移动通信中的波导效应
大气波导干扰对5G NR的影响预研和应对措施探讨
![大气波导干扰对5G NR的影响预研和应对措施探讨](https://img.taocdn.com/s3/m/d2b796822f60ddccdb38a08d.png)
收稿日期:2019-06-06
TDD 系统干扰形成的主要原因是施扰基站的下行信 号传输超出了受扰基站上行信号的保护时隙,从而影 响到受扰基站的上行接收,如图 1 所示。多个干扰源 的信号在受扰基站信号叠加还会造成干扰电平增强。 大气波导干扰传播距离甚至可以超过 200 km,可能对 TDD 系统产生大面积干扰,严重时会将底噪抬升至 -95 dBm,影响 RRC 建立成功率、eRAB 建立成功率、 VoLTE 接通率、数据业务掉线率、VoLTE 掉话率、切换 成功率等 KPI 指标。
许国平(中国联合网络通信集团有限公司,北京 100033)
Xu Guoping(China United Network Communications Group Co.,Ltd.,Beijing 100033,China)
摘 要:
关键词:
大气波导效应会对 TDD 移动通信系统产生较强干扰。首先分析了大气波导干
下行信号通过大气波导介质, 长距离穿越 GP,干扰远端站点
大气波导介质 特殊气象条件形成
DwPTS
GP
UpPTS
被干扰站点
干扰源站点
被干扰站点
图 1 TD-LTE 系统大气波导干扰形成原因
扰的成因主要分为 2 种类型,海面蒸发波导与内陆表 面波导。 2.1 海面蒸发波导
沿海地(市)主要受海面蒸发波导的影响。图 2 给 出了处于环渤海区域的城市 A 和城市 B 所受到的该类 型大气波导干扰的时间变化趋势:出现早,消退慢,持 续时间长,全天均有可能存在。从前期实践情况看, 该类型干扰主要集中在环渤海区域和琼州海峡周边 区域。
(精选)通信中的几个效应
![(精选)通信中的几个效应](https://img.taocdn.com/s3/m/7f3495d0b8f67c1cfbd6b81d.png)
通信中的几个效应波导效应、乒乓效应、记忆效应、孤岛效应、多径效应、远近效应阴影效应、拐角效应1、波导效应波导效应(即隧道效应)主要由建筑、峡谷等引起,如两旁建筑整齐的街道、隧道、较长的走廊、岩石峡谷等都会形成波导效应,信号传播如在波导内传播相似,沿波导方向损耗小,信号就强,其他方向损耗大,信号强度就弱。
波导效应容易引起越区覆盖和导频污染等,在井型街道会引起切换频繁、掉话等。
波长越短的无线电波,当遇到在物体时,在其表面发生镜面反射的可能也越大。
当信号在两侧是规则楼房的街道中传播时,便是以反射方式进行,我们称之为“波导效应”。
当手机收到强弱不同和接到达手机时间不同的信号会有什么效果,可能会掉话也有可能出现通话质量差,就像光波一样,有直射的信号也有反射和折射的信号被手机检测到。
波导效应在城市环境中存在,由于街道两旁有高大的建筑物,结果使得沿传播方向的街道上信号增强,垂直于传播方向的街道上信号减弱,两者相差达10dB以上,这种现象在离基站距离越远,减弱程度就越小,隧道覆盖会存在波导效应,微波传输也会存在波导效应,波导效应衰落的比较快。
2、乒乓效应移动通信系统中,如果在一定区域里两基站信号强度剧烈变化,手机就会在两个基站间来回切换,产生所谓的“乒乓效应”。
解决措施:1、调整两个小区的切换门限2、控制其中一个小区的覆盖(调整接入参数、调整天馈、降低功率等),保证该区域有主覆盖小区。
3、防止“乒乓切换”的办法是:迟滞在基站下载的参数文件中有两个参数需要我们注意,即“再呼叫型区间切换处理电平”(参考值:23dB)和“再呼叫型区间切换区域的选择电平”(参考值:32dB)。
这两个参数表示在通话时,当手机接收到原基站的信号强度降到23dB时,手机发起申请,要求做基站间的切换(Handover),即切换到下一个基站上通话。
但下一个基站信号必须在32 dB以上,手机才能真正切换过去,否则只能在原基站上通话。
之所以这两个参数间有9dB的差值,目的是防止“乒乓效应”。
通信技术中的波导传输技术解析
![通信技术中的波导传输技术解析](https://img.taocdn.com/s3/m/8557a3f464ce0508763231126edb6f1aff007120.png)
通信技术中的波导传输技术解析在通信技术领域中,波导传输技术是一种重要的信号传输方法。
通过合理设计和使用波导,可以实现高效的信号传输和通信网络的可靠性。
本文将对波导传输技术进行解析,并探讨其在通信领域中的应用。
波导是一种能够导向无线电波或光波传输的结构。
它通常由金属、玻璃或聚合物等材料制成,具有适合特定频率下波的传播特性。
波导内的电磁波被限制在波导内部传输,从而减小了信号的衰减和串扰,提高了信号的传输效率和质量。
波导传输技术在通信领域中的应用非常广泛,包括微波通信、光纤通信和毫米波通信等。
在微波通信中,波导用于传输微波信号,可以实现高速率的数据传输和远距离的通信。
光纤通信中的波导是光纤传输的关键,通过控制光在波导中的传播方式,实现光信号的高速传输和长距离传输。
毫米波通信中的波导则用于传输毫米波信号,可以实现高频率的信号传输,从而提供更大的带宽和数据容量。
波导传输技术的优点之一是它可以有效地控制和导向信号的传播。
与自由空间传播相比,波导传输可以减少信号的衰减和衍射,降低信号干扰和传输损耗。
波导传输还可以实现信号的定向传输,提高信号的聚焦度和传输效率。
这些优点使得波导传输在通信网络中得到广泛应用。
在实际应用中,波导的设计和制作是波导传输技术的重要环节。
波导的设计需要考虑波导的几何结构、材料特性和工作频率等因素。
合理的波导设计可以提供最佳的传输性能和损耗控制。
波导的制作通常采用金属加工、光刻和薄膜沉积等工艺,确保波导的精确性和稳定性。
这些工艺使得波导传输技术能够在实际应用中得到有效实施。
随着通信技术的不断发展,波导传输技术也在不断演进。
例如,在微波通信领域,传统的波导已经逐渐被微带线等新型传输介质所取代。
微带线具有更好的制作工艺和更大的设计灵活性,能够在集成电路中实现波导传输功能。
光纤通信领域也出现了更高性能和更灵活的光纤波导,例如光子晶体光纤和多模多芯光纤等。
这些新型波导传输技术为通信网络的发展带来了新的机遇和挑战。
通信中的效应问题
![通信中的效应问题](https://img.taocdn.com/s3/m/1e1109084b73f242336c5f89.png)
(3)抗多径信号处理与自适应抵消技术等。 多址干扰是由于在多用户系统中采用传统单用户接收方案而造 成的恶果。单用户接收机采用匹配滤波器作为相关判决的工具, 并不考虑多址干扰的存在,每个用户的检测都不考虑其他用户的 影响,是一种针对单用户检测的策略。一般说来,单个用户传输 时不存在多址干扰,但在多用户环境中,当干扰用户数增加或者 他们的发射功率增加时,多址干扰将不容忽视。因此多用户检测 技术应允而生,其算法有最优检测算法和次优检测算法。
3阴影效应(Shadow Effect):在无线通信系统中,移动台在运 动的情况下,由于大型建筑物和其他物体对电波的传输路径的阻 挡而在传播接收区域上形成半盲区,从而形成电磁场阴影,这种 随移动台位的不断变化而引起的接收点场强中值的起伏变化叫 做阴影效应。阴影效应是产生慢衰落的主要原因。 比较有效的方法是使用支撑杆将天线架高,或者将天线安放在建筑 物边缘 直放站,室分系统
2多普勒效应:在移动通信中,当移动台移向基站时,频率变高, 远离基站时频率变低,移动台高速移动时,会导致信号很快衰落。 所以我们在移动通信中要充分考虑多普勒效应。当然,由于日常 生活中,我们移动速度的局限,不可能会带来十分大的频率偏移, 但是这不可否认地会给移动通信带来影响,为了避免这种影响造 成我们通信中的问题,我们不得不在技术上加以各种考虑。也加 大了移动通信的复杂性。 解决措施
抗多径干扰主要解决措施: (1)提高接收机的距离测量精度,如窄相关码跟踪环、相位测距、 平滑伪距等; (2)抗多径天线; 智能天线利用多个天线阵元的组合进行信号处理,自动调整发射 和接收方向图,以针对不同的信号环境达到最优性能。智能天线是 一种空分多址(SDMA)技术,主要包括两个方面:空域滤波和波达方 向(DOA)估计。空域滤波(也称波束赋形)的主要思想是利用信号、 干扰和噪声在空间的分布,运用线性滤波技术尽可能地抑制干扰和 噪声,以获得尽可能好的信号估计。 智能天线通过自适应算法控制加权,自动调整天线的方向图使 它在干扰方向形成零陷,将干扰信号抵消,而在有用信号方向形成 主波束,达到抑制干扰的目的。加权系数的自动调整就是波束的形 成过程。智能天线波束成型大大降低了多用户干扰,同时也减少了 小区间干扰。
大气波导对5G影响研究
![大气波导对5G影响研究](https://img.taocdn.com/s3/m/295189d21ed9ad51f11df219.png)
大气波导对5G影响研究1、导语随着5G网络基站规模的逐渐扩大,以及5G终端渗透率的增加。
5G网络下的干扰研究势必成为未来研究的热点话题。
本文对5G网络2.6GHz 频段下的大气波导干扰成因进行了深入理论分析,并给出了切实可行的干扰解决办法,进而从根本上解决大气波导对5G网络的影响。
2、研究背景在一定的气象条件下,比如当大气中某些区域的层结(温度与湿度随高度的分布状况)满足一定条件时,在大气边界层尤其是在近地层中传播的电磁波,受大气折射的影响其传播轨迹弯向地面,电磁波就会部分的传播在一定厚度的大气薄层内,这种现象称为电磁波的大气波导传播。
低空大气波导的出现,可使电磁波以较小的损耗沿大气波导传播,所以会对通信系统和探测系统造成严重影响。
大气波导对无线电波的影响主要表现在两个方面:一是增加传播的距离,二是增加电场强度。
由于波导层使得无线电波来回不断反射,增加了其传播路径中的电场强度,从而使其能量衰减大大减缓,因此可使无线电波在波导层进行超长距离传播。
大气波导传播示意图如图1所示。
图1 大气波导传播示意图海南省海口市TD-LTE网络长期受大气波导干扰,主要受到来自广东湛江以及广西北海的TD-LTE网络F频段和D频段产生的时隙交叉干扰,大气波导干扰出现期间对用户业务感知严重恶化,具体情况如1所示。
表1 海口受干扰小区数量(红色字体表示受大气波导干扰小区数量)3 、2.6GHz频段大气波导形成的条件边界层大气中的电磁波若要形成波导传播必须满足4个基本条件。
(1)近地层或边界层某一高度处必须存在大气波导。
(2)电磁波的波长必须小于最大陷获波长。
(3)电磁波发射源必须位于大气波导层内。
对于抬升波导,有时电磁波发射源位于波导底下方时也可形成波导传播,但此时发射源必须距波导底不远,并且波导强度必须非常强。
(4)电磁波的发射仰角必须小于某一临界仰角。
根据理论分析最容易受波导影响而形成波导传播的是分米波(电磁波长10~100cm,频率0.3~3GHz)和厘米波(电磁波长1~10cm,频率3~30GHz)。
通信中的几个效应
![通信中的几个效应](https://img.taocdn.com/s3/m/3d9576baf18583d048645948.png)
通信中的几个效应(波导效应、乒乓效应、记忆效应、孤岛效应、多径效应、远近效应)1、波导效应波导效应(即隧道效应)主要由建筑、峡谷等引起,如两旁建筑整齐的街道、隧道、较长的走廊、岩石峡谷等都会形成波导效应,信号传播如在波导内传播相似,沿波导方向损耗小,信号就强,其他方向损耗大,信号强度就弱。
波导效应容易引起越区覆盖和导频污染等,在井型街道会引起切换频繁、掉话等。
波长越短的无线电波,当遇到在物体时,在其表面发生镜面反射的可能也越大。
当信号在两侧是规则楼房的街道中传播时,便是以反射方式进行,我们称之为“波导效应”。
当手机收到强弱不同和接到达手机时间不同的信号会有什么效果,可能会掉话也有可能出现通话质量差,就像光波一样,有直射的信号也有反射和折射的信号被手机检测到。
波导效应在城市环境中存在,由于街道两旁有高大的建筑物,结果使得沿传播方向的街道上信号增强,垂直于传播方向的街道上信号减弱,两者相差达10dB以上,这种现象在离基站距离越远,减弱程度就越小,隧道覆盖会存在波导效应,微波传输也会存在波导效应,波导效应衰落的比较快。
2、乒乓效应移动通信系统中,如果在一定区域里两基站信号强度剧烈变化,手机就会在两个基站间来回切换,产生所谓的“乒乓效应”。
解决措施:1、调整两个小区的切换门限2、控制其中一个小区的覆盖(调整接入参数、调整天馈、降低功率等),保证该区域有主覆盖小区。
3、防止“乒乓切换”的办法是:迟滞在基站下载的参数文件中有两个参数需要我们注意,即“再呼叫型区间切换处理电平”(参考值:23dB)和“再呼叫型区间切换区域的选择电平”(参考值:32dB)。
这两个参数表示在通话时,当手机接收到原基站的信号强度降到23dB时,手机发起申请,要求做基站间的切换(Handover),即切换到下一个基站上通话。
但下一个基站信号必须在32 dB以上,手机才能真正切换过去,否则只能在原基站上通话。
之所以这两个参数间有9dB的差值,目的是防止“乒乓效应”。
移动通信的几种效应(1)
![移动通信的几种效应(1)](https://img.taocdn.com/s3/m/244ecda265ce050876321348.png)
多址技术
如下图所示的频分多址和时分多址方式: a. FDMA b. TDMA
多址技术
时分多址(TDMA)的特点
(1)TDMA系统中几个用户共享同一个载频,但每个用户使用彼 此互不重叠的时隙。
(2)TDMA系统中的数据发射是不连续的,是以突发方式发射, 耗电较少,移动台可在空闲的时隙里监听其他基站,使越区切换 大为简化。
蜂窝系统
蜂窝的分类
宏蜂窝(Macrocell):
每小区的覆盖半径大多为1~25km 用于大面积覆盖 基站天线置于相对较高的地方 基站的发射功率较强 存在热点和盲点问题
蜂窝系统的分类
微蜂窝(Microcell):
覆盖半径大约为30~300m
发射功率相对较小,一般在1~2W 基站天线置于相对低的地方 用于解决热点/盲点问题
多址技术
时分多址(TDMA)
TDMA是把时间分成周期性的帧,每一帧再分割成若干时隙,
一个时隙就是一个通信信道。
通信时,给每个用户分配一个时隙,使各移动台在每帧内只
能按指定的时隙向基站发射或接收信号。同一个频道就可供几个 用户同时进行通信。
GSM系统无线路径上采用TDMA方式,每一个载频可分成8个时 隙,一个时隙为一个信道,一个载频最多可有8个移动用户同时 进行通信。
多普勒效应
生活中有这样一个有趣的现象:当一辆救护车迎面驶来的时候,听到声音 越来越高;而车离去的时候声音越来越低。你可能没有意识到,这个现象 和医院使用的彩超同属于一个原理,那就是“多普勒效应”。 在移动通信中,当移动台移向基站时,频率变高,远离基站时频率变低, 所以在移动通信中要充分考虑多普勒效应。 产生原因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间 内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的 个数,而观察者听到的声音的音调,是由观察者接受到的频率,即单位时间接 收到的完全波的个数决定的。当波源和观察者有相对运动时,观察者接收到的 频率会改变.在单位时间内,观察者接收到的完全波的个数增多,即接收到的 频率增大.同样的道理,当观察者远离波源,观察者在单位时间内接收到的完 全波的个数减少,即接收到的频率减小.
5G网络中大气波导干扰分析与研究
![5G网络中大气波导干扰分析与研究](https://img.taocdn.com/s3/m/375205bbfbb069dc5022aaea998fcc22bcd1432c.png)
5G网络中大气波导干扰分析与研究摘要:大气波导效应会致使移动网络通信中TDD系统产生超远距离干扰,更为严重的是影响网络性能指标。
本文将重点研究分析5G网络中大气波导干扰的成因,并且分析大气波导对5G网络性能指标的影响,重点研究参数配置方式规避大气波导受干扰小区,降低大气波导干扰影响,保障5G网络质量。
关键词大气波导干扰 5G网络1、引言在一定气象条件下,在大气边界层尤其是在近地层传播的电磁波,受大气折射的影响,其传播轨迹弯向地面,电磁波部分会被陷在一定厚度的大气薄层内,就像电磁波在金属波导管中传播一样,这种现象称为电磁波的大气波导传播。
大气波导现象能够使得TDD制式4、5G网络的下行无线信号传播很远,由于传播距离超过TDD制式4、5G网络上下行保护时隙(GP)的保护距离,导致这种远端下行无线信号干扰到近端的上行无线信号。
无线信号通过波导传播容易形成远端的大气波导干扰ADI(Atmospheric Duct Interference)。
大气波导问题早TD-LTE阶段就存在,其干扰特点和影响范围也很典型,干扰强度较大,必须要重点、尽快解决。
从中国境内所测大气波导干扰ADI分布状况图上看,大气波导干扰ADI多发生在环渤海湾、海南沿海、华北平原等沿海以及中东部平原地区,通常发生在四月到十月之间。
2、大气波导分类及产生机理大气波导通常分为三类:表面波导、悬空波导和蒸发波导,其中蒸发波导一般发生在海洋大气环境,表面波导和悬空波导在陆地和海洋环境中都存在。
在无线通信中,涉及到大气波导影响的主要是表面波导。
形成表面波导的天气条件主要为晴朗无风或者微风的夜晚,地面因辐射冷却而降温,与地面接近的气层冷却降温最强烈,而上层的空气冷却降温缓慢,因此使低层大气产生逆温现象;或者雨过天晴之后,也会出现类似的现象。
研究表明影响大气环境中电磁波传播特性的主要因素为大气折射率,对于频率在100GHz以内的电磁波,大气折射率n或大气折射指数n与大气温度T、大气压力P和水汽压e之间的函数关系为:当远距离传输时,考虑地球的曲率对传播的影响。
通信中的几大效应
![通信中的几大效应](https://img.taocdn.com/s3/m/586b587a31b765ce05081478.png)
孤岛效应是基站覆盖性问题,当基站覆盖在大型水面或多山地区等特殊地形时,由于水面或山峰的反射,使基站在原覆盖范围不变的基础上,在很远处出现"飞地",而与之有切换关系的相邻基站却因地形的阻挡覆盖不到,这样就造成"飞地"与相邻基站之间没有切换关系,"飞地"因此成为一个孤岛,当手机占用上"飞地"覆盖区的信号时,很容易因没有切换关系而引起掉话。
什么是孤岛效应?问:怎样发现某个掉话点是由于“孤岛效应”产生的?答:分析 1 掉话2 掉话现象:一直不切换,直至掉话。
主服小区与邻区同BCCH同BSIC也是这个现象吗?3 确定目前主服小区是多少,距离基站距离是多少?4 然后从掉话点开始查看是否存在六个邻区中没有与主服务小区建立邻区关系,5 如果有邻区关系,仍然一直不切换,直至掉话,是信号质量差。
6 如果没有邻区关系,是因为漏加了邻区关系,还是孤岛效应,怎样区分?7 如果确实是邻区,是漏加了邻区,如果不是邻区,是孤岛效应?8 怎样确定孤岛效应的区域范围?怎样消除孤岛效应?漂移小区与相邻小区同BCCH、BSIC,以至没有邻区可以切换什么是越区覆盖?它和孤岛效应有什么关系?孤岛的一个原因是越区覆盖。
孤岛效应和越区覆盖都属于基站覆盖性问题。
无遮挡传播远?天线高度高?高山站、街道的波导效应?湖泊的反射效应?“飞地效应”:当基站覆盖在大型水面或多山地区等特殊地形时,由于水面或山峰的反射,使基站在原覆盖范围不变的基础上,在很远处出现"飞地",而与之有切换关系的相邻基站却因地形的阻挡覆盖不到,这样就造成"飞地"与相邻基站之间没有切换关系,"飞地"因此成为一个孤岛,当手机占用上"飞地"覆盖区的信号时,很容易因没有切换关系而引起掉话。
楼房会有“飞地效应”吗?“伞状覆盖”效应:服务小区由于各种原因(无线传输环境太好、基站位置过高或天线的倾角较小),导致覆盖太大以至于将邻小区覆盖在内,造成在某些小区的覆盖范围出现一片孤独区域(所谓的伞状覆盖),此孤独区域在地理上没有邻区,类似于“孤岛”。
通信参数
![通信参数](https://img.taocdn.com/s3/m/588340fc0242a8956bece4b1.png)
阿(波导效应、乒乓效应、记忆效应、孤岛效应、多径效应、远近效应)1、波导效应波导效应(即隧道效应)主要由建筑、峡谷等引起,如两旁建筑整齐的街道、隧道、较长的走廊、岩石峡谷等都会形成波导效应,信号传播如在波导内传播相似,沿波导方向损耗小,信号就强,其他方向损耗大,信号强度就弱。
波导效应容易引起越区覆盖和导频污染等,在井型街道会引起切换频繁、掉话等。
波长越短的无线电波,当遇到在物体时,在其表面发生镜面反射的可能也越大。
当信号在两侧是规则楼房的街道中传播时,便是以反射方式进行,我们称之为“波导效应”。
当手机收到强弱不同和接到达手机时间不同的信号会有什么效果,可能会掉话也有可能出现通话质量差,就像光波一样,有直射的信号也有反射和折射的信号被手机检测到。
波导效应在城市环境中存在,由于街道两旁有高大的建筑物,结果使得沿传播方向的街道上信号增强,垂直于传播方向的街道上信号减弱,两者相差达10dB以上,这种现象在离基站距离越远,减弱程度就越小,隧道覆盖会存在波导效应,微波传输也会存在波导效应,波导效应衰落的比较快。
2、乒乓效应移动通信系统中,如果在一定区域里两基站信号强度剧烈变化,手机就会在两个基站间来回切换,产生所谓的“乒乓效应”。
解决措施:1、调整两个小区的切换门限2、控制其中一个小区的覆盖(调整接入参数、调整天馈、降低功率等),保证该区域有主覆盖小区。
3、防止“乒乓切换”的办法是:迟滞在基站下载的参数文件中有两个参数需要我们注意,即“再呼叫型区间切换处理电平”(参考值:23dB)和“再呼叫型区间切换区域的选择电平”(参考值:32dB)。
这两个参数表示在通话时,当手机接收到原基站的信号强度降到23dB时,手机发起申请,要求做基站间的切换(Handover),即切换到下一个基站上通话。
但下一个基站信号必须在32 dB以上,手机才能真正切换过去,否则只能在原基站上通话。
之所以这两个参数间有9dB的差值,目的是防止“乒乓效应”。
四大效应
![四大效应](https://img.taocdn.com/s3/m/724f220a79563c1ec5da71f0.png)
乒乓效应、孤岛效应、切换效应、屏蔽效应、波导效应乒乓效应移动通信系统中,如果在一定区域里两基站信号强度剧烈变化,手机就会在两个基站间来回切换,产生所谓的"乒乓效应"。
防止“乒乓切换”的办法是:迟滞在基站下载的参数文件中有两个参数需要我们注意,即“ 再呼叫型区间切换处理电平”(参考值:23dB)和“再呼叫型区间切换区域的选择电平”(参考值:32dB)。
这两个参数表示在通话时,当手机接收到原基站的信号强度降到23dB时,手机发起申请,要求做基站间的切换(Handover),即切换到下一个基站上通话。
但下一个基站信号必须在32dB以上,手机才能真正切换过去,否则只能在原基站上通话。
之所以这两个参数间有9dB的差值,目的是防止“乒乓效应”。
为说明这个问题,我们假设这两个电平值接近,比如都为23dB。
此时,手机虽然可以很容易地切换到下一个基站上去,但是由于移动通信的信号有不稳定的特点,很可能刚切换过来的基站的信号又变弱,手机又开始往回切换,从而造成“乒乓效应”。
这两个值相差越大,“乒乓效应”发生的可能性就越小。
但太大又可能造成手机在合适的时候无法使用下一基站通话。
一般情况下,我们都采用上面给出的参考值;一些特殊环境也可考虑改变这些参数。
上面我们讨论的是由手机发起切换申请的情形,另外还有由基站发起申请的情形,即当基站接收手机的信号弱到一定程度(6dB),由基站通知手机做切换,如果此时手机能找到一个信号强的基站(32dB以上),则切换到该基站上通话。
造成“乒乓效应”有两种可能,一是通信信号很不稳定,二是两参数值间隔太小。
有这样一个例子,某一高层楼房,外面采用日立大功率基站定向覆盖,楼内采用20mW 京瓷基站覆盖。
在楼房内的办公室中,当客户通话过程中如果转动身体,则手机便做频繁的切换,甚至无法通话。
这是因为,开始时假如用户使用外面的基站进行通话,手机的上行信号能够经过窗口(较强)和透过墙壁(较弱)到达基站。
通信中的几个效应-波导效应、乒乓效应、记忆效应、孤岛效应、多径效应、远近效应
![通信中的几个效应-波导效应、乒乓效应、记忆效应、孤岛效应、多径效应、远近效应](https://img.taocdn.com/s3/m/70be662890c69ec3d5bb7534.png)
通信中的几个效应(波导效应、乒乓效应、记忆效应、孤岛效应、多径效应、远近效应)1、波导效应波导效应(即隧道效应)主要由建筑、峡谷等引起,如两旁建筑整齐的街道、隧道、较长的走廊、岩石峡谷等都会形成波导效应,信号传播如在波导内传播相似,沿波导方向损耗小,信号就强,其他方向损耗大,信号强度就弱。
波导效应容易引起越区覆盖和导频污染等,在井型街道会引起切换频繁、掉话等。
波长越短的无线电波,当遇到在物体时,在其表面发生镜面反射的可能也越大。
当信号在两侧是规则楼房的街道中传播时,便是以反射方式进行,我们称之为“波导效应”。
当手机收到强弱不同和接到达手机时间不同的信号会有什么效果,可能会掉话也有可能出现通话质量差,就像光波一样,有直射的信号也有反射和折射的信号被手机检测到。
波导效应在城市环境中存在,由于街道两旁有高大的建筑物,结果使得沿传播方向的街道上信号增强,垂直于传播方向的街道上信号减弱,两者相差达10dB以上,这种现象在离基站距离越远,减弱程度就越小,隧道覆盖会存在波导效应,微波传输也会存在波导效应,波导效应衰落的比较快。
2、乒乓效应移动通信系统中,如果在一定区域里两基站信号强度剧烈变化,手机就会在两个基站间来回切换,产生所谓的“乒乓效应”。
解决措施:1、调整两个小区的切换门限2、控制其中一个小区的覆盖(调整接入参数、调整天馈、降低功率等),保证该区域有主覆盖小区。
3、防止“乒乓切换”的办法是:迟滞在基站下载的参数文件中有两个参数需要我们注意,即“再呼叫型区间切换处理电平”(参考值:23dB)和“再呼叫型区间切换区域的选择电平”(参考值:32dB)。
这两个参数表示在通话时,当手机接收到原基站的信号强度降到23dB时,手机发起申请,要求做基站间的切换(Handover),即切换到下一个基站上通话。
但下一个基站信号必须在32 dB以上,手机才能真正切换过去,否则只能在原基站上通话。
之所以这两个参数间有9dB的差值,目的是防止“乒乓效应”。
移动通信中的几种效应
![移动通信中的几种效应](https://img.taocdn.com/s3/m/8668dce5551810a6f5248673.png)
移动通信中的几种效应1.红灯问题: 深衰落点在空间上的分布是近似的相隔半个波长(900MHz为17cm,1900MHz为8cm),如果此时手机天线处于这个深衰落点(当汽车中的手机用户由于红灯而驻留在这个深衰落点,我们称为红灯问题),话音质量将会变差。
2.孤岛效应:若小区A信号较弱,当移动台以A作为服务小区并逐步进入小区B时,由于移动台邻区列表里并没有B小区,移动台不能切换到该小区,于是原小区信号逐渐变弱,直致最终掉话,即所谓的孤岛效应。
3.针尖效应:源小区EcIo快速下降后一段时间后上升,目标小区出现短时间的陡升。
针尖效应一般可以通过观察Scanner记录的最优小区扰码分布图来观察,一般情况下,如果有两幅天线沿着两条街道照射,在两条街道交界的地方就容易产生针尖效应。
针尖效应:产生于天线电波传播的死区,往往出现在街道拐弯的地方或者两条街道交界的地方。
针尖效应主要表现为在较强目标小区信号的短时间作用下,原小区信号经历短暂快速下降,又上升的情况。
解决方法:调整天线的方向角与街道错开一定角度的方式来调整,但同时需要注意不能使原来街道路边商铺的覆盖有很大的影响。
解决的措施要看具体环境而异,如使用直放站就是其中一个办法。
另外一个方法是配置5dB左右的CIO,这是比较好的解决办法,但也会带来增加切换比例等的副作用。
就是一个强信号一闪即逝,终端占上后又立即重选/切换出去。
其实就是切换带不清晰,容易造成切换不及时掉话。
解决措施就是把这个一闪即逝的信号消除掉,不让占用上。
4.拐角效应:源小区EcIo陡降,目标小区EcIo陡升(即突然出现就是很高的值),导致手机收不到活动集更新而导致掉话的情况。
当移动台沿着一个拐角移动时,移动台的接收信号电平发生变化。
在拐角后面如果有一个新的基站,移动台接收到的信号强度就会上升得非常快。
如果移动台不能足够快地获得新基站,那么增加的干扰就会导致掉话。
另一方面,如果新基站不能调节移动台的功率,高的移动台发射功率会闭塞新小区内的所有用户。
移动通信中的几个效应
![移动通信中的几个效应](https://img.taocdn.com/s3/m/90f2ce01b5daa58da0116c175f0e7cd1842518ae.png)
通信中的几个效应波导效应、乒乓效应、记忆效应、孤岛效应、多径效应、远近效应阴影效应、拐角效应1、波导效应波导效应〔即隧道效应〕主要由建筑、峡谷等引起,如两旁建筑整齐的街道、隧道、较长的走廊、岩石峡谷等都会形成波导效应,信号传播如在波导内传播相似,沿波导方向损耗小,信号就强,其他方向损耗大,信号强度就弱。
波导效应容易引起越区覆盖和导频污染等,在井型街道会引起切换频繁、掉话等。
波长越短的无线电波,当遇到在物体时,在其外表发生镜面反射的可能也越大。
当信号在两侧是规则楼房的街道中传播时,便是以反射方式进展,我们称之为"波导效应〞。
当手机收到强弱不同和接到达手机时间不同的信号会有什么效果,可能会掉话也有可能出现通话质量差,就像光波一样,有直射的信号也有反射和折射的信号被手机检测到。
波导效应在城市环境中存在,由于街道两旁有高大的建筑物,结果使得沿传播方向的街道上信号增强,垂直于传播方向的街道上信号减弱,两者相差达10dB以上,这种现象在离基站距离越远,减弱程度就越小,隧道覆盖会存在波导效应,微波传输也会存在波导效应,波导效应衰落的比拟快。
2、乒乓效应移动通信系统中,如果在一定区域里两基站信号强度剧烈变化,手机就会在两个基站间来回切换,产生所谓的"乒乓效应〞。
解决措施:1、调整两个小区的切换门限2、控制其中一个小区的覆盖〔调整接入参数、调整天馈、降低功率等〕,保证该区域有主覆盖小区。
3、防止"乒乓切换〞的方法是:迟滞在基站下载的参数文件中有两个参数需要我们注意,即"再呼叫型区间切换处理电平〞(参考值:23dB)和"再呼叫型区间切换区域的选择电平〞(参考值:32dB)。
这两个参数表示在通话时,当手机接收到原基站的信号强度降到23dB时,手机发起申请,要求做基站间的切换〔Handover〕,即切换到下一个基站上通话。
但下一个基站信号必须在32 dB以上,手机才能真正切换过去,否则只能在原基站上通话。
GSM基本原理
![GSM基本原理](https://img.taocdn.com/s3/m/bb69ba2400f69e3143323968011ca300a6c3f692.png)
控制信道-CCH
• 广播信道(BCH):仅用于下行链路
– 频率校正信道(FCCH):用于校正MS频率,使MS 可以定位并解调出同一小区的其它信息
– 同步信道(SCH):携带TDMA帧号及BSIC – 广播控制信道(BCCH):MS空闲时需大量的网络
信息,均由BCCH发送。所在这些信息均称为系统 消息,BCCH发送的系统消息有8类
2023最新整理收集 do something
GSM基本原理概述
1
GSM通信系统概述
2
系统组成
移动台(MS) 无线基站子系统 (BSS) 交换网络子系统 (NSS) 操作维护子系统 (OSS)
3
系统组成原理图
Um接口 BTS
BTS MS
Abis接口
OMC
ISDN
BSC
MSC/VLR
SC HLR/AUC EIR BSS
为避免互相干扰,相邻时隙之间采用保护间隔
35
突发脉冲序列
• 突发脉冲序列指一个时隙上的消息格式,发送的消息不同,格式 就不同,突发脉冲序列也就不同:
– 普通脉冲突发序列 – 频率校正脉冲突发序列 – 同步脉冲突发序列 – 接入脉冲突发序列 – 空闲脉冲突发序列
36
普通脉冲突发序列
尾比特 3bit
44
陆地移动通信环境的特点
• 受各种因素的影响,移动通信的环境是相当恶劣的
– 地形影响,MS处于复杂的地形及人为环境中 – MS的移动性使得MS与BS之间的传播路径不断变化,
且移动方向和速度都会导致电平的变化 – 人为噪声严重:点火噪声、电力线噪声、工业噪声 – 干扰严重:同频干扰、邻频干扰、互调干扰、远近
周期为235ms
TD—LTE大气波导效应导致干扰研究
![TD—LTE大气波导效应导致干扰研究](https://img.taocdn.com/s3/m/73d082ce26fff705cd170a14.png)
TD—LTE大气波导效应导致干扰研究作者:刘毅牛海涛张振刚孔建坤来源:《移动通信》2017年第05期【摘要】为了研究如何解决TD-LTE大气波导导致的干扰问题,通过性能关联分析、定位干扰源距离与方向对问题进行定位分析,并通过抑制干扰和启用远端干扰自适应协调等方案,利用优化参数修改方式,改善了基站由于受大气波导影响造成的通话质量差等问题。
【关键词】TD-LTE 大气波导自适应协调降低干扰[Abstract]In order to deal with interference resulting from TD-LTE atmospheric duct, the performance association analysis, the distance and direction localization of interference source were analyzed. The interference suppression and remote interference adaptive coordination were used. Combined with the revision of optimized parameters, the impact of bad voice quality on base station led by atmospheric duct was improved.[Key words]TD-LTE atmospheric duct adaptive coordination interference reduction1 引言随着4G网络覆盖范围越来越广,用户量发展迅速,而用户对4G网络的性能质量要求越来越高。
2015年夏季开始,山东移动在维护TD-LTE网络4G业务时发现多地不同程度地出现指标波动的异常情况,主要表现为凌晨时刻,气温由低温状态进入高温状态时,LTE的性能各项指标明显降低,又在早晨日出前后约7点到8点指标恢复正常。
大气波导效应对LTE网络的影响
![大气波导效应对LTE网络的影响](https://img.taocdn.com/s3/m/404aca458bd63186bdebbc15.png)
大气波导效应与解决方案1 前言对于时分双工模式(TDD)系统,要求基站保持严格的时间同步。
不同基站之间的时间同步包括帧头同步和上下行转换同步。
传统的同频干扰可以通过优化频点配置、干扰白噪化、功率控制、干扰协调、波束赋型等方式来对抗。
同时,由于TDD系统的上行和下行传输共享同样的频率,TDD系统中除存在传统的小区间的干扰外,还存在远端基站的下行信号干扰目标小区上行信号的情形。
TDD系统的远距离同频干扰发生在相距很远的基站间。
随着传播距离的增加,远端发射源的信号经过传播延迟到达近端同频的目标基站后,可能会进入目标基站的其他传输时隙,从而影响近端目标系统的正常工作,如图1所示。
由于基站的发射功率远大于终端的发射功率,因此远距离同频干扰主要表现为远端小区下行信号干扰近端目标基站的上行接收。
2 成因分析产生远距离同频干扰,必然是发生了超过保护间隔以上的超远距离传输。
商用的TDD系统,如SCDMA(大灵通)和TD-SCDMA均已证实远距离同频干扰的存在性。
远距离同频干扰的发生与信号传输环境和基站高度等有关。
主要因素在“低空大气波导”效应下,电磁波好像在波导中传播一样,传播损耗很小(近似于自由空间传播),可以绕过地平面,实现超视距传输。
当远处基站达到一定的基站高度级别时,在存在“低空大气波导”现象的情况下,远处基站的大功率下行信号可以产生远距离传输到达近处基站。
由于远距离传输时间超过TDD系统的上下行保护间隔,远处基站的下行信号在近处基站的接收时隙被近处基站收到,从而干扰了近处基站的上行接收,产生TDD系统的远距离同频干扰。
大气波导是一种特殊天气下形成的大气对电磁波折射效应,各地分布不同:南海地区春秋冬季出现较多;东部沿海夏秋季出现较多;西北地区春秋冬季出现较多。
我国东南部波导出现傍晚多于早上,西北地区则是早上多于晚上。
辅助因素基站的发射天线与接收天线高度要求高于周围的建筑物,否则信号很容易被建筑物阻挡。
当天线高度足够高时,远端基站下行信号在“抵抗大气波导”效应下可能会发生超远传输,干扰近端的上行信号。
电磁波的波导技术在通信中如何应用?
![电磁波的波导技术在通信中如何应用?](https://img.taocdn.com/s3/m/c69afe6db80d6c85ec3a87c24028915f804d84b9.png)
电磁波的波导技术在通信中如何应用?在当今信息时代,通信技术的飞速发展极大地改变了我们的生活方式。
而电磁波的波导技术作为通信领域的重要组成部分,发挥着至关重要的作用。
波导,简单来说,就是用来引导电磁波传播的一种结构。
它就像是为电磁波规划好的“专用通道”,能够有效地控制电磁波的传播方向、模式和能量分布。
在通信中,波导技术的应用十分广泛。
首先,它在微波通信中扮演着关键角色。
微波通信是一种利用微波频段进行信息传输的通信方式,具有频带宽、容量大、抗干扰能力强等优点。
而波导则是实现微波信号高效传输的重要部件。
例如,矩形波导常用于微波传输线中,将微波信号从一个地方传输到另一个地方,减少信号的损耗和衰减。
在卫星通信领域,波导技术同样不可或缺。
卫星与地面站之间需要进行大量的数据和信号传输,这就要求信号传输的准确性和高效性。
波导能够有效地减少信号在空间传播过程中的损耗和干扰,确保卫星通信的质量和稳定性。
波导技术在雷达系统中也有着重要的应用。
雷达通过发射和接收电磁波来探测目标的位置、速度等信息。
波导可以将雷达发射机产生的电磁波准确地导向天线,并将天线接收到的回波信号传输到接收机进行处理。
此外,波导技术在移动通信基站中也发挥着作用。
随着 5G 技术的不断发展,对信号传输的要求越来越高。
波导能够帮助基站中的射频信号进行高效传输和分配,提高通信系统的性能。
那么,波导技术是如何实现这些功能的呢?这要从波导的工作原理说起。
波导内部的边界条件决定了电磁波在其中的传播模式。
不同形状和尺寸的波导,支持不同的传播模式。
例如,矩形波导中常见的传播模式有 TE10 模式等。
通过合理设计波导的尺寸和形状,可以控制电磁波的传播特性,实现信号的有效传输。
在实际应用中,波导的制造和加工工艺也非常重要。
为了保证波导的性能和质量,需要采用高精度的加工设备和严格的质量控制措施。
同时,随着通信技术的不断发展,对波导的性能也提出了更高的要求。
例如,需要更小的尺寸、更低的损耗、更高的带宽等。
光的偏振和波导效应
![光的偏振和波导效应](https://img.taocdn.com/s3/m/050e43ba82d049649b6648d7c1c708a1284a0a0e.png)
光的偏振和波导效应光是被用于传输信息和进行通信的主要媒介之一。
在光的传输过程中,光的偏振和波导效应起着重要的作用。
本文将对光的偏振和波导效应进行探讨,介绍它们的基本原理、应用以及未来的发展方向。
一、光的偏振光的偏振是指光波中电场矢量的方向相对于光传播方向的固定改变。
根据电场矢量方向的改变,光波可以分为不同偏振态,常见的包括横向电场方向为水平方向(TE偏振)和横向电场方向为垂直方向(TM偏振)两种。
在光的偏振应用中,激光器和偏振器是重要的组件。
激光器可以产生具有特定偏振态的激光光束,而偏振器可以用于选择、控制光的偏振态。
这些应用在通信、光学仪器和光学传感等领域具有广泛的应用。
二、波导效应光的波导效应是指当光在介质界面或者特殊结构中传播时,由于光的全反射现象而沿着特定方向传播的现象。
波导效应的实现通常需要特定的结构,如光纤、光波导等。
光纤是一种用于将光信号传输的光导纤维。
在光纤中,光能够通过反射的方式在纤芯和包层之间传播,形成波导效应。
光纤的波导性能使其成为高速、大容量、远距离通信的理想选择。
除了光纤,光波导也是光的波导效应的重要应用。
光波导是在光学器件中使用的一种特殊结构,它可以将光限制在一定的范围内传输,从而实现光信号的引导和操控。
光波导不仅在通信领域有应用,还在光学传感、光子计算和量子通信等领域发挥着重要作用。
三、光的偏振与波导效应的关系光的偏振和波导效应有密切的关系。
在波导结构中,光的偏振性质可以影响光的传播方式和波导结构的性能。
例如,光纤中的多模传输和单模传输就与光的偏振态密切相关。
光的偏振性质还可以通过波导结构的设计进行调控。
通过在波导结构中引入光的偏振选择层,可以实现对光偏振态的选择和控制。
这种方法在光通信系统中用于减小光的偏振相关损耗,提高通信质量。
四、光的偏振和波导效应的未来发展随着科技的不断发展,光的偏振和波导效应也在不断创新和优化。
目前,光的偏振和波导效应已广泛应用于通信、光学传感、生物医学和光子计算等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
移动通信中的“波导效应”及其解决方案
在移动通信中,当手机信号在两侧都是楼房的街道中传播时,信号以反射方式前进,称之为“波导效应”。
当手机收到这种因为波导效应,强弱不同并且到达时间也不同的信号的时候会造成通话质量差甚至掉话。
频率越高的无线点播的波长越短,而波长越短则在当遇到在物体时,在其表面越有可能发生镜面反射。
当信号在狭长的地方传播,比如两侧是规则楼房的街道,或者是峡谷、隧道、长走廊等等环境中传播,其信号会不停地进行反射,而在手机通讯中,反射的信号和直射的信号会同时被一个手机接收到,对于手机会造成识别困难,通话质量较差等情况。
这种现象在大城市中尤为多见。
在高大的建筑物旁边打电话可能接收到的信号会差很远,另外在隧道中经常会出现无法通话的现象。
正是由于波导效应的结果使得沿传播方向的街道上信号增强,垂直于传播方向的街道上信号减弱,两者有时候会相差10dB甚至更多。
这种现象在离基站距离越远,减弱程度就越小,隧道覆盖会存在波导效应,微波传输也会存在波导效应,波导效应衰落的比较快。
一般在长距离传输时候,增加覆盖会有效改善这一现象,不会导致信号在越区时候传播了很长距离,却无法进行切换导致掉话。
如在张家界国
家森林公园中著名景点武陵源附近的峡谷中的波导效应的难题,园区采用了蜂信通的信号覆盖方案,有效确保游客正常通信,让游客们在游园的同事享受良好的手机信号和无线网络的服务。
转载请注明来源:
蜂信通。