光纤衰耗
七、光纤的损耗
原子缺陷吸收: 这种吸收损耗是由于材料受到热辐射或光 辐射作用引起的。它不是普遍存在的,只在某 些环境中才有。损耗可以很大,达到几百 dB/Km,甚至几万dB/Km。为此,光纤材料一般 需要选择对辐射不敏感的石英玻璃,以避免原 子缺陷吸收。
2) 散射损耗; 散射损耗是由于光纤材料中某种远小于波长的不 均匀性(如:折射率不均匀、掺杂浓度不均匀)引起光 的散射而构成的损耗。这种光纤也是光纤的固有本征 损耗,它的降低成为光纤损耗降低的最终限制因素。 根据散射机理,光纤中存在有瑞利散射、受激 拉曼散射和受激布里渊散射三种。第一种散射是线性 散射(不产生频率的变化),后两种为非线性散射。
宏弯损耗:它是由光纤实际应用中必需的盘绕、曲折等 引起的宏观弯曲导致的损耗;它是曲率半径 比光纤的直径大得多的弯曲引起的损耗。
场分布
Cladding
θ′ < θ
消逝场
Core
θ θ
θ θ > θc
θ′
R
弯曲曲率半径减小 宏弯损耗指数增加
Loss模场直径小 < Loss模场直径大
Loss低阶模 < Loss高阶模
七、光纤的损耗
1. 损耗的表述 2. 损耗的种类 3. 损耗的测量
光纤的特性主要包括损耗、色散和带宽等。作为信 息传输的介质,光纤的信息传输能力是由信息的速率和 无中继距离决定的,而无中继距离是与光纤的损耗密切 相关的。 光纤的损耗限制了光信号到达光接受机的光功率, 同时也限制了光通信系统两中继站之间的距离。 1966年,高锟关于通过提纯光纤原材料来降低损耗 的重要论文,以及近些年EDFA光纤放大器的发明在光纤 损耗的控制上取得重大成就。
1. 光纤损耗的表述
当光在光纤中传输时,随着传输距离的增加,光功 率逐渐减小,这种现象即称为光纤的损耗。光纤的损 耗是衡量光纤性能的关键指标之一,它决定了光纤通 信系统的传输距离长短和中继距离的选择。一般可定 义为每单位长度光纤光功率衰减分贝数,即:
光纤损耗的原因
光纤损耗的原因
光纤损耗是指光纤中光信号的强度、功率或能量在传输过程中损失的现象。
这种损耗是光纤通信中一个重要的问题。
下面我们来探讨一下光纤损耗的原因。
1.弯曲损耗
光纤细且易弯曲,若弯曲过度,容易导致光线发生反射而损失,弯曲程度越大,反射越多损耗越大。
因此,光纤在使用时要尽可能避免过度弯曲,特别是在光纤接头处。
2.散射损耗
光纤存在微小的面、体、杂质、缺陷等,光束经过时会与这些微小的障碍物发生散射,导致光能量减少,形成光纤损耗。
通常,光纤材料制造过程中如果没有得到很好的净化,或者由于使用过程中人为损坏或外部环境影响,光纤表面或内部可能会产生划痕、凹坑等散射损耗。
3.吸收损耗
光纤内的材料对波长相同但能量较低的光线会进行吸收,导致光
线功率降低。
光纤中常见的吸收材料有氧化铝、石墨、镁等。
4.位移损耗
如果光纤的轴线发生偏移,光线就会发生位移,从而导致光线与
纤芯之间的接触面积减小或完全失去接触,使光信号损失严重。
5.光纤接头问题
光纤接头是光纤网络中最薄弱的环节,不正确的接头方式、接头
磨损、污染、接触不良都会影响到光纤的传输性能,对光能量的损失
越大,损耗就越大。
6.温度变化
温度对光纤的性能会有一定的影响,通常低温会使光纤损耗增加,而高温则可能导致光纤变形、膨胀、蒸发等问题,也会影响光纤损耗。
7.消光损失
光纤中的某些部分在特定波长下可以形成干涉,使光线发生干涉
消光,从而导致光信号强度降低。
光纤损耗谱
光纤损耗谱
光纤损耗谱是指在不同波长范围内,光纤对光信号的衰减程度。
光纤的损耗谱通常以分贝(dB)为单位来表示。
在可见光范围内,光纤的损耗主要包括以下几种:
1. 材料吸收损耗:光纤材料会吸收光信号的能量,导致损耗。
这种损耗在可见光范围内是较小的,一般每米小于0.3 dB。
2. 散射损耗:光信号在光纤中发生散射,导致能量传输的损失。
散射损耗在可见光范围内也是较小的,一般每米小于1 dB。
3. 弯曲损耗:当光纤被弯曲时,光信号会发生不同程度的衰减。
弯曲损耗主要取决于光纤的弯曲半径和弯曲角度,一般在可见光范围内每米小于0.5 dB。
4. 过载损耗:当光信号的功率超过光纤的承载能力时,会导致过载损耗。
光纤的过载损耗取决于光纤的材料和结构,一般每米小于1 dB。
除了以上这些损耗以外,光纤在不同波长范围内还存在一些特定的损耗现象,如光纤中干涉现象导致的色散损耗、光纤接头的衰减等。
总之,光纤损耗谱是一个描述光纤对不同波长光信号衰减程度的参数,它对于光纤通信系统的设计和性能评估至关重要。
光纤的基本特性衰耗、色散
光纤的基本特性衰耗、色散1、光纤的损耗光纤的衰减或损耗是一个非常重要的、对光信号的传播产生制约作用的特性。
光纤的损耗限制了没有光放大的光信号的传播距离。
光纤的损耗主要取决于吸收损耗、散射损耗、弯曲损耗三种损耗。
1)吸收损耗光纤吸收损耗是制造光纤的材料本身造成的,包括紫外吸收、红外吸收和杂质吸收。
a:红外和紫外吸收损耗光纤材料组成的原子系统中,一些处于{氐能的电子会吸收光波能量而跃迁到高能级状态,这种吸收的中心波长在紫外的0.16μm处,吸收峰很强,其尾巴延伸到光纤通信波段,在短波长区,吸收峰值达ldB/km,在长波长区则小得多,约O.O5dB∕km.在红外波段光纤基质材料石英玻璃的Si-O键因振动吸收能量,这种吸收带损耗在9.1μm,12.5μm及21μm处峰值可达IOdB∕km以上,因此构成了石英光纤工作波长的上限。
红外吸收带的带尾也向光纤通信波段延伸。
但影响小于紫外吸收带。
在λ=L55μm时,由红外吸收引起的损耗小于0.01dB∕kmβb:氢氧根离子(OH-)吸收损耗在石英光纤中,O-H键的基本谐振波长为2.73μm,与Si-O键的谐振波长相互影响,在光纤的传输频带内产生一系列的吸收峰,影响较大的是在1.39、1.24及0.95μm波长上,在峰之间的低损耗区构成了光纤通信的三个传输窗口。
目前,由于工艺的改进,降低了氢氧根离子(OH-)浓度,这些吸收峰的影响已很小。
c:金属离子吸收损耗光纤材料中的金属杂质,如:金属离子铁(Fe3+)、铜(Cu2+)、镒(Mn3+)、镇(Ni3+)、钻(Co3+)、铭(Cr3+)等,它们的电子结构产生边带吸收峰(0.5~Llμm),造成损耗。
现在由于工艺的改进,使这些杂质的含量低于10-9以下,因此它们的影响已很小。
在光纤材料中的杂质如氢氧根离子(OH・)、过渡金属离子(铜、铁、铭等)对光的吸收能力极强,它们是产生光纤损耗的主要因素。
因此要想获得低损耗光纤,必须对制造光纤用的原材料二氧化硅等进行十分严格的化学提纯,使其纯度达99.9999%以上。
第八讲 光纤的损耗
1.4.1.3.1 基本概念 衰减是光波经光纤传输后光功率减少量一种度量, 是光纤一个最重要传输参数,它取决于光纤工作窗口 和长度。
衰减:光在光纤中传输时,平均光功率沿传输光
纤长度Z方向按指数规律递减现象称为光纤衰减(或称 损耗、衰耗)。设在波长λ处,光纤长度为Z=L,衰减 定义:
使水分与光缆中的金属加强材料发生氧化反应,置换出
氢气,引起氢损。
Zn+H2O=H2↑+ZnO 其二,光纤防水石油膏(称纤膏)引入的氢气造成氢损。
21
3、原子缺陷吸收衰减(非本征吸收衰减)
原子缺陷吸收衰减是由于光纤在加热过程或者在强
烈辐照下,造成玻璃材料受激产生原子缺陷吸收衰减。 从光纤拉丝成型过程角度分析,当将光纤预制棒加热到 拉丝所需温度1600-2300℃时,采用骤冷方法进行光纤 拉丝,虽然可在光纤制造过程中,内部原子结构排列形
OH根的吸收谱(浓度10-4)
19
2、杂质吸收衰减(非本征吸收衰减) (3)、由氢气导致的吸收衰减 光纤在氢气氛中将会产生氢损。氢损有二种型式: A 、 H 2 分子由于扩散作用而进入光纤,当光源波长滿足 氢分子某二个能带的带隙Eg=hγ的波长时,氢分子将发 生吸收光子的作用过程,使光能量降低,由H2吸收产生 能量损耗,即称之为氢损。这种氢损是可逆的,当光纤
35
微弯损耗
微弯的原因:
光纤的生产过程中的带来的不均; 成缆时受到压力不均; 使用过程中由于光纤各个部分热胀冷缩的不同。 导致的后果:造成能量辐射损耗
低阶模功率耦合到高阶模
高阶模功率损耗
36
减小微弯的一种办法是在光纤外面一层弹性保护套
2
1.4 .1 .3 光纤的衰减特性
光纤损耗全参数
光纤损耗1.光纤的衰减的几种因素及光缆的特性:造成光纤衰减的主要因素有: 本征,弯曲,挤压,杂质,不均匀和对接等。
本征: 是光纤的固有损耗,包括: 瑞利散射,固有吸收等。
弯曲: 光纤弯曲时部分光纤内的光会因散射而损失掉,造成的损耗。
挤压: 光纤受到挤压时产生微小的弯曲而造成的损耗。
杂质: 光纤内杂质吸收和散射在光纤中传播的光,造成的损失。
不均匀: 光纤材料的折射率不均匀造成的损耗。
对接: 光纤对接时产生的损耗,如: 不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。
光缆特性1) 拉力特性光缆能承受的最大拉力取决于加强件的材料和横截面积,一般要求大于1km光缆的重量,多数光缆在100~400kg范围。
2) 压力特性光缆能承受的最大侧压力取决于护套的材料和结构,多数光缆能承受的最大侧压力在100~400kg/10cm。
3)弯曲特性弯曲特性主要取决于纤芯与包层的相对折射率差△以及光缆的材料和结构。
实用光纤最小弯曲半径一般为20~50mm,光缆最小弯曲半径一般为200~500mm,等于或大于光纤最小弯曲半径。
在以上条件下,光辐射引起的光纤附加损耗可以忽略,若小于最小弯曲半径,附加损耗则急剧增加。
4)温度特性光纤本身具有良好的温度特性。
光缆温度特性主要取决于光缆材料的选择及结构的设计,采用松套管二次被覆光纤的光缆温度特性较好。
温度变化时,光纤损耗增加,主要是由于光缆材料(塑料)的热膨胀系数比光纤材料(石英)大2~3个数量级,在冷缩或热胀过程中,光纤受到应力作用而产生的。
在我国,对光缆使用温度的要求,一般在低温地区为-40℃~+40℃,在高温地区为-5℃~+60℃。
2.光纤的连接损耗:1.永久性光纤连接(又叫热熔):这种连接是用放电的方法将连根光纤的连接点熔化并连接在一起。
一般用在长途接续、永久或半永久固定连接。
其主要特点是连接衰减在所有的连接方法中最低,典型值为0.01~0.03db/点。
光纤损耗和色散
采用更先进的调制技术可以提高光信号的抗干扰能力和传输效率, 进一步降低光纤损耗和色散对通信系统的影响。
智能光网络技术
结合人工智能、大数据等技术,发展智能光网络技术,实现光网络的 自动化管理和优化,提高网络运行效率和资源利用率。
THANKS FOR WATCHING
感谢您的观看
光纤损耗和色散
contents
目录
• 光纤损耗概述 • 光纤色散概述 • 光纤损耗与色散关系 • 光纤损耗和色散测量方法 • 降低光纤损耗和色散技术 • 光纤损耗和色散应用前景
01 光纤损耗概述
损耗定义及分类
损耗定义
光信号在光纤中传输时,由于吸收、散射等原因导致的光功 率损失。
损耗分类
根据损耗产生的机理,可分为吸收损耗、散射损耗和辐射损 耗等。
色散影响
色散会导致光信号在传输过程中发生畸变,严重影响通信 质量。在长距离无中继光传输系统中,需要对色散进行有 效的补偿和管理。
系统稳定性要求
长距离无中继光传输系统对设备的稳定性和可靠性要求极 高,需要采取一系列措施来保障系统的长期稳定运行。
未来发展趋势及展望
新型光纤材料研发
随着材料科学的不断进步,研发具有更低损耗、更高带宽的新型光 纤材料将成为未来发展的重要方向。
色散会降低光纤通信系统的带宽,使得系 统无法支持高速率、大容量的数据传输。
03 光纤损耗与色散关系
损耗对色散影响
损耗导致光信号幅度降低
光纤传输过程中,光信号会受到损耗,导致信号幅度逐渐降低。这会影响色散 性能,因为色散是与光信号幅度相关的现象。
不同波长损耗差异
光纤对不同波长的光信号具有不同的损耗特性。这种波长依赖性损耗会导致色 散现象的发生,因为不同波长的光信号在光纤中传播速度不同。
光纤损耗产生的原因
光纤损耗产生的原因及解决方法光纤通信技术的应用越来越广泛,然而在光纤传输过程中,光纤损耗问题却时常令人头疼。
那么,光纤损耗产生的原因有哪些呢?如何解决这一问题呢?
一、光纤损耗产生的原因
1.光源发射不稳定:光源的发射稳定性是光纤通信中的一个重要指标。
光源的不稳定性会导致光纤中的光功率产生波动,从而使光纤传输的信号质量降低,引起光纤损耗。
2.光纤连接点质量不良:光纤连接点质量差、接口不良等均会导致光信号的损失,增加光纤传输的损耗。
3.光缆的折弯和过弯:光缆的过度弯曲或折叠会使光线受到反射和散射,从而损失部分光路,增加光纤传输的损耗。
4.光纤本身的材料和结构:在制备光纤时,如果材料的纯度不够高,会导致光纤中的杂质和缺陷增加,从而引起光损耗;而且,光纤的结构也会影响光的传输,若结构不合理,就会产生额外的光损耗。
二、光纤损耗解决方法
1.增加光源发射的稳定性:可采用振荡器等稳定性更好的光源,并根据需要采用输出功率更高的光源。
2.优化光纤连接点:连接点应选择高质量的光纤器件,并采用专
业的连接方式使其质量达到最优。
3.避免光缆的过弯和折弯:设计和施工时应尽量避免过弯和折弯,必要时可以通过采用转角器等器件来实现。
4.控制材料和结构:控制光纤材料的纯度和纤芯尺寸可以有效降
低光损耗。
此外,减小光纤的缺陷和优化光纤的结构也是降低光损耗
的有效措施。
总之,光纤损耗产生的原因是多方面的,从行业研究到实际应用,需要加强技术积累和实践探索。
只要遵循一定的规范和标准,采取相
应的解决措施,就能有效地降低光损耗,为光纤通信的发展和应用增
添新的能量。
光纤损耗系数的表达式
光纤损耗系数的表达式光纤损耗系数是指光信号经过光纤传输时,由于材料吸收、散射、弯曲等原因而造成的信号强度降低。
光纤损耗系数是衡量光纤传输质量的重要指标之一。
下面详细介绍一下光纤损耗系数的表达式及相关知识。
一、光纤损耗系数的定义光纤损耗系数指的是光纤单位长度内,光信号通过传输过程中消耗的信号功率占初始信号功率的比例。
光纤损耗系数通常用分贝(dB)表示,其计算公式为:αdB = -10log(P1/P0)其中,P0为初始信号功率,P1为洛德衰减后的信号功率。
光纤损耗系数越小,表示信号强度在传输过程中降低的越少,代表着光纤的传输质量越好。
二、光纤损耗系数的分类光纤损耗系数可分为单模光纤损耗系数和多模光纤损耗系数两种。
1. 单模光纤损耗系数:单模光纤损耗系数是指单模光纤在波长为1310nm和1550nm条件下的损耗系数。
通常在20km以内的短距离传输中使用,其损耗系数范围约在0.3~0.5dB/km。
2. 多模光纤损耗系数:多模光纤损耗系数是指多模光纤在波长为850nm和1300nm条件下的损耗系数。
多用于较短距离地址传输和局域网中,其损耗系数范围约在2~7dB/km。
三、影响光纤损耗系数的因素光纤的损耗系数与多种因素有关。
以下是几个主要的因素:1. 光纤本身的质量:光纤的材料、折射率不同,对光的吸收、散射也不同,从而导致不同的损耗系数。
2. 光纤长度:光纤的长度对损耗系数有一定的影响,长度越长,损耗系数通常越大。
3. 连接件质量:连接件的设计和制作精度,直接影响损耗系数的大小。
4. 环境温度:光纤在不同环境下,其损耗系数不同,一般来说,温度越高,损耗系数越大。
四、优化光纤损耗系数的方法为了提高光纤传输的质量,需要采取一系列措施来降低光纤的损耗系数。
以下是几个常用的方法:1. 选用优质的光纤材料,并且在制造过程中严格控制质量,确保光纤本身的质量。
2. 降低光纤长度,减少信号传输过程中对信号功率的消耗。
3. 使用高品质的连接件,保证连接的精度。
光纤的损耗
光纤的损耗:损耗指光信号功率传输每单位长度衰减的程度,用分贝/公里(dB/km)表示为什么衰减造成光纤衰减的主要因素有:本征,弯曲,挤压,杂质,不均匀和对接等。
本征:是光纤的固有损耗,包括:瑞利散射,固有吸收等。
弯曲:光纤弯曲时部分光纤内的光会因散射而损失掉,造成损耗。
挤压:光纤受到挤压时产生微小的弯曲而造成的损耗。
杂质:光纤内杂质吸收和散射在光纤中传播的光,造成的损失。
不均匀:光纤材料的折射率不均匀造成的损耗。
对接:光纤对接时产生的损耗,如:不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。
当光从光纤的一端射入,从另一端射出时,光的强度会减弱。
这意味着光信号通过光纤传播后,光能量衰减了一部分。
这说明光纤中有某些物质或因某种原因,阻挡光信号通过。
这就是光纤的传输损耗。
只有降低光纤损耗,才能使光信号畅通无阻。
光纤损耗的分类光纤损耗大致可分为光纤具有的固有损耗以及光纤制成后由使用条件造成的附加损耗。
具体细分如下:光纤损耗可分为固有损耗和附加损耗。
固有损耗包括散射损耗、吸收损耗和因光纤结构不完善引起的损耗。
附加损耗则包括微弯损耗、弯曲损耗和接续损耗。
其中,附加损耗是在光纤的铺设过程中人为造成的。
在实际应用中,不可避免地要将光纤一根接一根地接起来,光纤连接会产生损耗。
光纤微小弯曲、挤压、拉伸受力也会引起损耗。
这些都是光纤使用条件引起的损耗。
究其主要原因是在这些条件下,光纤纤芯中的传输模式发生了变化。
附加损耗是可以尽量避免的。
下面,我们只讨论光纤的固有损耗。
固有损耗中,散射损耗和吸收损耗是由光纤材料本身的特性决定的,在不同的工作波长下引起的固有损耗也不同。
搞清楚产生损耗的机理,定量地分析各种因素引起的损耗的大小,对于研制低损耗光纤,合理使用光纤有着极其重要的意义。
材料的吸收损耗制造光纤的材料能够吸收光能。
光纤材料中的粒子吸收光能以后,产生振动、发热,而将能量散失掉,这样就产生了吸收损耗。
光纤损耗的计算公式
光纤损耗的计算公式
光纤损耗是指光信号在传输过程中由于光纤本身的性质或外界
环境的影响而逐渐减弱的现象。
光纤的损耗包括衰减、散射和弯曲损耗等。
计算光纤损耗时需要考虑多种因素,如光源功率、光纤长度、光纤直径、光纤材料等。
根据不同的光纤材料和光源类型,计算光纤损耗的公式也不同。
其中,常见的计算光纤损耗的公式如下:
1. 对于单模光纤,光纤损耗的计算公式为:损耗(dB/km)=0.4λ/(nπa)+0.04λ+0.017
其中,λ为光源波长,n为光纤折射率,a为光纤半径。
2. 对于多模光纤,光纤损耗的计算公式为:损耗(dB/km)=α×L+4/3a/λ
其中,α为光纤衰减系数,L为光纤长度,a为光纤半径,λ为光源波长。
3. 对于光纤光栅传感器,光纤损耗的计算公式为:损耗(dB/km)=0.0125×(Δn/λ)×L/Λ
其中,Δn为光纤折射率变化量,L为光纤长度,Λ为光栅周期。
以上是常见的光纤损耗计算公式,根据不同的应用场景和要求,还可以根据需要进行修正和调整。
- 1 -。
光纤的损耗与补偿机制
光纤的损耗与补偿机制目录1. 引言1.1 背景和意义1.2 结构概述1.3 目的2. 光纤损耗机制2.1 光纤传输过程中的损耗来源2.2 损耗的分类与衡量方法2.3 损耗对光信号传输的影响3. 光纤补偿机制3.1 传统光纤补偿方法概述3.2 增益均衡器的应用与原理解析3.3 衰减均衡器的应用与原理解析4. 新兴光纤损耗与补偿技术研究进展4.1 非线性光纤对损耗和补偿机制的影响研究综述4.2 纳米结构材料在光纤损耗和补偿领域的应用前景展望4.3 利用人工智能技术进行动态损耗预测与自适应补偿研究进展综述5. 结论5.1 总结光纤的损耗与补偿机制研究现状5.2 探讨未来发展方向和挑战1. 引言1.1 背景和意义光纤作为一种高带宽、低损耗的传输介质,广泛应用于通信、医疗、工业等领域。
然而,在光纤传输过程中,由于各种因素的影响,光信号会发生损耗,这对信息的传输质量和距离产生了一定影响。
因此,研究光纤的损耗与补偿机制显得尤为重要。
本文旨在深入探讨光纤损耗机制以及不同补偿方法的原理和实现方式。
通过对各类损耗源进行分类与衡量方法的介绍,可以更好地认识到光纤在传输过程中损耗所带来的影响。
同时,探索不同的补偿方法,如增益均衡器和衰减均衡器的应用原理解析,有助于提高信号传输质量和距离。
1.2 结构概述本文总共分为五个章节。
除了引言部分之外,还包括光纤损耗机制、光纤补偿机制、新兴光纤损耗与补偿技术研究进展以及结论部分。
在光纤损耗机制章节中,将介绍光纤传输过程中的损耗来源,并探讨不同的损耗分类与衡量方法。
此外,还将分析损耗对光信号传输的影响。
在光纤补偿机制章节中,将综述传统的光纤补偿方法,并重点讨论增益均衡器和衰减均衡器的应用原理解析。
在新兴光纤损耗与补偿技术研究进展章节中,将回顾非线性光纤对损耗和补偿机制的影响研究、纳米结构材料在光纤损耗和补偿领域的应用前景,并概述利用人工智能技术进行动态损耗预测与自适应补偿的研究进展。
光纤损耗单位分贝db
光纤损耗单位分贝db
在光纤通信中,光纤损耗通常以分贝(dB)为单位来表示。
分贝是一种对信号强度、功率或幅度比例的对数表示方法。
在光纤通信中,光信号在传输过程中会发生损耗,主要是由于衰减和散射等因素引起的。
光纤损耗通常以dB为单位,用于描述光信号在单位距离内的强度减弱。
常见的光纤损耗值有如下几个例子:
●0 dB:表示完全无损耗,光信号在传输过程中保持不变。
● 1 dB:表示光信号的强度减少到原来的10分之9(约为
90%)。
● 3 dB:表示光信号的强度减少到原来的2分之1(即一半)。
●10 dB:表示光信号的强度减少到原来的10分之1(约为
10%)。
光纤损耗通过连接器、衰减器、衰减器等传输线路和元件等影响光信号的强度。
了解光纤信号的损耗情况对于设计和运维光纤通信系统非常重要,在实际应用中需要进行合适的功率补偿和调整,以确保光信号的质量和可靠性。
光纤损耗的计算公式
光纤损耗的计算公式
光纤损耗的计算公式是指在光纤传输中,由于各种原因而产生的信号衰减的计算方式。
通常情况下,光纤损耗由两种主要因素造成,即纤芯损耗和衰减器损耗。
其中,纤芯损耗是指在光纤中光信号传输过程中由于光的散射、吸收、折射等原因而导致的信号衰减;而衰减器损耗则是指光信号在通过连接器、耦合器、分光器等器件时所产生的信号衰减。
光纤损耗的计算公式可以通过以下方式进行计算:
1、纤芯损耗的计算公式:
纤芯损耗= 10lg(Pi/Po),其中Pi为光信号进入光纤的功率,Po 为光信号出光纤的功率。
2、衰减器损耗的计算公式:
衰减器损耗= 10lg(P1/P2),其中P1为光信号进入衰减器的功率,P2为光信号出衰减器的功率。
3、总损耗的计算公式:
总损耗= 纤芯损耗+衰减器损耗。
通过计算公式,可以对光纤传输中的信号衰减进行准确的计算和分析,从而更好地保证光纤传输的质量和稳定性。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤衰耗
1 ODN全程衰减核算
按照最坏值法进行传输指标核算,EPON OL T-ONU之间的传输距离应满足以下公式:
光纤衰耗系数*传输距离+光分路器插损+活动连接头数量*损耗+光缆线路衰耗富余度≤EPON R/S-S/R 点允许的最大衰耗。
2 EPON R/S-S/R点衰耗范围:
OL T PON 口发送光功率2dB~7dBm,接收光灵敏度为-27dBm。
ONU 发射光功率-1dBm~4dBm,接收光灵敏度为-24dBm。
考虑1dB的光通道代价,EPON系统R/S-S/R间允许最大衰耗为:上行(ONU-OL T,1310nm):25dB
下行(OL T-ONU,1490nm):25dB
3 光纤衰耗系数(含固定熔接损耗):
上行(ONU-OL T,1310nm):0.4 dB/km
下行(OL T-ONU,1490nm):0.3 dB/km
4 分路器插入损耗典型值(均匀分光,不含连接器损耗)如下表所示:
5 活动连接头损耗:每个活接头连接损耗为0.5dB。
6 光缆线路富余度:
传输距离≤5km,取2dB
传输距离≤10km,取2~3dB
传输距离>10km,取3dB
7 综合考虑上述因素,得出OL T-ONU之间可传输距离。
光纤衰减取定:1310nm波长时取0.36 dB /km
分路器插入衰减值:1:64光分路器取14.0 dB
注:光缆衰耗值取A方向光缆长度的衰耗,B方向衰耗值作为参考值。