标准电子衍射花样
合集下载
第13章 选区电子衍射及衍射花样的标准
主要内容
• 选区电子衍射 • 衍射花样的标定
13.1 选区电子衍射(SAD)
• 基本原理
• 特点
根据物镜的放大倍数,选取 特定尺寸的选区光阑,分析 特定微区的相结构. 利于在多晶体样品中选取 单个晶粒进行分析.
电子衍射基本公式
根据图中 的几何关 系:
rd L
相机常数
13.2 衍射花样的标定 • 单晶体电子衍射花样的标定
1)已知相机常数和样品晶体结构 测量靠近中心斑点的几个衍射斑点至 中心斑点的距离R1,R2,R3,R4,… 1
根据衍射基本公式R=λL/d,计算相应
面间距di 由于晶体结构已知, di相应晶面族的面间距 相应晶面族指数{hkl}i
2
3
测量各衍射斑点之间的夹角
4
确定离开中心斑点最近衍射点的指数
标定的基本原则特征平行四边形标准花样对照法?查表法标定的基本方法1已知相机常数和样品晶体结构测量靠近中心斑点的几个衍射斑点至中心斑点的距离r相应晶面族的面间距相应晶面族指数hkl根据衍射基本公式rld计算相应面间距d对立方晶系确定离开中心斑点最近衍射点的指数确定第二个斑点的指数
第13章 选区电子衍射及衍射 花样的标定
r3
5)其它斑点根据矢量运算获得。
6)晶带轴 r1×r2=
123
2)相机常数未知、晶体结构已知时衍射花样的标定
测量靠近中心斑点的几个衍射斑点至
中心斑点的距离R1,R2,R3,R4,…
1
根据R2j的顺序比,结合点阵消光规律判断 晶体的点阵类型。根据与某一R对应的N 值判定衍射面指数 2
其它同第一种情况中(4—8)步
r1 r2
r3
1)根据电子衍射基本公式,可得
第13章 选区电子衍射及衍射花样的标准ppt课件
• 已知相机常数和样品晶体结构 • 相机常数未知、晶体结构已知时衍射花样的标定 • 相机常数已知,晶体结构未知时衍射花样的标定 • 标准花样对照法 •查表法
1)已知相机常数和样品晶体结构 测量靠近中心斑点的几个衍射斑点至 中心斑点的距离R1,R2,R3,R4,… 1
根据衍射基本公式R=λL/d,计算相应
3) 相机常数已知,晶体结构未知时衍射花样的标定 测量低指数斑点的R值。应在几个不同方 位摄取电子衍射花样,保证能测出最前 面的8个R值 1
根据R,计算出各个d值
2
查PDF卡片,和各d值都相符的物象即为 3 待测晶体
4)标准花样对照法
将实际观察、记录到的衍射花样直接与标准 花样对比,写出斑点指数并确定晶带轴的方向
相机常数
13.2 衍射花样的标定 • 单晶体电子衍射花样的标定
13.2.1 单晶体电子衍射 花样的标定
目的: •确定零层倒易截面上各ghkl矢量端点(倒易阵点)的指数;
•确定零层倒易截面的法向(即晶带轴〈uvw〉);
•确定样品的点阵类型、物相及位向。
标定的基本原则
特征平行四变形
标定的基本方法
第13章 选区电子衍射及衍射花 样的标准
主要内容
• 选区电子衍射 • 衍射花样的标定
13.1 选区电子衍射(SAD)
• 基本原理
• 特点
根据物镜的放大倍数,选取 特定尺寸的选区光阑,分析 特定微区的相结构. 利于在多晶体样品中选取 单个晶粒进行分析.
电子衍射基本公式
根据图中 的几何关 系:
rd L
r1 r2
r3
1)根据电子衍射基本公式,可得
d1=0.0805nm,d2=0.2038nm,d3=0.0784nm
1)已知相机常数和样品晶体结构 测量靠近中心斑点的几个衍射斑点至 中心斑点的距离R1,R2,R3,R4,… 1
根据衍射基本公式R=λL/d,计算相应
3) 相机常数已知,晶体结构未知时衍射花样的标定 测量低指数斑点的R值。应在几个不同方 位摄取电子衍射花样,保证能测出最前 面的8个R值 1
根据R,计算出各个d值
2
查PDF卡片,和各d值都相符的物象即为 3 待测晶体
4)标准花样对照法
将实际观察、记录到的衍射花样直接与标准 花样对比,写出斑点指数并确定晶带轴的方向
相机常数
13.2 衍射花样的标定 • 单晶体电子衍射花样的标定
13.2.1 单晶体电子衍射 花样的标定
目的: •确定零层倒易截面上各ghkl矢量端点(倒易阵点)的指数;
•确定零层倒易截面的法向(即晶带轴〈uvw〉);
•确定样品的点阵类型、物相及位向。
标定的基本原则
特征平行四变形
标定的基本方法
第13章 选区电子衍射及衍射花 样的标准
主要内容
• 选区电子衍射 • 衍射花样的标定
13.1 选区电子衍射(SAD)
• 基本原理
• 特点
根据物镜的放大倍数,选取 特定尺寸的选区光阑,分析 特定微区的相结构. 利于在多晶体样品中选取 单个晶粒进行分析.
电子衍射基本公式
根据图中 的几何关 系:
rd L
r1 r2
r3
1)根据电子衍射基本公式,可得
d1=0.0805nm,d2=0.2038nm,d3=0.0784nm
电子衍射及衍射花样标定ppt
研究土壤、水等环境样品的成分和结构。
研究人体组织、细胞等生物样品的结构和功能。
02
电子衍射实验结果分析
03
数据处理与筛选
对采集到的数据进行处理和筛选,去除异常值和噪声,确保数据的质量和可靠性。
实验数据收集与整理
01
选择合适的实验条件
根据需要选择适当的加速电压、束流强度、样品厚度等实验条件,以确保实验数据的可靠性和稳定性。
药物设计与筛选
基于生物大分子的结构信息,电子衍射技术可用于药物设计与筛选,发现能够与目标分子结合的药物分子,提高药物研发的效率和成功率。
药效机制研究
01
通过对药物作用靶点的结构分析,电子衍射技术有助于研究药物的疗效机制和作用方式。
药物研发与筛选
药物优化设计
02
基于药物的靶点结构和药效机制,电子衍射技术可以优化药物设计,提高药物的疗效和降低副作用。
研究材料合成方法
新材料研发
04
电子衍射技术在医学及生物学中的应用
医学影像分析
高分辨率成像
电子衍射技术能够提供医学影像的高分辨率成像,有助于诊断病情和评估治疗效果。
蛋白质结构分析
通过电子衍射技术,可以解析蛋白质的三维结构,有助于研究蛋白质的功能和作用机制。
生物大分子结构解析
核酸结构研究
电子衍射技术也可用于研究核酸的结构,如DNA和RNA的双螺旋结构和高级结构,揭示遗传信息的传递和表达调控机制。
高能电子衍射技术的发展将促进材料科学、物理学和化学等学科的交叉与融合。
03
原位电子衍射技术的应用将推动材料科学、物理化学等领域的发展,为实际应用提供更多有价值的信息。
原位电子衍射技术应用
01
原位电子衍射技术能够实时观察材料在特定条件下的结构变化。
研究人体组织、细胞等生物样品的结构和功能。
02
电子衍射实验结果分析
03
数据处理与筛选
对采集到的数据进行处理和筛选,去除异常值和噪声,确保数据的质量和可靠性。
实验数据收集与整理
01
选择合适的实验条件
根据需要选择适当的加速电压、束流强度、样品厚度等实验条件,以确保实验数据的可靠性和稳定性。
药物设计与筛选
基于生物大分子的结构信息,电子衍射技术可用于药物设计与筛选,发现能够与目标分子结合的药物分子,提高药物研发的效率和成功率。
药效机制研究
01
通过对药物作用靶点的结构分析,电子衍射技术有助于研究药物的疗效机制和作用方式。
药物研发与筛选
药物优化设计
02
基于药物的靶点结构和药效机制,电子衍射技术可以优化药物设计,提高药物的疗效和降低副作用。
研究材料合成方法
新材料研发
04
电子衍射技术在医学及生物学中的应用
医学影像分析
高分辨率成像
电子衍射技术能够提供医学影像的高分辨率成像,有助于诊断病情和评估治疗效果。
蛋白质结构分析
通过电子衍射技术,可以解析蛋白质的三维结构,有助于研究蛋白质的功能和作用机制。
生物大分子结构解析
核酸结构研究
电子衍射技术也可用于研究核酸的结构,如DNA和RNA的双螺旋结构和高级结构,揭示遗传信息的传递和表达调控机制。
高能电子衍射技术的发展将促进材料科学、物理学和化学等学科的交叉与融合。
03
原位电子衍射技术的应用将推动材料科学、物理化学等领域的发展,为实际应用提供更多有价值的信息。
原位电子衍射技术应用
01
原位电子衍射技术能够实时观察材料在特定条件下的结构变化。
电子衍射及衍射花样标定精品文档
4.单晶电子衍射花样标定
5)任取不在同直线上的两个斑点 (如h1k1l1和h2k2l2 ) 确定晶带轴指数[uvw]。
求晶带轴指数:逆时针法则
h2k2l2
排列按逆时针
h1k1l1
[ uvw ] R 1 R 2 h1 k1 l1 h1 k1 l1 h2 k2 l2 h2 k2 l2
17.46mm,20.06mm,28.64mm,33.48mm;对应指数 (111),(200),(220),(311); 对应面间距d分别为 0.2355nm,0.2039nm,0.1442nm,0.1230nm
K=Rd
2.电子显微镜中的电子衍射
选区电子衍射
选区衍射就是在样品上选择一个感兴趣的区域,并限制其大小,得 到该微区电子衍射图的方法。也称微区衍射。两种方法:
4 5.05
8 10.1
8
10
220 310
220 301
验证 g 110 g 211 73 1 3
11 0 1 1 0
晶带轴为 113[ ],或倒易1面 13) 为 (
21 1 2 11
此为体心立方, 数a点 0阵 .3常 88nm
11 3
4.单晶电子衍射花样标定
例2:下图为某物质的电子衍射花样 ,试指标化并求其晶 胞参数和晶带方向。
3)会聚束花样:会聚束与单晶作用产生盘、线状花样;可以 用来确定晶体试样的厚度、强度分布、取向、点群、空间
群以及晶体缺陷等。
1.电子衍射的原理
入射束
厄瓦尔德球
o
试样
1 2q 1
L1d GFra bibliotek倒易点阵
o
G 底板
R
电子衍射花样形成示意图
电子衍射及衍射花样标定
电子衍射及衍射 花样标定
主要内容
1.电子衍射的原理 2.电子显微镜中的电子衍射 3.多晶体电子衍射花样 4.单晶电子衍射花样标定 5.复杂电子衍射花样
1.电子衍射的原理
电子衍射花样特征
电子束照射 单晶体: 一般为斑点花样; 多晶体: 同心圆环状花样; 织构样品:弧状花样; 无定形试样(准晶、非晶):弥散环。
11 2
A 11 0
C
11
2
00 2
000
002
B
11 2
ห้องสมุดไป่ตู้
110
1 12
4.单晶电子衍射花样标定
解1:
11 2
A 11 0
C
11 2
2 2 2 1)从 R : R : R N : N : N 2 : 4 : 6 A B C 1 2 3
斑点编号 R/mm R2 Rj2/ RA2 (Rj2/ RA2 )2 N {hkl} Hkl A 7.3 53.29 1 2 2 110 110 B 12.7 161.29 3.03 6.05 6 211 C D E
2 11
12.6 14.6 16.4 158.76 213.16 268.96 2.98 4 5.05 5.96 8 10.1 6 8 10 211 220 310 220 301 121
并假定点 A 为1 1 0
因为 N=4在B, 所以 B 为 {200},
并假定点 B 为 200
4.单晶电子衍射花样标定
3)计算夹角:
h h k k l l 1 2 1 0 0 02 0 1 2 1 2 1 2 cos 4 AB 2 22 2 22 2 4 2 h k l h k l 1 1 1 2 2 2
主要内容
1.电子衍射的原理 2.电子显微镜中的电子衍射 3.多晶体电子衍射花样 4.单晶电子衍射花样标定 5.复杂电子衍射花样
1.电子衍射的原理
电子衍射花样特征
电子束照射 单晶体: 一般为斑点花样; 多晶体: 同心圆环状花样; 织构样品:弧状花样; 无定形试样(准晶、非晶):弥散环。
11 2
A 11 0
C
11
2
00 2
000
002
B
11 2
ห้องสมุดไป่ตู้
110
1 12
4.单晶电子衍射花样标定
解1:
11 2
A 11 0
C
11 2
2 2 2 1)从 R : R : R N : N : N 2 : 4 : 6 A B C 1 2 3
斑点编号 R/mm R2 Rj2/ RA2 (Rj2/ RA2 )2 N {hkl} Hkl A 7.3 53.29 1 2 2 110 110 B 12.7 161.29 3.03 6.05 6 211 C D E
2 11
12.6 14.6 16.4 158.76 213.16 268.96 2.98 4 5.05 5.96 8 10.1 6 8 10 211 220 310 220 301 121
并假定点 A 为1 1 0
因为 N=4在B, 所以 B 为 {200},
并假定点 B 为 200
4.单晶电子衍射花样标定
3)计算夹角:
h h k k l l 1 2 1 0 0 02 0 1 2 1 2 1 2 cos 4 AB 2 22 2 22 2 4 2 h k l h k l 1 1 1 2 2 2
电子衍射及衍射花样的标定
电子衍射原理
电子衍射花样特征
单晶体:一般为斑点花样
多晶体:同心圆环状花样
非晶态:漫散的中心斑点
电子衍射原理
Bragg 定律
相邻两束衍射波的光程差为波长 的整数倍时, 干涉加强,即相邻晶面间衍射线 干涉加强的条件:2dsinθ=nλ d=晶面间距 λ=电子波长 θ= Bragg衍射角
电子衍射花样形成示意图
电子衍射及衍射花样的标定
Section header
概述
Section header
Section header
Section header
Section header
电子衍射原理 电镜中的电子衍射
单晶体的衍射花样
单晶体电子衍射花样标定
单晶体衍射花样
衍射花样的形成
单晶体衍射花样是由反射球与一个倒易 平面上的倒易杆相交形成的。 透射斑点与倒易原点相对应,衍射斑点分 别与各倒易点相对应,衍射花样是满足衍 射条件的倒易平面的放大像。
相机常数
衍射花样的投影距离: r=Ltan2θ 当θ很小时,tan2θ=2θ sinθ=θ 联立布拉格方程2d sinθ=λ得到: rd=L λ=相机常数
电镜中的电子衍射
选区电子衍射
常用的方法:光阑选区衍 射光阑选区衍射——用位 于物镜像平面上的选区光 阑限制微区大小。 操作:先在明场像上找到 感兴趣的微区,将其移到 荧光屏中心,在用选区光 阑套住微区而将其余部分 挡掉。
电子衍射原理
倒易点阵 定义:满足下面关系式 ai ·aj*=1,当i=j ai ·aj*=0,当i≠j (i,j=1,2,3) 则以aj*为基本矢量的点阵式原晶体点阵 的倒易点阵 性质: (a)倒易矢量ghkl垂直于正点阵中相应的(hkl)晶面 (b)倒易点阵中的一个点代表的是正点阵中的一组晶 面
电子衍射花样标定教程和电子衍射图谱解析
Miller指数的符号应满足右手螺旋法则,该法则决定了两基本矢量与晶带 轴之间的关系。
两个基本矢量的线性组合,一定能标出属于相同Laue区的所有衍射斑点 的指数。
9
多晶电子衍射谱标定
多晶电子衍射谱由一系列同心圆环 组成,每个环对应一组晶面。
根据 d = Lλ/R,可求得各衍射环
对应的晶面间距d。 与JCPDF卡(多晶粉末衍射卡)
变换规则:指数位置不能改变,三指数符号可一起变;k的符号可 单独变,共 4种 变换可能。
e 三斜
d公式复杂,略。
变换规则:h、k、l只能一起改变符号,2种 变换可能。
15
f 六方
d = 1 4 ( h 2 + hk + k 2 + l 2 )
3
a2
c2
由公式可见,h、k的次序可变,h、k的符号需同时改变;l的符号可随意改变。
测角74o基本相符。取(211)为B点指
数,按矢量叠加原理,标定如图。
4 晶带轴指数
[uvw] → [110] × [2 1 1] = [1 13]
晶带轴的计算:晶面法向与晶带轴垂直【110】*【uvw】=0
13
等价晶面的指数变换
采用d值比较法标定电子衍射谱,要使用JCPDS或JCPDF数据,但对等 价晶面只列出一个面指数,而如何确定其他等价晶面,标定电子衍射谱时 尤显重要。
像平面上的像经过中间镜组,投 影镜组再作二次放大投射到荧光 屏上,称为物的三级放大。
改变中间镜电流,即改变中间镜 焦距,使中间镜物平面移到物镜 后焦面,便可在荧光屏上看到像 变换成衍射谱的过程。
6
显微像和选区电子衍射花样
TEM一大优点是可以获得对应的显微图象和选区电子衍射(SAED)图样。在 200kv的加速电压下,改变选区光阑的直径,可以得到尺寸小到0.1微米样品的 TEM像和SAED图样。
两个基本矢量的线性组合,一定能标出属于相同Laue区的所有衍射斑点 的指数。
9
多晶电子衍射谱标定
多晶电子衍射谱由一系列同心圆环 组成,每个环对应一组晶面。
根据 d = Lλ/R,可求得各衍射环
对应的晶面间距d。 与JCPDF卡(多晶粉末衍射卡)
变换规则:指数位置不能改变,三指数符号可一起变;k的符号可 单独变,共 4种 变换可能。
e 三斜
d公式复杂,略。
变换规则:h、k、l只能一起改变符号,2种 变换可能。
15
f 六方
d = 1 4 ( h 2 + hk + k 2 + l 2 )
3
a2
c2
由公式可见,h、k的次序可变,h、k的符号需同时改变;l的符号可随意改变。
测角74o基本相符。取(211)为B点指
数,按矢量叠加原理,标定如图。
4 晶带轴指数
[uvw] → [110] × [2 1 1] = [1 13]
晶带轴的计算:晶面法向与晶带轴垂直【110】*【uvw】=0
13
等价晶面的指数变换
采用d值比较法标定电子衍射谱,要使用JCPDS或JCPDF数据,但对等 价晶面只列出一个面指数,而如何确定其他等价晶面,标定电子衍射谱时 尤显重要。
像平面上的像经过中间镜组,投 影镜组再作二次放大投射到荧光 屏上,称为物的三级放大。
改变中间镜电流,即改变中间镜 焦距,使中间镜物平面移到物镜 后焦面,便可在荧光屏上看到像 变换成衍射谱的过程。
6
显微像和选区电子衍射花样
TEM一大优点是可以获得对应的显微图象和选区电子衍射(SAED)图样。在 200kv的加速电压下,改变选区光阑的直径,可以得到尺寸小到0.1微米样品的 TEM像和SAED图样。
材料研究方法电子衍射花样与标定
k2 1
l2 1
h2 2
k2 2
l2 2
算出任意两个衍射斑点的夹角。核对夹角,若符合则标定正确,否则重返设定新的晶面, 直至符合为止。
3)矢量法得其它各点。并由矢量叉乘得晶带轴指数,晶带轴与电子束的入射方向反向平行。
4)核查各过程,计算晶格常数。
四、单晶体电子衍射花样的标定
2. 未知晶体结构的花样标定
未知晶体结构时,可由N规律,初步确定其结构,再定其晶面指数。 举例2 已知相机常数K=1.700mm.nm,各直径见表,确定物相。
由N的规律确定为BCC结构,由d=Lλ/r得d,查ASTM卡片发现α-Fe最符,故为α-Fe相。
谢谢!再见!
五、多晶体的电子衍射花样
多晶体的电子衍射花样等同于多晶体的X射线衍射花样,为系列同心圆。 其花样标定相对简单,同样分以下两种情况: 1.已知晶体结构 具体步骤如下: 1)测定各同心圆直径Di,算得各半径Ri; 2)由Ri/K(K为相机常数)算得1/di; 3)对照已知晶体PDF卡片上的di值,直接确定各环的晶面指数{hkl}。 2.未知晶体结构
四、单晶体电子衍射花样的标定
6)由确定了的两个斑点指数(h1k1l1)和(h2k2l2),通过矢量合成其它点
7)定出晶带轴。
u k1l 2 k 2l1
v
l1h2
l 2h1
w h1k 2 h2k1
8)系统核查各过程,算出晶格常数。
举例1已知纯镍(fcc)简单电子 衍射花样(a=0.3523nm),花样 见图,定谱。
当晶体的点阵结构未知时,首先分析斑点的特点,确定其所属的点阵结构,然后再由前面所 介绍的8步骤标定其衍射花样。如何确定其点阵结构呢?主要从斑点的对称特点(见表6-1) 或1/d2值的递增规律(见表6-2)来确定。 花样标定的具体步骤: 1)判断是否简单电子衍射谱。如是则选择三个与中心斑点最近斑点:P1、 P2、P3,并与中心构成平行四边形,并测量三个斑点至中心的距离ri。 2)测量各衍射斑点间的夹角。 3)由rd=Lλ,将测的距离换算成面间距di。 4)由试样成分及处理工艺及其它分析手段,初步估计物相,并找出相应的卡片,与实验得到 的di对照,得出相应的{hkl}. 5)用试探法选择一套指数,使其满足矢量叠加原理。 6)由已标定好的指数,根据ASTM卡片所提供的晶系计算相应的夹角,检验计算的夹角是否 与实测的夹角相符。 7)若各斑点均已指数化,夹角关系也符合,则被鉴定的物相即为STAM卡片相,否则重新标 定指数。
电子衍射花样标定教程和电子衍射图谱解析
20
一个新的Bi基超导相的结构确定
在Bi系氧化物超导体的研究中,发现一个新的物相。经EDS成分 分析,该物相为Bi4(SrLa)8Cu5O7)。下面是在电镜中绕C*轴倾转晶体获 得的一套电子衍射图谱,其倾转角分别标在每张衍射谱左下端。
0.0
12.9
24.7
100
008
080
34.6
49.0
b*c*
7
电子衍射几何的基本公式
晶体对电子衍射的布拉格(Bragg)定律
2d hkl Sinθ = nλ 或 1d Sinθ = 2λ d Rd = Lλ
R = Ltg 2θ ≈ 2 LSinθ = Lλ 即
L:相机长度 λ:电子波长 (Lλ : 相机常数) R:衍射斑距透射斑长度 d: 衍射斑对应的晶面间距
23
多次电子衍射谱
晶体对电子的散射能力强,衍射束往往可视为晶体内新的入射束而产 生二次或多次Bragg反射。这种现象称为二次衍射或多次衍射效应。
二次衍射的基本条件是:
111 002
g1 + g 2 = g 3
即:
000 111
h1k1l1 + h2 k 2l2 = h3k3l3
金刚石结构中,002 是禁止衍射,因二 次衍射使 002 衍射斑点通常出现。
17
旋转晶体重构三维倒易点阵法
通过绕晶体某一特定 晶轴旋转试样,获得一系 列电子衍射花样,根据这 些电子衍射花样和旋转角 度,重构三维倒易点阵, 可确定未知结构所属晶系 及点阵参数。 试用简单立方晶体予 以说明。
18
c*
c*
θ1
c*
c*
θ2
θ3
b*
b*
b*
b*
一个新的Bi基超导相的结构确定
在Bi系氧化物超导体的研究中,发现一个新的物相。经EDS成分 分析,该物相为Bi4(SrLa)8Cu5O7)。下面是在电镜中绕C*轴倾转晶体获 得的一套电子衍射图谱,其倾转角分别标在每张衍射谱左下端。
0.0
12.9
24.7
100
008
080
34.6
49.0
b*c*
7
电子衍射几何的基本公式
晶体对电子衍射的布拉格(Bragg)定律
2d hkl Sinθ = nλ 或 1d Sinθ = 2λ d Rd = Lλ
R = Ltg 2θ ≈ 2 LSinθ = Lλ 即
L:相机长度 λ:电子波长 (Lλ : 相机常数) R:衍射斑距透射斑长度 d: 衍射斑对应的晶面间距
23
多次电子衍射谱
晶体对电子的散射能力强,衍射束往往可视为晶体内新的入射束而产 生二次或多次Bragg反射。这种现象称为二次衍射或多次衍射效应。
二次衍射的基本条件是:
111 002
g1 + g 2 = g 3
即:
000 111
h1k1l1 + h2 k 2l2 = h3k3l3
金刚石结构中,002 是禁止衍射,因二 次衍射使 002 衍射斑点通常出现。
17
旋转晶体重构三维倒易点阵法
通过绕晶体某一特定 晶轴旋转试样,获得一系 列电子衍射花样,根据这 些电子衍射花样和旋转角 度,重构三维倒易点阵, 可确定未知结构所属晶系 及点阵参数。 试用简单立方晶体予 以说明。
18
c*
c*
θ1
c*
c*
θ2
θ3
b*
b*
b*
b*
电子衍射花样标定
复合斑点
[011]γ
[001- ]α
022γ
1- 11γ 011 // 001
111γ
110α
000
020α
1-10α
011 // 001
111
//
110
例2. Mg2SiO4 a=4.67, b=10.2, c=5.99
K 为相机常数,单位:mm.Å
已知相机常数K,就可根据底板上测得的R值算出 衍射晶面d值,同时根据R的方位,可知道衍射晶 面的位置(R 垂直与衍射晶面)。
五. 结构消光规律
衍射束的强度I(hkl) 和结构因素F(hkl)有关,
即 I (hkl) ∝∣F (hkl)∣2
F (hkl)表示晶体中单位晶胞内所有原子的 散射波在(hkl)晶面衍射束方向上的振幅之
和。
F (hkl)=0 叫结构消光
N
F(hkl) f j exp[ 2i(hx j kyj lz j )] j 1
共轭复数公式
exp[2i(hxj kyj lz j )] =cos2 (hxj kyj lzj) i sin 2 (hxj kyj lzj)
及计算过程)。
R1=10.2mm, R2=10.2mm R3=14.4mm , R1和R2间夹角为90°
R1=10.0mm, R2=10.0mm, R3=16.8mm, R1和R2间夹角为70°
[011]γ
022γ 111γ
-111γ 000
1 1 1 1 11
0 2 20 2 2 0 -2 2
k = 2.15mm.nm
Ri di
4.3 5 8.8 2.44 8.8 2.44 10.5 2.05
电子衍射及衍射花样标定讲解
标定衍射花样时,根据对待标定相信息的了解程度,相应有 不同的方法。一般,主要有以下几种方法:
指数直接标定法:
已知相机常数和样品晶体结构时衍射花样的标定
尝试-校核法:
相机常数未知、晶体结构已知时衍射花样的标定 相机常数已知、晶体结构未知时衍射花样的标定
标准花样对照法:
相机常数未知、晶体结构未知时衍射花样的标定
A
C
B 000
4.单晶电子衍射花样标定
解: 1)从 Rd=lL, 可得 dA=1.99 Å ,dB=1.41 Å, dC=1.15 Å. 2)查对应于 Fe的 PDF卡片, 从卡片上 可知 dA={110}, dB={200}, dC={211}.
选 A=1 1 0, B=002, C= 1 1 2
h12 k12 l12 h22 k22 l22
24
2
与测量值不一致。测量值(RARB)90o
4 )假定B 为 002,与测量值一致。 所以 A= 1 1a0nd B=002
❖ 但是满足上述条件的要求,也未必一定产生衍射,这样,把满足布拉 格条件而不产生衍射的现象称为结构消光。
这是因为衍射束强度
I hkl Fhkl 2
1.电子衍射的原理
入射束 厄瓦尔德球 试样
2q
倒易点阵
底板 电子衍射花样形成示意图
1.电子衍射的原理
Bragg定律:2d sinθ=λ
d = 晶面间距≈10-1nm
λ =电子波长 ≈10-3nm
故sin θ ≈10-2的弧度, θ 相当小、 ∴可认为所有和入射光束相平行的
晶面产生衍射, 这些晶面的交 线互相平行,都平行于某一轴向 (晶向),故属于一个晶带,用 [uvw]表示。 因此当电子束以平行与某一轴向 L [uvw]照射到样品, [uvw]晶带中 包括的晶面满足布拉格方程的即 要产生衍射。
指数直接标定法:
已知相机常数和样品晶体结构时衍射花样的标定
尝试-校核法:
相机常数未知、晶体结构已知时衍射花样的标定 相机常数已知、晶体结构未知时衍射花样的标定
标准花样对照法:
相机常数未知、晶体结构未知时衍射花样的标定
A
C
B 000
4.单晶电子衍射花样标定
解: 1)从 Rd=lL, 可得 dA=1.99 Å ,dB=1.41 Å, dC=1.15 Å. 2)查对应于 Fe的 PDF卡片, 从卡片上 可知 dA={110}, dB={200}, dC={211}.
选 A=1 1 0, B=002, C= 1 1 2
h12 k12 l12 h22 k22 l22
24
2
与测量值不一致。测量值(RARB)90o
4 )假定B 为 002,与测量值一致。 所以 A= 1 1a0nd B=002
❖ 但是满足上述条件的要求,也未必一定产生衍射,这样,把满足布拉 格条件而不产生衍射的现象称为结构消光。
这是因为衍射束强度
I hkl Fhkl 2
1.电子衍射的原理
入射束 厄瓦尔德球 试样
2q
倒易点阵
底板 电子衍射花样形成示意图
1.电子衍射的原理
Bragg定律:2d sinθ=λ
d = 晶面间距≈10-1nm
λ =电子波长 ≈10-3nm
故sin θ ≈10-2的弧度, θ 相当小、 ∴可认为所有和入射光束相平行的
晶面产生衍射, 这些晶面的交 线互相平行,都平行于某一轴向 (晶向),故属于一个晶带,用 [uvw]表示。 因此当电子束以平行与某一轴向 L [uvw]照射到样品, [uvw]晶带中 包括的晶面满足布拉格方程的即 要产生衍射。