数列知识点总结与题型归纳
(完整版)高三总复习数列知识点及题型归纳总结

一、数列的概念(1) 数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。
记作a n ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作 a n ; 数列的一般形式:a 1, a 2, a 3,……,a n ,……,简记作a n 。
例:判断下列各组元素能否构成数列 (1) a, -3, -1, 1, b, 5, 7, 9; (2) 2010年各省参加高考的考生人数。
(2) 通项公式的定义:如果数列 叫这个数列的通项公式。
例如:①:1 , 2 , 3 , 4, 511111 _ _ _ _ , ? ? ?2 3 4 5a n = n ( n 7, n N ),1 a n =(n N)。
n说明:1 n 2k 1② 同一个数列的通项公式的形式不一定唯一。
例如,a n = ( 1)n =(k Z);1,n 2k③ 不是每个数列都有通项公式。
例如, 1 , 1.4 , 1.41 , 1.414 ,…… (3) 数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项:456 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看,数列实质上是定义域为正整数集N (或它的有限子集)的函数 f(n)当自变量n 从1开始依次取值时对应的一系列函数值f(1),f(2), f(3),……,f(n),……•通常用a n 来代替f n ,其图象是一群孤立点。
例:画出数列a n 2n 1的图像•(4) 数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关 系分:单调数列(递增数列、递减数列) 、常数列和摆动数列。
例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1) 1 , 2, 3, 4, 5, 6,… (2)10, 9, 8, 7, 6, 5, …(3) 1,0, 1,0, 1,0, … (4)a, a, a, a, a,…例:已知数列{a n }的前n 项和s n 2n 2 3,求数列{a n }的通项公式高三总复习 数列{a n }的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就②:数列①的通项公式是 数列②的通项公式是①a n 表示数列,a n 表示数列中的第n 项,a n = n 表示数列的通项公式;(5)数列{ a n }的前n 项和S n 与通项a n 的关系:a nS 1(n 1)S n A n > 2)练习:1 •根据数列前4项,写出它的通项公式:(1) 1, 3, 5, 7……;22 132 1 42 1 52 1(2)234 5 (3)1 1 1 1---1*2*3*44*5(4) 9, 99, 999, 9999 …(5) 7, 77, 777, 7777,(6)8, 88, 888, 8888 2 •数列a n 中,已知a n(1)与出a i, , a 2, a 3, a n 1, a n 2 ;2(2) 79 2是否是数列中的项?若是,是第几项?33• (2003京春理14,文15)在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表 观察表中数据的特点,用适当的数填入表中空白(_____ )内。
根据等差数列知识点总结及题型归纳

根据等差数列知识点总结及题型归纳
等差数列是数学中常见的数列,也是初中数学中的基础概念之一。
以下是关于等差数列的知识点总结及题型归纳。
等差数列的定义
等差数列是指一个数列中的每个数与它的前一个数的差值都相等的数列。
通常用字母 a 表示首项,d 表示公差,数列的通项公式为 an = a + (n-1)d。
等差数列的性质
1. 首项与末项之和等于中间项之和的两倍(也即数列的平均值):a + an = 2 * (a + (n-1)d)。
2. 求和公式:等差数列前 n 项和 Sn = (n/2) * (2a + (n-1)d)。
3. 最后一项的值可以通过首项、末项和公差求得:an = a + (n-1)d。
4. 任意一项的值可以通过首项、公差和项数求得:ak = a + (k-1)d。
等差数列的题型归纳
1. 求等差数列的第 n 项的值。
2. 求等差数列的前 n 项和。
3. 求等差数列中缺失的项或差值。
4. 求等差数列中满足一定条件的项数。
5. 求等差数列中满足一定条件的和。
示例题目
1. 已知等差数列的首项 a = 3,公差 d = 2,求第 5 项的值和前5 项的和。
2. 一个等差数列的首项 a = 1,公差 d = 3,已知数列中缺失了第 4 项,求第 4 项的值。
3. 已知等差数列的首项 a = 2,公差 d = 5,求该等差数列中满足大于 20 的项数。
以上是对于等差数列的知识点总结及题型归纳,希望对你有所帮助。
如有需要,可以参考相应的解题方法和公式。
奥数数列知识点归纳总结

奥数数列知识点归纳总结数列是数学中一个重要的概念,也是奥数中常见的考点之一。
掌握数列的相关知识点对于解题非常有帮助。
本文将对奥数中常见的数列知识点进行归纳总结,帮助读者更好地理解和应用数列的概念。
一、数列的定义数列是一组按照一定顺序排列的数字组成的序列。
数列中的每个数字称为该数列的项。
通常用字母表示数列的项,如a₁、a₂、a₃等。
二、等差数列1. 定义:在等差数列中,从第二项开始,每一项与前一项之差都相等。
这个公差用d表示。
2. 常见公式:- 第n项通项公式:aₙ = a₁ + (n - 1)d- 前n项和公式:Sₙ = (a₁ + aₙ) × n ÷ 2三、等比数列1. 定义:在等比数列中,从第二项开始,每一项与前一项的比值都相等。
这个比值用q表示。
2. 常见公式:- 第n项通项公式:aₙ = a₁ × q^(n - 1)- 前n项和公式(当|q| < 1):Sₙ = a₁ × (1 - qⁿ) ÷ (1 - q)四、特殊的数列1. 斐波那契数列:斐波那契数列是一种特殊的数列,从第三项开始,每一项都等于前两项的和。
- 常见公式:aₙ = aₙ₋₂ + aₙ₋₁五、常见数列问题解析1. 求特定项的值:利用等差数列或等比数列的通项公式,可以直接计算出特定项的值。
2. 求前n项的和:利用等差数列或等比数列的前n项和公式,可以很方便地求得前n项的和。
3. 求公差或公比:已知数列的前几项,可以通过求项与项之间的差或比值,从而推断出公差或公比的值。
4. 求满足条件的项数:已知数列的某些项或数列的前n项和,可以通过代入公式,求解满足条件的项数。
六、实例分析例1:已知等差数列的公差为3,第5项为10,求该等差数列的第10项和前10项的和。
解析:根据已知信息,可得到a₁ = 10 - 4 × 3 = -2,代入通项公式可计算得到第10项的值为82,代入前n项和公式可计算得到前10项的和为202。
等比数列知识点总结及题型归纳

等比數列知識點總結及題型歸納1、等比數列の定義:()()*12,n n a q q n n N a -=≠≥∈0且,q 稱為公比 2、通項公式: ()11110,0n n n n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首項:1a ;公比:q 推廣:n m n m n n n m n m m ma a a a qq q a a ---=⇔=⇔= 3、等比中項: (1)如果,,a A b 成等比數列,那麼A 叫做a 與b の等差中項,即:2A ab =或A ab =±注意:同號の兩個數才有等比中項,並且它們の等比中項有兩個(2)數列{}n a 是等比數列211n n n a a a -+⇔=⋅4、等比數列の前n 項和n S 公式:(1)當1q =時,1n S na =(2)當1q ≠時,()11111n n n a q a a q S q q--==-- 11''11n n n a a q A A B A B A q q=-=-⋅=---(,,','A B A B 為常數) 5、等比數列の判定方法: (1)用定義:對任意のn ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,為等比數列 (2)等比中項:21111(0){}n n n n n n a a a a a a +-+-=≠⇔為等比數列(3)通項公式:()0{}n n n a A B A B a =⋅⋅≠⇔為等比數列6、等比數列の證明方法: 依據定義:若()()*12,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔為等比數列 7、等比數列の性質:(2)對任何*,m n N ∈,在等比數列{}n a 中,有n m n m a a q -=。
(3)若*(,,,)m n s t mn st N +=+∈,則n m s t a a a a ⋅=⋅。
数列的递推公式与通项公式前n项和公式

二、数列的递推公式与通项公式、前n 项和公式一、知识点回顾:1、递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
2、数列前n 项和S n 与通项a n 的关系式:a n =⎩⎨⎧--11s s s n n 12=≥n n 。
在数列{a n }中,前n 项和S n 与通项公式a n 的关系,是本讲内容一个重点,要认真掌握之。
注意:(1)用1--=n n n S S a 求数列的通项公式时,你注意到此等式成立的条件了吗?(2n ≥,当1n =时,11S a =);若a 1 适合由a n 的表达式,则a n 不必表达成分段形式,可化统一为一个式子。
(2)一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。
3、数列的通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。
⑵已知n S (即12()n a a a f n +++= )求n a ,用作差法:{11,(1),(2)n nn S n a S S n -==-≥。
一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。
⑶已知12()n a a a f n = 求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。
⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++- 1a +(2)n ≥。
⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅ (2)n ≥。
职高数列知识点总结及题型归纳

职高数列知识点总结及题型归纳一. 数列的定义和性质数列是按照一定规律排列的一组数的集合。
它可以有无穷个数,也可以有有限个数。
数列中的每个数被称为数列的项,用 a1, a2, a3...表示。
1. 等差数列等差数列是一种常见的数列形式,其特点是每一项与它的前一项之差相等。
设等差数列的首项为 a,公差为 d,则其通项公式为 an = a + (n-1)d,其中 n 表示数列中的第 n 项。
常用等差数列公式:- 数列前 n 项和公式:Sn = (a + an) * n / 2- 前 n 项和与项数的关系:Sn = (2a + (n-1)d) * n / 2- 前 n 项和与差数的关系:Sn = (a2 - an) / (2d)例题1:某数列的首项是 3,公差是 4,求该数列的第 10 项。
解:根据等差数列的通项公式,an = a + (n-1)d = 3 + (10-1)4 = 3 + 36 = 39。
所以该数列的第 10 项是 39。
例题2:某数列的首项是 2,公差是 3,求数列的前 5 项和。
解:使用等差数列前 n 项和公式,Sn = (a + an) * n / 2 = (2 + (2 + (5-1)3)) * 5 / 2 = 35。
所以数列的前 5 项和为 35。
2. 等比数列等比数列是一种常见的数列形式,其特点是每一项与它的前一项之比相等。
设等比数列的首项为 a,公比为 r,则其通项公式为 an = a * r^(n-1),其中 n 表示数列中的第 n 项。
常用等比数列公式:- 数列前 n 项和公式:Sn = a * (1 - r^n) / (1 - r)- 前 n 项和与项数的关系:Sn = a * (1 - r^n) / (1 - r)- 无穷项和公式:S∞= a / (1 - r)例题3:某数列的首项是 2,公比是 3,求该数列的第 4 项。
解:根据等比数列的通项公式,an = a * r^(n-1) = 2 * (3^(4-1)) = 2 * 27 = 54。
等差数列知识点总结和题型总结

等差数列知识点总结与题型归纳
一.等差数列知识点:
知识点 1、等差数列的定义:
①如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,那么
这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示
知识点 2、等差数列的判定方法:
②定义法:对于数列an ,若 an1 an d (常数),则数列an 是等差数列
n
项和,求使得 Tn
m 20
对所有 n N 都成立的
最小正整数 m
6
关注公众号“品数学”,获取更多干货!
五、等差数列习题精选
1、等差数列{an}的前三项依次为 x , 2x 1 , 4x 2 ,则它的第 5 项为( )
A、 5x 5
B、 2x 1
C、5
D、4
2、设等差数列{an}中, a4 5, a9 17 ,则 a14 的值等于( )
1
关注公众号“品数学”,获取更多干货!
也就是: a1 an a2 an1 a3 an2
⑨若数列 an 是等差数列, Sn 是其前 n 项的和, k N * ,那么 Sk , S2k Sk ,
S3k S2k 成等差数列 如下图所示:
S3k a1 a2 a3 ak ak 1a2k a2k1a3k
11、在等差数列an 中, a2 a8 4 ,则 其前 9 项的和 S9 等于 ( )
A.18
B 27
C 36
D9
12、设等差数列{an} 的前 n 项和为 Sn ,若 S3 9 , S6 36 ,则 a7 a8 a9 ( )
A.63
B.45
C.36
D.27
13、在等差数列 an 中, a1 a2 a3 15, an an1 an2 78 , Sn 155 ,
职中数列知识点总结归纳

职中数列知识点总结归纳一、数列的概念数列是指按照一定顺序排列的一组数的集合,数列中的每个数称为项,而这些项之间的排列顺序是有规律的。
数列可以是有穷的,也可以是无穷的。
有穷数列:有限个数所组成的数列称为有穷数列,其项可排成一个有限的数列。
无穷数列:无限个数所组成的数列称为无穷数列,其项不能排成一个有限的数列。
数列可以用以下形式进行表达:通项公式形式:an = f(n),其中n为自然数,an为数列的任一项,f(n)为定义域为自然数的函数。
递归公式形式:an+1=Aan+B,其中A,B为常数。
二、数列的分类1.按照数列中项的变化规律分类等差数列:数列中任意两项之差相等的数列。
通项公式为an = a + (n-1)d。
等比数列:数列中任意两项之比相等的数列。
通项公式为an = a * r^(n-1)。
2.按照数列的性质分类单调数列:数列中的项之间的大小关系保持不变的数列。
常数数列:数列中的所有项都相等的数列。
周期数列:数列中的项符合一定的周期规律的数列。
三、数列的性质和运算1.数列的有界性有界数列:如果数列的所有项都在某一范围内,则称该数列为有界数列。
无界数列:如果数列中的项没有范围限制,则称该数列为无界数列。
2.数列的增减性递增数列:如果数列中的任意一项大于前一项,则称该数列为递增数列。
递减数列:如果数列中的任意一项小于前一项,则称该数列为递减数列。
3.数列的前n项和数列的前n项和表示为S(n) = a1 + a2 + a3 + … + an。
等差数列的前n项和:Sn = (a1 + an)*n/2。
等比数列的前n项和:Sn = a1*(1-r^n)/(1-r)。
4.数列的运算数列的加法:对应项相加得到的数列。
数列的乘法:对应项相乘得到的数列。
数列的除法:对应项相除得到的数列。
四、数列的应用1.在数学中的应用数列在数学中的应用非常广泛,它不仅在高中数学中有着重要地位,还在微积分、概率论、数理逻辑等领域中都有着重要作用。
【专题训练】数列(等差、等比) 知识点总结及题型归纳

基本量法求数列的通项公式11.复习 等差数列(1)定义: 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常.数.,那么这个数列就叫等差数列, 1(2)n n a a d n --=≥d a a n n =1--d a a n n =2-1--(由定义,累加法推得通项公式)…… d a a =12-(2)通项公式1(1)n a a n d =+-(3)性质: 在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+;(4)前项和公式d n n na a a n S n n 2)1(2)(11-+=+=等比数列(1)定义 : 如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,1n a +:(0)n a q q =≠ (2)通项公式11-⋅=n n q a a(3)性质:在等比数列{}n a 中,q p n m a a a a q p n m ⋅=⋅+=+,则若),,,(*∈N q p n m 其中(4)前项和公式)1(11)1()1(111≠⎪⎩⎪⎨⎧--=--==q q qa a qq a q na S n nn例1(2015年全国卷I ) n S 为数列{}n a 的前n 项和.已知20,243n n n n a a a S >+=+,(1)求{}n a 的通项公式:变式1:(湖北省武汉部分重点中学2020届高三起点考试)已知数列{a n }是等比数列,S n 为数列{a n }的前n 项和,且a 3=3,S 3=9 (1)求数列{a n }的通项公式;变式2:已知等差数列{}n a 的公差0d ≠,其前n 项和为n S ,若2822a a +=,且4712,,a a a 成等比数列.(1)求数列{}n a 的通项公式;例2已知数列{a n }的前n 项和为S n ,且2n n S a n =-.(1) 证明数列{1n a +}是等比数列,并求数列{}n a 的通项公式;变式1:(湖北省黄冈中学2019届高三数学模拟试题1)已知各项均为正数的等比数列{a n }的前n 项和为S n ,a 1=14,a 3+a 5=564.(1)求数列{a n }的通项公式;变式3:已知数列{}n a ,{}n b ,其中1,511-==b a ,且满足)3(2111---=n n n b a a ,)3(2111----=n n n b a b ,2*,≥∈n N n .(1)求证:数列{}n n b a -为等比数列,并求数列{a n }、{b n }的通项公式;例3 .已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; 变式(浙江省名校联盟2020届高三第一次联考试题)已知等比数列{}n a 的公比1q >,且13542a a a ++=,39a +是1a ,5a 的等差中项.数列{}n b的通项公式nn b =Νn *∈.(1)求数列{}n a 的通项公式;数列(等差、等比)知识点清单一、数列的概念1.数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
等差数列知识点总结与题型归纳讲义

10.1等差数列知识梳理.等差数列1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)①通项公式:a n =a 1+(n -1)d =nd +(a 1-d )⇒当d ≠0时,a n 是关于n 的一次函数.②通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(3)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.①若m +n =2p ,则2a p =a m +a n (m ,n ,p ∈N *).②当m +n =p +q 时,a m +a n =a p +a q (m ,n ,p ,q ∈N *).(4)前n 项和公式:S n =n (a 1+a n )2――→a n =a 1+(n -1)dS n =na 1+n (n -1)2d =d 2n 2+a 1-d2n ⇒当d ≠0时,S n 是关于n 的二次函数,且没有常数项.2.常用结论:已知{a n }为等差数列,d 为公差,S n 为该数列的前n 项和.(1)S n ,S 2n -S n ,S 3n -S 2n ,…也成等差数列,公差为n 2d .(2)若{a n }是等差数列,则S nn 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12.(3)若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a na n +1.若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=nn -1.题型一.等差数列的基本量1.已知等差数列{a n}满足a3+a4=12,3a2=a5,则a6=11.【解答】解:设等差数列{a n}的公差为d,∵a3+a4=12,3a2=a5,∴2a1+5d=12,3(a1+d)=a1+4d,联立解得a1=1,d=2,∴a6=a1+5d=11故答案为:112.(2018•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴3×(31+3×22p=a1+a1+d+4a1+4×32d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.3.(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴1+3+1+4=2461+6×52=48,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.题型二.等差数列的基本性质1.在等差数列{a n}中,已知a5+a10=12,则3a7+a9等于()A.30B.24C.18D.12【解答】解:∵等差数列{a n}中,a5+a10=12,∴2a1+13d=12,∴3a7+a9=4a1+26d=2(2a1+13d)=24.故选:B.2.在等差数列{a n}中,若a4+a6+a8+a10+a12=120,则a9−1311的值为()A.17B.16C.15D.14【解答】解:由a4+a6+a8+a10+a12=(a4+a12)+(a6+a10)+a8=5a8=120,解得a8=24.a9−1311=a1+8d−1+103=23a1+143d=23(a1+7d)=23a8=16故选:B.3.设等差数列{a n}的前n项和为S n,若a3=10,S4=36,则公差d为2.【解答】解:∵a3=10,S4=36,∴a1+2d=10,4a1+4×32d=36,解得d=2.故答案为:2.题型三.等差数列的函数性质1.下面是关于公差d>0的等差数列{a n}的四个命题:(1)数列{a n}是递增数列;(2)数列{na n}是递增数列;(3)数列{}是递减数列;(4)数列{a n+3nd}是递增数列.其中的真命题的个数为()A.0B.1C.2D.3【解答】解:设等差数列的首项为a1,公差d>0,则a n=a1+(n﹣1)d=dn+a1﹣d,∴数列{a n}是递增数列,故(1)正确;B=B2+(1−p,当n<K12时,数列{na n}不是递增数列,故(2)错误;=+1−,当a1﹣d≤0时,数列{}不是递减数列,故(3)错误;a n+3nd=4nd+a1﹣d,数列{a n+3nd}是递增数列,故(4)正确.∴真命题个数有2个.故选:C.2.已知数列{a n}的前n项和S n=n2(n∈N*),则{a n}的通项公式为()A.a n=2n B.a n=2n﹣1C.a n=3n﹣2D.=1,=12,≥2【解答】解:∵S n=n2,∴当n=1时,a1=S1=1.当n≥2时,a n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1,而当n=1时也满足,∴a n=2n﹣1.故选:B.3.在数列{a n}中,若a n=5n﹣16,则此数列前n项和的最小值为()A.﹣11B.﹣17C.﹣18D.3【解答】解:令a n=5n﹣16≤0,解得n≤3+15.则此数列前n项和的最小值为S3=3×(−11+15−16)2=−18.故选:C.题型四.等差数列的前n项和经典结论1.设等差数列{a n}的前n项和为S n,若S3=9,S9=72,则S6=()A.27B.33C.36D.45【解答】解:∵等差数列{a n}的前n项和为S n,若S3=9,S9=72,∴S3,S6﹣S3,S9﹣S6成等差数列,故2(S6﹣S3)=S3+S9﹣S6,即2(S6﹣9)=9+72﹣S6,求得S6=33,故选:B.2.等差数列{a n}中,S n是其前n项和,1=−11,1010−88=2,则S11=()A.﹣11B.11C.10D.﹣10【解答】解:=B1+oK1)2,得=1+(K1)2,由1010−88=2,得1+10−12−(1+8−12)=2,d=2,1111=1+(11−1)2=−11+5×2=−1,∴S11=﹣11,故选:A.3.若两个等差数列{a n}和{b n}的前n项和分别是S n和T n,已知=2r1,则77等于()A.1321B.214C.1327D.827【解答】解:∵=2r1,∴77=2727=132(1+13)132(1+13)=1313=132×13+1=1327,故选:C.题型五.等差数列的最值问题1.已知等差数列{a n}中,S n是它的前n项和,若S16>0,S17<0,则当S n最大时,n的值为()A.8B.9C.10D.16【解答】解:∵等差数列{a n}中,S16>0且S17<0∴a8+a9>0,a9<0,∴a8>0,∴数列的前8项和最大故选:A.2.在等差数列{a n}中,已知a1=20,前n项和为S n,且S10=S15,求当n为何值时,S n取得最大值,并求出它的最大值.【解答】解:∵等差数列{a n}中S10=S15,∴S15﹣S10=a11+a12+a13+a14+a15=5a13=0,∴a13=0,∴数列的前12项为正数,第13项为0,从第14项开始为负值,∴当n=12或13时,S n取得最大值,又公差d=13−113−1=−53,∴S12=12×20+12×112(−53)=130∴S n的最大值为1303.(2014·江西)在等差数列{a n}中,a1=7,公差为d,前n项和为S n,当且仅当n=8时S n取得最大值,则d的取值范围为(﹣1,−78).【解答】解:∵S n=7n+oK1)2,当且仅当n=8时S n取得最大值,∴7<8 9<8,即49+21<56+2863+36<56+28,解得:>−1<−78,综上:d的取值范围为(﹣1,−78).题型六.证明等差数列1.已知数列{a n}满足1=35,=2−1K1(≥2,∈∗),数列{b n}满足=1−1(∈∗).(1)求证数列{b n}是等差数列;(2)求数列{a n}中的最大项和最小项.【解答】解:(1)由1=35,=2−1K1(≥2,∈∗),得a n+1=2−1(n∈N•)b n+1﹣b n=1r1−1−1−1=12−1−1−1−1=1…(4分)又b1=−52,所以{b n}是以−52为首项,1为公差的等差数列…(6分)(2)因为b n=b1+(n﹣1)=n−72,所以a n=1+1=22K7+1.…(9分)1≤n≤3时数列{a n}单调递减且a n<1,n≥4时数列{a n}单调递减且a n>1所以数列{a n}的最大项为a4=3,最小项为a3=﹣1.…(14分)2.已知数列{a n}中,a2=1,前n项和为S n,且S n=o−1)2.(1)求a1;(2)证明数列{a n}为等差数列,并写出其通项公式;【解答】解:(1)令n=1,则a1=S1=1(1−1)2=0(2)由=o−1)2,即=B2,①得r1=(r1)r12.②②﹣①,得(n﹣1)a n+1=na n.③于是,na n+2=(n+1)a n+1.④③+④,得na n+2+na n=2na n+1,即a n+2+a n=2a n+1又a1=0,a2=1,a2﹣a1=1,所以,数列{a n}是以0为首项,1为公差的等差数列.所以,a n=n﹣1课后作业.等差数列1.设等差数列{a n}的前n项和为S n,若S9=72,则a1+a5+a9=()A.36B.24C.16D.8【解答】解:由等差数列的求和公式可得,S9=92(a1+a9)=72,∴a1+a9=16,由等差数列的性质可知,a1+a9=2a5,∴a5=8,∴a1+a5+a9=24.故选:B.2.设等差数列{a n}的前n项和为S n,S8=4a3,a7=﹣2,则a10=()A.﹣8B.﹣6C.﹣4D.﹣2【解答】解:等差数列{a n}中,前n项和为S n,且S8=4a3,a7=﹣2,则81+28=41+81+6=−2,解得a1=10,d=﹣2,∴a10=a1+9d=﹣8.故选:A.3.已知等差数列{a n}的前n项和为S n,且a1>0,2a5+a11=0,则下列说法错误的为()A.a8<0B.当且仅当n=7时,S n取得最大值C.S4=S9D.满足S n>0的n的最大值为12【解答】解:∵2a5+a11=0,∴2a1+8d+a1+10d=0,∴a1=﹣6d,∵a1>0,∴d<0,∴{a n}为递减数列,∴a n=a1+(n﹣1)d=﹣6d+(n﹣1)d=(n﹣7)d,由a n≥0,(n﹣7)d≥0,解得n≤7,∴数列前6项大于0,第7项等于0,从第8项都小于0,∴a8<0,当n=6或7时,S n取得最大值,故A正确,B错误;∵S4=4a1+6d=﹣24d+6d=﹣18d,S9=9a1+36d=﹣28d+36d=﹣18d,∴S4=S9,故C正确;∴S n=na1+oK1)2=2(n2﹣13n)>0,解得0<n<13,∴满足S n>0的n的最大值为12,故D正确.故选:B.4.若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=8时,{a n}的前n项和最大;当S n>0时n的最大值为15.【解答】解:∵a7+a8+a9=3a8>0,a7+a10=a8+a9<0,∴a8>0,a9<0,∴n=8时,{a n}的前n项和最大;∵S15=15(1+15)2=15a8>0,S16=16(1+16)2=8(a8+a9)<0,∴当S n>0时n的最大值为15.故答案为:8;15.5.在数列{a n}中,a2=8,a5=2,且2a n+1﹣a n+2=a n(n∈N*),则|a1|+|a2|+…+|a10|的值是()A.210B.10C.50D.90【解答】解:∵2a n+1﹣a n+2=a n(n∈N*),即2a n+1=a n+2+a n(n∈N*),∴数列{a n}是等差数列,设公差为d,则a1+d=8,a1+4d=2,联立解得a1=10,d=﹣2,∴a n=10﹣2(n﹣1)=12﹣2n.令a n≥0,解得n≤6.S n=o10+12−2p2=11n﹣n2.∴|a1|+|a2|+…+|a10|=a1+a2+…+a6﹣a7﹣…﹣a10=2S6﹣S10=2(11×6﹣62)﹣(11×10﹣102)=50.故选:C.6.已知在正整数数列{a n}中,前n项和S n满足:S n=18(a n+2)2.(1)求数列{a n}的通项公式;(2)若b n=12a n﹣30,求数列{b n}的前n项和的最小值.【解答】解:(1)∵S n=18(a n+2)2,∴当n=1时,1=18(1+2)2,化为(1−2)2=0,解得a1=2.当n≥2时,a n=S n﹣S n﹣1=18(a n+2)2−18(K1+2)2,化为(a n﹣a n﹣1﹣4)(a n+a n﹣1)=0,∵∀n∈N*,a n>0,∴a n﹣a n﹣1=4.∴数列{a n}是等差数列,首项为2,公差为4,∴a n=2+4(n﹣1)=4n﹣2.(2)b n=12a n﹣30=12(4−2)−30=2n﹣31.由b n≤0,解得≤312,因此前15项的和最小.又数列{b n}是等差数列,∴数列{b n}的前15项和T15=15(−29+2×15−31)2=−225.∴数列{b n}的前n项和的最小值为﹣225.。
高中数学必修5等差数列知识点总结和题型归纳

等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示知识点2、等差数列的判定方法:②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列知识点3、等差数列的通项公式:④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数知识点4、等差数列的前n 项和:⑤2)(1n n a a n S +=⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数知识点5、等差中项:⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2ba A +=或b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+=⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+也就是: =+=+=+--23121n n n a a a a a a⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 10、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1nn S aS a +=奇偶.②若项数为()*21n n -∈N,则()2121n n Sn a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶). 二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 22.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( )A .49B .50C .51D .523.等差数列1,-1,-3,…,-89的项数是( )A .92B .47C .46D .45 4、已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )( )A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是( )A.d >38B.d <3C. 38≤d <3D.38<d ≤36、.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直03=--y x 上,则n a =_____________.7、在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .8、等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( ) (A )12 (B )10 (C )8 (D )69、设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=-=+且满足,则=+++1721a a a ______.10、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = __________ 11、已知数列的通项a n = -5n +2,则其前n 项和为S n = .12、设n S 为等差数列{}n a 的前n 项和,4S =14,30S S 710=-,则9S = .题型二、等差数列性质1、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )(A)4 (B)5 (C)6 (D)72、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .53、 若等差数列{}n a 中,37101148,4,a a a a a +-=-=则7__________.a =4、记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( )A .7 B. 6 C. 3 D. 2 5、等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( ) (A )48 (B )49 (C )50 (D )516.、等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )(A)9 (B)10 (C)11 (D)12 7、设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1 B .-1 C .2 D .21 8、已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( )A .α1+α101>0B .α2+α100<0C .α3+α99=0D .α51=519、如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a 10、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项题型三、等差数列前n 项和 1、等差数列{}n a 中,已知12310a a a a p ++++=,98n n n a a a q --+++=,则其前n 项和n S = .2、等差数列 ,4,1,2-的前n 项和为 ( )A. ()4321-n nB. ()7321-n nC. ()4321+n nD. ()7321+n n3、已知等差数列{}n a 满足099321=++++a a a a ,则 ( ) A. 0991>+a a B. 0991<+a a C. 0991=+a a D. 5050=a4、在等差数列{}n a 中,78,1521321=++=++--n n n a a a a a a ,155=n S ,则=n 。
等比数列知识点及题型归纳

等比数列知识点及题型归纳一、等比数列简介等比数列是数学中常见的一种数列。
如果一个数列中,从第二项开始,每一项与前一项的比都相等,则这个数列被称为等比数列。
等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n项,a1表示第一项,r表示公比,n表示项数。
二、等比数列的性质:1. 常比:等比数列中,公比r始终是一个常数。
2. 正比和负比:如果公比r>1,则称等比数列为正比数列;如果0<r<1,则称等比数列为负比数列。
3. 倒数和倒数的倒数:对于等比数列,如果公比r不等于1,则相邻两项的倒数也是一个等比数列,并且它们的公比是1/r。
4. 等比中项:对于等比数列,存在一个项x,称为等比中项,它满足x²=a1*a(n+1),其中a1表示第一项,an表示最后一项。
5. 等比数列的和:等比数列的前n项和可以表示为Sn = a1 * (1-r^n) / (1-r),其中a1表示第一项,r表示公比。
三、等比数列的常见题型:1. 求第n项:已知等比数列的首项和公比,求第n项的值。
2. 求前n项和:已知等比数列的首项和公比,求前n项和的值。
3. 求公比:已知等比数列的首项和第n项,求公比的值。
4. 求等比中项:已知等比数列的首项和最后一项,求等比中项的值。
5. 求满足条件的项数:已知等比数列的首项和公比,求满足条件的项数。
6. 判断数列性质:已知数列的前几项,判断数列是等比数列还是等差数列。
7. 求等差数列对应项:已知等差数列和等比数列的相同位置上的项相等,求该等差数列的对应项。
四、等比数列的应用:等比数列在实际生活和工作中有着广泛的应用。
以下是一些等比数列的典型应用场景:1. 财务计算:等比数列可以用来计算贷款或投资的复利。
2. 科学研究:等比数列的合理运用可以帮助科学家研究自然界中的各种现象。
3. 经济分析:等比数列可以用来分析经济增长和衰退的趋势。
4. 工程计划:等比数列可以用来计算任务的进度和耗时。
等差数列与等比数列知识点及题型归纳总结

等差数列与等比数列知识点及题型归纳总结知识点精讲一、基本概念 1.数列(1)定义:按照一定顺序排列的一列数就叫做数列. (2)数列与函数的关系.从函数的角度来看,数列是特殊的函数.在()y f x =中,当自变量x N *∈时,所对应的函数值(1),(2),(3),f f f 就构成一数列,通常记为{}n a ,所以数列有些问题可用函数方法来解决.2.等差数列 (1)定义:一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一常数,则该数列叫做等差数列,这个常数叫做公差,常用字母d 表示,即1()n n a a d n N *+-=∈.(2)等差数列的通项公式.若等差数列{}n a 的首项是1a ,公差是d ,则其通项公式为11(1)()n a a n d nd a d =+-=+-,是关于n 的一次型函数.或()n m a a n m d =+-,公差n m a a d n m-=-(直线的斜率)(,,m n m n N *≠∈).(3)等差中项.若,,x A y 成等差数列,那么A 叫做x 与y 的等差中项,即2x yA +=或2A x y =+,.在一个等差数列中,从第2项起(有穷等差数列的末项除外),每一项都是它的前一项与后一项的等差中项;事实上,等差数列中每一项都是与其等距离的前后两项的等差中项.(4)等差数列的前n 项和2111()2(1)2222n n a a n a dn n d d S na n n +--==+=+(类似于2n S An Bn =+),是关于n 的二次型函数(二次项系数为2d且常数项为0).n S 的图像在过原点的直线(0)d =上或在过原点的抛物线(0)d ≠上.3.等比数列(1)定义.:一般地,如果一个数列从第2项起,每一项与它前一项的比等于同一个非零常数,则该数列叫做等比数列,这个常数叫做公比,常用字母q 表示,即1(q 0,)n na q n N a *+=≠∈. (2)等比数列的通项公式. 等比数列的通项1111()(,0)n n n a a a qc q c a q q-==⋅=≠,是不含常数项的指数型函数. (3)m n mna q a -=. (4)等比中项如果,,x G y 成等比数列,那么G 叫做x 与y 的等比中项,即2G xy =或G =两个同号实数的等比中项有两个).(5)等比数列的前n 项和111(1)(1)(1)11n n n na q S a a qa q q q q =⎧⎪=--⎨=≠⎪--⎩注①等比数列的前n 项和公式有两种形式,在求等比数列的前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择相应的求和公式,当不能判断公比q 是否为1时,要分1q =与1q ≠两种情况讨论求解.②已知1,(1),a q q n ≠(项数),则利用1(1)1n n a q S q -=-求解;已知1,,(1)n a a q q ≠,则利用11n n a a qS q-=-求解.③111(1)(0,1)111n n n n a q a aS q kq k k q q q q--==⋅+=-≠≠---,n S 为关于n q 的指数型函数,且系数与常数互为相反数.例如等比数列{}n a ,前n 项和为212n n S t +=+,则t =.解:等比数列前n 项和21224n n n S t t +=+=⋅+,则2t =-.二、基本性质1.等差数列的性质 (1)等差中项的推广.当(,,,)m n p q m n p q N *+=+∈时,则有m n p q a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2)等差数列线性组合.①设{}n a 是等差数列,则{}(,)n a b b R λλ+∈也是等差数列.②设{},{b }n n a 是等差数列,则1212{}(,)n n a b R λλλλ+∈也是等差数列. (3)有限数列.①对于项数为2n 的等差数列,有: (Ⅰ)21()n n n S n a a +=+.(Ⅱ)11,,,n n n nS a S na S na S S nd S a ++==-==偶奇奇偶偶奇. ②对于项数为21n -的等差数列,有; (Ⅰ)21(21)n n S n a -=-.(Ⅱ),(1),,1n n n S nS na S n a S S a S n ==--==-奇奇奇偶偶偶.(4)等差数列的单调性及前n 项和n S 的最值. 公差0{}n d a >⇔为递增等差数列,n S 有最小值; 公差0{}n d a <⇔为递减等差数列,n S 有最大值; 公差0{}n d a =⇔为常数列. 特别地 若10a d >⎧⎨<⎩,则n S 有最大值(所有正项或非负项之和);若100a d <⎧⎨>⎩,则n S 有最小值(所有负项或非正项之和).(5)其他衍生等差数列.若已知等差数列{}n a ,公差为d ,前n 项和为n S ,则: ①等间距抽取2(1),,,,p p t p t p n t a a a a +++-为等差数列,公差为td . ②等长度截取232,,,m m m m m S S S S S --为等差数列,公差为2m d .③算术平均值312,,,123S S S 为等差数列,公差为2d . 2.等差数列的几个重要结论(1)等差数列{}n a 中,若,(,,)n m a m a n m n m n N *==≠∈,则0m n a +=. (2)等差数列{}n a 中,若,(,,)n m S m S n m n m n N *==≠∈,则()m n S m n +=-+. (3)等差数列{}n a 中,若(,,)n m S S m n m n N *=≠∈,则0m n S +=.(4)若{}n a 与{b }n 为等差数列,且前n 项和为n S 与n T ,则2121m m m m a S b T --=. 3.等比数列的性质 (1)等比中项的推广.若m n p q +=+时,则m n p q a a a a =,特别地,当2m n p +=时,2m n p a a a =.(2)①设{}n a 为等比数列,则{}n a λ(λ为非零常数),{}n a ,{}mn a 仍为等比数列.②设{}n a 与{b }n 为等比数列,则{b }n n a 也为等比数列.(3)等比数列{}n a 的单调性(等比数列的单调性由首项1a 与公比q 决定).当101a q >⎧⎨>⎩或1001a q <⎧⎨<<⎩时,{}n a 为递增数列;当1001a q >⎧⎨<<⎩或101a q <⎧⎨>⎩时,{}n a 为递减数列.(4)其他衍生等比数列.若已知等比数列{}n a ,公比为q ,前n 项和为n S ,则: ①等间距抽取2(1),,,,p p t p t p n t a a a a +++-为等比数列,公比为tq .②等长度截取232,,,m m m m m S S S S S --为等比数列,公比为mq (当1q =-时,m 不为偶数).4.等差数列与等比数列的转化(1)若{}n a 为正项等比数列,则{log }(c 0,c 1)c n a >≠为等差数列. (2)若{}n a 为等差数列,则{c }(c 0,c 1)n a>≠为等比数列. (3)若{}n a 既是等差数列又是等比数列{)n a ⇔是非零常数列. 题型归纳及思路提示题型1 等差、等比数列的通项及基本量的求解 思路提示利用等差(比)数列的通项公式或前n 项和公式,列出关于1,()a d q 基本量的方程或不等式从而求出所求的量.一、求等差数列的公差及公差的取值范围例6.1 记等差数列{}n a 的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( ). A.7 B.6 C.3 D.2解析 212124S a a a d =+=+= ①414620S a d =+= ②由式①②可解得3d =,故选C.评注 求解基本量用的是方程思想.变式1 (2012福建理2)等差数列{}n a 中,15410,7a a a +==则数列{}n a 的公差为( ). A.1 B.2 C.3 D.4变式2 已知等差数列首项为31,从第16项起小于1,则此数列公差d 的取值范围是( ). A.(,2)-∞- B.15,27⎡⎫--⎪⎢⎣⎭ C.(2,)-+∞ D.15,27⎛⎫-- ⎪⎝⎭二、求等比数列的公比例6.2 在等比数列{}n a 中,201320108a a =,则公比q 的值为( ). A.2 B.3 C.4 D.8 解析 因为201320108a a =,所以3201320108,a q a ==则2q =,故选A. 变式1 等比数列{}n a 的前n 项和为n S ,且1234,2,a a a 成等差数列,若11a =,则4S =( ). A.7 B.8 C.15 D.16变式2 (2012浙江理13)设公比为(0)q q >的等比数列{}n a 的前n 项和为n S ,若224432,32S a S a =+=+,则q =.变式3 等比数列{}n a 的前n 项和为n S ,若123,2,3S S S 成等差数列,则{}n a 的公比为.三、求数列的通项n a例6.3 (1)(2012广东理11)已知递增等差数列{}n a 满足21321,4a a a ==-,则n a =.(2)(2012辽宁理14)已知等比数列{}n a 为递增数列,且251021,2()5n n n a a a a a ++=+=,则数列{}n a 的通项公式n a =.解析 (1)利用等差数列的通项公式求解.设等差数列公差为d ,则由2324a a =-得,212(1)4d d +=+-,所以24d =,得2d =±,又该数列为递增的等差数列,所以2d =.故1(1)21()n a a n d n n N *=+-=-∈.(2)由数列{}n a 为等比数列,设公比为q ,由212()5n n n a a a +++=,得22()5n n n a a q a q +=,即22(1)5q q +=,解得12q =或2.又25100a a =>,且数列{}n a 为递增数列,则2q =. 因此5532q a ==,所以2()n n a n N *=∈.变式1 n S 为等差数列{}n a 的前n 项和,264,1S S a ==,则n a =.变式2 已知两个等比数列{},{b }n n a ,满足11122331,1,2,4a b a b a b a =-=-=-=,求数列{}n a 的通项公式.例6.4 在等差数列{}n a 中,138a a +=,且4a 为2a 和9a 的等比中项,求数列{}n a 的前n 项和为n S .解析 设该数列的公差为d ,前n 项和为n S .由已知,得211228,(3)a d a d +=+=11()(8)a d a d ++,所以114,(3)0a d d d a +=-=,解得14,0a d ==或11,3a d ==,即数列{}n a 的首项为4,公差为0,或首项为1,公差为3.所以数列的前n 项和为4n S n =或232n n nS -=.变式1 已知数列{}n a 的前n 项和29n S n n =-,则其通项n a =;若它的第k 项满足58k a <<,则k =.变式2 已知数列{}n a 的前n 项和1(nn S a a =-为非零实数),那么{}n a ( ).A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不可能是等差数列,也不可能是等比数列题型2 等差、等比数列的求和 思路提示求解等差或等比数列的前n 项和n S ,要准确地记住求和公式,并合理选取公式,尤其是要注意其项数n 的值;对于奇偶项通项不统一和含绝对值的数列的求和问题要注意分类讨论.主要是从n 为奇数、偶数,项n a 的正、负进行分类.一、公式法(准确记忆公式,合理选取公式)例6.5 在等比数列{}()n a n N *∈中,若1411,8a a ==,则该数列的前10项和为( ). 8910111111.2.2 C.2 D.22222A B ----解析 由334111,82a a q q q ====得,所以1010911()1221212S -==--,故选B. 变式1 {}n a 是由正数组成的等比数列,n S 为前n 项和,已知2431,7a a S ==,则n S =.变式2 设4710310()22222()n f n n N +=+++++∈,则()()f n =.1342222.(81).(81).(81).(81)7777n n n n A B C D +++----二、关于等比数列求和公式中q 的讨论例6.6 设等比数列{}n a 的前n 项和为n S ,若396,,S S S 成等差数列,求数列的公比q .解析 若1q =,则3161913,6,9S a S a S a ===,因为10a ≠,所以3692S S S +≠,与396,,S S S 成等差数列矛盾,故1q ≠.由题意可得3692S S S +=,即有369111(1)(1)2(1)111a q a q a q q q q---+=---,整理得363(21)0q q q --=,又0q ≠,故63210q q --=,即33(21)(1)0q q +-=.因为31q ≠,所以312q =-,所以q ==变式1 设数列{}n a 是等比数列,其前n 项和为n S ,且333S a =,则其公比q =.变式2 求和2311357(21)(2,,)n n S x x x n x n n N x R -*=+++++-≥∈∈.三、关于奇偶项求和问题的讨论例6.7 已知数列{}n a 的通项公式为12(1)n n a n -=-,求其前n 项和为n S . 解析 (1)当n 为偶数时,222221234(1)n S n n =-+-++--22222(12)(34)[(1)]n n =-+-++--[37(21)]n =-+++-(321)(1)222nn n n +-+=-=-. (2)当n 为奇数时,则1n +为偶数,所以211(1)(2)(1)(1)22n n n n n n n S S a n +++++=-=-++=. 综上,(1)()2(1)()2n n n n S n n n +⎧-⎪⎪=⎨+⎪⎪⎩为正偶数为正奇数.评注:本题中,将n 为奇数的情形转化为n 为偶数的情形,可以避免不必要的计算,此技巧值得同学们借鉴和应用。
等比数列知识点总结及题型归纳

等比数列知识点总结及题型归纳一、等比数列的定义和性质等比数列是指一个数列中的每一项与它的前一项的比值都相等的数列。
当这个比值大于1时,称为增长等比数列;当比值在0和1之间时,称为衰减等比数列。
1. 等比数列的通项公式设等比数列的首项为a₁,公比为r,则等比数列的第n项为:an = a₁ * r^(n-1)。
2. 等比数列的前n项和公式设等比数列的首项为a₁,公比为r,前n项和为Sn,则有:Sn = a₁ * (1 - r^n) / (1 - r)。
3. 等比数列的性质(1)两项间的比值永远相等,即 an / a(n-1) = r。
(2)等比数列从第二项开始,每一项都是前一项与公比的乘积。
(3)等比数列的前n项和与公比无关,只与首项和项数有关。
二、等比数列的题型归纳1. 求等比数列的第n项已知等比数列的首项a₁和公比r,求等比数列的第n项an。
解法:根据通项公式an = a₁ * r^(n-1)进行计算。
2. 求等比数列的前n项和已知等比数列的首项a₁、公比r和项数n,求等比数列的前n 项和Sn。
解法:根据前n项和公式Sn = a₁ * (1 - r^n) / (1 - r)计算。
3. 求等比数列的首项或公比已知等比数列的前两项a₁和a₂,或其中一个项an和其前一项a(n-1),求等比数列的首项a₁或公比r。
解法:通过已知项之间的比值an / a(n-1) = r,或者利用前n项和公式解方程进行计算。
4. 求等比数列的项数已知等比数列的首项a₁、公比r和第n项an,求等比数列的项数n。
解法:利用通项公式an = a₁ * r^(n-1)解方程求解n的值。
5. 求等比数列的部分项已知等比数列的首项a₁、公比r和项数n,求等比数列的部分项(例如第m项)am。
解法:利用通项公式an = a₁ * r^(n-1)计算am的值。
6. 求等比数列中的缺项已知等比数列的部分连续项,求等比数列中的缺项。
解法:通过项与项之间的比值an / a(n-1) = r进行推导,找出缺项并进行计算。
小学数列知识点归纳总结

小学数列知识点归纳总结数列是小学数学中的重要概念之一,它在数学中有着广泛的应用。
本文将对小学数列的基本概念、性质以及常见题型进行归纳总结。
一、数列的基本概念数列是由一组按照一定规律排列的数所组成的序列。
数列中的每个数称为该数列的项,用an表示。
数列中的第一个数称为首项,用a1表示。
数列中的规律称为项的通项公式,表示为an=f(n)。
二、常见数列1. 等差数列等差数列中的相邻两项之差是一个常数。
其通项公式为an=a1+(n-1)d,其中a1为首项,d为公差。
常见的等差数列有自然数列、偶数列和奇数列等。
2. 等比数列等比数列中的相邻两项之比是一个常数。
其通项公式为an=a1*q^(n-1),其中a1为首项,q为公比。
常见的等比数列有2的倍数列、3的倍数列和10的倍数列等。
3. 斐波那契数列斐波那契数列是一个特殊的数列,其前两项为1,从第三项开始,每一项都是前两项的和。
即数列的第三项开始,an=a(n-1)+a(n-2)。
斐波那契数列的前几项为1, 1, 2, 3, 5, 8, 13, 21...三、数列的性质1. 有界性数列可以是有界的,也可以是无界的。
如果数列中的所有项都小于或等于某个数M,那么称数列是上界为M的有界数列;如果数列中的所有项都大于或等于某个数N,那么称数列是下界为N的有界数列。
2. 单调性数列可以是递增的,也可以是递减的。
如果数列中的每一项都大于前一项,那么称数列是递增数列;如果数列中的每一项都小于前一项,那么称数列是递减数列。
3. 求和公式有些数列可以通过求和公式来计算其前n项和。
等差数列的前n项和公式为Sn=(a1+an)*n/2;等比数列的前n项和公式为Sn=a1*(q^n-1)/(q-1)。
四、数列的常见题型1. 求第n项的值:根据数列的通项公式,可以直接计算出第n项的值。
2. 求前n项和:根据数列的通项公式和求和公式,可以计算出前n项和的值。
3. 判断数列的性质:观察数列中相邻项之间的关系,判断数列是等差数列、等比数列还是斐波那契数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。
(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
例如:①:1 ,2 ,3 ,4, 5 ,…②:514131211,,,,…说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n-=1,21()1,2n k k Z n k-=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示:从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。
(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列、递减数列、常数列和摆动数列。
例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,…(5)数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n n n Sn a S S n -=⎧=⎨-⎩≥二、等差数列(一)、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥例:等差数列12-=n a n ,=--1n n a a (二)、等差数列的通项公式:1(1)n a a n d =+-;说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。
例:1.已知等差数列{}n a 中,12497116a a a a ,则,==+等于( ) A .15 B .30 C .31 D .642.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )6703.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”)(三)、等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。
其中2a bA += a ,A ,b 成等差数列⇒2a bA +=即:212+++=n n n a a a (m n m n n a a a +-+=2) 例:1.(06全国I )设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=( )A .120B .105C .90D .75(四)、等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项; (2)在等差数列{}n a 中,相隔等距离的项组成的数列是等差数列; (3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n ma a d n m-=-()m n ≠;(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; (五)、等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+n da )(2n 2112-+=。
(),(2为常数B A BnAn S n +=⇒{}n a 是等差数列 )递推公式:2)(2)()1(1na a n a a S m n m n n --+=+= 例:1.如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )352.(2009湖南卷文)设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( ) A .13 B .35 C .49 D . 633.(2009全国卷Ⅰ理) 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++=4.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A.13项B.12项C.11项D.10项5.已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则6.(2009全国卷Ⅱ理)设等差数列{}n a 的前n 项和为n S ,若535a a =则95S S = 7.已知{}n a 数列是等差数列,1010=a ,其前10项的和7010=S ,则其公差d 等于( )3132--..B A C.31 D.328.(2009陕西卷文)设等差数列{}n a 的前n 项和为n s ,若6312a s ==,则n a =9.(00全国)设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{nS n}的前n 项和,求T n 。
(六).对于一个等差数列:(1)若项数为偶数,设共有2n 项,则①S 偶-S 奇nd =; ②1n n S aS a +=奇偶; (2)若项数为奇数,设共有21n -项,则①S 奇-S 偶n a a ==中;②1S nS n =-奇偶。
1.一个等差数列共2011项,求它的奇数项和与偶数项和之比__________2.一个等差数列前20项和为75,其中奇数项和与偶数项和之比1:2,求公差d3.一个等差数列共有10项,其偶数项之和是15,奇数项之和是225,则它的首项与公差分别是_______(七).对与一个等差数列,n n n n n S S S S S 232,,--仍成等差数列。
例:1.等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )A.130B.170C.210D.2602.一个等差数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为 。
3.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为 4.设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-== 5.(06全国II )设S n 是等差数列{a n }的前n 项和,若36S S =13,则612SS = A .310 B .13 C .18D .19(八).判断或证明一个数列是等差数列的方法: ①定义法:)常数)(*+∈=-N n d a a n n (1⇒{}n a 是等差数列②中项法:)221*++∈+=N n a a a n n n (⇒{}n a 是等差数列③通项公式法:),(为常数b k bkn a n +=⇒{}n a 是等差数列④前n 项和公式法:),(2为常数B A BnAn S n +=⇒{}n a 是等差数列例:1.已知数列}{n a 满足21=--n n a a ,则数列}{n a 为 ( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断 2.已知数列}{n a 的通项为52+=n a n ,则数列}{n a 为 ( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断3.已知一个数列}{n a 的前n 项和422+=n s n ,则数列}{n a 为( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断4.已知一个数列}{n a 的前n 项和22n s n =,则数列}{n a 为( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断5.已知一个数列}{n a 满足0212=+-++n n n a a a ,则数列}{n a 为( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断 6.数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (*∈N n ) ①求数列{}n a 的通项公式;7.(01天津理,2)设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,而且也是等比数列 D.既非等比数列又非等差数列 (九).数列最值(1)10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;(2)n S 最值的求法:①若已知n S ,n S 的最值可求二次函数2n S an bn =+的最值;可用二次函数最值的求法(n N +∈);②或者求出{}n a 中的正、负分界项,即: 若已知n a ,则n S 最值时n 的值(n N +∈)可如下确定100n n a a +≥⎧⎨≤⎩或10n n a a +≤⎧⎨≥⎩。
例:1.等差数列{}n a 中,12910S S a =>,,则前 项的和最大。
2.设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,, ①求出公差d 的范围,②指出1221S S S ,,,Λ中哪一个值最大,并说明理由。
3.(02上海)设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误..的是( )A.d <0B.a 7=0C.S 9>S 5D.S 6与S 7均为S n 的最大值4.已知数列{}n a 的通项9998--n n (*∈N n ),则数列{}n a 的前30项中最大项和最小项分别是5.已知}{n a 是等差数列,其中131a =,公差8d =-。