【精选】八年级全等三角形中考真题汇编[解析版]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、八年级数学全等三角形解答题压轴题(难)

1.如图1,在平面直角坐标系中,点D(m,m+8)在第二象限,点B(0,n)在y轴正半轴上,作DA⊥x轴,垂足为A,已知OA比OB的值大2,四边形AOBD的面积为12.

(1)求m和n的值.

(2)如图2,C为AO的中点,DC与AB相交于点E,AF⊥BD,垂足为F,求证:AF=DE.

(3)如图3,点G在射线AD上,且GA=GB,H为GB延长线上一点,作∠HAN交y轴于点N,且∠HAN=∠HBO,求NB﹣HB的值.

【答案】(1)

4

2

m

n

=-

=

(2)详见解析;(3)NB﹣FB=4(是定值),即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.

【解析】

【分析】

(1)由点D,点B的坐标和四边形AOBD的面积为12,可列方程组,解方程组即可;(2)由(1)可知,AD=OA=4,OB=2,并可求出AB=BD=25,利用SAS可证

△DAC≌△AOB,并可得∠AEC=90°,利用三角形面积公式即可求证;

(3)取OC=OB,连接AC,根据对称性可得∠ABC=∠ACB,AB=AC,证明

△ABH≌△CAN,即可得到结论.

【详解】

解:(1)由题意()()

2

1

812

2

m n

n m m

--=

++-=

⎪⎩

解得

4

2

m

n

=-

=

(2)如图2中,

由(1)可知,A(﹣4,0),B(0,2),D(﹣4,4),

∴AD

=OA =4,OB =2,

∴由勾股定理可得:AB =BD =25,

∵AC =OC =2,

∴AC =OB ,

∵∠DAC =∠AOB =90°,AD =OA ,

∴△DAC ≌△AOB (SAS ),

∴∠ADC =∠BAO ,

∵∠ADC +∠ACD =90°,

∴∠EAC +∠ACE =90°,

∴∠AEC =90°,

∵AF ⊥BD ,DE ⊥AB ,

∴S △ADB =12•AB •AE =12

•BD •AF , ∵AB =BD ,

∴DE =AF .

(3)解:如图,取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,

∵AG =BG ,

∴∠GAB =∠GBA ,

∵G 为射线AD 上的一点,

∴AG ∥y 轴,

∴∠GAB =∠ABC ,

∴∠ACB =∠EBA ,

∴180°﹣∠GBA =180°﹣∠ACB ,

即∠ABG =∠ACN ,

∵∠GAN =∠GBO ,

∴∠AGB =∠ANC ,

在△ABG 与△ACN 中,

ABH ACN AHB ANC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩

, ∴△ABH ≌△ACN (AAS ),

∴BF =CN ,

∴NB ﹣HB =NB ﹣CN =BC =2OB ,

∵OB=2

∴NB﹣FB=2×2=4(是定值),

即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.

【点睛】

本题属于三角形综合题,全等三角形的判定和性质,解题的关键是相结合添加常用辅助线,构造图形解决问题,学会利用参数构建方程解决问题.

2.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.

(1)求a,b的值;

(2)点P在直线AB的右侧;且∠APB=45°,

①若点P在x轴上(图1),则点P的坐标为;

②若△ABP为直角三角形,求P点的坐标.

【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】

【分析】

(1)利用非负数的性质解决问题即可.

(2)①根据等腰直角三角形的性质即可解决问题.

②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】

(1)∵a2+4a+4+b2﹣8b+16=0

∴(a+2)2+(b﹣4)2=0

∴a=﹣2,b=4.

(2)①如图1中,

∵∠APB=45°,∠POB=90°,

∴OP=OB=4,

∴P(4,0).

故答案为(4,0).

②∵a=﹣2,b=4

∴OA=2OB=4

又∵△ABP为直角三角形,∠APB=45°

∴只有两种情况,∠ABP=90°或∠BAP=90°

①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.

∴∠PCB=∠BOA=90°,

又∵∠APB=45°,

∴∠BAP=∠APB=45°,

∴BA=BP,

又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,

∴∠ABO=∠BPC,

∴△ABO≌△BPC(AAS),

∴PC=OB=4,BC=OA=2,

∴OC=OB﹣BC=4﹣2=2,

∴P(4,2).

②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.

∴∠PDA=∠AOB=90°,

又∵∠APB=45°,

∴∠ABP=∠APB=45°,

∴AP=AB,

又∵∠BAD+∠DAP=90°,

∠DPA+∠DAP=90°,

∴∠BAD=∠DPA,

∴△BAO≌△APP(AAS),

∴PD=OA=2,AD=OB=4,

∴OD=AD﹣0A=4﹣2=2,

相关文档
最新文档