高等数学(上)模拟试卷和答案
经济应用数学基础(一)微积分_试题及答案
;
; ; ;
3 2 6、函数 f ( x ) = x − x + 1 的极大点是
′ 7、设 f ( x ) = x ( x − 1)( x − 2)……(x − 2006) ,则 f (1) =
x 8、曲线 y = xe 的拐点是
; ; ;
9、
∫
2
0
x − 1dx
=
� � � � � � � � � � a = i + 3 j − 2 k , b = i − j + λ k 10、设 ,且 a ⊥ b ,则 λ =
;
⎧ 2x f ( x) = ⎨ ⎩a + x 2、设函数
x<0 x ≥ 0 在点 x = 0 连续,则 a =
; ;
4 3、曲线 y = x − 5 在(-1,-4)处的切线方程是
f ( x )dx = x 4、已知 ∫
1 x lim(1 − ) 2 x = 5、 x →∞
3
+C
,则 f ( x ) =
(A)极限不存在 (B)极限存在但不连续 (C)连续但不可导 (D)可导
9.设函数 f ( x ) 在 ( −∞, ∞) 上连续,且 f (0) = 0 , f ′(0) 存在,则函数 (A)在 x = 0 处左极限不存在 (B)有跳跃间断点 x = 0 (C)在 x = 0 处右极限不存在 (D)有可去间断点 x = 0
ln cos x dx 2 ∫ 3. cos x
4.
∫
x 2 dx
1 − x2
三、求解下列各题(每题 7 分,共 28 分) ⎧ e −2 x , x≤o ⎪ 2 f ( x) = ⎨ x 1 , x >0 ⎪ 2 ∫ f (t )dt ⎩1 + x
高数模拟习题集含参考答案
高等数学模拟题A .上册:上册期中(一)一、试解下列各题: 1.求。
2.求。
3.设处连续,在处不连续,试研究在处的连续性。
4.求在上的最大值与最小值。
二、试解下列各题: 1.判断的奇偶性。
2.[5分]设,其中,求。
3.[5分]设,求。
4.[5分]验证罗尔定理对在上的正确性。
三、试解下列各题:1.[6分]设函数由方程所确定,且,其中是可导函数,,求的值。
2.求极限。
3.求的极值。
四、设圆任意一点M (点M 在第一象限)处的切线与轴,轴分别交于A 点和B 点,试将该切线与两坐标轴所围成的三角形AOB 的面积S 表示为的函数。
1cos cos 21cos 2cos 8lim223-+--→x x x x x π242320)1()1(limx x x x --+→0)(x x x f =在)(x g 0x )()()(x g x f x F +=0x x x x f +=2)(]1,1[-)11(11ln 11)(<<-+-+-=x x x e e x f x x )]1ln 1ln(1ln[x x x y ++=10<<x y 'x xy +-=11)(n y 1074)(23--+=x x x x f ]2,1[-)(x y y =)()(22y x f y x f y +++=2)0(=y )(x f 1)4(,21)2(='='f f 0=x dxdy xx x 10)(cos lim +→22)13()(e x x e x f x +++=-222a y x =+),(y x ox oy x五、用函数连续性“”的定义,验证函数在任意点处连续。
六、求极限七、求与的公切线方程。
八、证明:当时,。
九、]一气球从距离观察员500米处离地匀速铅直上升,其速率为140米/分,当此气球上升到500米空中时,问观察员的视线的倾角增加率为多少? 参考答案:一、1.2。
完整)高等数学考试题库(附答案)
完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
高数练习题及答案解析
高数练习题及答案解析一、填空题1.设f?ax?by,其中a,b为常数,则f)?.axy?abx?b2y 2.函数z?x2?y2在点处,沿从点到点的方向的方向导数是.1?223.设有向量场A?yi?xyj?xzk,则divA? x1x2114.二重积分dxfdy交换积分次序后为?dyfdx0n5.幂级数?的收敛域为 . [0,6) nn3n?16.已知z?e7.三重积分x?2y,而x?sint,y?t,则33dzesint2t dt其中?是由x?0,x?1,y?0,y?1,z?0,z?3dv? ,所围成的立体.二、计算题21.设a?2,b?5,a与b的夹角为?,向量m??a?17b与n?3a?b相互垂直,求?.3222解:由0?m?n?3?a?a?b?17b?122?5?cos??17?253得??40.2x3yz50垂直的平面方程.3x?y?2z?4?0?ijk?解:直线的方向向量为s?2?31??5,7,1131?22.求过点且与直线?取平面的法向量为n?s,则平面方程为5?7?11?0 即5x?7y?11z?8?0.3.曲面xyz?32上哪一点处的法线平行于向量S?{2,8,1}?并求出此法线方程.解:设曲面在点M处的法线平行于s,令F?xyz?32则在点M处曲面的法向量为n?{Fx,Fy,Fz}?{yz,xz,xy}.由于ns,故有yzxzxy.由此解得81x?4y,z?8y,代入曲面方程,解得M的坐标为,用点向式即得所求法线方程为x?4y?1z?881三、计算题1.设z?xy?xF,其中F为可导函数,求xyx?z?z?y. ?x?y解:zyzyFF, xF xxyzzy2xyxFzxy xynd?ex?1?2.将函数f?展成的幂级数,并求的和. xdx?x?n?1!ex?1111xxn1 解:x2!n!并在内收敛。
12n1n2nfxxxn1,x2!3!n!n?1!ex1nfx!n1x?113.求微分方程y1?,y??2dy的通解. dx解:令y??p,则yp?,原方程化为p??1?p2?dpdxptan1p2y??tandx??lncos?c2四、计算题1.求曲线积分I?22233的值,其中L为x?y?R的正向. ydx?dyL解:记L所围成的区域为D,利用格林公式得2?RI?y3dx?dydxdy?3?dd?LD3R22.求微分方程yy?4xex的通解.解:对应的齐次方程为yy?0,它的特征方程为r?1?0,其根为r1?1,r2??1,该齐次方程的通为Y?C1ex?C2e?x。
高等数学大一上学期试题(含答案)
高等数学(上)模拟试卷一一、填空题(每空3分,共42分)1、函数lg(1)y x =-的定义域是 ;2、设函数20() 0x x f x a x x ⎧<=⎨+≥⎩在点0x =连续,则a = ; 3、曲线45y x =-在(-1,-4)处的切线方程是 ; 4、已知3()f x dx x C=+⎰,则()f x = ;5、21lim(1)xx x →∞-= ; 6、函数32()1f x x x =-+的极大点是 ;7、设()(1)(2)2006)f x x x x x =---……(,则(1)f '= ;8、曲线x y xe =的拐点是 ;9、21x dx-⎰= ;10、设32,a i j k b i j k λ=+-=-+,且a b ⊥,则λ= ;11、2lim()01x x ax b x →∞--=+,则a = ,b = ;12、311lim xx x-→= ;13、设()f x 可微,则()()f x d e = 。
二、 计算下列各题(每题5分,共20分)1、11lim()ln(1)x x x →-+ 2、y =y ';3、设函数()y y x =由方程xye x y =+所确定,求0x dy =;4、已知cos sin cos x t y t t t =⎧⎨=-⎩,求dy dx 。
三、求解下列各题(每题5分,共20分)1、421x dx x +⎰2、2sec x xdx ⎰ 3、40⎰ 4、2201dx a x +⎰ 四、 求解下列各题(共18分):1、求证:当0x >时,2ln(1)2x x x +>-(本题8分) 2、求由,,0xy e y e x ===所围成的图形的面积,并求该图形绕x 轴旋转一周所形成的旋转体的体积。
(本题10分)高等数学(上)模拟试卷二一、填空题(每空3分,共42分)1、函数24lg(1)y x x =-+-的定义域是 ; 2、设函数sin 0()20xx f x xa x x ⎧<⎪=⎨⎪-≥⎩在点0x =连续,则a = ;3、曲线34y x =-在(1,5)--处的切线方程是 ; 4、已知2()f x dx x C=+⎰,则()f x = ;5、31lim(1)xx x →∞+= ; 6、函数32()1f x x x =-+的极大点是 ; 7、设()(1)(2)1000)f x x x x x =---……(,则'(0)f = ;8、曲线xy xe =的拐点是 ; 9、32x dx-⎰= ;10、设2,22a i j k b i j k λ=--=-++,且a b ,则λ= ;11、2lim()01x x ax b x →∞--=+,则a = ,b = ;12、311lim xx x-→= ;13、设()f x 可微,则()(2)f x d = 。
高等数学上册试题及参考答案3篇
高等数学上册试题及参考答案高等数学上册试题及参考答案第一篇:微积分1.已知函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$,求$f'(x)$和$f''(x)$。
参考答案:首先,根据对数函数的导数公式$[\lnf(x)]'=\frac{f'(x)}{f(x)}$,我们可以得到$f'(x)$的计算式为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}+x}\cdot\frac{\fra c{1}{2}\cdot2x}{\sqrt{(1+x^2)}}+\frac{1}{\sqrt{(1+x^2)}+x}$$ 将上式整理化简,得到:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$接下来,我们需要求$f''(x)$。
由于$f'(x)$是由$f(x)$求导得到的,因此$f''(x)$可以通过对$f'(x)$求导得到,即:$$f''(x)=\frac{d}{dx}\left[\frac{1}{\sqrt{(1+x^2) }\cdot(\sqrt{(1+x^2)}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}\r ight]$$通过链式法则和乘法法则,我们得到:$$f''(x)=\frac{-(1+x^2)^{-\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)-\frac{1}{2}(1+x^2)^{-\frac{1}{2}}\cdot\frac{2x}{\sqrt{(1+x^2)}}\cdot(\sqrt{ (1+x^2)}+x)^2}{(\sqrt{(1+x^2)}+x)^2}$$将上式整理化简,得到:$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $因此,函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$的导数$f'(x)$和二阶导数$f''(x)$分别为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $2.计算二重积分$\iint_D(x^2+y^2)*e^{-x^2-y^2}d\sigma$,其中$D$是圆域$x^2+y^2\leqslant 1$。
高等数学测试卷(上)+答案
高等数学测试卷(上)一、填空题:(每小题2分,共20分)1.一切初等函数在其 内都是连续的。
2.若y x ,满足方程xyy x arctan ln22=+,则=dy 。
3.已知)100()2)(1()(---=x x x x x f ,则=')0(f 。
4.当0→x 时,x x x f -=sin )(是3x 的 阶无穷小。
5.已知C xxdx x f +-=⎰21)(,则=⋅⎰dx x f x )(cos sin 。
6.=-⎰-dx x 312 。
7.若)(x f 在[]a a ,-上连续且为奇函数,则⎰-=aadx x f )( 。
8.曲线x y =2和2x y =所围成的平面图形的面积是 。
9.已知向量)1,2,1(),1,1,2(-=-=b a,单位向量e 同时垂直于a 与b ,则e= 。
10.通过点)5,0,3(0M 与坐标原点的直线的对称式方程为 。
二、选择题:(每小题2分,共20分) 1.下列极限存在的是:( ))A 2)1(lim x x x x +∞→ )B 121lim 0-→x x )C x x e 10lim → )D xx x 1lim 2++∞→2.设⎪⎩⎪⎨⎧≤>-=0),(0,cos 1)(2x x g x x xxx f ,其中)(x g 是有界函数,则)(x f 在0=x 处( ) )A 极限不存在 )B 极限存在,但不连续 )C 连续,但不可导 )D 可导高等数学测试卷(上)-答案一、 填空题:(每小题2分)1. 定义区间 2.dx yx yx -+ 3. 100! 4. 同5. C x x +⋅-csc cot 6. 5 7. 0 8.31 9. )355,353,351(-±10. ⎪⎩⎪⎨⎧==053y z x二、 选择题:(每小题2分) 1).A 2).D 3).C 4).D 5).D6).A 7).A 8).D 9).C 10).B三、 计算题:(每小题7分)1.3162sin lim 52202==→x x x ex x x e x 原式 2.x x f xxx x x dx dy x 2sin )(sin )sin ln (cos 2sin '++= 3.C x x dx xx dx x x +++=+++=⎰⎰]arctan )1[ln(211arctan 12222原式 4.3821)1()(221210=++==⎰⎰⎰dx x dx x du u f 原式5.由2222222)1()1)(1(2)1(4)1(2,12x x x x x x y x x y ++-=+-+=''+='得拐点坐标为:)2ln ,1(),2ln ,1(-在),1[],1,(+∞--∞上凸,在[-1,1]上凹。
江西省 专升本 高等数学(一) 模拟试卷及答案40
[考点]本题考查了换元积分法的知识点.
[解析]
5、C
[考点]本题考查了直线方程的知识点.
[解析]两平面的交线方向
即为所求直线的方向,所以所求直线方程为
6、C
[考点]本题考查了二元函数的全微分的知识点.
[解析]
注:另解如下,由一阶微分形式不变性得
7、C
[考点]本题考查了二重积分的性质的知识点.
[解析]因积分区域D是以点(2,1)为圆心的一单位圆,且它位于直线x+y=1的上方,即在D内恒有x+y>1,所以(x+y)2<(x+y)3.所以有I1<I2.
答案:
第Ⅰ卷(选择题)
一、选择题
1、C
[考点]本题考查了利用 求极限的知识点.
[解析]
2、C
[考点]本题考查了一元函数的一阶导数的知识点.
[解析] y=x2+1,
3、D
[考点]本题考查了函数的单调区间的知识点.
[解析] y=ex+e-x,则y′=ex-e-x,当x>0时,y′>0.所以y在区间[0,+∞)上单调递增.
14、设函数f(x)有连续的二阶导数且f(0)=0,f′(0)=1,f″(0)=-2,则
15、求
16、
17、
18、设 ,将此积分化为极坐标系下的积分,此时I=______.
19、若幂级数 的收敛半径为R,则幂级数 的收敛半径为______.
20、方程cosxsinydx+sinxcosydy=0的通解为______.
A.y=C1e-x+C2e3x+y* B.y=C1e-x+C2e3x
C.y=C1xe-x+C2e3x+y* D.y=C1ex+C2e-3x+y*
2001-2002高数上试卷及答案
x (1 + ln x)2
dy
=
−2 x(1 + ln
x)2
dx
4. 设y = sin2(tg2x),求dy
=
−2 x(1 + ln
x)2
解 y = 2sin(tan 2x) cos(tan2x) sec2(2x) 2
dy = 2sin(2tan 2x) sec2(2x) dx
5. 求 (sin5 x + cos3 x)dx
x
+
cos4
x)d
cos
x
+
sin
x
−
1 3
sin3
x
= −(cos x − 2 cos3 x + 1 cos5 x) + sin x − 1 sin3 x + C
3
5
3
二、试解下列各题(28分)
1. 设f ( x)为可导函数, ( x) = f 2( x) e f ( x),求'( x) 解 ( x) = 2 f ( x) f ( x)e f ( x)
2001级《高数》上试题解答
一、1.
ln(1 + sin2 x)
lim
x→
ex2 − 1
0 0
型
解
原式
=
lim
x→0
sin2 x2
x
=1
2.讨论极限 lim x→0 解
2 − 2cos x
x
lim x→0
2 − 2 cos x x
= lim x→0
4sin 2 x
2sin x
x
2 = lim x→0
(12分).
解 需耗材最省,只需断面周长最小
高等数学模拟试卷6篇
模拟试题一一、单项选择题(本大题共10小题,每小题3分,共30分)1—5ACDDA 6—10DCCDD二、填空题(每小题4分)11.3/2,0,012.213.111110x y z ---==-14.cos (1)x y C e =+]15.011limsin 2sin _____x x x x x →+==216.-1,117.212!n x n e -+18.019.320.1三、计算题(本大题共8小题,每小题7分,共56分)21.()210lim cos x x x →。
()22ln cos 100lim cos lim x x x x x x e →→=又因为200ln cos sin 1lim lim 2cos 2x x x x x x x →→-==-所以原式=12e -或。
22.已知函数y =,求dy 。
等式两边取对数得()()()1ln 2ln ln 1ln 2ln 134y x x x x =-++--+⎡⎤⎣⎦等式两边同时求导得()()3132111424x y y x x x +'=-+-+-所以()()3132111424x y x x x ⎡⎤+'=-+-⎢⎥+-⎣⎦所以()()3132111424x dy y dx x x x ⎡⎤+'==-+-⎢⎥+-⎣⎦。
23.求由方程0=-+x y e xy e 所确定的隐函数y 的二阶导数22d y dx。
方程两边同时求导0y x e y y xy e ''++-=所以x y e y y e x-'=+对y '等式两边同时求导()()()()()21x y x y y e y e x e y e y y ex ''-+--+''=+把y '代入整理得()()()223x y y x y e e x e e y y e x +--''=+。
高等数学试题(含答案)
7.解.特征方程为 k 2 k 0 ,得到特征根 k1 0, k2 1,
故对应的齐次方程的通解为 y c1 c2ex ,
由观察法,可知非齐次方程的特解是 y 1 e x , 2
因而,所求方程的通解为
y
c1
c2ex
1 2
e x ,其中 c1 , c2
第4页,共12页
报考学校:______________________报考专业:______________________姓名:
准考证号:
-------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------
是任意常数.
………..1 分 ………..3 分 ………..5 分
……….6 分
8.解.因为 ln1 x x x 2 x3 x 4 1n x n1 (1 x 1) ,
234
n 1
….3 分
所以 x 2 ln1 x x 2 (x x 2 x3 x 4 1n x n1 )
1
1.解法一(1). S e e x dx
0
ex e x 1 e e 1 1 . 0
1
(2).V e2 e2x dx
0
e2 x 1 e2x 1
2 0
e2
1 2
e2
1
2
e2 1
1
解法二.(1) S e e x dx
现代远程教育入学考试《高等数学》模拟试题及答案
现代远程教育入学考试《高等数学》模拟试题(专科起点本科)1、设函数的定义域为,则函数的定义域为(A ).A. B.C. D.2、下列极限中结果等于的是(B ).A. B.C. D.3、函数,则等于(B ).A. 1B. 0C. D. 不存在4、函数在下列区间上不满足拉格朗日定理条件的是(B ).A. B.C. D.5、设是函数的一个原函数,且,则为(B ).A. B.C. D.6、积分(B ).A. B.C. D.7、已知,,则(A ).A. B.C. D.8、由方程所确定的隐函数,则(B ).A. B.C. D.9、若级数收敛,那么下列级数中发散的是(B ).A. B.C. D.10、设一阶线性微分方程(是已知的连续函数),则它的通解为(D ).A.B.C.D.11、函数是(C ).A. 以为周期的周期函数,且是偶函数B. 以为周期的周期函数,且是偶函数C. 以为周期的周期函数,且是奇函数D. 以为周期的周期函数,且是奇函数12、极限等于(C ).A. B. 1C. D. 213、设函数在点处可导,则的值依次为(A ).A. B.C. D.14、函数在区间内单调增加,则应满足(B ).A. B. 为任意实数C. D.为任意实数15、若,则(D ).A. B.C. D.16、极限(D ).A. 1B. 0C. D.17、二次曲面,表示(C ).A. 球面B. 椭圆锥面C. 椭球面D. 椭圆抛物面18、设,则(C ).A. 是的驻点,但非极值点B. 是的极大值点C. 是的极小值点D. 无驻点19、级数的和为(A ).A. B.C. D.20、齐次方程的通解为(A ).A. B.C. D.21、设,则(D ).A. 函数在的任意去心邻域内都有界B. 函数在的某个邻域内有定义C. 函数在处无定义D. 函数,其中是时的无穷小22、设函数在点可导,则极限为(D ).A. B.C. 不存在D.23、设函数,则等于(C ).A. B.C. D.24、对曲线,下列结论正确的是(D ).A. 有4个极值点B. 有3个拐点C. 有2个极值点D. 有1个拐点25、下列积分可直接使用牛顿-莱布尼兹公式的是(A ).A. B.C. D.26、设曲线及直线围成的平面图形的面积为,则下列四个式子中不正确的是(A ).A. B.C. D.A、AB、BC、CD、D27、过点且与平面平行的平面方程为(B ).A. B.C. D.28、二次积分(D ).A. B.C. D.29、设幂级数的收敛半径为,则的收敛半径为(A ).A. B.C. D.30、微分方程的通解为(B ).A. B.C. D.31、函数,在点处有(B ).A. 连续B. 不连续,但右连续C. 不连续,但左连续D. 左、右都不连续32、若曲线和在点处相切(其中为常数),则的值为(A ).A. B.C. D.33、函数的定义域为(B ).A. B.C. D.34、若函数可导,且,则有等于(B ).A. B.C. D.35、下面结论正确的是(C ).A. B.C. D.36、函数在区间上的最小值是(C ).A. 1B.C. 0D.37、积分(C ).A. 2B.C. 4D.38、设,则(A ).A. 6B. 3C. 2D. 039、下列函数在给定区间上满足罗尔定理条件的是(A ).A. B.C. D.40、曲线在区间上的曲边梯形的面积为(A ).A. B.C. 10D.41、若,则(D ).A. B.C. D.42、二元函数的两个偏导数存在,且,,则(D ).A. 当保持不变时,是随x的减少而单调增加的B. 当保持不变时,是随y的增加而单调增加的C. 当保持不变时,是随x的增加而单调减少的D. 当保持不变时,是随y的增加而单调减少的43、二重积分,是由所围成的区域,则二重积分的值为(B ).A. B.C. D.44、函数展开为的幂级数为(B ).A.B.C.D.45、微分方程的满足初始条件的特解为(C ).A. B.C. D.46、积分(A ).A. 1B. 2C. 3D. 447、已知,,则(D ).A. 0B. 1C. 2D. 348、方程确定隐函数,则(A ).A. B.C. D.49、级数(为常数)收敛的充分条件是(A ).A. B.C. D.50、设可微函数满足,且,则的值为(B ).A. B.C. 1D. 251、设,那么的定义域是(C ).A. B.C. D.52、极限(C ).A. 0B.C. 1D.53、,则(A ).A. B.C. D.54、下列极限中不能使用洛必达法则的是(A ).A. B.C. D.55、已知,且时,,则(C ).A. B.C. D.56、积分(C ).A. B.C. D.57、函数是(D ).A. 奇函数,非偶函数B. 偶函数,非奇函数C. 既非奇函数,又非偶函数D. 既是奇函数,又是偶函数58、已知向量,,,则(A ).A. B.C. D.59、极限(B ).A. B. 0C. 3D.60、由方程所确定的隐函数为,则(A ).A. B.C. D.高等数学模拟试题答案:1、A2、B3、B4、B5、B6、B7、A8、B9、B 10、D 11、C 12、C 13、A 14、B 15、D 16、D 17、C 18、C 19、A 20、A 21、D 22、D 23、C 24、D 25、A 26、A 27、B 28、D 29、A 30、B 31、B 32、A 33、B 34、B 35、C 36、C 37、C 38、A 39、A 40、A 41、D 42、D 43、B 44、B 45、C 46、A 47、D 48、A 49、A 50、B 51、C 52、C 53、A 54、A 55、C 56、C 57、D 58、A 59、B 60、A。
江西省 专升本 高等数学(一) 模拟试卷及答案44
专升本高等数学(一)模拟144第Ⅰ卷(选择题)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1、极限等于______A.2B.1C.D.02、设,则f′(x)=______A.B.C.D.3、极限等于______A.0 B.1 C.2 D.+∞4、设函数f(x)在[0,1]上连续,在(0,1)内可导,且f′(x)<0,则下列结论成立的是______ A.f(0)<0 B.f(1)>0C.f(1)>f(0) D.f(1)<f(0)5、曲线y=x3(x-4)的拐点个数为______A.1个 B.2个 C.3个 D.0个6、设F(x)是f(x)的一个原函数,则∫cosxf(sinx)dx等于______A.F(cosx)+C B.F(sinx)+CC.-F(cosx)+C D.-F(sinx)+C7、下列积分中,值为零的是______A.B.C.D.8、直线A.过原点且与y轴垂直 B.不过原点但与y轴垂直C.过原点且与y轴平行 D.不过原点但与y轴平行9、设函数,则f y(1,0)等于______ A.0 B.1 C.2 D.不存在10、下列级数中,绝对收敛的是______A.B.C.D.第Ⅱ卷(非选择题)二、填空题11、设若f(x)在x=1处连续,则a=______.12、13、,求dy=______.14、15、y=y(x)是由方程xy=e y-x确定的函数,则dy=______.16、17、18、若D是中心在原点、半径为a的圆形区域,则19、幂级数的收敛区间为______.20、方程y″+y′+y=2xe-x的特解可设为y*=______.三、解答题21、设函数,求y′.22、如果,求f(x).23、设f(x)的一个原函数为,求∫xf′(x)dx.24、25、求方程的通解.26、计算,其中D是由y=x和y2=x围成.27、设2sin(x+2y-3z)=x+2y-3z,确定了函数z=f(x,y),求.28、讨论曲线的单调性、极值、凸凹性、拐点.答案:第Ⅰ卷(选择题)一、选择题1、D[考点] 本题考查了函数的极限的知识点.[解析] 因x→∞时,;而sin2x是有界函数;所以由无穷小的性质知,注:该题不是重要极限的类型.2、B[考点] 本题考查了一元函数的一阶导数的知识点.[解析]注:因e2是常数,所以(e2)′=0.3、D[考点] 本题考查了洛必达法则的知识点.。
高等数学上、下册考试试卷及答案6套[1]
高等数学上册试卷A 卷一 填空题(每题2分,共10分) 1. 2()d f x dx ⎰= ;2. 设f (x )=e -x ,则(ln )f x dx x'⎰= ; 3.比较积分的大小:11_________(1)x e dx x dx +⎰⎰;4.函数1()2(0)x F x dtx ⎛=> ⎝⎰的单调减少区间为 ;5. 级数()(0)nn n a x b b ∞=->∑,当x =0时收敛,当x =2b 时发散,则该级数的收敛半径是 ;二、求不定积分(每小题4分,共16分)1.; 2.sin x xdx ⎰;3.;4. 已知sin xx是f (x )的一个原函数,求()xf x dx '⎰. 三、求定积分(每小题4分,共12分)1.520cos sin 2x xdx π⎰; 2.121(x dx -⎰;3.设1,当0时1()1,当0时1xx xf x x e ⎧≥⎪⎪+=⎨⎪<⎪+⎩求20(1)f x dx -⎰四、应用题(每小题5分,共15分)1.计算由曲线y =x 2,x =y 2所围图形的面积;2.由y =x 3、x =2、y =0所围成的图形绕x 轴旋转,计算所得旋转体的体积.3. 有一矩形截面面积为20米2,深为5米的水池,盛满了水,若用抽水泵把这水池中的水全部抽到10米高的水塔上去,则要作多少功?(水的比重1000g 牛顿/米3 )五、求下列极限(每题5分,共10分)1.222222lim 12n n n n n n n n →∞⎛⎫+++ ⎪+++⎝⎭;2. 设函数f (x )在(0,+∞)内可微,且f (x )满足方程11()1()xf x f t dt x=+⎰,求f (x )。
六、判断下列级数的敛散性(每题5分,共15分)1. 21sin32n n n n π∞=∑; 2. 2111n n n ∞=⎛⎫- ⎪⎝⎭∑; 3.()1ln 1nn nn∞=-∑; 七、求解下列各题(每题5分,共10分)1. 求幂级数111n n x n +∞=+∑的收敛域及和函数;2. 将函数21()32f x x x =++展开成(x +4)的幂级数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京语言大学网络教育学院
《高等数学(上)》模拟试卷
注意:
1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷试题为客观题,请按要求填涂答题卡,所有答案必须填涂在答题卡上,答在试题卷上不给分。
一、【单项选择题】(本大题共100小题,每小题4分,共400分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、函数是()。
[A] 奇函数[B] 偶函数
[C] 既奇又偶函数[D] 非奇非偶函数
2、极限()。
[A] [B] [C] 1 [D]
3、设,则()。
[A] [B] [C] [D]
4、()。
[A] [B] [C] [D]
5、由曲线所围成平面图形的面积()。
[A] [B] [C] [D]
6、函数是()。
[A] 奇函数[B] 偶函数
[C] 既奇又偶函数[D] 非奇非偶函数
7、设函数,在处连续,则等于()。
[A] [B] [C] [D]
8、函数在区间上是()。
[A] 单调增加[B] 单调减少
[C] 先单调增加再单调减少[D] 先单调减少再单调增加
9、设,则()。
[A] [B] [C] [D]
10、曲线所围成平面图形的面积S是()。
[A] [B]
[C] ;[D]
11、函数的反函数是()。
[A] [B]
[C] [D]
12、设可导,,则()。
[A] [B]
[C] [D]
13、设则()。
[A] [B] [C] [D]
14、下列积分值为0的是()。
[A] [B]
[C] [D]
15、若函数,则积分()。
[A] [B] [C] [D]
16、函数的定义域为()。
[A] [B]
[C] [D]
17、设,则()。
[A] 1 [B] [C] [D] 0
18、设,则=()。
[A] [B] [C] [D]
19、函数的定义域是()。
[A] [B]
[C] [D]
20、若,则常数()。
[A] [B] [C] [D]
21、的近似值为()。
[A] [B] [C] [D]
22、函数的定义域是()。
[A] [B]
[C] [D]
23、若极限,则常数()。
[A] [B] [C] [D]
24、若函数满足条件(),则在内至少存在一点,使得
成立。
[A] 在内连续[B] 在内可导
[C] 在内连续,在内可导[D] 在内连续,在内可导
25、若是上的连续偶函数,则()。
[A] [B]
[C] [D]
26、设为连续函数,则()。