高一数学必修2-第一章空间几何体知识点
高中数学 必修二-第一章 立体几何初步 知识点整理
底面为三角形、四边形、五边形„„的棱锥分别叫做三棱锥、四棱锥、五棱锥„„,
其中三棱锥又叫四面体。
4
必修二
正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心, 这样的棱锥叫做正棱锥。
正棱锥的性质: ①各侧棱相等,各侧面都是全等的等腰三角形; ②棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形,棱锥的高、侧棱和侧 棱在底面上的射影也组成一个直角三角形。 (4)棱台的结构特征 用一个平行于棱锥底面的平面去截棱 锥,底面与截面之间的部分叫做棱台。 原棱锥的底面和截面分别叫做棱台的 下底面和上底面;其它各面叫做棱台的侧 面;相邻侧面的公共边叫做棱台的侧棱; 底面与侧面的公共顶点叫做棱台的顶点; 当棱台的底面水平放置时,铅垂线与两底 面交点间的线段叫做棱台的高。 由正棱锥截得的棱台叫做正棱台。正棱台的性质: ①各侧棱相等,侧面是全等的等腰梯形;②两底面以及平行于底面的截面是相似多边 形;③两底面中心连线、相应的边心距和斜高组成一个直角梯形;④两底面中心连线、侧 棱和两底面外接圆相应半径组成一个直角梯形;⑤正棱台的上下底面中心的连线是棱台的 一条高;⑥正四棱台的对角面是等腰梯形。
8
必修二
②在已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x′轴或 y′ 轴的线段。
③在已知图形中平行于 x 轴的线段,在直观图中保持原长度不变,平行于 y 轴的线段, 长度变为原来的一半。
用斜二测法画直观图,关键是掌握水平放置的平面图形的直观图的画法,而画水平放 置的平面图形的关键是确定多边形的顶点。因为多边形顶点的位置一旦确定,依次连接这 些顶点就可画出多边形。
在一束平行光线照射下形成的投影,叫做平行投影。平行投影的投影线是平行的。在 平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。
高中数学必修二知识点梳理
高中数学必修二知识点梳理第一章空间几何体的表面积和体积公式总结1.表面积(1).棱柱S = 2 S底+ S侧(2).棱锥S = S底+ S侧(3).棱台S = S上底+ S下底+ S侧(4).圆柱S= 2 πr 2 +2πr l =2πr ( r + l )(5).圆锥S = S底+ S侧=πr 2 +πr l =πr ( r + l )(6).圆台S = S上底+ S下底+ S侧=π(r2 + r´2 + rl +r´l) (7).球 S= 4πR22.体积(1).柱体V = S h(2).锥体V = S h/3(3).台体V =( S + √S ´S + S´) h/3(4).球V = 4/3πR3第二章点直线平面之间位置关系的判定,性质及其推论1.直线与平面平行的判定平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行2.平面与平面平行的判定一个平面内的两条相交直线与另一个平面平行,则这两个平面平行推论如果一个平面内有两条相交直线与另一个平面内的两条相交直线平行,则这两个平面平行3.直线与平面平行的性质一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行4.平面与平面平行的性质如果两个平面平行,两个平面同时和第三个平面相交,那么它们的交线平行推论夹在两个平行平面间的平行线段相等5.直线与平面垂直的判定一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直6.平面与平面垂直的判定一个平面过另一平面的垂线,则这两个平面垂直7.直线与平面垂直的性质垂直与同一平面的两条直线平行8.平面与平面垂直的性质两个平面垂直,则一个平面内垂直与交线的直线与另外一个平面垂直推论如果两个平面相互垂直,那么经过第一个平面的一点且垂直于第二个平面的直线在第一个平面内一.直线方程(一).两条直线1.l1∥l2 => k1 = k2或k1 k2不存在2. k1 = k2 => l1∥l2或l1 l2重合3.A,B,C三点共线 k AB = k AC(k存在)4. l1⊥l2 => k1 · k2 = -1 或k1 k2有一不存在,有一为05. k1 · k2 = -1 => l1⊥l2(二).直线方程1.点斜式方程: y–y0 =k (x–x0)2.两点式方程:(y–y1)/(y2–y1)=(x–x1)/(x2–x1)3.截距式方程:x/a +y/b = 14 .斜截式方程:y= k x + b5.一般式方程: Ax + By + C = 0二.距离公式1.两点之间距离公式:d = √【(x2 –x1)2 + (y2–y1)2】2.点到直线的距离公式:d = ∣Ax0 + By0 + C∣/√(A2 + B2)3.两条平行线间的距离公式: d =∣C2– C1∣/√(A2 + B2)]一.圆的方程1.圆的标准方程(x - a)2 +(y - b)2 = r2 (圆心坐标(a ,b),半径为r)2.圆的一般方程x2 + y2 + Dx +Ey +F = 0 => (x+D/2)2+(y+E/2)2 = (D2+E2-4F)/4(1). D2+E2-4F > 0 ,圆心(-D/2 ,- E/2)半径√(D2+E2-4F)/2(2). D2+E2-4F = 0 表示一点(3). D2+E2-4F < 0 不表示任何图形二.直线,圆位置关系1.直线与圆的位置关系(1).直线与圆无公共点⇔ d > r ⇔相离⇔联立方程无解(2).直线与圆只有一个公共点⇔ d = r ⇔相切⇔联立方程有一解(3).直线与圆有两个公共点⇔ d < r ⇔相交⇔联立方程有两解2.圆与圆的位置关系(1).外离⇔ d>R+r(2).外切⇔ d = R+r(3).相交⇔∣R-r∣ < d < R+r(4).内切⇔ d =∣R-r∣(5).内含⇔ d<∣R-r∣。
高中数学必修2知识点总结:第一章-空间几何体
高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=222r rl S ππ+=第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。
(完整word版)人教A版高中数学必修2知识点
必修2知识点归纳第一章 空间几何体1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
简单组合体的构成形式:一种是由简单几何体拼接而成,例如课本图1.1-11中(1)(2)物体表示的几何体; 一种是由简单几何体截去或挖去一部分而成,例如课本图1.1-11中(3)(4)物体表示的几何体。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
1、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。
(1)定义:正视图:光线从几何体的前面向后面正投影得到的投影图; 侧视图:光线从几何体的左面向右面正投影得到的投影图; 俯视图:光线从几何体的上面向下面正投影得到的投影图。
几何体的正视图、侧视图和俯视图统称为几何体的三视图。
(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''xOy∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;一般地,原图的面积是其直观图面积的22倍,即22S S 原图直观=4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R lr S ⋅⋅+⋅⋅=ππ侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体;()13V h S S S S =+⋅+下下台体上上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。
必修2-第一章空间几何体-1.1柱、锥、台、球的结构特征
侧面、对角面都是三角形;平行于底面的截面 与底面相似,其相似比等于顶点到截面距离与高 的比的平方。
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
想一想:
用一个平行于棱锥底面的平面去截棱 锥,得到怎样的两个几何体?
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
侧棱
F A
ED
B
侧面
C
顶点
的公共边叫侧棱,侧面与底面
的公共顶点叫棱柱的顶点。
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
棱柱的分类:棱柱的底面可以是三角形、 四边形、五边形、 …… 我们把这样的棱柱 分别叫做三棱柱、四棱柱、五棱柱、……
三棱柱
四棱柱
五棱柱
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
D’
GG’
C’
A’
F’
F
B’
HH ’
D
E E’
C
A
B
答:都是棱柱.
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
探究4:
观察右边的棱柱,共有多少 对平行平面?能作为棱柱的 底面的有几对?
答:四对平行平面;只有一对可以作为棱 柱的底面. 棱柱的任何两个平行平面都可以作为棱柱 的底面吗?
用一个平行于棱锥底面 的平面去截棱锥,底面与截 面之间的部分是棱台。
D’
D A’
C’
B’
C
A
B
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
棱台的分类:
由三棱锥、四棱锥、五棱锥…截得的棱 台,分别叫做三棱台,四棱台,五棱台…
棱台的表示方法:
数学必修二第一章空间几何体知识点与习题
(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”练习3.有一个几何体的三视图如下图所示,这个几何体应是一个A.棱台B. 棱锥C. 棱柱D..块木块堆成第一章空间几何体1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:常见的旋转体有:(2)简单组合体的构成形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成练习1.下图是由哪个平面图形旋转得到的( )2、柱、锥、台、球的结构特征(1)棱柱:定义:分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱ABCDE A'B'C'D'E'或用对角线的端点字母,如五棱柱AD'几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥:定义:分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥P A'B'C'D'E'几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似。
(3 )棱台:定义:分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台P A'B'C'D'E'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点练习2 •一个棱柱至少有 ___________ 个面,面数最少的一个棱锥有____________________ 个顶点,顶点最少的一个棱台有__________________条侧棱。
3. 空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。
高一数学必修二第一章“空间几何体”知识点总结
数学必修2第一章空间几何体知识点1. 多面体的面积和体积公式
名称侧面积(S侧)全面积(S全)体积(V)
棱柱棱柱直截面周长×l
S侧+2S底
S底·h=S直截面·h 直棱柱Ch S底·h
棱锥棱锥各侧面面积之和
S侧+S底
S底·h 正棱锥
ch′
棱台棱台各侧面面积之和
S侧+S上底+S下
底
h(S上底+S下底
+)
正棱台
(c+c′)h′
表中S表示面积,c′、c分别表示上、下底面周长,h表示高,h′表示斜高,l表示侧棱长。
2. 旋转体的面积和体积公式
名称圆柱圆锥圆台球
S侧2πrl πrl π(r1+r2)l
S全2πr(l+r)πr(l+r)π(r1+r2)l+π
(r21+r22)
4πR2
V πr2h(即πr2l)
πr2h πh(r21+r1r2+r22)πR3
表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。
1。
必修二立体几何知识点
高中数学必修2知识点第一章空间几何体1.1柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱'''''EDCBAABCDE-或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''EDCBAP-几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''EDCBAP-几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案
描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。
《新课程标准高中数学必修②复习讲义》第一、二章-立体几何
一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体--把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征 1。
棱柱1。
1棱柱—-有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1。
2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1。
4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则,222sin sin sin 1αβγ++=222cos cos cos 2αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2.圆柱2。
1圆柱—-以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的母线截面(轴截面)是全等的矩形.2。
(完整版)高一数学必修2_第一章空间几何体知识点
第一章空间几何体1.1 空间几何体的结构1. 多面体与旋转体:(1)由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面.相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.(2)由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴.2. 棱柱:(1)有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.(2)侧棱垂直于底面的棱柱叫直棱柱,否则斜棱柱;底面是正多边形的直棱柱叫正棱柱。
(3)棱柱的分类:按底面的多边形的边数分,有三棱柱、四棱柱、五棱柱等.按侧棱与底面的关系分为直棱柱和斜棱柱。
(4)底面是平行四边形的四棱柱叫平行六面体;侧棱与底面垂直的平行六面体叫直平行六面体;底面为矩形的直平行六面体叫长方体;底面为正方形的长方体叫正四棱柱;棱长都相等的正四棱柱叫正方体。
(5)棱柱的性质:①两底面是对应边平行的全等多边形;②侧面、对角面都是平行四边形;③侧棱平行且相等;④平行于底面的截面是与底面全等的多边形。
3. 棱锥:(1)有一个面是多边形,其余各面都是有一公共点的三角形,由这些面所围成的几何体叫做棱锥.棱锥中,这个多边形面叫做棱锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边叫做棱锥的侧棱.(2)底面是正多边形,顶点在底面的射影是正多边形的中心的棱锥叫正棱柱。
正棱柱顶点与底面中心的连线段叫正棱锥的高;正棱锥侧面等腰三角形底边上的高叫正棱锥的斜高。
(3)棱锥的分类:按底面的多边形的边数分,有三棱锥、四棱锥、五棱锥等.(4)棱锥的性质:①侧面、对角面都是三角形;②平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(5)正棱锥的性质:①正棱锥各侧棱都相等,各侧面都是全等的等腰三角形。
人教版高一数学必修二辅导讲义:1.1空间几何体的结构
第一章、空间几何体1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征(一)课本知识:1.空间几何体(1)空间几何体的定义空间中的物体都占据着空间的一局部,假设只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.类别多面体旋转体定义由假设干个围成的几何体由一个平面图形绕它所在平面内的一条旋转所形成的.图形相关概念面:围成多面体的各个.棱:相邻两个面的.顶点:的公共点.轴:形成旋转体所绕的 .2.多面体多面体定义图形及表示相关概念棱柱有两个面互相,其余各面都是,并且每相邻两个四边形的公共边都互相,由这些面所围成的多面体叫做棱柱.如图可记作:棱柱底面(底):两个互相平行的面.侧面:.侧棱:相邻侧面的.顶点:侧面与底面的.棱锥有一个面是,其余各面都是有一个公共顶点的,由这些面所围成的多面体叫做棱锥如图可记作:棱锥底面(底):面.侧面:有公共顶点的各个.侧棱:相邻侧面的.顶点:各侧面的.棱台用一个的平面去截棱锥,底面与截面之间的局部叫做棱台.如图可记作:棱台上底面:原棱锥的.下底面:原棱锥的.侧面:其余各面.侧棱:相邻侧面的公共边.顶点:侧面与上(下)底面的公共顶点.知识梳理:要点一棱柱、棱锥、棱台的概念1.棱柱的结构特征侧棱都相等,侧面都是平行四边形,两个底面相互平行;2.棱锥的结构特征有一个面是多边形,其余各面是有一个公共顶点的三角形;3.棱台的结构特征上下底面相互平行,各侧棱的延长线交于同一点.典型例题1、有以下说法:①有两个面平行,其余各面都是平行四边形所围成的几何体一定是棱柱;②各个面都是三角形的几何体是三棱锥;③用一个平行于棱锥底面的平面去截棱锥,得到的几何体叫做棱台;④棱柱的各相邻侧面的公共边互相平行.以上说法中,正确说法的序号是________(写出所有正确说法的序号).反应训练1、有以下说法:①一个棱锥至少有四个面;②如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;③五棱锥只有五条棱;④用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.以上说法中,正确说法的序号是________(写出所有正确说法的序号).典型例题2、长方体ABCD-A′B′C′D′,当用平面BCFE把这个长方体分成两局部后,各局部形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.反应训练2、以下说法:①有两个面互相平行,其余的面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确的个数为( ) A.3 B.2 C.1 D.0 要点三多面体的外表展开图1.绘制多面体的外表展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型,在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其外表展开图.2.假设是给出多面体的外表展开图,来判断是由哪一个多面体展开的,那么可把上述过程逆推.典型例题3、请画出以下图所示的几何体的外表展开图.反应训练3、根据右图所给的几何体的外表展开图,画出立体图形1.1.1柱、锥、台、球的结构特征(二)1.1.2简单组合体的结构特征课本知识:1.旋转体旋转体结构特征图形表示圆柱以矩形的一边所在直线为旋转轴,其余三边旋转形成的所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;于轴的边旋转而成的圆面叫做圆柱的底面;于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,于轴的边都叫做圆柱侧面的母线我们用表示圆柱轴的字母表示圆柱,左图可表示为圆锥以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的所围成的旋转体叫做圆锥我们用表示圆锥轴的字母表示圆锥,左图可表示为圆台用平行于的平面去截圆锥,底面与截面之间的局部叫做圆台我们用表示圆台轴的字母表示圆台,左图可表示为球以半圆的直径所在直线为旋转轴,旋转一周所形成的旋转体叫做球体,简称球.半圆的圆心叫做球的,半圆的半径叫做球的半径,半圆的直径叫做球的直径球常用球心字母进行表示,左图可表示为(1)定义:由组合而成的几何体叫做简单组合体.(2)简单组合体的两种根本形式:由简单几何体而成;由简单几何体一局部而成.特别提醒:圆是一条封闭的曲线,圆面是一个圆围成的圆内平面.球是几何体,球面是指半圆沿直径旋转形成的曲面,球是旋转体.知识梳理:要点一、旋转体的结构特征圆柱、圆锥、圆台、球从生成过程来看,它们分别是由矩形、直角三角形、直角梯形、半圆绕着某一条直线旋转而成的几何体,因此它们统称为旋转体.但应注意的是:所谓旋转体就是一个平面图形绕着这个平面图形所在的平面内一条直线旋转一周所得到的几何体,因此它还含有除圆柱、圆锥、圆台、球之外的几何体.典型例题1、以下说法:①在圆柱的上、下两底面的圆周上各取一点,那么这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,那么这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的选项是( )A.①②B.②③C.①③D.②④反应训练1、以下说法中正确的选项是( )A.圆台是直角梯形绕其一边旋转而成的B.圆锥是直角三角形绕其一边旋转而成的C.圆柱不是旋转体D.圆台可以看作是平行于底面的平面截一个圆锥而得到的要点二圆柱、圆锥、圆台的侧面展开图把柱、锥、台体沿一条侧棱或母线展开成平面图,这样便把空间问题转化成了平面问题,对解决简单空间几何体的面积问题或侧面上(球除外)两点间的距离问题,是很有效的方法.典型例题2、如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?反应训练2、假设本例中蚂蚁围绕圆柱转两圈,如下图,那么它爬行的最短距离是多少?要点三简单组合体的结构特征判断实物图是由哪些简单几何体所组成的图形问题,首先要熟练掌握简单几何体的结构特征,其次要善于将复杂的组合体“分割〞成几个简单的几何体.简单组合体有以下三种形式:1.多面体与多面体的组合体:即由两个或两个以上的多面体组合而成的几何体.2.多面体与旋转体的组合体:即由一个多面体与一个旋转体组合而成的几何体.3.旋转体与旋转体的组合体:即由两个或两个以上的旋转体组合而成的几何体.典型例题3、请描述如下图的组合体的结构特征.反应训练3、说出以下几何体的结构特征.一、选择题1.以下说法中正确的选项是( )A .棱柱中两个互相平行的平面一定是棱柱的底面B .棱柱的面中,至少有两个面互相平行C .棱柱中一条侧棱的长叫棱柱的高D .棱柱的侧面是平行四边形,但它的底面一定不是平行四边形2.如图,D ,E ,F 分别是等边△ABC 各边的中点,把该图按虚线折起,可以得到一个( )A .棱柱 B .棱锥 C .棱台 D .旋转体3.以下三个说法,其中正确的选项是( )①用一个平面去截棱锥,棱锥底面和截面之间的局部是棱台; ②两个底面平行且相似,其余各面都是梯形的多面体是棱台; ③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台. A .0个 B .1个 C .2个 D .3个4.在长方体ABCD -A 1B 1C 1D 1中,AB =3,AD =2,CC 1=1,一条绳子从点A 沿外表拉到点C 1,那么绳子的最短的长是( )A .3 2 B .2 5 C.26 D .65.如图,以下几何体中,________是棱柱,________是棱锥,________是棱台.6.在正方体上任意选择4个顶点,它们可能是如下各种几何图形的4个顶点,这些几何体是________(写出所有正确结论的序号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.7.在如下图的三棱柱ABC -A 1B 1C 1中,请连接三条线,把它分成三局部,使每一局部都是一个三棱锥.8.如下图,在正三棱柱ABC -A 1B 1C 1中,AB =2,AA 1=2,由顶点B 沿棱柱侧面(经过棱AA 1)到达顶点C 1,与AA 1的交点记为M .求:(1)三棱柱侧面展开图的对角线长;(2)从B 经M 到C 1的最短路线长及此时A 1MAM的值.1.以下说法正确的选项是( )A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心2.底面半径为2且底面水平放置的圆锥被过高的中点且平行于底面的平面所截,那么截得的截面圆的面积为( )A.πB.2π C.3πD.4π3.以下说法正确的有( )①球的半径是球面上任意一点与球心的连线段②球的直径是球面上任意两点间的连线段③用一个平面截一个球,得到的是一个圆④不过球心的截面截得的圆的半径小于球半径A.①② B.①④ C.①②④D.③④4.如下图的几何体,关于其结构特征,以下说法不正确的选项是( )A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形5.给出以下说法:(1)直角三角形绕一边旋转得到的旋转体是圆锥(2)夹在圆柱的两个平行截面间的几何体还是一个旋转体(3)圆锥截去一个小圆锥后剩余局部是圆台(4)通过圆台侧面上一点,有无数条母线其中正确的说法是________(写出所有正确说法的序号).6.把一个圆锥截成圆台,圆台的上下底面半径之比是14,母线长为10,那么圆锥的母线长是________.7.如图(1)所示,正三棱柱的底面边长是4cm、过BC的一个平面交侧棱AA′于D,假设AD的长为2cm,求截面△BCD的面积.图(1) 图(2)8.从一个底面半径和高都是R的圆柱中,挖去一个以圆柱上底面为底,下底面中心为顶点的圆锥,得到如以下图所示的几何体.如果用一个与圆柱下底面距离等于l并且平行于底面的平面去截它,求所得截面的面积.。
高中数学必修2--第一章《空间几何体》知识点总结与练习
高中数学必修2__第一章《空间几何体》知识点总结与练习第一节空间几何体的结构特征及三视图和直观图[知识能否忆起]一、多面体的结构特征多面体棱柱棱锥棱台结构特征有两个面互相平行,其余各面都是四边形,并且每相邻两个面的交线都平行且相等有一个面是多边形,而其余各面都是有一个公共顶点的三角形棱锥被平行于底面的平面所截,截面和底面之间的部分二、旋转体的形成几何体圆柱圆锥圆台球旋转图形矩形直角三角形直角梯形半圆旋转轴任一边所在的直线一条直角边所在的直线垂直于底边的腰所在的直线直径所在的直线三、简单组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成,有多面体与多面体、多面体与旋转体、旋转体与旋转体的组合体.四、平行投影与直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.五、三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.1.正棱柱与正棱锥(1)底面是正多边形的直棱柱,叫正棱柱,注意正棱柱中 “正”字包含两层含义:①侧棱垂直于底面;②底面是正多边形.(2)底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫正棱锥,注意正棱锥中“正”字包含两层含义:①顶点在底面上的射影必需是底面正多边形的中心,②底面是正多边形,特别地,各棱均相等的正三棱锥叫正四面体.2.对三视图的认识及三视图画法(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.(3)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体用平行投影画出的轮廓线.3.对斜二测画法的认识及直观图的画法(1)在斜二测画法中,要确定关键点及关键线段,“平行于 x 轴的线段平行性不变,长度不变;平行于 y 轴的线段平行性不变,长度减半.”(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S 直观图= 2 4S 原图形,S 原图形=2 2S 直观图.空间几何体的结构特征典题导入[例 1] (2012· 哈师大附中月考)下列结论正确的是()A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线[自主解答] A 错误,如图 1 是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图△2,若ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;图1图2C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.[答案]D由题悟法解决此类题目要准确理解几何体的定义,把握几何体的结构特征,并会通过反例对概念进行辨析.举反例时可利用最熟悉的空间几何体如三棱柱、四棱柱、正方体、三棱锥、三棱台等,也可利用它们的组合体去判断.以题试法1.(2012·天津质检)如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B如图,等腰四棱锥的侧棱均相等,其侧棱在底面的射影也相等,则其腰与底面所成角相等,即A正确;底面四边形必有一个外接圆,即C正确;在高线上可以找到一个点O,使得该点到四棱锥各个顶点的距离相等,这个点即为外接球的球心,即D正确;但四棱锥的侧面与底面所成角不一定相等或互补(若为正四棱锥则成立).故仅命题B为假命题.几何体的三视图典题导入[例2](2012·湖南高考)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()[自主解答]根据几何体的三视图知识求解.由于该几何体的正视图和侧视图相同,且上部分是一个矩形,矩形中间无实线和虚线,因此俯视图不可能是C.[答案]C由题悟法三视图的长度特征三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”.[注意]画三视图时,要注意虚、实线的区别.以题试法2.(1)(2012·莆田模拟)如图是底面为正方形、一条侧棱垂直于底面的四棱锥的三视图,那么该四棱锥的直观图是下列各图中的()解析:选D由俯视图排除B、C;由正视图、侧视图可排除A.= ,所以 OC ′=sin 120° a = 6a ,(2)(2012· 济南模拟)如图,正三棱柱 ABC -A 1B 1C 1 的各棱长均为 2,其正视图如图所示,则此三棱柱侧视图的面积为()A .2 2C. 3B .4D .2 3解析:选 D 依题意,得此三棱柱的左视图是边长分别为 2, 3的矩形,故其面积是2 3.几何体的直观图典题导入[例 3] 已知△ABC 的直观图 A ′B ′C ′是边长为 a 的正三角形,求原△ABC 的面积.[自主解答]建立如图所示的坐标系 xOy ′, △A ′B ′C ′的顶点 C ′在 y ′轴上,A ′B ′边在 x 轴上,OC 为△ABC 的高.把 y ′轴绕原点逆时针旋转 45°得 y 轴,则点 C ′变为点 C ,且 OC =2OC ′,A ,B 点即为 A ′,B ′点,长度不变.已知 A ′B ′=A ′C ′=△a ,在 OA ′C ′中,由正弦定理得OC ′ A ′C ′sin ∠OA ′C ′ sin 45°sin 45° 2所以原三角形 ABC 的高 OC = 6a.2 2 2S = (1+ 2+1)×2=2+ 2.V = Sh = πr 2h = πr 2 l 2-r 2所以 △S ABC =1×a ×6a = 26a 2.由题悟法用斜二测画法画几何体的直观图时,要注意原图形与直观图中的“三变、三不变”.⎧⎪坐标轴的夹角改变,“三变”⎨与y 轴平行线段的长度改变,⎪⎩图形改变;⎧⎪平行性不变,“三不变”⎨与x 轴平行的线段长度不变,⎪⎩相对位置不变.以题试法3.如果一个水平放置的图形的斜二测直观图是一个底角为 45°,腰和上底均为 1 的等腰梯形,那么原平面图形的面积是()A .2+ 22+ 2 C. 1+ 2 B.D .1+ 2解析:选 A 恢复后的原图形为一直角梯形1 2第二节空间几何体的表面积和体积[知识能否忆起]柱、锥、台和球的侧面积和体积面积体积圆柱圆锥S 侧=2πrlS 侧=πrlV =Sh =πr 2h1 1 13 3 31 V = ShV = πR 3圆台S 侧=π(r 1+r 2)l1V =3(S 上+S 下+ S 上· S 下)h1=3π(r 2+r 2+r 1r 2)h直棱柱正棱锥 正棱台球S 侧=Ch1S 侧=2Ch ′1S 侧=2(C +C ′)h ′S 球面=4πR 2V =Sh1 31V =3(S 上+S 下+ S 上· S 下)h431.几何体的侧面积和全面积:几何体侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.2.求体积时应注意的几点:(1)求一些不规则几何体的体积常用割补的方法转化成已知体积公式的几何体进行解决.(2)与三视图有关的体积问题注意几何体还原的准确性及数据的准确性.3.求组合体的表面积时注意几何体的衔接部分的处理.几何体的表面积典题导入[例 1] (2012· 安徽高考)某几何体的三视图如图所示,该几何体的表面积是________.[自主解答] 由几何体的三视图可知,该几何体是底面为直角梯形的直四棱柱 (如图所示).所以其表面积为2×1×(2+5)×4+2×4+4×5+4×5+4×4=92. 视图、侧视图都是面积为 3,且一个内角为 60°的菱形,俯视图为正方面边长和侧面上的高均等于菱形的边长,因此该饰物的表面积为 8×⎝2×1×1⎭=4.在四边形 ABCD 中,作 DE ⊥AB ,垂足为 E ,则 DE =4,AE =3,则 AD =5.2[答案] 92由题悟法1.以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.2.多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.3.旋转体的表面积问题注意其侧面展开图的应用.以题试法1.(2012· 河南模拟)如图是某宝石饰物的三视图,已知该饰物的正2形,那么该饰物的表面积为()A. 3B .2 3C .4 3D .4解析:选 D 依题意得,该饰物是由两个完全相同的正四棱锥对接而成,正四棱锥的底⎛1 ⎫几何体的体积典题导入[例 2](1)(2012·广东高考)某几何体的三视图如图所示,它的体积为()V =V 半球+V 圆锥= · π·33+ ·π·32·4=30π. [答案](1)C (2)=π×32×4-1π×32×4=24π.3A .72πB .48πC .30πD .24π(2)(2012· 山东高考)如图,正方体 ABCD -A 1B 1C 1D 1 的棱长为 1,E为线段 B 1C 上的一点,则三棱锥 A -DED 1 的体积为________.[自主解答] (1)由三视图知,该几何体是由圆锥和半球组合而成的,直观图如图所示,圆锥的底面半径为 3,高为 4,半球的半径为 3.14 1 23 31 1 1 1(2)V A -DED 1=VE -ADD 1=3×△S ADD 1×CD =3×2×1=6.16本例(1)中几何体的三视图若变为:其体积为________.解析:由三视图还原几何体知,该几何体为圆柱与圆锥的组合体,其体积V =V 圆柱-V圆锥答案:24π由题悟法1.计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解.2.注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.3.等积变换法:利用三棱锥的任一个面可作为三棱锥的底面.①求体积时,可选择容易计算的方式来计算;②利用“等积法”可求“点到面的距离”.3 32 2 32 1 = .33和 2 个直角边分别为 3,1 的直角三角形,其底面积 S =9+2× ×3×1=12,以题试法2.(1)(2012·长春调研)四棱锥 P -ABCD 的底面 ABCD 为正方形,且 PD 垂直于底面ABCD ,N 为 PB 中点,则三棱锥 P -ANC 与四棱锥 P -ABCD 的体积比为()A .1∶2C .1∶4B .1∶3D .1∶8解析:选 C 设正方形 ABCD 面积为 S ,PD =h ,则体积比为1 11 1 11Sh - · S · h - · Sh1 4Sh(2012· 浙江模拟)如图,是某几何体的三视图,则这个几何体的体积是()A .32C .8B .2432 D.解析:选 B 此几何体是高为 2 的棱柱,底面四边形可切割成为一个边长为 3 的正方形12所以几何体体积 V =12×2=24.与球有关的几何体的表面积与体积问题典题导入[例 3] (2012·新课标全国卷)已知三棱锥 S -ABC 的所有顶点都在球 O 的球面上,△ABC是边长为 1 的正三角形,SC 为球 O 的直径,且 SC =2,则此棱锥的体积为()A.C. 2 62 3B.D. 3 62 2×AB 2=4 41 3 6=2 =2V O -ABC =2× ×34 3 6 × . b c A .2 3π8πB.[自主解答 ] 由于三棱锥 S -ABC 与三棱锥 O -ABC 底面都是△ABC ,O 是 SC 的中点,因此三棱锥 S -ABC 的高是三棱锥 O -ABC 高的 2 倍,所以三棱锥 S -ABC 的体积也是三棱锥 O -ABC 体积的 2 倍.在三棱锥 O -ABC 中,其棱长都是 1,如图所示,△S ABC = 3 3,高 OD =12-⎛ 3⎫2= 6,⎝ 3 ⎭ 3∴V S -ABC[答案] A由题悟法1.解决与球有关的“切”、“接”问题,一般要过球心及多面体中的特殊点或过线作截面,把空间问题转化为平面问题,从而寻找几何体各元素之间的关系.2.记住几个常用的结论:(1)正方体的棱长为 a ,球的半径为 R ,①正方体的外接球,则 2R = 3a ;②正方体的内切球,则 2R =a ;③球与正方体的各棱相切,则 2R = 2a.(2)长方体的同一顶点的三条棱长分别为 a ,,,外接球的半径为 R ,则 2R = a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为 1∶3.以题试法3.(1)(2012·琼州模拟)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()3C .4 316πD. B 2=16π.2 故球 O 的体积 V = = 6π.3(2)(2012· 潍坊模拟)如图所示,已知球 O 的面上有四点 A 、 、C 、D ,DA ⊥平面 ABC ,AB ⊥BC ,DA =AB =BC = 2,则球 O 的体积等于________.解析:(1)由三视图可知几何体的直观图如图所示.其中侧面 DBC ⊥底面 ABC ,取 BC 的中点 O 1,连接 AO 1,DO 1 知 DO 1⊥底面 ABC 且 DO 1= 3,AO 1=1,BO 1=O 1C =1.在 △Rt ABO 1 和 Rt △ACO 1 中,AB =AC = 2,又∵BC =2,∴∠BAC =90°.∴BC 为底面 ABC 外接圆的直径,O 1 为圆心, 又∵DO 1⊥底面 ABC ,∴球心在 DO 1 上,即△BCD 的外接圆为球大圆,设球半径为 R ,则( 3-R)2+12=R 2,∴R = 2 3.⎛ 2 ⎫∴S 球=4πR 2=4π×⎝ 3⎭3(2)如图,以 DA ,AB ,BC 为棱长构造正方体,设正方体的外接球 球 O 的半径为 R ,则正方体的体对角线长即为球 O 的直径,所以|CD|= ( 2)2+( 2)2+( 2)2=2R ,所以 R =6 .4πR 33答案:(1)D (2) 6π某些空间几何体是某一个几何体的一部分,在解题时,把这个几何体通过“补形”补成完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积问题,这是一种重要的解题策略——补形法.常见的补形法有对称补形、联系补形与还原补形.对于还原补形,主要涉及台体中“还台为锥”问题.33=3×π×12×4=3π.1.对称补形[典例 1] (2012· 湖北高考)已知某几何体的三视图如图所示,则该几何体的体积为( )8π A.10π C.B .3πD .6π[解析]由三视图可知,此几何体是底面半径为 1,高为 4 的圆柱被从母线的中点处截去了圆柱的1,根据对称性,可补全此圆柱如图,故体积 V44[答案] B[题后悟道] “对称”是数学中的一种重要关系,在解决空间几何体中的问题时善于发现对称关系对空间想象能力的提高很有帮助.2.联系补形(2012· 辽宁高考)已知点 P ,A ,B ,C ,D 是球 O 表面上的点,PA ⊥平面 ABCD ,四边形ABCD 是边长为 2 3的正方形.若 P A =2 △6,则 OAB 的面积为________.[解析] 由 P A ⊥底面 ABCD ,且 ABCD 为正方形,故可补形为长方体如图,知球心 O 为 PC 的中点,又 PA =2 6,AB =BC =2 3,∴AC =2 6,∴PC =4 3,∴OA =OB =2 △3,即 AOB 为正三角形,∴S =3 3.[答案] 3 3[题后悟道] 三条侧棱两两互相垂直,或一侧棱垂直于底面,底面为正方形或长方形,则此几何体可补形为正方体或长方体,使所解决的问题更直观易求.练习题1.(教材习题改编)以下关于几何体的三视图的论述中,正确的是()A.球的三视图总是三个全等的圆B.正方体的三视图总是三个全等的正方形C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆解析:选A B中正方体的放置方向不明,不正确.C中三视图不全是正三角形.D中俯视图是两个同心圆.2.(2012·杭州模拟)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱C.球体B.圆锥D.圆柱、圆锥、球体的组合体解析:选C当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面.3.下列三种叙述,其中正确的有()①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个C.2个B.1个D.3个解析:选A①中的平面不一定平行于底面,故①错.②③可用下图反例检验,故②③不正确.4.(教材习题改编)利用斜二测画法得到的:①正方形的直观图一定是菱形;②菱形的直观图一定是菱形;③三角形的直观图一定是三角形.以上结论正确的是________.解析:①中其直观图是一般的平行四边形,②菱形的直观图不一定是菱形,③正确.答案:③5.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为________.解析:由三视图中的正、侧视图得到几何体的直观图如图所示,所以该几何体的俯视图为③.答案:③1.(2012·青岛摸底)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是()A.②③④C.①③④B.①②③D.①②④解析:选A①的三个视图都是边长为1的正方形;②的俯视图是圆,正视图、侧视图都是边长为1的正方形;③的俯视图是一个圆及其圆心,正视图、侧视图是相同的等腰三角形;④的俯视图是边长为1的正方形,正视图、侧视图是相同的矩形.2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.(其中真命题的个数是() A .1C .3B .2D .4解析:选 A 命题①不是真命题,因为底面是矩形,但侧棱不垂直于底面的平行六面体不是长方体;命题②不是真命题,因为底面是菱形 非正方形),底面边长与侧棱长相等的直 四棱柱不是正方体;命题③也不是真命题,因为有两条侧棱都垂直于底面一边不能推出侧棱与底面垂直;命题④是真命题,由对角线相等,可知平行六面体的对角面是矩形,从而推得侧棱与底面垂直,故平行六面体是直平行六面体.3.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是()解析:选 C C 选项不符合三视图中“宽相等”的要求,故选 C.4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是()解析:选 B 由直观图和正视图、俯视图可知,该几何体的侧视图应为面 P AD ,且 EC投影在面 P AD 上,故 B 正确.△5.如图 A ′B ′C ′是△ABC 的直观图,那么△ABC 是()A .等腰三角形B .直角三角形解析:选 D 依题意得,该几何体的侧视图的面积等于 22+ ×2× 3=4+ 3.为 ,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号)角形;如图 2 所示,直三棱柱ABC -AB C 符合题设要求,此时俯视图△ABC 是直角三角形;-A B C D 符合题设要求,此时俯视图(四边形 ABCD)是正方形;若俯视图是扇形或圆,体C .等腰直角三角形D .钝角三角形解析:选 B 由斜二测画法知 B 正确.6.(2012· 东北三校一模)一个几何体的三视图如图所示,则侧视图的面积为( )A .2+ 3C .2+2 3B .1+ 3D .4+ 3127.(2012· 昆明一中二模)一个几何体的正视图和侧视图都是边长为 1 的正方形,且体积12①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆.解析:如图 1 所示,直三棱柱 ABE -A 1B 1E 1 符合题设要求,此时俯视图△ABE 是锐角三1 1 1如图 3 所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱 ABCD1 1 1 1积中会含有 π,故排除④⑤.答案:①②③8.(2013· 安徽名校模拟)一个几何体的三视图如图所示,则该几何体的体积为________.何体的体积为1×2×2sin 60°×2-1×1×2×2sin 60°×1=5 3.3解析:结合三视图可知,该几何体为底面边长为 2、高为 2 的正三棱柱除去上面的一个高为 1 的三棱锥后剩下的部分,其直观图如图所示,故该几2 3 2 35 3答案:9.正四棱锥的底面边长为 2,侧棱长均为 3,其正视图(主视图)和侧视图(左视图)是全 等的等腰三角形,则正视图的周长为________.解析:由题意知,正视图就是如图所示的截面PEF ,其中 E 、F分别是 AD 、BC 的中点,连接 AO ,易得 AO = 2,而 P A = 3,于是解得 PO =1,所以 PE = 2,故其正视图的周长为 2+2 2.答案:2+2 210.已知:图 1 是截去一个角的长方体,试按图示的方向画出其三视图;图2 是某几何体的三视图,试说明该几何体的构成.解:图 1 几何体的三视图为:图 2 所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体.11.(2012· 银川调研)正四棱锥的高为 3,侧棱长为 7,求棱锥的斜高(棱锥侧面三角形在△Rt SOE 中,∵OE =1BC = 2,SO = 3,42-⎝ × ×2 3⎭2 2的高).解:如图所示,正四棱锥 S -ABCD 中,高 OS = 3,侧棱 SA =SB =SC =SD = 7,在 △Rt SOA 中,OA = SA 2-OS 2=2,∴AC =4.∴AB =BC =CD =DA =2 2.作 OE ⊥AB 于 E ,则 E 为 AB 中点.连接 SE ,则 SE 即为斜高,2∴SE = 5,即棱锥的斜高为 5.12.(2012· 四平模拟)已知正三棱锥 V -ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图; (2)求出侧视图的面积.解:(1)三棱锥的直观图如图所示.(2)根据三视图间的关系可得 BC =2 3, ∴侧视图中V A =⎛2 3 3 2⎫= 12=2 3,∴△S VBC =1×2 3×2 3=6. 1.(教材习题改编)侧面都是直角三角形的正三棱锥,底面边长为 a 时,该三棱锥的全 面积是()A. a 242 4 a 2+3× ×⎝ 2 a ⎭2= a 2.(3 2)2-⎝2×6⎭2=3,因此底面中心到各顶点的距离均等于 3,所以该四棱锥的外接球的棱锥的高是 5,可由锥体的体积公式得 V = ×8×6×5=80.3+ 3 3 B. a 2 43+ 36+ 3 C.a 2D.a 2解析:选 A ∵侧面都是直角三角形,故侧棱长等于31 ⎛2 ⎫ 3+ 3∴S 全=42422a ,2.已知正四棱锥的侧棱与底面的边长都为 3 2,则这个四棱锥的外接球的表面积为()A .12πC .72π B .36πD .108π解析: 选 B 依题意得,该正四棱锥的底面对角线长为 3 2 × 2 = 6 ,高为⎛1⎫球心为底面正方形的中心,其外接球的半径为 3,所以其外接球的表面积等于 4π×32=36π.3.某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为 5 的等腰三角形,侧视图是一个底边长为 6,高为 5 的等腰三角形,则该几何体的体积为()A .24C .64 B .80D .240解析:选 B 结合题意知该几何体是四棱锥,棱锥底面是长和宽分别为 8 和 6 的矩形,1 34.(教材习题改编)表面积为 3π 的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.解析:设圆锥的母线为 l ,圆锥底面半径为 r ,则 πrl +πr 2=3π,πl =2πr.解得 r =1,即直径为 2.答案:25.某几何体的三视图如图所示,其中正视图是腰长为 2 的等20/2733××2×2×2=.形42-⎝232+22⎭2=,所以棱锥O-A BCD的体积等于×(3×2)×51=51.________.解析:由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积,为23;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+3).答案:2(π+3)1.(2012·北京西城模拟)某几何体的三视图如图所示,该几何体的体积是()A.8 C.48 B.4 D.解析:选D将三视图还原,直观图如图所示,可以看出,这是一个底11面为正方形(对角线长为2),高为2的四棱锥,其体积V=3S正方ABCD×P A=314232.(2012·山西模拟)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=3,BC=2,则棱锥O-ABCD的体积为()A.51 C.251B.351 D.651解析:选A依题意得,球心O在底面ABCD上的射影是矩形ABCD的中心,因此棱锥O-A BCD的高等于⎛1⎫5112323.(2012·马鞍山二模)如图是一个几何体的三视图,则它的表面积为()4 4 解析:选 D 由三视图可知该几何体是半径为 1 的球被挖出了 部分得到的几何体,故·4π·12+3· ·π·12= π.22只需求出底面积即可.由俯视图和主视图可知,底面面积为1×2+2× ×2×1=4,所以该A .4πC .5π15 B. π17 D. π18表面积为7 1 178 44 4.(2012· 济南模拟)用若干个大小相同,棱长为 1 的正方体摆成一个立体模型,其三视图如图所示,则此立体模型的表面积为()A .24C .22B .23D .21解析:选 C 这个空间几何体是由两部分组成的,下半部分为四个小正方体,上半部分为一个小正方体,结合直观图可知,该立体模型的表面积为 22.5. (2012· 江西高考)若一个几何体的三视图如下图所示,则此几何体的体积为()11 A.9 C.B .5D .4解析:选 D 由三视图可知,所求几何体是一个底面为六边形,高为1 的直棱柱,因此12几何体的体积为 4×1=4.6.如图,正方体 ABCD -A ′B ′C ′D ′的棱长为 4,动点 E ,F 在棱 AB 上,且 EF =2,动点 Q 在棱 D ′C ′上,则三棱锥 A ′-EFQ 的体积()解析:选 D 因为 V A ′-EFQ =V Q -A ′EF = ×⎝2×2×4⎭×4= ,故三棱锥 A ′-EFQ 的高为 3,连接顶点和底面中心即为高,可求得高为 2,所以体积 V =1×1×1× 2= 2.3答案: 3π⎧⎪a +b =6 ,A .与点 E ,F 位置有关B .与点 Q 位置有关C .与点 E ,F ,Q 位置都有关D .与点E ,F ,Q 位置均无关,是定值1 ⎛1 ⎫ 163 3体积与点 E ,F ,Q 的位置均无关,是定值.7.(2012· 湖州模拟)如图所示,已知一个多面体的平面展开图由一个边长为 1 的正方形和 4 个边长为 1 的正三角形组成,则该多面体的体积是________.解析:由题知该多面体为正四棱锥,底面边长为 1,侧棱长为 1,斜2 23 2 6答案:2 68.(2012· 上海高考)若一个圆锥的侧面展开图是面积为 2π 的半圆面,则该圆锥的体积为________.解析:因为半圆的面积为 2π,所以半圆的半径为 2,圆锥的母线长为 2.底面圆的周长为2π,所以底面圆的半径为 1,所以圆锥的高为 3,体积为 3π.39.(2013· 郑州模拟)在三棱锥 A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的表面积为________.解析:依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,2 2 2 设该长方体的长、宽、高分别为 a 、b 、c ,且其外接球的半径为 R ,则⎨b 2+c 2=52,⎪⎩c 2+a 2=52,得 a 2+b 2+c 2=43,即(2R)2=a 2+b 2+c 2=43,易知 R 即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为 4πR 2=43π.答案:43π10.(2012· 江西八校模拟)如图,把边长为 2 的正六边形 ABCDEF 沿对角线 BE 折起,使 AC = 6.。
人教版高中数学必修二《空间几何体》基础知识要点总结
③侧面展开图为矩形。
④侧棱长等于此正棱柱的高。
(5)特殊的四棱柱
底面是四边形的棱柱叫做四棱柱。
底面的平行四边形的四棱柱叫做平行六面体。
侧棱垂直于底面的平行六面体叫做直平行六面体。
底面的矩形的直平行六面体叫做长方体。
底面是正方形的长方体叫做正四棱柱。侧棱长等于底面边长的源自四棱柱叫做正方体。2、棱锥
(1)结构特征
一般地,①有一个面是多边形,其余各面都是②有一个公共顶点的③三角形,由这些面围成的多面体叫做棱锥.
①这个多边形的面叫做棱锥的底面或底;②有公共顶点的各个三角形面叫做棱锥的侧面;③各侧面的公共顶点叫做棱锥的顶点;④相邻侧面的公共边叫做棱锥的侧棱。
(2)棱锥的性质
如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比。
③正棱锥的高,侧棱和侧棱在底面上的射影组成一个直角三角形
(5)正四面体
正四面体是由四个全等正三角形围成的空间封闭图形,所有棱长都相等。
正四面体属于正三棱锥,但是正三棱锥只需要底面为正三角形,其他三个面全等且都是等腰三角形就可以,不需要四个面全等且都是等边三角形。
3、棱台
(1)结构特征
用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
8、简单组合体
第一章 《空间几何体》基础知识小结
一、空间几何体的结构
空间几何体
如果我们只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体
多面体
一般地,我们把由若干个平面多边形转成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。
高中数学必修2知识点总结第一章空间几何体
第一章 空间几何体
1.1柱、锥、台、球的结构特征
1.柱锥台球的机构特征
2.理解正三棱椎,正四面体、直棱柱的结构特征
1.2空间几何体的三视图和直观图
1 三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下
2 画三视图的原则:长对齐、高对齐、宽相等
3直观图:斜二测画法
4斜二测画法的步骤:
(1).平行于坐标轴的线依然平行于坐标轴;
(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;2=4S S 直平 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图
1.3 空间几何体的表面积与体积
(一 )空间几何体的表面积
1棱柱、棱锥的表面积: 各个面面积之和
2 圆柱的表面积
3 圆锥的表面积2r rl S ππ+=
4 圆台的表面积22R Rl r rl S ππππ+++=
5 球的表面积24R S π=
(二)空间几何体的体积
1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底31 3台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π= 例1已知一个几何体的三视图(单位:cm )如右图所示,则该几何体的侧面积为_____cm 2
2.一组合体三视图如右,正视图中正方形边长为2,俯视图为正三角形及内切圆,则该组合体体积为( )
A. 23
B. 43π
C. 23+43
π D. 54343π+ 4.已知某个几何体的三视图如下,根据图中标
出的尺寸(单位:cm ),可得这个几何体的体积是
2
22r rl S ππ+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章空间几何体1.1 空间几何体的结构1. 多面体与旋转体:(1)由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面.相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.(2)由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴.2. 棱柱:(1)有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.(2)侧棱垂直于底面的棱柱叫直棱柱,否则斜棱柱;底面是正多边形的直棱柱叫正棱柱。
(3)棱柱的分类:按底面的多边形的边数分,有三棱柱、四棱柱、五棱柱等.按侧棱与底面的关系分为直棱柱和斜棱柱。
(4)底面是平行四边形的四棱柱叫平行六面体;侧棱与底面垂直的平行六面体叫直平行六面体;底面为矩形的直平行六面体叫长方体;底面为正方形的长方体叫正四棱柱;棱长都相等的正四棱柱叫正方体。
(5)棱柱的性质:①两底面是对应边平行的全等多边形;②侧面、对角面都是平行四边形;③侧棱平行且相等;④平行于底面的截面是与底面全等的多边形。
3.棱锥:(1)有一个面是多边形,其余各面都是有一公共点的三角形,由这些面所围成的几何体叫做棱锥.棱锥中,这个多边形面叫做棱锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边叫做棱锥的侧棱.(2)底面是正多边形,顶点在底面的射影是正多边形的中心的棱锥叫正棱柱。
正棱柱顶点与底面中心的连线段叫正棱锥的高;正棱锥侧面等腰三角形底边上的高叫正棱锥的斜高。
(3)棱锥的分类:按底面的多边形的边数分,有三棱锥、四棱锥、五棱锥等.(4)棱锥的性质:①侧面、对角面都是三角形;②平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(5)正棱锥的性质:①正棱锥各侧棱都相等,各侧面都是全等的等腰三角形。
②正棱锥的高,斜高和斜高在底面上的射影组成一个直角三角形,正棱锥的高,侧棱,侧棱在底面内的射影也组成一个直角三角形。
③正棱锥的侧棱与底面所成的角都相等。
④正棱锥的侧面与底面所成的二面角都相等。
4. 圆柱与圆锥:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.在圆柱中,旋转的轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面,平行于轴的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线. 5. 棱台与圆台:(1)用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.(2)棱台的性质:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.(3)圆台的性质:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.(4)棱台与圆台统称为台体. 6.球:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体,简称球.在球中,半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径. 7. 简单组合体:由简单几何体(如柱、锥、台、球等)组合而成的几何体叫简单组合体. 【常见题型】1.如下四个命题:①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个共同的公共点;③多面体至少有四个面;④棱台的侧棱所在直线均相交于同一点.其中正确的命题有( D )个 A.1个 ﻩB .2个ﻩ ﻩﻩC.3个ﻩﻩD .4个2.圆锥底面半径为1cm,cm ,其中有一个内接正方体,求这个内接正方体的棱长. 【解】分析:画出轴截面图,设正方体的棱长为x ,利用相似列关系求解. 过圆锥的顶点S 和正方体底面的一条对角线C D作圆锥的截面,得圆锥的轴截面SEF ,正方体对角面C DD 1C 1,如图所示. 设正方体棱长为x ,则C C1=x ,C 1D1. 作S O⊥EF于O ,则SO =OE =1,1~ECC EOS ∆∆, ∴11CC EC SO EO =. ∴2x =,即内接正方体棱长为2cm111.2 空间几何体的三视图和直观图1.中心投影与平行投影:(1)光由一点向外散射形成的投影称为中心投影.(2)在一束平行光线照射下形成的投影,称为平行投影.(3)平行投影按照投射方向是否正对着投影面,可以分为斜投影和正投影两种.2. 柱、锥、台、球的三视图:(1)三视图的定义:正视图:光线从几何体的前面向后面正投影得到的投影图;侧视图:光线从几何体的左面向右面正投影得到的投影图;俯视图:光线从几何体的上面向下面正投影得到的投影图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.(2)三视图的几何作用:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度.3. 直观图:“直观图”最常用的画法是斜二测画法,由其规则能画出水平放置的直观图,其实质就是在坐标系中确定点的位置的画法.基本步骤如下:(1)建系:在已知图形中取互相垂直的x轴和y轴,得到直角坐标系xoy,直观图中画成斜坐标系'''x o y,两轴夹角为45 .(2)平行不变:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x’或y’轴的线段.(3)长度规则:已知图形中平行于x轴的线段,在直观图中保持长度不变;平行于y轴的线段,长度为原来的一半.注意:1.“视图”是将物体按正投影法向投影面投射时所得到的投影图. 光线自物体的前面向后投影所得的投影图成为“正视图”,自左向右投影所得的投影图称为“侧视图”,自上向下投影所得的图形称为“俯视图”.用这三种视图即可刻划空间物体的几何结构,称为“三视图”.2. 画三视图之前,先把几何体的结构弄清楚,确定一个正前方,从几何体的正前方、左侧(和右侧)、正上方三个不同的方向看几何体,画出所得到的三个平面图形,并发挥空间想象能力. 在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分用虚线表示出来.3.三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”.4. 空间几何体的三视图与直观图有密切联系. 三视图从细节上刻画了空间几何体的结构,根据三视图可以得到一个精确的空间几何体,得到广泛应用(零件图纸、建筑图纸).直观图是对空间几何体的整体刻画,根据直观图的结构想象实物的形象.【常见题型】1.如图,图(1)是常见的六角螺帽,试画出它的三视图.【解】分析:画三视图之前,先把几何体的结构弄清楚,确定一个正前方,从三个不同的角度进行观察. 在绘制三视图时,分界线和可见轮廓线 都用实线画出,被遮挡的部分用虚线表示出来. 图(1)为圆柱和正六棱柱的组合体. 从三个方向观察,得到三个平面图形,绘制的三视图如下图所示.2.画棱长为4cm 的正方体的直观图.【解】分析:按照斜二测画法的步骤画正方体的直观图,先画下底面,再画棱,再画上底面.(1)画法:如图,按如下步骤完成.第一步,在已知的直角三角形AB C中取直角边CB 所在的直线为x轴,与B C垂直的直线为y轴,画出对应的x '轴和y '轴,使45x O y '''∠=. 第二步,在x '轴上取''O C BC =,过'C 作'y 轴的平行线,取1''2C A CA =.第三步,连接''A O ,即得到该直角三角形的直观图. (2)画法:如图,按如下步骤完成.第一步,作水平放置的正方形的直观图AB CD ,使45,BAD ∠=4,2AB cm AD cm ==.第二步,过A 作z '轴,使90BAz '∠=. 分别过点,,B C D 作z '轴的平行线,在z '轴及这组平行线上分别截取4AA BB CC DD cm ''''====.第三步,连接,,,A B B C C D D A '''''''',所得图形就是正方体的直观图.1.3 空间几何体的表面积与体积 1.3.1 柱体、锥体、台体的表面积与体积1. 圆柱:侧面展开图是矩形,长是圆柱底面圆周长,宽是圆柱的高(母线), S 圆柱侧=2rl π,S圆柱表=2()r r l π+,其中为r 圆柱底面半径,l 为母线长;2V Sh r h π==圆柱.2. 圆锥:侧面展开图为一个扇形,半径是圆锥的母线,弧长等于圆锥底面周长,侧面展开图扇形中心角为0360r l θ=⨯,S圆锥侧=rl π, S 圆锥表=()r r l π+,其中为r 圆锥底面半径,l 为母线长.13V Sh =锥 S为底面面积,h 为高)3. 圆台:侧面展开图是扇环,内弧长等于圆台上底周长,外弧长等于圆台下底周长,侧面展开图扇环中心角为0360R r lθ-=⨯,S 圆台侧=()r R l π+,S圆台表=22()r rl Rl R π+++. '1()3V S S h =台 (S ,'S 分别上、下底面积,h为高)→ '2211()()33V S S h r rR R h π==++圆台 (r、R分别为圆台上底、下底半径)4.柱、锥、台的表面积与体积的计算公式的关系S h 底高5.柱、椎、台之间,可以看成一个台体进行变化,当台体的上底面逐渐收缩为一个点时,它就成了锥体;当台体的上底面逐渐扩展到与下底面全等时,它就成了柱体. 因而体积会有以下的关系:13V S h =锥 '0S =←−−−1(')3V S S h =台 'S S=−−−→ V S h =柱. 【常见题型】1.已知圆台的上下底面半径分别是2,5,且侧面面积等于两底面面积之和,求该圆台的母线长.【解】设圆台的母线长为l ,则,圆台的上底面面积为224S ππ=⋅=上,圆台的上底面面积为2525S ππ=⋅=下,所以圆台的底面面积为29S S S π=+=下上.又圆台的侧面积(25)7S l l ππ=+=侧,于是729l ππ=,即297l =为所求. 2.一个长方体的相交于一个顶点的三个面的面积分别是2,3,6,则长方体的体积是 . 【解】解析:长方体的长宽高分别为,,a b c ,求出,,a b c 的值,再求体积.设长方体的长宽高分别为,,a b c ,则2,3,6ab ac bc ===,三式相乘得2()36abc =. 所以,长方体的体积为61.3.2 球的体积和表面积RA 'C OA 'B 'C 'D 'DCBAO1. 球的体积是对球体所占空间大小的度量,它是球半径的函数,设球的半径为R ,则球的体积343V R π=球2. 球的表面积是对球的表面大小的度量,它也是球半径的函数,设球的半径为R ,则球的表面积为24S R π=球面,它是球的大圆面积的4倍3. 用一个平面去截球,所得到的截面是一个圆. 【常见题型】1.如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,如果163P ABCD V -=,则球O 的表面积是 A. 4π B. 8π C. 12π D. 16π【解】如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,PO与平面AB CD 垂直,是棱锥的高,PO =R ,22ABCD S R =,163P ABCD V -=,所以2116233R R ⋅⋅=,解得R =2,则球O 的表面积是16π,选D.2.半球内有一个内接正方体,正方体的一个面在半球的底面圆内,6求球的表面积和体积.【解】分析:作出轴截面,利用勾股定理求解. 作轴截面如图所示,6CC '=2623AC ==设球半径为R ,则222R OC CC '=+226)(3)9=+=∴3R =,∴2436S R ππ==球,34363V R ππ==球.练习题 一、选择题有一个几何体的三视图如下图所示,这个几何体应是一个( )A 棱台B 棱锥C 棱柱D 都不对 棱长都是1的三棱锥的表面积为( )A 3 B 3 C 33 D 43 长方体的一个顶点上三条棱长分别是3,4,5,它的8个顶点都在同一球面上,这个球的表面积是( )A 25πB 50πC 125πD 都不对4 正方体的内切球和外接球的半径之比为( )AB2 C2 D3一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( )A28cm π B 212cm πC 216cm πD 220cm π6 圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A 7B 6C 5D 3 下图是由哪个平面图形旋转得到的( )(2) (3) (4)A (1)B (2)C (3)D (4)在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后 ,剩下的几何体的体积是( )A23 B 76 C 45D 569 已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则12:V V = ( )A 1:3B 1:1C 2:1D 3:1 10 如果两个球的体积之比为8:27,那么两个球的表面积之比为( )A 8:27B 2:3 C 4:9 D 2:911 有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体表面积及体积为:( )A 224cm π,212cm πB 215cm π,212cm πC 224cm π,236cm π D 以上都不正确12 正方体的全面积为18c m2,则它的体积是( )A 4cm 3; B 8cm 3; C 72112cm 3; D 33cm 3。