生物脱氮除磷工艺技术的应用
生物脱氮除磷原理及工艺
(2)反应过程 (3)反硝化反应的控制指标
①碳源
污水中的碳源,BOD5/T—N>3-5时,勿需外加 外加碳源,CH3OH(反硝化速率高生成CO2+H2O),
②PH值
当BOD5/T—N<3-5时
适当的PH值(6.5-7.5) ——主要的影响因素
PH>8,或PH<6,反硝化速率下降
8
同化反硝化
+4H
+4H
缓慢搅拌池
沉淀池
21
三、 生物除磷原理
霍米尔(Holmers)提出活性污泥的化学式 C118H170O51N17P 或C:N:P=46:8:1
※ 生物除磷——就是利用聚磷菌一类的的微生物,能够过量 的,在数量上超过其生理需要,从外部摄取磷,并将磷以聚合 形式贮藏在菌体内,形成高磷污泥,排出系统外,达到从废水 中除磷的效果。
设内循环
产生碱度,3.75mg碱度/mgNO3—N 勿需建后曝气池
回流水含有NO3—N(沉淀池污泥反硝化生成)
要提高脱氮率,要增加回流比
(2)影响因素与主要工艺参数
水力停留时间:3 :1; 循环比:200%; MLSS值:大于3000mg/l; 污泥龄:30d; N/MLSS负荷率:0.03gN/gMLSS.d 进水总氮浓度:小于30mg/l。
活性污泥法的传统功能——去除水中溶解性有机物
1、同化作用
污水生物处理中,一部分氮备同化微生物细胞的 组分。按细胞干重计算,微生物中氮的含量约为 12.5%
4
2、氨化反应 与硝化反应 (1)氨化反应
RCHNH2COOH+O2氨化菌 RCOOH+CO2+NH3
3、硝化反应
(1)硝化过程
《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文
《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加速,城市污水处理问题日益突出。
在众多的污水处理技术中,生物脱氮除磷技术因其高效、经济、环保等优点而备受关注。
本文旨在探讨城市污水处理中新型生物脱氮除磷技术的研究进展,分析其技术特点、应用现状及未来发展趋势。
二、生物脱氮除磷技术概述生物脱氮除磷技术是一种利用微生物的新陈代谢活动,通过生物膜法或活性污泥法等工艺,将污水中的氮、磷等营养物质去除的技术。
该技术具有处理效率高、运行成本低、污泥产量少等优点,是当前城市污水处理领域的研究热点。
三、新型生物脱氮技术研究进展(一)A2/O工艺及其改进型技术A2/O(厌氧-缺氧-好氧)工艺是一种典型的生物脱氮技术。
近年来,研究者们针对A2/O工艺的不足,开发了多种改进型技术,如MBBR(移动床生物膜反应器)、SBR(序批式活性污泥法)等。
这些技术通过优化反应器结构、调整运行参数等手段,提高了脱氮效率,降低了能耗。
(二)新型厌氧氨氧化技术厌氧氨氧化技术是一种利用厌氧氨氧化菌将氨氮转化为氮气的生物脱氮技术。
近年来,研究者们通过优化反应条件、提高菌种活性等手段,推动了厌氧氨氧化技术的发展。
该技术具有脱氮效率高、能耗低等优点,是未来生物脱氮技术的重要发展方向。
四、新型生物除磷技术研究进展(一)PAOs(聚磷菌)强化除磷技术PAOs强化除磷技术是一种利用聚磷菌在厌氧-好氧条件下实现高效除磷的技术。
近年来,研究者们通过优化反应条件、提高聚磷菌活性等手段,提高了PAOs强化除磷技术的除磷效率。
该技术具有除磷效果好、污泥产量少等优点。
(二)化学与生物联合除磷技术化学与生物联合除磷技术是一种结合化学沉淀与生物吸附的除磷技术。
该技术通过投加化学药剂与生物反应相结合的方式,实现高效除磷。
近年来,研究者们针对不同水质条件,优化了药剂种类和投加量,提高了除磷效果。
五、新型生物脱氮除磷技术应用及发展趋势(一)应用现状新型生物脱氮除磷技术在城市污水处理中已得到广泛应用。
生物脱氮除磷工艺
生物脱氮除磷工艺生物脱氮除磷工艺是一种通过微生物代谢作用来减少废水中氮和磷的浓度的工艺。
该工艺逐渐被广泛应用于城市污水处理、农业生产、工业废水处理等领域。
生物脱氮除磷工艺涉及多个过程,包括生物脱氮池、一/二级沉淀池、生物滤池、化学除磷装置等。
其中生物脱氮池和生物滤池是主要的过程单元。
生物脱氮池是一个特殊的好氧反应器,主要是使用异养菌为营养基础,利用硝化反应将氨氮和有机氮转化为硝态氮,然后通过反硝化反应将硝态氮还原为氮气排出。
为了使池内的好氧环境被保持,池内需要提供足够的氧气。
生物滤池是一个非常重要的污水处理单位,它是通过微生物群落代谢作用,利用吸附作用来吸附废水中的氮和磷元素。
微生物生长在滤料表面,铺设在水平或者竖直的格栅上,滤料可以是沙砾、玄武岩等物质。
滤料的特殊结构、表面特性和自备的微生物群落成为生物滤池内的去除污染物的主要手段。
废水在流经滤料层时,氮和磷元素在滤料表面被吸附,吸附到细胞表面的氮被异养菌氧化为氮气,磷元素则随着污泥浓度增加,在池内逐步沉积。
生物脱氮除磷工艺的优点在于原理简单,适用范围广泛,处理效率高,成本较低,不需要大量的化学物质,并且不会产生二次污染。
然而,这种工艺也存在一些缺陷。
例如,处理后的产物含有大量的氮和磷,商业利用它们困难,造成浪费;污水中如果有过多的脂肪和油脂,可能会对生物脱氮除磷工艺产生影响,导致工艺失效。
总之,生物脱氮除磷工艺是一种受到广泛关注的废水处理方案。
未来,随着社会对环境保护意识的不断提高,生物脱氮除磷工艺势必会在更多的领域得到应用,成为减少污染物排放的重要手段。
脱氮除磷工艺指南
脱氮除磷工艺指南一、引言脱氮除磷是水处理工艺中非常重要的环节,它能有效地去除废水中的氮和磷,减少对环境的污染。
本文将介绍脱氮除磷的工艺原理、常用方法和设备以及操作注意事项,以帮助读者更好地了解和应用该工艺。
二、工艺原理脱氮除磷的原理是利用生物和化学方法将废水中的氮和磷转化为氮气和无机磷,从而实现去除的目的。
生物脱氮除磷是利用硝化细菌和反硝化细菌的作用,将废水中的氨氮和亚硝酸盐氮转化为氮气释放到大气中。
化学脱氮除磷是利用化学药剂与废水中的氮结合形成沉淀物,从而去除氮。
除磷主要是通过化学沉淀、吸附和生物吸附等方式将废水中的磷去除。
三、常用方法1. 生物脱氮除磷工艺生物脱氮除磷工艺主要包括A2O法、SBR法、AO法等。
其中,A2O法是指将好氧区、缺氧区和厌氧区结合在一起的工艺,通过不同区域中的细菌作用实现脱氮除磷。
SBR法是指在同一反应器中通过不同阶段的工作实现脱氮除磷。
AO法是指通过好氧区和厌氧区结合的方式,分别去除氮和磷。
2. 化学脱氮除磷工艺化学脱氮除磷工艺主要包括化学沉淀法和化学吸附法。
化学沉淀法是通过加入适量的化学药剂,使废水中的氮和磷形成沉淀,然后通过沉淀物的分离去除。
化学吸附法是利用一些特殊的吸附材料,如活性炭、氧化铁等,将废水中的氮和磷吸附在表面,从而实现去除。
四、常用设备1. 好氧池和厌氧池好氧池和厌氧池是生物脱氮除磷工艺中常用的设备。
好氧池提供氧气和充足的微生物,促进氮的氧化和磷的吸附,而厌氧池则提供缺氧条件,促进氮的还原和释放。
2. 沉淀池沉淀池是化学脱氮除磷工艺中常用的设备。
通过加入化学药剂,废水中的氮和磷形成沉淀物,在沉淀池中进行沉淀分离,然后排出清水。
3. 吸附装置吸附装置是化学吸附法中常用的设备。
利用特殊吸附材料,将废水中的氮和磷吸附在表面,然后进行分离和去除。
五、操作注意事项1. 控制好氧和厌氧条件,保证生物脱氮除磷工艺的正常运行。
2. 加入化学药剂时,要注意药剂的种类和用量,避免过量使用或不足。
《2024年污水生物脱氮除磷工艺优化技术综述》范文
《污水生物脱氮除磷工艺优化技术综述》篇一一、引言随着工业化的快速发展和城市化进程的加速,污水处理问题日益严峻。
在污水处理中,脱氮除磷是两个重要的处理目标。
传统的物理、化学处理方法虽然能够达到一定的处理效果,但往往能耗高、成本大,且易产生二次污染。
因此,对污水生物脱氮除磷工艺的优化技术进行研究,不仅对环境保护具有重要意义,也对可持续发展具有长远影响。
本文旨在综述当前污水生物脱氮除磷工艺的优化技术及其应用现状。
二、污水生物脱氮技术1. 传统生物脱氮工艺传统生物脱氮工艺主要包括硝化与反硝化两个过程。
其中,硝化过程由自养型硝化细菌完成,反硝化过程则由异养型反硝化细菌完成。
这一过程虽然简单,但在实际运行中往往受到多种因素的影响,如温度、pH值、营养物质等。
2. 优化技术针对传统生物脱氮工艺的不足,研究者们提出了多种优化技术。
其中包括:改良菌种、引入新型反应器、优化运行参数等。
改良菌种主要是通过选育高效、耐污的菌种来提高脱氮效率;新型反应器的引入则能够更好地实现硝化与反硝化的分离与结合,提高整体脱氮效果;而优化运行参数则包括调整pH值、温度等,以适应不同环境条件下的脱氮需求。
三、污水生物除磷技术1. 传统生物除磷工艺传统生物除磷工艺主要依靠聚磷菌在好氧、厌氧条件下的生长特性来实现除磷。
这一过程虽然有效,但易受到污泥产量、营养物质等因素的影响。
2. 优化技术针对传统生物除磷工艺的不足,研究者们提出了多种优化技术。
其中包括:强化生物除磷、化学辅助生物除磷等。
强化生物除磷主要是通过优化反应条件、改良菌种等方式来提高除磷效率;而化学辅助生物除磷则是通过添加化学药剂来辅助生物除磷过程,进一步提高除磷效果。
四、污水生物脱氮除磷组合工艺及优化在实际应用中,往往需要将脱氮与除磷两种工艺结合起来,以实现更好的处理效果。
为此,研究者们提出了多种组合工艺及优化策略。
这些策略包括:分点投药、同步硝化反硝化除磷、新型反应器等。
分点投药可以在不同阶段针对性地添加药剂,以提高处理效果;同步硝化反硝化除磷则是在同一反应器中实现脱氮与除磷的双重目标;而新型反应器的引入则可以更好地实现各工艺阶段的分离与结合,提高整体处理效果。
生物脱氮除磷机理及新工艺
生物脱氮除磷机理及新工艺
生物脱氮除磷是指利用生物学原理对水体中的氮和磷进行去除的一种技术。
其基本原理是将含有氮、磷的有机物通过生物降解转化为氮气和磷酸盐,从而达到净化水体的目的。
生物脱氮除磷技术的应用非常广泛,包括城市污水处理、工业废水处理、农业面源污染治理等领域。
生物脱氮除磷的主要机理是利用微生物的代谢活动来进行脱氮除磷。
在生物脱氮过程中,利用硝化菌将氨氮转化为亚硝酸盐和硝酸盐,进而转化为氮气排放。
在生物除磷过程中,利用聚磷菌将水体中的磷转化为无机磷酸盐,进而去除。
生物脱氮除磷技术是一种相对成熟的技术,其优点包括高效、经济、环保等。
近年来,随着科技的不断发展,新型的生物脱氮除磷工艺也得到了广泛应用。
这些新型工艺包括厌氧氨氧化工艺、硝化除磷工艺、硝酸盐还原工艺等。
其中,厌氧氨氧化工艺是一种新兴的脱氮技术,具有高效、节能等优点。
硝化除磷工艺则是将氮素和磷素同时通过硝化反应进行去除,能够达到较高的脱氮除磷效率。
硝酸盐还原工艺则是通过还原反应将水体中的硝酸盐转化为氨氮,从而达到脱氮的效果。
总的来说,生物脱氮除磷技术是一种非常重要的污水处理技术,对于保护水环境具有重要的意义。
未来随着科技的不断发展,生物脱氮除磷技术也将不断完善和发展,为净化水体、改善环境质量做出更大的贡献。
论述利用微生物脱氮除磷的原理
论述利用微生物脱氮除磷的原理引言:环境污染是当今世界面临的一个严重问题,其中水污染是其中之一。
氮和磷是水体中主要的营养盐,但过量的氮和磷会导致水体富营养化,引发一系列环境问题。
为了解决水体中氮和磷的过量问题,科学家们发现利用微生物进行脱氮除磷是一种有效的方法。
本文将详细论述利用微生物脱氮除磷的原理。
一、氮和磷的来源及危害水体中的氮和磷主要来自人类活动,如农业农药、化肥的使用、工业废水排放以及城市污水处理厂的排放等。
这些氮和磷的过量输入会导致水体富营养化,引发水华、藻类繁殖、鱼类大量死亡等问题,破坏水生态系统的平衡。
二、微生物脱氮除磷的原理微生物脱氮除磷是利用一些特定的微生物来将水体中的氮和磷转化为微生物体内的有机物或无机盐,从而达到降低水体中氮和磷浓度的目的。
1. 脱氮原理:微生物脱氮的主要机制有硝化和反硝化。
在水体中,氨氮首先通过氨氧化细菌(AOB)转化为亚硝酸盐,然后亚硝酸盐通过亚硝酸盐氧化细菌(NOB)进一步氧化为硝酸盐。
在反硝化过程中,硝酸盐还原为氮气,并释放到大气中。
通过这两个过程,微生物可以将水体中的氮气转化为氮气,从而实现脱氮。
2. 除磷原理:微生物除磷的主要机制是通过磷酸盐释放和磷酸盐吸附。
在水体中,某些微生物能够分泌酸性多糖物质,通过酸解磷酸盐结合物质,将磷酸盐从沉积物中释放出来,然后通过微生物体内的酸性多糖物质吸附住磷酸盐,从而实现除磷。
三、微生物脱氮除磷的优势与传统的化学方法相比,利用微生物脱氮除磷具有以下优势:1. 环境友好:微生物脱氮除磷不需要使用化学药剂,不会产生有害物质,对环境污染小。
2. 经济效益高:微生物脱氮除磷的建设和运行成本相对较低,适合大规模应用。
3. 高效稳定:微生物脱氮除磷的效率高,能够在较短时间内将水体中的氮和磷降低到安全浓度。
4. 可持续发展:微生物脱氮除磷是一种可持续发展的技术,微生物可以通过自我繁殖和生长来维持系统的稳定性。
四、微生物脱氮除磷的应用案例微生物脱氮除磷技术已经在实际应用中取得了一定的成果。
《2024年污水生物脱氮除磷工艺的现状与发展》范文
《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着城市化进程的加速和工业的迅猛发展,大量生活污水和工业废水被排放到水环境中,造成了严重的环境问题。
为了有效减少污水对环境的危害,人们研发了多种污水处理技术。
其中,污水生物脱氮除磷工艺因具有较好的处理效果和较低的运行成本,得到了广泛的应用。
本文将就污水生物脱氮除磷工艺的现状及其发展进行详细探讨。
二、污水生物脱氮除磷工艺的现状1. 工艺概述污水生物脱氮除磷工艺是一种基于微生物作用,利用活性污泥法等生物处理技术,将污水中的氮、磷等营养元素去除的工艺。
该工艺主要利用微生物的代谢作用,将污水中的氮、磷转化为无害物质,从而达到净化水质的目的。
2. 国内外应用现状目前,国内外广泛应用的污水生物脱氮除磷工艺主要包括A/O法、A2/O法、氧化沟法等。
这些工艺在我国污水处理领域得到了广泛应用,特别是在城市污水处理厂和工业废水处理中。
此外,一些新型的生物脱氮除磷技术,如MBR(膜生物反应器)技术、超声波强化生物脱氮除磷技术等也在逐步推广应用。
三、工艺运行机制与原理污水生物脱氮除磷工艺主要依靠活性污泥中的微生物完成。
在反应过程中,微生物通过吸附、吸收、代谢等作用,将污水中的氮、磷等营养元素转化为无害物质。
具体来说,脱氮过程主要通过氨化、硝化和反硝化等步骤实现;除磷过程则主要通过聚磷菌的过量摄磷和释磷实现。
四、工艺发展及挑战1. 技术发展随着科技的不断进步,污水生物脱氮除磷工艺也在不断发展和完善。
新型的生物反应器、高效的微生物菌剂、智能化的控制系统等技术手段的应用,使得污水处理效率得到了显著提高。
同时,一些新型的污水处理理念和技术,如低碳、低能耗、资源化等也得到了广泛关注。
2. 面临的挑战尽管污水生物脱氮除磷工艺取得了显著的成果,但仍面临一些挑战。
如:如何进一步提高处理效率、降低运行成本;如何解决污泥处理与处置问题;如何应对复杂多变的水质等。
此外,一些新兴污染物(如微塑料、新型有机污染物等)也对传统污水处理技术提出了新的挑战。
微生物在污水处理中的应用—废水的生物脱氮除磷技术
废水脱氮
1.微生物脱氮原理 2.生物脱氮的影响 因素 3.生物脱氮工艺及 应用
废水除磷
1.微生物除磷原理 2.典型的除磷工艺
同步脱 氮除磷
1.同步脱氮除磷典 型工艺 2.废水同步脱氮除 磷技术的工程应用
53
1.生物脱氮除磷的原理
在生物脱氮除磷工艺中,厌氧池的主要功能是释放磷, 使污水中的磷浓度升高,溶解性的有机物被微生物细胞吸收 而是无水肿的BOD下降,另外,氨氮因细胞的合成而被去除 一部分,是水中氨氮浓度下降,但硝态氮含量没有变化。
无机氮 N.H,N.O
NH3 铵盐(NH4+) 硝酸盐
7
1.3废水中氮的来源、状态
状态
污染物
有机氮 复杂蛋白质、尿 素、核酸等
无机氮 NH3、铵盐等 硝酸盐等
污染来源
生活污水、农业固体废物 (养殖粪便)和食品加工 等工业废水
农田灌溉、化肥厂等工业 废水
8
1.4水中氮磷的危害
(1)过量氮、磷容易导致水体富营养化; (2)增加水处理成本、降低消毒、脱色等处理效率, (3)增加药剂药剂用量; (4)氨氮消耗水中溶解氧; (5)含氮化合物对人、生物有毒害作用。
小结
废水生物除磷原理 废水生物除磷影响因素 废水生物除磷工艺及应用
废水同步生物脱氮除磷 原理及工艺
主要内容
生物同步脱氮除磷的原理 生物同步脱氮除磷工艺及应用
随着经济的发展,大量含氮、磷物质排入环境,导致水 体污染日益加剧,给水体生态系统和人群健康造成极大的危 害,当磷大与0.01mg/l,氮大于0.1 mg/l,水体开始发生富营 养化。因此,需对废水脱氮除磷,以保护水生生态系统。
40
2.生物除磷原理
因此,在好氧厌氧交替条件下,活性污泥中的聚磷 菌以“厌氧释磷”和“好氧聚磷” 的机制,将磷最终以 剩余污泥的形式排出,彻底去除水中的磷。
生物脱氮除磷工艺简介
生物脱氮除磷工艺简介1、生物脱氮除磷工艺的进展从20世纪60年代开始,美国曾系统地进行了脱氮除磷物化方法研究,结果认为该法的主要缺点是药耗量大,产生的污泥多,特别对处理大量城市污水时,处理成本高。
因此,转入研究生物脱氮除磷工艺。
从20世纪70年代开始,在活性污泥法脱氮工艺(A/0工艺)逐步实现工业化,并在此基础上研究开发出了生物脱氮除磷工艺(如A2/0工艺等)。
以后,随着微生物学和细胞学在污水生化处理上的新应用,又不断出现了多种变形的生物脱氮除磷工艺,如MSBR等。
我国从20世纪80年代初开始生物脱氮除磷研究,80年代后期实现了工业化流程。
污水脱氮除磷可供选择的工艺通常有生物处理和物理化学处理两大类。
后者由于需要投加相当数量的化学药剂,存在运行费用高,残渣量大和运行管理难度大等缺陷,因此,城市污水处理中一般不推荐采用。
而一般生物处理又分为活性污泥和生物膜法两种。
目前对城市污水的生物脱氮除磷工艺,指的是活性污泥生物脱氮除磷工艺。
目前已实用的几种生物脱氮除磷工艺有:A2/O、氧化沟、SBR工艺以及以上三种工艺的系列改良工艺。
2、生物脱氮除磷的工艺原理简述(1)生物脱氮首先,污水中的蛋白质和尿素等在水解酶和尿素酶的作用下转化为氨氮,而后在有氧条件下和在硝化菌的作用下,氨氮被氧化为硝酸盐,这阶段称为硝化(即氨氮转化为硝酸盐)。
再以后,在缺氮条件和反硝化菌的参与作用,并有外加碳源提供能量,硝酸盐还原成气态氮(N2)逸出,这阶段称为反硝化(即硝酸盐的氮转化为氮气)。
整个脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。
在脱氮过程中,硝化菌增长速度较缓慢,所以要有足够的污泥泥龄。
反硝化菌的生长主要在缺氧条件下进行,还要有充裕的碳源提供能量,才可能使反硝化作用顺利进行。
除上述条件以外,影响脱氮效率的因素还有溶解氧,温度和PH 值等。
硝化阶段,应有足够的溶解氧,其值一般应大于2g/L。
反硝化阶段为缺氧条件,溶解氧值宜为0.4mg/L左右。
A2/O工艺在城市生活污水处理中的应用
A2/O工艺在城市生活污水处理中的应用摘要:介绍了A2/O工艺的流程、特点及其在城市生活污水处理中的应用效果。
该工艺具有良好的社会效益、环境效益,具有较高的推广应用价值。
关键词:A2/O工艺;城市生活污水;处理The application of the A2/O process in municipal wastewater treatmentAbstract The flow and characteristics of the A2/O process and application results inmunicipalwastewater treatment are introduced. This technology can bring forth favorably social,environmental profits,so it is worth popularizing and applying.Key wordsA2/O processmunicipal wastewatertreatment近年来社会经济发展迅速,随之而产生的工业废水和城市生活污水量逐年增加。
目前,很多城市排水体制仍为雨污合流制,市区的生活污水和部分工业废水未经处理便直接排放。
污水的排放对周围沟渠及其下游河道污染的程度日益严重,同时也影响了附近地区工农业生产和居民的生产、生活,制约了城市建设和发展,并使区域内的生态环境遭受影响和破坏,所以筹建城市污水处理厂及配套污水管网迫在眉睫。
目前,我国城市污水处理新兴工艺层出不穷,并以国外引入的工艺技术为主导潮流。
就当前国际上污水处理科技发展现状看,并不存在适用于任何场合、有百利无一弊的所谓“最先进” 技术,每一种工艺都有一个适用性问题[1]。
A2O工艺由于具有构造简单、总水力停留对阐短、运行费用低、控制复杂性小、不易产生污泥膨胀等优点,被广泛应用在我国现有的需脱氮除磷的城市污水处理厂中[2]。
生物脱氮除磷
生物脱氮除磷工艺及研究随着水体富营养化问题的日渐突出,污水综合排放标准日趋严格,污水处理技术逐渐从以单一去除有机物为目的的阶段进入既要去除有机物又要脱氮除磷的深度处理阶段。
生物脱氮除磷技术是经济' 高效的脱氮除磷技术,在污水处理领域已得到广泛的应用。
1反硝化除磷机理生物脱氮除磷主要是利用反硝化达到除磷的目的。
生物脱氮除磷是在厌氧/缺氧环境的交替运行的条件下,易富集一类兼有反硝化作用和除磷作用的兼性厌氧微生物,该微生物能利用氧气或硝酸根作为电子受体,通过他们的代谢作用同时完成过量吸磷和反硝化过程而达到除磷脱氮的目的。
对于反硝化除磷现象研究者们提出了两种假说来进行解释:(1) 两类菌属学说,即生物除磷系统中的聚磷菌(PAO)可分为两类菌属,其中一类PAO只能一氧气作为电子受体,而另一类则既能以氧气又能以硝酸盐作为电子受体,因此他们在吸磷的同时能进行反硝化;(2) 一类菌属学说,即在生物除磷系统中只存在一类PAQ他们在一定的程度上都具有反硝化能力,该能力能否表现出来关键在于厌氧/缺氧这种交替运行的环境条件是否得到了强化。
而J.Y.Hu等通过试验发现厌氧/缺氧SBR系统中存在一类能以氧气'硝态氮' 和亚硝态氮作为电子受体的聚磷微生物,因此他将厌氧/缺氧型反硝化聚磷污泥系统的两类微生物的两类微生物菌属假说扩增到三类微生物菌属;第三类就是既能够以氧气和硝酸盐氮,也能以亚硝酸盐氮作为电子受体的类聚磷微生物。
通过总结可以确立的反硝化除磷机理: 反硝化除磷菌作为兼性厌氧细菌可以通过厌氧/缺氧条件的驯化培养大量富集;在缺氧条件下能产生分别或同时利用氧气,亚硝酸盐、硝酸盐作为电子受体的DPBo并且通过胞内PHB和糖原质的生物代谢作用来过量吸收磷,其代谢作用与传统PAO相似。
DPB体内包含3类内聚物:PHB糖原和聚磷颗粒。
首先在厌氧条件下,DPBS过厌氧释放磷获取能量体内合成PHB在缺氧条件下DPB可利用3种物质作为电子受体完成磷的摄取,同时完成反硝化过程,PHB 消耗和聚磷颗粒的生长同时进行。
生物脱氮技术在城市污水处理中的应用及工艺优化
生物脱氮技术在城市污水处理中的应用及工艺优化摘要:随着改革开放带来的经济发展和城镇化建设,我国居民生活水平有了明显的改善,伴随城镇化进程不断推进随之而来的问题就是许多城市的污水、排水设备和设施不够完善,导致当地的水污染情况严重。
城市的生活污水中含有大量的氮、磷有机物,会造成水体的富营养化。
水体的富营养化会使水中的藻类植物过度生长,使得水中的生物缺氧导致死亡。
基于此,对生物脱氮技术在城市污水处理中的应用及工艺优化进行研究,以供参考。
关键词:生物法脱氮技术:城市生活污水;工艺优化引言随着我国经济的快速发展,污水处理领域面临着巨大的挑战。
过量的含氮污水排放对水生生物产生危害,使水中溶解氧浓度降低,从而造成水生动植物死亡和水体富营养化。
传统的生物脱氮技术尽管应用广泛,但是存在诸多问题,例如脱氮除磷效率偏低、能量消耗大、投资成本高以及操作工艺复杂等。
因此,探索高效、低耗的污水脱氮工艺是污水处理领域的研究热点。
1污水处理厂污水的来源与成分城市生活污水指的是在整个城镇范围内的生活污水,工程污水和地表污染水。
生活污水的源头主要是由城镇居民家庭,以及企业单位、大型商场、初高中和普通高校等等用水。
城镇生活污水的主要污染源包括有机、无机污染物,以及病毒和细菌等。
污水中氮、磷含量超标会造成水体的富营养化,导致水中溶解氧的浓度过低,造成赤潮现象和水体的黑臭现象。
简单的生物法脱氮技术已经不能有效地解决赤潮现象和水体黑臭,所以必须发展无机物和有机物共同去除的生物处理技术,即对污水处理厂的污水进行硝化处理和反硝化处理。
随着污水处理技术的不断发展,现在已经研究出了很多种污水脱氮办法,可以更好地解决污水中氮磷含量超标的问题。
在污水处理厂处理污水时,选择合适的脱氮除磷技术可以更好地降低运营成本。
2污水生物脱氮技术研究现状与物理法和化学法相比,生物法在处理效率和经济性方面具有不可或缺的优势。
20世纪初,一项活性污泥法的诞生揭开了污水处理技术发展和应用的新篇章。
倒置A2-O工艺生物脱氮除磷原理及其生产应用
倒置A2-O工艺生物脱氮除磷原理及其生产应用摘要:随着工业化进程的快速进步,废水处理成为了关注的焦点。
倒置A2/O工艺作为一种高效的废水处理技术,被广泛应用于生产实践中。
本文将介绍倒置A2/O工艺的生物脱氮除磷原理,并探讨其在废水处理中的应用前景。
一、倒置A2/O工艺的原理倒置A2/O工艺是一种将好氧、缺氧和厌氧演替结合在一起的废水处理工艺。
其系统包括好氧区、缺氧区和厌氧区。
好氧区:好氧区是废水处理系统的第一步,其中废水与空气接触,利用好氧微生物氧化有机物。
这一步骤有利于去除废水中的有机物质和部分氨氮。
缺氧区:经过好氧区的处理后,废水来到缺氧区,在此区域中,缺氧微生物利用废水中的氨氮作为电子供体,将氮氧化为亚硝酸盐。
在此过程中,需要合适的缺氧条件和适量的有机物质同时存在。
厌氧区:厌氧区是废水处理工艺的最后一步,通过在不含氧气的环境中,利用反硝化微生物将废水中的亚硝酸盐还原成氮气释放到大气中。
除氮过程中产生的副产物是硝酸盐,需要通过提供合适的硝酸盐缺氧条件和适量的有机物质进行消耗。
二、倒置A2/O工艺的生产应用1. 生活污水处理倒置A2/O工艺被广泛应用于城市生活污水处理厂中。
在处理生活污水的过程中,倒置A2/O工艺能够高效地去除废水中的氮和磷,大大提高了出水质量。
2. 工业废水处理倒置A2/O工艺在工业废水处理中也具有广泛的应用前景。
例如,在造纸工业中,废水中含有大量的有机物和氮磷,倒置A2/O工艺可以高效地去除这些污染物,缩减对环境的影响。
3. 农业废水处理农业废水中含有大量的氮磷,对环境造成严峻的污染。
倒置A2/O工艺在农业废水处理中也起到了乐观的作用。
例如,在畜禽养殖场中,倒置A2/O工艺可以高效去除废水中的氮磷,缩减废水对土壤和地下水的污染。
三、倒置A2/O工艺的优势1. 高效去除氮磷:倒置A2/O工艺接受了好氧、缺氧和厌氧演替的处理方式,能够高效去除废水中的氮磷,使出水达到环境排放标准。
生物膜法脱氮除磷原理
生物膜法脱氮除磷原理
生物膜法脱氮除磷是一种相对较新的处理废水的技术,将生物膜巧妙地应用在废水处理过程中,可以除去有害物质,保护环境。
生物膜法脱氮除磷是一种有效的方法,它将具有污染物质的废水经过生物技术处理后,可以彻底把有害物质(主要是氮和磷类物质)移除,达到净水的效果。
生物膜法脱氮除磷是由一层生物活性物质夹层叠加和穿孔生物膜而形成的。
穿孔生物膜可以阻滞胞外污染物,而生物活性物质夹层在形成生物膜夹层的同时,也可以吸附污染物并将其阻滞。
由于水分子和有机物分子的大小穿过穿孔生物膜的比例不同,水分子的穿过速度往往快于有机物分子,有机分子则得不到有效的清除。
同时,由于生物夹层上表面能位的存在,可以有效的吸附污染物,进一步减少污染物的浓度。
生物膜法脱氮除磷不但占用空间少,耗能量低,而且可以有效的除去氮和磷类物质,不会造成二次污染。
随着环境保护意识的增强,人们对污染物处理技术提出了更高的要求。
生物膜法脱氮除磷技术能够有效地去除水中的污染物,在废水处理领域有着崭新而有效地技术。
A2O法污水生物脱氮除磷处理技术与应用
作者简介
这是《A2O法污水生物脱氮除磷处理技术与应用》的读书笔记,暂无该书作者的介绍。
谢谢观看
目录分析
目录分析
随着工业化和城市化的快速发展,污水的排放量日益增加。为了保护环境, 有必要对污水进行有效的处理。A2O法是一种常用的污水处理方法,具有脱氮除 磷的功能。本书将对《A2O法污水生物脱氮除磷处理技术与应用》这本书的目录 进行分析。
目录分析
这一章主要介绍了A2O法的背景和意义,以及其基本原理和特点。通过阅读这 一章,读者可以了解A2O法的历史发展、应用范围以及与其他污水处理方法的比 较。
内容摘要
污水进入沉淀池,分离出悬浮物和污染物; 污水的水质与水量是影响A2O法污水处理效果的关键因素之一。如果污水中的有机物和氮含量过 高,会对微生物的生长和代谢产生抑制作用,影响处理效果。同时,污水的流量和变化也会对处 理效果产生影响。 A2O法污水处理工艺中,微生物的种类和数量是影响处理效果的重要因素之一。不同的微生物种 类对有机物、氮和磷的去除效果不同,因此需要根据污水的水质和水量选择合适的微生物种类和 数量。 反应条件和环境因素也是影响A2O法污水处理效果的因素之一。例如,温度、pH值、溶解氧等都 会影响微生物的生长和代谢。因此,需要对这些因素进行严格的控制和管理。
阅读感受
阅读感受
《A2O法污水生物脱氮除磷处理技术与应用》:深化对环境保护的理解 《A2O法污水生物脱氮除磷处理技术与应用》这本书,是一本深入探讨环保领 域中A2O法在污水生物脱氮除磷处理技术的书籍。在阅读这本书的过程中,我不 仅对A2O法有了更深入的理解,也对环保工作的重要性和紧迫性有了更深的体会。
阅读感受
《A2O法污水生物脱氮除磷处理技术与应用》这本书给我留下了深刻的印象。 它不仅深化了我对环保工作的理解,还让我对A2O法在污水处理中的应用有了更 深入的认识。我相信,在未来的环保工作中,这本书将是我宝贵的参考书籍之一。 我也希望更多的读者能够通过阅读这本书,对环保工作有更深入的理解和认识, 从而共同为我们的环境贡献力量。
《2024年污水生物脱氮除磷工艺的现状与发展》范文
《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着工业化和城市化的快速发展,污水处理问题日益突出。
其中,氮、磷等营养物质的排放对水环境造成了严重污染。
污水生物脱氮除磷工艺作为一种高效、经济的污水处理技术,得到了广泛的应用和关注。
本文将介绍污水生物脱氮除磷工艺的现状,并探讨其未来的发展趋势。
二、污水生物脱氮除磷工艺的现状1. 工艺原理污水生物脱氮除磷工艺主要利用微生物的作用,通过一系列的生化反应,将污水中的氮、磷等营养物质转化为无害物质,从而达到净化水质的目的。
该工艺主要包括硝化、反硝化、厌氧释磷和好氧吸磷等过程。
2. 常见工艺目前,常见的污水生物脱氮除磷工艺包括A/O(厌氧/好氧)工艺、A2/O(厌氧-缺氧-好氧)工艺、MBBR(移动床生物反应器)工艺等。
这些工艺在不同领域得到了广泛应用,取得了显著的成效。
3. 现状分析(1)优点:污水生物脱氮除磷工艺具有处理效率高、运行成本低、污泥产量少等优点,能够有效地去除污水中的氮、磷等营养物质。
(2)挑战:然而,该工艺在应用过程中也面临一些挑战,如硝化菌和反硝化菌的生长条件差异大、运行管理复杂等。
此外,某些工业废水中的特殊成分可能对微生物产生抑制作用,影响处理效果。
三、污水生物脱氮除磷工艺的发展趋势1. 技术创新随着科技的不断进步,新的污水处理技术不断涌现。
未来,污水生物脱氮除磷工艺将更加注重技术创新,通过优化工艺参数、改进设备结构、提高微生物活性等方式,提高处理效率,降低运行成本。
2. 组合工艺为了进一步提高处理效果,未来将更加注重将不同的污水处理工艺进行组合。
例如,将物理、化学和生物处理方法相结合,形成组合工艺,以适应不同类型污水的处理需求。
3. 智能化管理随着信息技术的发展,污水处理行业的智能化管理将成为未来发展的重要方向。
通过引入物联网、大数据、人工智能等技术手段,实现对污水处理过程的实时监控、远程控制和智能调度,提高运行管理的效率和准确性。
4. 资源化利用为了实现污水的资源化利用,未来将更加注重对污水处理过程中产生的污泥进行资源化利用。
污水生物法脱氮除磷技术及应用
3.同时生物脱氮除磷典型工艺
混合液回流 Ri 出水 进水 厌氧池 好氧池 沉淀池
缺氧池
回流污泥 R 剩余污泥
图2-23 典型的 好氧池 二沉池 出水
剩余污泥 污泥回流 (a)流程1
混合液回流 进水 前置缺氧池 出水 厌氧池 缺氧池 好氧池 二沉池
⑥有毒物质 硝化与反硝化过程都受有毒物质的影响,硝化菌 更易受到影响。对硝化菌有抑制作用的有毒物质有 Zn、Cu、Hg、Cr、Ni、Pb、CN-、HCN等。
3)生物脱氮的典型工艺
混合液回流
进水
缺氧池
好氧池
二沉池
出水
污泥回流
空气
剩余污泥
图2-20 A/O生物脱氮工艺流程
2.污水生物除磷
1)生物除磷基本原理
③ pH值 硝化菌对pH值变化十分敏感,pH值在7.0~7.8时, 亚硝酸菌的活性最好;而硝酸菌在pH值为7.7~8.1时 活性最好。反硝化最适宜的pH值在7.0~7.5。 ④碳氮比 对于硝化过程,碳氮比影响活性污泥中硝化细菌所 占的比例,过高的碳氮比将降低污泥中硝化细菌的比 例。
⑤泥龄 硝化过程的泥龄一般为硝化菌最小世代时间的2 倍以上。当冬季温度低于10℃,应适当提高泥龄。
剩余污泥 污泥回流
(b)流程2
同时生物脱氮除磷A2/O的变形工艺
4、Bardenpho同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要功 能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。
5、UCT工艺
—含NO3-N的污泥直接回流到厌氧池,会引起反硝化作用, 反硝化菌将争夺除磷菌的有机物而影响除磷效果,因此 提出UCT(Univercity of Cape Town)工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物脱氮除磷工艺技术的应用班级:
学号:
作者:
生物脱氮除磷工艺技术的应用
摘要:生物脱氮除磷技术是技术上可行、经济上合理的新的水处理技术,其在城市生活污水和工业废水处理中得到推广使用。
重点介绍了生物脱氮除磷的基本理论,并对近年来我国生物脱氮除磷技术在城市生活污水处理、工业废水处理、中水回用方面的应用进展进行了综述。
关键词:生活污水处理;生物脱氮除磷;机理
前言:
随着国家经济的快速发展,水体污染也越来越严重。
大量的研究已经证明,污水中的氮和磷是导致水体富营养化的主要原因之一,脱氮除磷已迫在眉睫。
经过实验和工程经验表明,生物脱氮除磷工艺是消除水体富营养化的有效方法。
许多发达国家对日常排放的污水中的氮和磷的含量都做了限定,并要求污水处理厂达到除氮除磷的要求。
而且对于中国这么一个水资源本来就十分短缺的国家来说,严格控制含氮、磷污水的超标排放是十分必要的。
一、生物脱氮除磷的基本原理
1.1 生物脱氮的基本原理
生物脱氮通过氨化、硝化、反硝化三个步骤完成:
1、氨化反应
有机氮化合物在氨化细菌的作用下分解,转化为氨态氮,这一过程称为“氨化反应”。
以氨基酸为例,其反应式为:
RCHNH2COOH+O2
−
−→
−氨化菌 RCOOH+CO2+NH3
2、硝化反应
在硝化细菌的作用下,氨态氮进一步分解、氧化,就此分两个阶段进行。
首先,在亚硝化细菌的作用下,使氨(NH4+)转化为亚硝酸氮,亚硝酸氮在硝酸菌的作用下,进一步转化为硝酸氮。
3、反硝化反应
反硝化反应是指硝酸氮和亚硝酸氮在反硝化菌的作用下,被还原为气态氮的过程。
1.2 生物除磷的基本原理
所谓生物除磷,是利用聚磷菌一类的微生物,能够过量地、在数量上超过其生理需要的、从外部环境摄取磷,并将磷以聚合物的形态贮藏在菌体内,形成富磷污泥。
排出系统外,达到废水中除磷的效果。
二、生物脱氮除磷工艺研究新方向
传统生物脱氮除磷工艺中,具有较大差别的微生物在同一系统中相互影响,制约了工艺的高效性和稳定性;较多的工艺流程中包含多重污泥和混合液的回流,增加了系统的复杂性,提高了基建和运行费用;脱氮除磷过程中对能源(如氧、COD)消耗较多;剩余污泥富含磷,处理量较大,这些都不符合环境的可持续发展的要求。
近年来,同时硝化反硝化技术、反硝化除磷技术、短程硝化反硝化脱氮技术、厌氧氨氧化技术、A2/O 改良工艺等的研究和应用,为解决上述问题提供了有效的途径。
2.1 同时硝化反硝化技术的研究
传统脱氮理论认为硝化反应在好氧条件下进行,而反硝化反应在厌氧条件下完成,两者不能在同一条件下进行。
然而,近几年许多研究者发现存在同时硝化反硝化现象,研究者对此进行了广泛的研究,提出了一些新的见解。
其中,认为微生物的存在是其最主要的原因。
另外,从微生物发展的角度看,存在着目前尚未被认识的微生物菌种(如好氧条件下的反硝化细菌)能使同时硝化反硝化现象发生。
已有一些研究者利用其成果改进脱氮工艺,如FFdez-Polanco在流化床反应器中实现了同时硝化和反硝化。
该技术不但仅可节省占地面积和投资,而且由于没有硝酸盐的影响,对厌氧段聚磷菌释磷也十分有利。
目前在荷兰、丹麦、意大利等已有污水厂在利用同时硝化和反硝化脱氨工艺运行。
2.2 短程硝化反硝化技术的研究
传统的硝化反硝化原理是:氨氮在亚硝化菌的作用下氧化生成二氧化氮,然后被硝化菌进一步氧化成三氧化氮,最后通过异养反硝化菌的作用将三氧化氮还原成气态氮。
而最新的硝化反硝化技术则是按照氨氮一亚硝酸盐一氮气的过程实现短程硝化反硝化脱氨,即将氨氮氧化控制在亚硝化阶段,然后进行反硝化。
由于亚硝酸菌存活时间比硝酸菌短,缩短了硝化反应时间,从而减小反应器容积,节省基建投资。
该过程还可以减少硝化中的产酸量、减少投碱量、减少污泥生成量、节省氧气、碳源和动力消耗,可用于处理含氮量较高的废水。
2.3 反硝化除磷技术的研究
近年来研究者发现了一种“兼性厌氧反硝化除磷细菌”(DPB),可以在缺氧条件下,利用硝酸盐作为电子受体氧化胞内贮存的PHA,并从环境中摄磷、实现同
时反硝化和过度摄磷,与传统的好氧吸磷相比,在保证硝化效果的同时,系统对COD需求可减少5O%,氧的消耗和污泥产量可分别下降30%和50%。
COD消耗的减少,一方面为解决处理含高氮磷工业废水存在碳源不足的问题提供了的实际应用的途径,另一方面剩余的COD可用于产生甲烷。
2.4 厌氧氨氧化(ANAMMOX)技术的研究
厌氧氨氧化工艺由荷兰研究开发。
工艺在厌氧状态下,以NO2、NO3作为电子受体,将氨转化为氮气。
厌氧氨氧化是自养的微生物过程,不需投加有机物以维持反硝化,且污泥产率低。
此外还可以改善硝化反应产酸、反硝化反应产碱而均需中和的情况,这对控制化学试剂消耗、防止可能出现的二次污染具有重要意义。
该工艺适用于高氨废水和低COD废水的处理。
目前研究者将ANAMMOX工艺与SHARON工艺结合,对污泥消化出水进行了研究。
试验结果表明,氨态氮的去除率达到83%,并有效降低了氧气需要量,且几乎不需要外加碳源。
可见在氧气需要量和外加碳源上,该联合工艺明显优于传统的生物脱氮工艺。
ANAMMOX及其与SHARON的联合工艺完全突破了传统生物脱氮工艺的基本概念,从一定程度上解决了传统硝化-反硝化工艺存在的问题,但需要进一步的研究才能使之成功地运行于实际工程。
2.5 A2/O 改良工艺
改良 A2/O 工艺是中国市政工程华北设计研究院提出的。
该工艺综合了 A/O 工艺和改良 UCT 工艺的优点。
首先回流污泥和10%的污水进入厌氧/缺氧池进行反硝化以去除回流污泥中的硝酸盐,90%的污水进入厌氧区与回流污泥混合,在兼性厌氧发酵菌的作用下将部分易生物降解的大分子有机物转化为VFA;聚磷菌释磷,同时吸收VFA以PHB的形式贮存于胞内。
在缺氧区,反硝化菌利用污水中的有机物和经混合液回流而带来的硝酸盐进行反硝化,同时去碳脱氮;在好氧区,有机物浓度相当低,有利于自养硝化菌生长繁殖,进行硝化反应,同时聚磷菌过量摄磷。
通过沉淀、排除剩余污泥达到除磷的目的。
该工艺降低回流污泥中硝态氮对后续厌氧池的不利影响,有利于厌氧池的聚磷菌释磷,改善了泥水分离性能。
2.6 UCT 改良工艺
改良的UCT工艺脱氮除磷工艺由厌氧池、两个缺氧池、好氧池、沉淀池系统组成,有2 个缺氧池。
第一个缺氧池只接受沉淀池的回流污泥,同时第一个缺氧池有
混合液回流至厌氧池,以补充厌氧池中污泥的流失。
回流污泥携带的硝态氮在第一个缺氧池中经反硝化被完全去除。
在第二个缺氧池中接受来自好氧池的混合液回流,同时进行反硝化,第一个缺氧池出水中的 NO3-N 带进厌氧池使之保持较为严格的厌氧环境,从而提高系统的除磷效率。
三、生物脱氮除磷技术在水处理中的应用
生物脱氮除磷技术能适应不同的进水水质,能降解许多难生物降解的化合物,能处理含高浓度氨氮的工业废水,现已被广泛地用于城市生活污水处理、工业废水处理和中水回用工程。
我国先后在上海、广州等地建设了一批生物脱氮除磷的生活污水处理厂,并对废水进行了小试和中试,先后建成了上海焦化总厂、上海石化总厂、常州焦化厂、安阳钢铁公司焦化厂等废水处理站,其中前二者己投人运行多年。
此外,还研究了生物铁对A/O工艺的促进作用、高浓度有机废水作为焦化废水生物脱氮的补充源,这些研究已在废水深度处理与中水回用方面取得了一些成果。
我国已先后在北京黄村、大连春柳、山东泰安、天津东郊等建成了不同规模的污水深度处理工程。
其出水用于锅炉补充水、工业冷却水、城市景观用水、染料冲洗工艺用水、电厂用水等,并已取得很好的社会、经济和环境效益。
结束语:
污水生物脱氮除磷是当今水处理的热点与难点。
新的脱氮除磷理论的提出,为生物脱氮除磷工艺指引了方向。
如:同时硝化反硝化工艺、SHARON工艺、硝化—反硝化工艺、厌氧氨氧化工艺以及短程硝化—厌氧氨氧化组合工艺等。
但是,生物除磷脱氮工艺的发展已不仅仅要求对氮磷去除率,而且要求处理效果稳定,可靠的运行工艺。
今后对此技术的研究应集中在以下方面:
(1)加深除磷机理的研究。
反硝化聚磷菌的出现解决了硝化菌与聚磷菌争夺碳源,污泥龄不同等主要矛盾。
为新型同步脱氮除磷工艺提供了理论依据。
但是对于反硝化聚磷菌的了解还不够全面,尤其是其除磷机理还待于进一步研究。
应突破传统理论,从微生物的角度来调控工艺。
(2)随着脱氮除磷工艺的进一步发展,许多研究者在进行小试时,都驯化出颗粒污泥,而颗粒污泥的出现改善了污泥膨胀这一难题。
同时发现颗粒污泥对 N,P 的去除要远远优于絮状污泥。
今后在对颗粒污泥的研究上应更加深入,研究了
解颗粒污泥外部的胞外聚合物是否对 N,P 有吸附作用,并进一步研究颗粒污泥的形成机理,调整现有反应器的运行参数,从而加速颗粒污泥的形成,提高脱氮除磷效率。
参考文献
[1] 徐强《污水处理节能减排新技术、新工艺、新设备》北京:化学工业出版社
[2] 陈际鲜《A2/O 污水处理工艺节能减排的运行》广西城镇建设.
[3] 翁焕新《污泥无害化、减量化、资源化处理新技术》北京:科学出版社
[4] 冯叶成,王建龙,钱易《生物脱氮新工艺研究进展》
[5] 林燕等《生物除磷脱氮技术的研究方向》。