值.三、仔细算一算: (共6题;共57分)17. (5分)某地连续五天内每天最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪天的温差最小?一二三四五最高气温(℃)-156811最低气温(℃)-7-3-4-4218. (20分)已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.19. (10分) (2016七上·绍兴期中) 【知识背景】在学习计算框图时,可以用“ ”表示数据输入、输出框;用“ ”表示数据处理和运算框;用“ ”表示数据判断框(根据条件决定执行两条路径中的某一条)【尝试解决】(1)①如图1,当输入数x=﹣2时,输出数y=________;②如图2,第一个“”内,应填________;第二个“ ”内,应填________;(2)①如图3,当输入数x=﹣1时,输出数y=________;②如图4,当输出的值y=17,则输入的值x=________;(3)为鼓励节约用水,决定对用水实行“阶梯价”:当每月用水量不超过10吨时(含10吨),以3元/吨的价格收费;当每月用水量超过10吨时,超过部分以4元/吨的价格收费.请设计出一个“计算框图”,使得输入数为用水量x,输出数为水费y.20. (7分) (2016七上.沙坪坝期中) 阅读下列材料:式子“1×2×3×4×5×...×100”表示从1开始的100个连续自然数的积.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1×2×3×4×5× (100)表示为 n,这里“π”是求积符号.例如:1×3×5×7×9×…×99,即从1开始的100以内的连续奇数的积,可表示为(2n﹣1),又知13×23×33×43×53×63×73×83×93×103可表示为 n3 .通过对以上材料的阅读,请解答下列问题:(1)1× × ×…× 用求积符号可表示为________;(2)2×4×6×8×10×…×100(即从2开始的100以内的连续偶数的积)用求积符号可表示为________;(3)已知:a2﹣b2=(a﹣b)(a+b),如:32﹣22=(3﹣2)(3+2),据上述信息:①计算:(1﹣()2)(1﹣()2)②计算:(1﹣).21. (5分) (2017七上·南京期末) 化简求值:,其中, .22. (10分) (2019七上·滨湖期中) 合并同类项:(1) 5a-4b-3a-b(2) 3( -2x-1) -2(2 -3x)+3四、认真答一答: (共3题;共15分)23. (5分)先化简,再求值:2xy- (4xy-8x2y2)+2(3xy-5x2y2),其中x=,y=-3.24. (5分) (2019七上·开州期中) 有一道题“当时,求多项式的值”,马虎做题时把错抄成,王彬没抄错题,但他们得出的结果都一样,你知道这是怎么回事吗?说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吉林省长春市东北师大附中明珠校区2020-2021学年七年级
上学期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.中国古代数学著作《九章算术》在世界数学史上首次正式引入负数,如果收入100元记作+100元,那么-70元表示( )
A .支出70元
B .支出30元
C .收入70元
D .收入30元 2.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就,数据11090000用科学记数法表示为( ) A .4110910⨯ B .611.0910⨯ C .81.10910⨯ D .71.10910⨯ 3.下列各数中最小的是( )
A .3
B .-2.5
C .-95
D .0
4.下列四个数中,是负分数的是( )
A .211
B .0.23-
C .34
D .20- 5.多项式243x x +-的次数是( )
A .3
B .2
C .1
D .0
6.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )
A .0a b +>
B .0a b ->
C .0ab >
D .0a b -> 7.已知|x|=2,y 2=9且xy<0,那么x-y 的值为( )
A .5
B . 1
C .5或1
D .-5或5 8.如图,是一个运算程序的示意图,若第一次输入x 的值为625,则第2020次输出的结果为( )
A .25
B .5
C .1
D .0
二、填空题
9.-6的相反数是 .
10.单项式-243
a bc 的系数是______________. 11.A 、B 两地之间相距440千米,一辆汽车以110千米/时的速度从A 地前往B 地,x (x <4)小时后距离B 地___________千米.
12.用四舍五入法将7.865精确到百分位:7.865≈___________.
13.单项式23m x y 是六次单项式,则m =_______.
14.用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是_____________.
三、解答题
15.(1)1132
-+; (2)()()()9115+-++-;
(3)()()30.7 1.7204⎛
⎫-⨯-÷-⨯ ⎪⎝⎭
; (4)27332384⎛
⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
; (5)()2114121133⎛⎫⎛⎫--⨯-÷- ⎪ ⎪⎝⎭⎝⎭
; (6)()()32110.5413⎡⎤-+-÷⨯--⎣⎦
. 16.简便运算:
(1)110.53 2.757
42⎛⎫⎛⎫---+-+ ⎪ ⎪⎝⎭⎝⎭ (2)()11825 3.794067411
⨯⨯⨯-⨯ (3)3572414
68⎛⎫-⨯-+- ⎪⎝⎭ (4)()11175250.125508
8⎛⎫
⨯+-⨯--⨯ ⎪⎝⎭
17.列式计算:
(1)3-与213
的和的平方是多少? (2)4-、5-、7+三个数的和比这三个数绝对值的和小多少?
18.如图,有两摞规格完全相同的课本叠放在桌子上,一摞有6本,距离地面的最大高度为90.4cm ;另一摞有3本,距离地面的最大高度为87.7cm ,请根据图中所给的信息,解答下列问题.
(1)一本书的厚度是 cm ,桌子的高度是 cm .
(2)当桌子上以相同方式整齐摆放的课本为x (本)时,请写出这摞课本距离地面的最大高度___cm (用含x 的代数式表示)
(3)桌面上有56本相同规格的数学课本,整齐地摆成一摞,若有19名同学各取走一本,求余下的课本距离地面的最大高度.
19.如果()2120a b ++-=
(1)求a 、b 的值;
(2)求()20202019a b a ++的值.
20.出租车司机小李某天上午营运是在儿公园门口出发,沿南北走向的人民大街上进行的,如果规定向北为正,向南为负,他这天上午所接送八位乘客的行车里程(单位:km ) 如下:
3-,6+, 1.8-, 2.8+,5-,2-,9+,6-,
(1)将最后一位乘客送到目的地时,小李在儿童公园的哪个方向?距离是多少? (2)若出租车消耗天然气量为30.2m /km ,小李接送八位乘客,出租车共消耗天然气多少立方米?
(3)若出租车起步价为8元,起步里程为3km (包括3km ),超过3km 的部分每千米2.2元,接送完第四个乘客后,小李得车费_______元.
21.(概念学习)
我们知道:求几个相同 加数的和的简便运算是乘法,也可以叫做连加.
例如:22223++=⨯,55555556+++++=⨯
类似地,求若干个相同的有理数的减法运算叫做连减,例如222--,,记作32↓.
一般地,把n 个a 连减记作n a ↓,
()2n n a n a a a a a a a a a -↓=---=---个个(n 为整数,
且n ≥2) (初步探究)直接写出计算结果:42↓= ,53↓= ;543⎛⎫↓ ⎪⎝⎭
= ; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,相同加数的加法运算可以转化为乘法运算,那么有理数的连减运算如何转化为乘法运算呢?
例如:()3222221↓=--=-⨯,()6555555554↓=-----=-⨯
41111112222222⎛⎫⎛⎫↓=---=-⨯ ⎪ ⎪⎝⎭
⎝⎭ (1)试一试:将下列连减运算直接写成两数相乘的形式.
78↓= ,()81-↓= ,n a ↓= (n 为整数,且n ≥2)
(2)算一算:()75124422⎛⎫-↓⨯+↓÷- ⎪⎝⎭
22.如图,数轴上点A 表示的有理数为-4,点B 表示的有理数为6,点P 从点A 出发以每秒2个单位长度的速度在数轴上沿由A 到B 方向运动,当点P 到达点B 后立即返回,仍然以每秒2个单位长度的速度点运动至点A 停止运动,设运动时间为t (单位:秒).
(1)当t =2时,点P 表示的有理数为 .
(2)当点P 与点B 重合时t 的值为 .
(3)①在点P 由A 到点B 的运动过程中,点P 与点A 的距离为 (用含t 的代数式表示)
②在点P 由点A 到点B 的运动过程中,点P 表示的有理数为 (用含t 的代数式表示)
(4)当点P 表示的有理数与原点距离是2的单位长度时,t 的值为 .
参考答案
1.A
【分析】
根据题意可知因为收入与支出相反,所以由收入100元记作+100元,可得到-70元表示支出70元.
【详解】
解:如果收入100元记作+100元.那么-70元表示支出70元.
故选:A .
【点睛】
本题考查正负数的意义,熟练运用负数来描述生活中的实例是解题关键.
2.D
【分析】
科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 1.109a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往左移动到1的后面,所以7.n =
【详解】
解:711090000 1.10910⨯=,
故选D .
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.
3.B
【分析】
根据正数大于负数,正数大于0,0大于负数;两个负数,绝对值大的反而小,即可作出判断.
【详解】
解:∵|-2.5|=2.5,|-
95|=95=1.8, 2.5>1.8,
∴-2.5<-95

∴-2.5<-95
<0<3, ∴最小的是-2.5.
故选B .
【点睛】
本题考查了有理数的大小比较.掌握正数大于负数,正数大于0,0大于负数;两个负数,绝对值大的反而小是解题的关键.
4.B
【分析】
根据负分数的定义选出正确选项.
【详解】
A 选项是正分数;
B 选项是负分数;
C 选项是正整数;
D 选项是负整数.
故选:B .
【点睛】
本题考查有理数的分类,解题的关键是掌握有理数的分类.
5.B
【分析】
根据多项式的次数是多项式中次数最高的项的次数解答即可.
【详解】
解:∵多项式243+-x x 中x 2项的次数最高,且次数为2,
∴多项式243+-x x 的次数为2,
故选:B .
【点睛】
本题考查了多项式的次数,熟知多项式的次数是多项式中次数最高的项的次数是解答的关键. 6.B
【分析】
先根据数轴的定义得出a 、b 的符号和绝对值大小,再逐项判断即可得.。

相关文档
最新文档