屈婉玲版离散数学课后习题答案【1】

合集下载

离散数学最全课后答案(屈婉玲版)

离散数学最全课后答案(屈婉玲版)

习题一1.1.略1.2.略1.3.略1.4.略1.5.略1.6.略1.7.略1.8.略1.9.略1.10.略1.11.略1.12.将下列命题符号化, 并给出各命题的真值:(1) 2+2 = 4 当且仅当3+3 = 6. (2)2+2 =4 的充要条件是3+3 6. (3)2+2 4 与3+3 = 6 互为充要条件. (4) 若2+2 4, 则3+3 6, 反之亦然.(1) p q, 其中, p: 2+2=4, q: 3+3=6, 真值为 1.(2) p q, 其中, p: 2+2=4, q: 3+3=6, 真值为0.(3) p q, 其中, p: 2+2=4, q: 3+3=6, 真值为0.(4) p q, 其中, p: 2+2=4, q: 3+3=6, 真值为 1.1.13.将下列命题符号化, 并给出各命题的真值(1) 若今天是星期一, 则明天是星期二. (2)只有今天是星期一, 明天才是星期二. (3)今天是星期一当且仅当明天是星期二. (4)若今天是星期一, 则明天是星期三.令p: 今天是星期一; q: 明天是星期二; r: 明天是星期三(1) p q 1.(2) q p 1.(3) p q 1.(4) p r 当p 0 时为真; p 1 时为假1.14.将下列命题符号化.(1) 刘晓月跑得快, 跳得高.(2) 老王是山东人或河北人.(3) 因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小组.(5) 李辛与李末是兄弟.(6) 王强与刘威都学过法语. (7) 他一面吃饭, 一面听音乐. (8)如果天下大雨, 他就乘班车上班. (9)只有天下大雨, 他才乘班车上班. (10)除非天下大雨, 他才乘班车上班. (11)下雪路滑, 他迟到了.(12)2 与4 都是素数, 这是不对的.(13) “或24 是素数, 这是不对的”是不对的.(1) p q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高.(2) p q, 其中, p: 老王是山东人, q: 老王是河北人.(3) p q, 其中, p: 天气冷, q: 我穿了羽绒服.(4) p, 其中, p: 王欢与李乐组成一个小组, 是简单命题.(5) p, 其中, p: 李辛与李末是兄弟.(6) p q, 其中, p: 王强学过法语, q: 刘威学过法语.(7) p q, 其中, p: 他吃饭, q: 他听音乐.(8) p q, 其中, p: 天下大雨, q: 他乘班车上班.(9) p q, 其中, p: 他乘班车上班, q: 天下大雨.(10) p q, 其中, p: 他乘班车上班, q: 天下大雨.(11) p q, 其中, p: 下雪路滑, q: 他迟到了.12) (p q)或p q, 其中, p: 2 是素数, q: 4 是素数. (13) (p q)或p q, 其中, p: 2 是素数, q: 4 是素数.1.15.设p: 2+3=5.q: 大熊猫产在中国.r: 复旦大学在广州. 求下列复合命题的真值:(1)(p q) r(2)(r (p q)) p(3) r (pq r)(4)(p q r) (( p q) r)(1)真值为0.(2)真值为0.(3)真值为0.(4)真值为1.注意: p,q是真命题r 是假命题.1.16.略1.17.略1.18.略1.19.用真值表判断下列公式的类型:(1)p (p q r)(2)(p q) q(3) (q r) r(4)(p q) (q p)(5)(p r) ( p q)(6)((pq) (q r)) (p r)(7)(p q) (r s) (1) , (4), (6)为重言式.(3) 为矛盾式.(2) , (5), (7)为可满足式1.20.略1.21.略1.22.略1.23.略1.24.略1.25.略1.26.略1.27.略1.28.略1.29.略1.30.略1.31.将下列命题符号化, 并给出各命题的真值:(1) 若3+=4, 则地球是静止不动的(2) 若3+2=4, 则地球是运动不止的. (3)若地球上没有树木, 则人类不能生存(4) 若地球上没有水, 则3 是无理数.(1) p q, 其中, p: 2+2=4, q: 地球静止不动, 真值为0.(2) p q, 其中, p: 2+2 =4, q: 地球运动不止, 真值为 1.(3) p q, 其中, p: 地球上有树木, q: 人类能生存, 真值为 1.(4) p q, 其中, p: 地球上有水, q: 3 是无理数, 真值为 1.习题二2.1. 设公式 A = p q, B = p q, 用真值表验证公式 A 和 B 适合德摩根律:(A B) A B.p q A =p q B =p q (A B) A B0 0 1 0 0 00 1 1 0 0 01 0 0 1 0 01 1 1 0 0 0因为(A B)和 AB 的真值表相同,所以它们等值.2.2. 略2.3. 用等值演算法判断下列公式的类型, 对不是重言式的可满足式, 再用真值表法求出成真赋值.(1) (p q q)(2)(p (p q)) (p r)(3)(p q) (p r)(1) (p q q) ((p q) q) ( p q q) p q q p 0 0 0. 矛盾式. (2)重言式.(3) (p q) (p r) (p q) (p r) p q p r 易见, 是可满足式, 但不是重言式. 成真赋值为: 000,001, 101, 111p q r p q p r0 0 0 1 1 1 1 00 0 1 1 1 1 1 00 1 0 1 0 0 0 00 1 1 1 0 0 0 01 0 0 0 0 1 0 01 0 1 0 0 1 1 11 1 0 0 0 0 0 01 1 1 0 0 0 1 12.4. 用等值演算法证明下面等值式:(1) p (p q) (p q)(3) (p q) (p q) (p q)(4) (p q) ( p q) (p q) (p q)(1) (p q) (p q) p (q q) p 1 p.(3) (p q)((p q) (q p)) (( p q) ( q p))(p q) (q p)(p q) (p p) ( q q) ( p q)(p q) (p q)(4) (p q) ( p q)(p p) (p q) ( q p) ( q q) (p q) (p q)2.5. 求下列公式的主析取范式, 并求成真赋值:(1)( p q) ( q p)(2) (p q) q r(3)(p (q r)) (p q r)(1)( p q) ( q p)(p q) ( q p)pq q pp qq p(吸收律) (p p) q p (q q)pq p q p q p qm10 m 00 m11 m10m0 m2 m3(0, 2, 3). 成真赋值为00, 10, 11.(2) 主析取范式为0, 无成真赋值, 为矛盾式. (3)m0 m1 m2 m3 m4 m5 m6 m7, 为重言式. 2.6. 求下列公式的主合取范式, 并求成假赋值:(1) (q p) p(2) (p q) ( p r)(3) (p (p q)) r(1) (q p) p( q p) pq p p q0 0 M0 M1 M2 M3 这是矛盾式. 成假赋值为00, 01, 10, 11. (2)M4, 成假赋值为100.(3) 主合取范式为1, 为重言式.2.7. 求下列公式的主析取范式, 再用主析取范式求合取范式(1)(p q) r(2)(p q) (q r)(1)m1 m3 m5 m6 m7 M0 M2 M4(2)m0 m1 m3 m7 M2 M4 M5 M62.8. 略2.9. 用真值表求下面公式的主析取范式(2) (p q) (p q)p q (p q) (p q)0 0 1 0 0 10 1 1 1 1 01 0 0 1 1 11 1 1 0 0 0(2)从真值表可见成真赋值为01, 10. 于是(p q) (p q) m1 m2.2.10. 略2.11. 略2.12. 略2.13. 略2.14. 略2.15. 用主析取范式判断下列公式是否等值: (1) (p q) r 与q (p r)(2)(p q) r( p q) r( p q) rp q rp q (r r) (p p) (q q) rp q r p q rp q r p q r p q r p q r= m101 m100 m111 m101 m011 m001m1 m3 m4 m5 m7= (1, 3, 4, 5, 7).而q (p r)q ( p r)q p r( p p) q ( r r) p ( q q) ( r r)( p p) ( q q) r( p q r) ( p q r) (p q r) (p q r)( p q r) ( p q r) ( p q r) ( p q r)(p q r) (p q r) (p q r) (p q r)= m0 m1 m4 m5m0 m1 m2 m3m1 m3 m5 m7m0 m1 m2 m3 m4 m5 m7(0 , 1,3, 4, 5, 7).2,两个公式的主吸取范式不同, 所以(p q) r? q (p r).2.16. 用主析取范式判断下列公式是否等值(1)(p q) r 与q (p r)(2) (p q)与(p q)(1)(p q) r) m1 m3 m4 m5 m7q(p r) m0 m1 m2 m3 m4 m5 m7所以(p q) r) ? q (p r)(2)(p q) m0 m1 m2(p q) m0所以(p q) ? (p q)2.17. 用主合取范式判断下列公式是否等值(1)p (q r) 与(p q) r(2)p (q r) 与(p q) r(1)p (q r) M6(p q) r M6所以p (q r) (p q) r(2)p (q r) M6(p q) r M0 M1 M2 M6 所以p (qr) ? (p q) r2.18. 略2.19. 略2.20.将下列公式化成与之等值且仅含{ , } 中联结词的公式(3)(p q) r.注意到 A B (A B) (B A)和 A B ( A B) (A B)以及 A B A B. (p q) r(p q r) (r p q)( (p q) r) (r (p q))(( (p q) r) (r (p q))) 注联结词越少, 公式越长.2.21. 证明:(1) (p q) (q p), (p q) (q p).(p q) (p q) (q p) (q p).(p q) (p q) (q p) (q p).2.22. 略2.23. 略2.24. 略2.25. 设A, B, C 为任意的命题公式.(1) 若 A C B C, 举例说明 A B 不一定成立. (2)已知 A C B C, 举例说明 A B 不一定成立. (3) 已知A B, 问: AB 一定成立吗?(1) 取 A = p, B = q, C = 1 (重言式), 有AC B C, 但A ? B.(2) 取 A = p, B = q, C = 0 (矛盾式), 有AC B C, 但A ? B. 好的例子是简单, 具体, 而又说明问题的. (3)一定.2.26. 略2.27. 某电路中有一个灯泡和三个开关A,B,C. 已知在且仅在下述四种情况下灯亮(1) C 的扳键向上, A,B 的扳键向下.(2) A 的扳键向上, B,C 的扳键向下.(3) B,C 的扳键向上, A 的扳键向下.(4) A,B 的扳键向上, C 的扳键向下.设F 为1 表示灯亮, p,q,r 分别表示A,B,C 的扳键向上. (a) 求 F 的主析取范式.(b) 在联结词完备集{ , } 上构造 F. (c)在联结词完备集{ , , } 上构造 F.(a) 由条件(1)-(4)可知, F 的主析取范式为F ( p q r) (p q r) ( p q r) (p q r) m1 m4 m3 m6m1 m3 m4 m6(b )先化简公式2.28. 一个排队线路 , 输入为 A,B,C, 其输出分别为 F A ,F B ,F C . 本线路中 , 在同一时间内只能有一个信号通过 ,若同 时有两个和两个以上信号申请输出时 , 则按 A,B,C 的顺序输出 . 写出 F A ,F B ,F C 在联结词完备集 { , } 中的 表达式 .根据题目中的要求 , 先写出 F A ,F B ,F C 的真值表 (自己写) 由真值 表可先求出他们的主析取范式 , 然后化成{ , } 中的公式 F A m 4 m 5 m 6 m 7p(已为{ , } 中公式 )F Bm 2 m 3pq(已为{, } 中公式 )F Cm 1p q r(已为{ ,} 中公式 )2.29. 略 2.30. 略q(( p r) (p r)) q (( p r) (p r)) (q q) (( p r) (pr))(p r) (pr)(( p r)(p r))(已为{ , } 中公式) (c )(p r) (pr)(p r) ( p r)( p r) ( p r)(p r) ( p r)(r p) (p r)(已为{ , , }中公式 )q r) (p q r) ( p q r) (p qr)3.1. 略3.2. 略3.3. 略3.4. 略3.5. 略3.6. 判断下面推理是否正确. 先将简单命题符号化, 再写出前提, 结论, 推理的形式结构(以蕴涵式的形式给出) 和判断过程( 至少给出两种判断方法):(1) 若今天是星期一, 则明天是星期三;今天是星期一. 所以明天是星期三. (2)若今天是星期一, 则明天是星期二;明天是星期二. 所以今天是星期一. (3)若今天是星期一, 则明天是星期三;明天不是星期三.所以今天不是星期一. (4)若今天是星期一, 则明天是星期二;今天不是星期一. 所以明天不是星期二.(5)若今天是星期一, 则明天是星期二或星期三. (6)今天是星期一当且仅当明天是星期三;今天不是星期一. 所以明天不是星期三.设p: 今天是星期一, q: 明天是星期二, r: 明天是星期三. (1)推理的形式结构为(p r) p r此形式结构为重言式, 即(p r) p r 所以推理正确. (2) 推理的形式结构为(p q) q p 此形式结构不是重言式, 故推理不正确. (3)推理形式结构为(p r) r p此形式结构为重言式, 即(p r) r p 故推理正确. (4) 推理形式结构为(p q) p q 此形式结构不是重言式, 故推理不正确. (5)推理形式结构为p (q r)它不是重言式, 故推理不正确. (6)推理形式结构为(p r) p r此形式结构为重言式 , 即(p r) p r 故推理正确 .推理是否正确 , 可用多种方法证明 . 证明的方法有真值表法 , 等式演算法 . 证明推理正确还可用构造证明法 下面用构造证明法证明 (6)推理正确3.7. 略 3.8. 略3.9. 用三种方法 (真值表法 , 等值演算法 , 主析取范式法 )证明下面推理是正确的 :若a 是奇数, 则a 不能被 2 整除. 若a 是偶数, 则a 能被 2 整除. 因此, 如果a 是偶数, 则a 不是奇数. 令 p: a 是奇数 ; q: a 能被 2 整除 ; r: a 是偶数 . 前 提: p q, r q.结论 : r p.形式结构 : (p q) (r q) (r p).3.10. 略3.11. 略3.12. 略3.13. 略3.14. 在自然推理系统 P 中构造下面推理的证明 : (1)前 提: p (q r), p, q结论 : r s(2) 前提 : p q, (q r), r结论 : p(3) 前提 : p q结论 : p (p q)(4) 前提 : q p, q s, s t, t r结论 : p q(5) 前提: p r, q s, p q前提 : p r, p 结论 : r 证明 : ①p r ② (p r) (r③ r p④ p⑤ r 所以, 推理正确 .前提引入p) ①置换 ② 化简律 前提引入 ③④拒取式结论: r s(6)前提: p r, q s, p q结论: t (r s) (1) 证明:①p (q r) 前提引入前②p提引入③qr ①② 假言推理④q前提引入⑤r ③④ 假言推理⑥rs ⑤附加律(2) 证明:①(q r) 前提引入②qr ①置换③r 前提引入④q ②③ 析取三段论⑤pq 前提引入⑥p④⑤ 拒取式(3) 证明:①p q前提引入②p q①置换③(p q) ( p p) ②置换④p(p q) ③置换⑤p(p q)④置换也可以用附加前提证明法, 更简单些.(4) 证明:①②st 前提引入①置换(s t) (t s)③ts ②化简前提④tr 引入⑤t ④化简⑥s ③⑤ 假言推理⑦qs 前提引入⑧(s q) (q s) ⑦置换⑨sq ⑧化简⑩q⑥⑥ 假言推理(5) 证明 : ① pr 前提引入 前② qs 提引入③ pq 前提引入④ p ③化简⑤ q ③化简⑥ r ①④ 假言推理⑦ s ②⑤ 假言推理 ⑧ rs ⑥⑦ 合取(6) 证明 :① t 附加前提引入② pr 前提引入③ pq 前提引入④ p ③化简⑤ r ②④ 析取三段论 ⑥ rs ⑤附加说明: 证明中 , 附加提前 t, 前提 q s 没用上. 这仍是正确的推理 .(1) 证明:附加前提引入前提引入○11 ○1 前提引入⑩○11 假言推理⑩○12 合取③ ④ ⑤ ⑥ ⑦ (q r) ①② 假言推理 前提引入③④ 假言推理 前提引入⑤⑥ 假言推理3.15.在自然推理系统 P 中用附加前提法证明下面各推理(1)前提 : p 结论 : s(q r), s p, q(2)前提: (p 结论 : pq) (r s), (s t) u(2) 证明:(1)前提: p q, r q, r s 结论 : p(2) 前提: p q, p r, q s结论 : r s(1) 证明: ① P 结论否定引入② p q 前提引入③ q①② 假言推理④ r q 前提引入⑤ r③④ 析取三段论 ⑥ r s 前提引入⑦ r⑥ 化简⑧ r r ⑤⑦ 合取⑧为矛盾式 , 由归谬法可知 , 推理正确 .(2)证明:① (r s) 结论否定引入② pq 前提引入③ pr 前提引入④ qs 前提引入⑤ rs ②③④ 构造性二难 ⑥ (r s) (r s) ①⑤ 合取①P 附加前提引入② pq①附加③ (p q) (r s)前提引入④ rs ②③ 假言推理⑤ S ④化简⑥ st ⑤附加⑦ (s t) u 前提引入⑧u ⑥⑦ 假言推理3.16.在自然推理系统 P 中用归谬法证明下面推理⑥为矛盾式, 所以推理正确3.17. P53 17. 在自然推理系统P 中构造下面推理的证明:只要 A 曾到过受害者房间并且11 点以前没用离开, A 就犯了谋杀罪. A 曾到过受害者房间. 如果 A 在11 点以前离开, 看门人会看到他. 看门人没有看到他. 所以A 犯了谋杀罪.令p: A 曾到过受害者房间; q: A 在11 点以前离开了; r: A 就犯了谋杀罪; s:看门人看到 A. 前提: p q r, p, qs, s.结论: r.前提: p q r, p, q s, s; 结论证明:①s 前提引入② q s 前提引入③q ①②拒取④p 前提引入⑤ p q ③④合取⑥ p q r 前提引入⑦r ⑤⑥假言推理3.18. 在自然推理系统P 中构造下面推理的证明.(1) 如果今天是星期六, 我们就要到颐和园或圆明园去玩. 如果颐和园游人太多, 我们就不去颐和园玩. 今天是星期六. 颐和园游人太多. 所以我们去圆明园玩.(2) 如果小王是理科学生, 他的数学成绩一定很好. 如果小王不是文科生, 他必是理科生. 小王的数学成绩不好. 所以小王是文科学生.(3) 明天是晴天, 或是雨天;若明天是晴天, 我就去看电影;若我看电影, 我就不看书. 所以, 如果我看书则明天是雨天.(1) 令p: 今天是星期六; q: 我们要到颐和园玩; r: 我们要到圆明园玩; s:颐和园游人太多前提: p (q r), s q,p, s.结论: r.①p前提引入②p q r前提引入③qr①②假言推理④s前提引入⑤s q前提引入⑥q④⑤假言推理⑦r ③⑥析取三段论(1)的证明树(2) 令p: 小王是理科生, q: 小王是文科生, r: 小王的数学成绩很好. 前(3) 令p: 明天是晴天, q: 明天是雨天, r: 我看电影, s: 我看书. 前提: p q, p r, r s结论: s q证明:rs④⑤⑥⑦pr ppq q附加前提引入前提引入①②拒取式前提引入③④ 拒取式前提引入⑤⑥析取三段论提: p r, q p, 结论: q 证明:r①p r 前提引入②r 前提引入③p①② 拒取式④q p前提引入⑤q③④ 拒取式习题四4.1. 将下面命题用 0 元谓词符号化 : (1)小王学过英 语和法语 . (2)除非李建是东北人 , 否则他一定 怕冷.(1) 令 F(x): x 学过英语 ; F(x): x 学过法语 ; a: 小王. 符号化为 F(a) F(b).或进一步细分 , 令 L(x, y): x 学过 y; a: 小王; b 1: 英语; b 2: 法语. 则符号化为L(a, b 1) L(a, b 2).(2) 令 F(x): x 是东北人 ; G(x): x 怕冷; a: 李建. 符号化为F(a) G(a) 或 G(a) F(a).或进一步细分 , 令 H(x, y): x 是y 地方人; G(x): x 怕冷; a: 小王; b: 东北.则符号化H(a, b) G(a) 或 G(a) H(a, b).H(a, b) G(a) 或 G(a) H(a, b).4.2. 在一阶逻辑中将下面命题符号化 , 并分别讨论个体域限制为 (a),(b)时命题的真值 :(1)凡有理数都能被 2 整除 . (2) 有的有理数能被 2 整除. 其中(a)个体域为有理数集 合 , (b) 个体域为实数集合 .的 x, 均有 x 2 2=(x+ 2 )(x(2) 存在 x, 使得 x+5=9.其中 (a)个体域为自然数集合(1) (a)中, x(x 2 2=(x+ 2 )(x 2 )), 真值为 1.(b)中, x(F(x) (x 2 2=(x+ 2 )(x 2 )))), 其中, F(x): x 为实数, 真值为1. (2)(a) 中, x(x+5=9),真值为 1.(b)中, x(F(x) (x+5=9)), 其中, F(x): x 为实数, 真值为 1.4.4. 在一阶逻辑中将下列命题符号化(1)没有不能表示成分数的有理数 (2)在北京卖菜的人不全是外地人(1)(a)中, (b)中, x(G(x) F(x)), 其中, G(x): x 为有理数中, xF(x), 其中, F(x): x 能被 2 整除,(b)中, x(G(x) F(x)), 其中, F(x)同(a)中, 真值为 0. (2)(a) x 为有理数 , 真值为 1.4.3. 在一阶逻辑中将下面命题符号化 并分别讨论个体域限制为 (a),(b)时命题的真值 : (1)对于任意 2 ). , (b) 个体域为实数集合 , 其中, F(x): x 能被 2(3) 乌鸦都是黑色的 . (4)有的人天 天锻炼身体 .没指定个体域 , 因而使用全总个体域 .(1)x(F(x) G(x))或 x(F(x) G(x)), 其中, F(x): x 为有理数, G(x): x 能表示成分数 . (2)x(F(x) G(x))或 x(F(x) G(x)), 其中, F(x): x 在北京卖菜 , G(x): x 是外地人 . (3)x(F(x) G(x)), 其中, F(x): x 是乌鸦, G(x): x 是黑色的 . (4) x(F(x) G(x)), 其中, F(x): x 是人, G(x): x 天天锻炼身体 .4.5. 在一阶逻辑中将下列命题符号化 : (1)火车都比 轮船快 . (2)有的火车比有的汽车快 . (3)不存在 比所有火车都快的汽车 . (4) “凡是汽车就比火 车慢 ”是不对的 .(1) x y z(x y = z);(2) x y(x y = 1).③ “对于任意整数 x 和 y, 都存在整数 z, 使得 x y = z. 选③, 直接翻译 , 无需数理逻辑以外的知识 . 以下翻译意思相 同, 都是错的 :“有个整数 , 它是任意两个整数的差 . ”“存在一个整数 , 对于任意两个整数 , 第一个整数都等于这两个整数相减“存在整数 z, 使得对于任意整数 x 和y, 都有 x y = z.”这 3 个句子都可以符号化为z x y(x y = z).0 量词顺序不可随意调换 .(2) 可选的翻译 :(1) 可选的翻译 : ① “任意两个整数的差是整数 ② “对于任意两个整 第三个整数 , 它等于这两个整数相减 . ” 因为没指明个体域 , 因而使用全总个体域(1) x y(F(x)(2) x y(F(x)(3) 或 x(F(x) x(F(x) G(y) H(x,y)), 其中, F(x): x 是火车 , G(y): y 是轮船 , H(x,y):x 比 火车, G(y): y 是汽车, H(x,y):x 比 y 快. H(x,y))) H(x,y))), 其中, F(x): x 是汽车 , G(y): y 是火车, y(G(y) y(G(y)(4) 或 x y(F(x) G(y) x y(F(x) G(y)(x,y))(x,y) ), 其中, F(x): x 是汽车, G(y): y 是火车 , H(x,y):x 比y 慢. 4.7. 将下列各公式翻译成自然语言y):x 4.6. 略? , 并判断各命题的真假 .① “每个整数都有一个倒数 . ”② “对于每个整数 , 都能找到另一个整数 , 它们相乘结果是零③ “对于任意整数 x, 都存在整数 y, 使得 xy = z.”选③, 是直接翻译 , 无需数理逻辑以外的知识 4.8. 指出下列公式中的指导变元 , 量词的辖域 , 各个体变项的自由出现和约束出现 :(3) x y(F(x, y) G(y, z)) xH(x, y, z)x y( F( x, y) G(y,z)) xH(x,y,z)前件 x y(F(x, y) G(y, z)) 中, 的指导变元是 x, 的辖域是 是(F(x, y) G(y, z)). 后件 xH(x, y, z) 中 , 的指导变元是 x, 的辖域是 H(x, y, z). 整个公式中 , x 约束出现两次 , y 约束出现两次 , 自由出现一次 ; z 自由出现两次 .4.9. 给定解释 I 如下 : (a)个体 域 D I 为实数集合 .(b)D I 中特定元素 a =0. (c)特定 函数 f ( x,y)= x y, x,y ∈D I .(d)特定谓词 F(x,y): x=y, G(x,y): x<y, x,y ∈D I . 说明 下列公式在 I 下的含义 , 并指出各公式的真值 : (1)4.10. 给定解释 I 如下 :(a)个体域 D=? (? 为自然数 ).(b)D 中特定元素 a=2.(c)D 上函数 f (x,y)=x+y, g (x,y)=x ·y. (d) D 上谓词 F (x,y): x=y.说明下列公式在 I 下的含义 , 并指出各公式的真值(1) xF(g(x,a),x)(2) x y(F(f(x,a),y) F(f(y,a),x))(3) x y z(F(f(x,y),z)(4) xF(f(x,x),g(x,x))(2) x y(F(f(x,y),a) G(x,y))(3) x y(G(x,y) F(f(x,y),a))(4) x y(G(f(x,y),a) F(x,y))x y(G(x,y) F(x,y))y(F(x, y) G(y, z)); 的指导变元是 y, 的辖域(1)(2)(3)y(x<y x y), 真值为 1. y((x y=0) x<y), 真值为 0. y((x<y) (x y 0)), 真值为 1 (4) y((x y<0) (x=y)), 真(1) x(x ·2=x), 真值为 0.(2) x y((x+2=y) (y+2=x)), 真值为 0.(3) x y z(x+y=z),真值为 1.(4) x(x+x=x ·x),真值为 1.4.11. 判断下列各式的类型 :(1) F(x, y) (G(x, y) F(x, y)).(3) x yF(x, y) x yF(x, y).(5) x y(F(x, y) F(y, x)).(1) 是命题重言式 p (q p) 的代换实例 , 所以是永真式 .(3) 在某些解释下为假 (举例), 在某些解释下为真 (举例), 所以是非永真式的可满足式(5) 同(3).4.12. P69 12. 设I 为一个任意的解释 , 在解释 I 下, 下面哪些公式一定是命题 ? (1) xF(x, y)yG(x, y). (2) x(F(x)G(x)) y(F( y) H( y)) (3) x( yF(x, y)yG(x, y)). (4) x(F(x)G(x)) H( y).4.15. (1) 给出一个非闭式的永真式 .(2) 给出一个非闭式的永假式 .(3) 给出一个非闭式的可满足式 , 但不是永真式(1) F(x) F(x).(2) F(x) F(x).(3) x(F(x, y) F(y, x)).4.13.略4.14.证明下面公式既不是永真式也不是矛盾式 : (1) x(F(x) y(G(y) H(x,y)))(2) x y(F(x) G(y) H(x,y)) (2), (3) 一定是命题 , 因为它们是闭x. 数 , H(x,y): x<y 为真命题 , 所以该公式不是矛盾式 . (1) 取个体域为全总个体域 . 解释 I 1: F(x) 在 I 1 下 : x(F(x) 解释 I 2: F(x),G(y)同 I 1, 在 I 2 下 : x(F(x) y(G(y) H (x,y)))为假命题, 所以该公式不是永真式 . (2) 请读者给出不同解释 , 使其分别为成真和成假的命题即可 . : x 为有理数 , G(y): y 为H(x,y5.1. 略5.2. 设个体域 D={ a,b,c}, 消去下列各式的量词 :xF(x) yG(y)(1) x(F(x) G(x))(2) x(F(x) G(x))(1)I 1: F(x):x ≤2G,(x):x ≤3 F(1),F(2),G(1),G(2)均为真, 所以(F(1) G(1) (F(2) G(2))为真.I 2: F(x)同 I 1,G(x):x ≤0 则F (1),F(2)均为真, 而 G(1),G(2)均为假,x(F(x) G( x))为假. (2)留给读者自己 做.5.4. 略5.5. 给定解释 I 如下: (a) 个体域 D={3,4}.(b) f (x)为 f (3)=4, f (4)=3. (c) F(x,y)为F(3,3)= F(4,4)=0, F(3,4)= F (4,3)=1.习题五(1) (1) (2) (3) (4) x y(F(x) x y(F(x) xF(x) x(F(x,y) G(y)) G(y)) yG(y) yG(y))x y(F(x) G(y))(2) (3) (4) (F(a) F(b)) F(c))x y(F(x) G(y)) xF(x) yG(y) (F(a) F(b) F(c)) xF(x) yG(y) (F(a) F(b) F(c)) x(F(x,y) yG(y)) xF(x,y) yG(y)(G(a) (G(a) (G(a) G(b) G(b) G(b) G(c)) G(c)) G(c))(F(a,y) F(b,y) F(c,y)) (G(a) G(b) G(c)) (F(a,y) F(b,y) F(c,y)) (G(a) G(b) G(c))5.3. 设个体域 D={1,2}, 请给出两种不同的解释 I 1 和I 2, 使得下面公式在 I 1 下都是真命题 , 而在 I 2 下都是假命题.x(F(x) G(x))试求下列公式在 I 下的真值 :(1) x yF(x,y)(2) x yF(x,y)(3) x y(F(x,y) F(f(x),f(y))) (1) x yF(x,y) (F(3,3) F(3,4))(F(4,3) F(4,4)) (0 1) (1 0)1 (2) x yF(x,y)(F(3,3) F(3,4))(F(4,3) F(4,4)) (0 1) (1 0) 0(3) x y(F(x,y) F(f(x),f(y)))(F(3,3)F(f(3),f(3))) (F(4,3)F(f(4),f(3))) (F(3,4)F(f(3),f(4))) (F(4,4)F(f(4),f(4))) (0 0) (1 1) (1 1) (0 0)5.6. 略5.7. 略5.8. 在一阶逻辑中将下列命题符号化 , 要求用两种不同的等值形式(1) 没有小于负数的正数 .(2) 相等的两个角未必都是对顶角 .5.9. 略5.10. 略5.11. 略5.12. 求下列各式的前束范式 .(1) xF(x) yG(x, y);(3) xF(x, y) xG(x, y); (5) x 1F(x 1, x 2) (F(x 1)x 2G(x 1, x 2)). 前束范式不是唯一的 .(1) xF(x)yG(x, y) x(F(x) yG(x, y))(1) 令 F(x): x 小于负数 , G(x): x 是正数 . 符合化为 : x((F(x) G(x))x(G(x) G(x)).等的 , L(x, y): x 与 y 是对顶角(2) 令 F(x): x 是角, H(x, y): x 和 . 符合化为 : x y(F(x) F(y) H(x, y) L(x, y))x y(F(x) F(y) H(x, y) L(x, y))L(x, y))). (F(y) H(x, y)(F(x)x 3 x 4(G(x 3, y) F(x 4, y)) G(x 2, y))(G(x 3, y) F(x 4, y))). 5.13. 将下列命题符号化 , 要求符号化的公式全为前束范式(1) 有的汽车比有的火车跑得快 .(2) 有的火车比所有的汽车跑得快(3) 说所有的火车比所有的汽车跑得快是不对的(4) 说有的飞机比有的汽车慢是不对的(1) 令 F(x): x 是汽车, G( y): y 是火车, H(x, y): x 比y 跑得快.x(F(x) y(G( y) H(x, y))x y(F(x) G( y) H(x, y)).(2) 令 F(x): x 是火车, G( y): y 是汽车, H(x, y): x 比 y 跑得快.x(F(x) y(G( y) H(x, y)))5.14. 略(1) 前提 : xF(x) 结论 : xR(x).(2) 前提 : x(F(x) (G(a) R(x))), 结论 : x(F(x) R(x))(3) 前提 :x(F(x) G(x)), xG(x) 结论 : xF(x)(4) 前提 : x(F(x) G(x)), x( G(x) 结论 : xF(x) R(x)), xR(x)xF(x) x y(F(x)G(x, y)). (3) xF(x, y)xG(x, y) ( xF(x, y)xG(x, y)) ( xG(x, y) xF(x, y)) ( x 1F (x 1, y) x 2G(x 2, y)) ( x 3G(x 3, y) x 4F(x 4, y))x 1 x 2(F(x 1, y) G(x 2, y)) x 1 x 2 x 3 x 4((F(x 1, y) y(F(x) (G( y) H(x, y))) xy(F(x)(不是前束范式 ) x y(F(x)(4)令 F(x): x 是飞机, G( y): y 是汽车, H x(F(x) y(G( y) H(x, y)))x y(F (x) G( y) H(x, y)) (不是前束范式 )x y (F(x) x y(F(x) G( y) H(x, y))., y): x 比 y 跑得慢 .G( y) H(x, y))5.15. 在自然推理系统 F 中构造下面推理的证明 :y((F(y) G(y)) R(y)), xF(x)x 0 错误的答案 : x y(F (x)(3)令 F(x): x 是火车, G( y):x) (G( y) H(x, y))). H(x, y)).车, H(x, y): x 比 y 跑得快. y(G( y) H(x, y)))y)) y)). H ( y)① xF(x) y((F(y) G(y)) R(y)) 前提引入② xF(x) 前提引入③ y((F(y) G(y)) R(y)) ①②假言推理 ④ (F(c) G(c)) R(c) ③UI⑤ F(c) ①EI⑥ F(c) G(c) ⑤附加⑦ R(c) ④⑥假言推理 ⑧ xR(x) ⑦EG(2) 证明 :前提引入①UI前提引入③UI前提引入⑤UI④⑥ 析取三段论②⑦ 析取三段论UG5.16. 略① xF(x) 前提引入② F(c) ①EI③ x(F(x) (G(a) (R(x))) 前提引入④ F(c) (G(a) R(c)) ④UI⑤ G(a) R(c) ②④ 假言推理⑥ R(c) ⑤化简⑦ F(c) R(c) ②⑥ 合取⑧ x(F(x) R(x)) ⑥EG(3) 证明:① ② ③ ④ ⑤ ⑥ ⑦ x G(x) G(c) x(F(x) G(x F(c) G(c) F(c) xF(x) 前提引入①置换②UI(4) 证明:前提④UI③⑤ 析取三段⑥EG① x(F(x) G(x)) ② F(y) G(y) ③ x( G(x) R(x)) ④ G(y) R(y) ⑤ xR(x) ⑥ R(y) ⑦ G(y) ⑧ F(y) ⑥ xF(x)5.18. 略5.19. 略5.20. 略5.21. 略5.22. 略5.23. 在自然推理系统 F 中, 证明下面推理 :(1) 每个有理数都是实数 , 有的有理数是整数 , 因此有的实数是整数 .(2) 有理数 , 无理数都是实数 , 虚数不是实数 , 因此虚数既不是有理数 , 也不是无理数(3) 不存在能表示成分数的无理数 , 有理数都能表示成分数 , 因此有理数都不是无理数设: F( x): x 为有理数 , G(x):x 为无理数 , R( x)为实数 , H(x)为虚数前提: x((F(x) G(x)) R(x)), x(H(x) R(x))结论:x(H(x) ( F(x) G(x)))证明:①x((F(x) G(x) R(x)) 前提引入 ②F(y) G(y)) R(y) ①UI ③x(H(x) R(x)) 前提引入 ④H(y) R(y) ③UI ⑤R(y) (F(y) G(y)) ②置换 ⑥H(y) (F(y) G(y)) ④⑤假言三段论 ⑦ H(y) ( F(y) G(y))⑥置换 (1)设 F(x):x 为有理数 , R(x):x 为实数 , G( x): x 是整数 . 前提 结论 证明 ① ②③ ④ ⑤ ⑥ ⑦ ⑧ ⑥ x(F(x) x(R(x) x(F(x) F(c) G F(c) G(c) x(F(x) F(c) R(c R(c) ②化简前提引入⑤UI R(c) G(c) ④⑦ 合x(R(x) G(x))⑧ EG (2) x(F(x)) R(x))G(x))(c)R(x)), G(x))前提引入 EI ②x(H(x) ( F(x) G(x)))⑦UG5.24. 在自然推理系统 F 中, 构造下面推理的证明 : 每个喜欢步行的人都不喜欢骑自行车 . 每个人或者喜欢骑自行车或者喜欢乘汽车 . 有的人不喜欢乘汽车 所以有的人不喜欢步行 . (个体域为人类集合 )5.25. 略(3) H(x)为有理数 前提: x(G(x) F(x)), x(H(x) F(x))结论: x(H(x) G(x))证明: ① x(H(x) F(x)) 前提引入 ② H(y) F(y)①UI ③ x(G(x) F(x))前提引入 ④G(y) F(y) ③UI ⑤ F(y) G(y) ④置换 ⑥ H(y) G(y) ②⑤ 假言三段论 ⑦ x(H(x) G(x)) ⑥UG设: F( x): x 能表示成分数 , G(x):x 为无理数 , 令 F(x): x 喜欢步行 , G( x): x 喜欢 前提 : x(F(x) 结论 : x F(x). ① x(G(x) H(y))② G(c) H(c③ x H(x)④ H(c)⑤ G(c)⑥ x(F(x)⑧ F(c)前提引入UI 前提引入 ③UI ④析取三段 引入 ⑨ x F(x)行车 , H(x): x 喜欢乘汽车 . G(x)), x(H(y)), x H(x). G(x)) ⑥ ⑦ F(c) G(c)⑤⑦拒取 G6.1. 选择适当的谓词表示下列集合(1) 小于 5 的非负整数(2) 奇整数集合(3) 10 的整倍数的集合(1){ x|x ∈ ? 0≤x<5}(2){ x|x=2k+1 k ∈? } (3) { x|x=10k k ∈? }6.2. 用列元素法表示下列集合 : (1)S 1 = {x|x 是十进制的数字 } (2)S 2={ x|x = 2 x =5} (3)S 3= { x|x = x ∈ ?3<x<12}x 2- 1 = 0 x>3} (5)S 5={ x, y>|x, y ∈? 0≤x ≤2 1≤y ≤ 0}(1) S 1={0,1,2,3,4,5,6,7,8,9}(2) S 2={2,5}(3) S 3={4,5,6,7,8,9,10,11}(4) S 4=(5) S 5={ 0, 1, 1, 1, 2,1,0,0,1,0, 2,0}6.3. 略6.4. 设 F 表示一年级大学生的集合 , S 表示二年级大学生的集合 , M 表示数学专业学生的集合 , R 表示计算机专业学生的集合 , T 表示听离散数学课学生的集合 , G 表示星期一晚上参加音乐会的学生的集合 , H 表示 星期一晚上很迟才睡觉的学生的集合 . 问下列各句子所对应的集合表达式分别是什么 ? 请从备选的答 案 中挑出来 .(1) 所有计算机专业二年级的学生在学离散数学课 . (2) 这些且只有这些学离散数学课的学生或者星期一晚上去听音乐会的学生在星期一晚上很迟才睡觉 .(3) 听离散数学课的学生都没参加星期一晚上的音乐会 .(4)这个音乐会只有大学一 , 二年级的学生参加 . (5)除去数学专业和计算机专业以外的二年级学生都去参 加了音乐会 . 备选答案 :①T G ∪H ②G ∪H T ③S ∩R T④ H =G ∪T ⑤T ∩G = ⑥F ∪S G⑦G F ∪S ⑧S (R ∪M) G ⑥G S (R ∩M)答案:(1)③S ∩R T (2)④H=G ∪ T (3)⑤T ∩G= (4)⑦G F ∪S (5) ⑧S (R ∪ M) G6.5. 确定下列命题是否为真 :(1)(2) ∈(3) { }(4) ∈{ }(5) { a, b} {a, b, c, {a, b, c}}习题六(4)S 4={x|x ∈(6) { a, b}∈{a, b, c, {a, b }}(7) { a, b} {a, b, {{ a, b}}}(8) { a, b}∈{a, b, {{ a, b}}}(1) 真(2)假(3) 真(4) 真(5) 真(6) 真(7) 真(8) 假6.6. 略6.7. 略6.8. 略6.9. 略6.10. 略6.11. 略6.12. 略6.13. 略6.14. 略6.15. 略6.16. 略6.17. 略6.18. 略6.19. 略6.20. 略6.21. 略6.22. 略6.23. 略6.24. 略6.25. 略6.26. 略6.27. 略6.28. 略6.29. 略6.30. 略6.31. 略6.32. 略6.33. 略6.34. 略6.35. 略6.36. 略6.37. 略6.38. 略6.39. 略6.40. 略6.41. 略6.42. 略6.43. 略6.44. 略6.45. 略习题七7.1. 已知 A={ ,{ }}, 求 A ×P(A).A ×P(A)={ , , ,{ } , ,{{ }} , ,{ ,{ }} , { }, ,{ },{ } , { },{{ }} , { },{ ,{ }} }7.2. 对于任意集合 A,B,C, 若A ×B A ×C,是否一定有 B C 成立? 为什么? 不一定, 因为有反例 : A= ,B={1}, C={2}, B C,A ×B= =A ×C.7.3. 设 A, B, C, D 是任意集合 ,(1) 求证 (A ∩B) ×(C ∩D)=(A ×C)∩B (×D).(2) 下列等式中哪个成立 ? 那些不成立 ?对于成立的给出证明 , 对于不成立的举一反例 . (A ∪B)×(C ∪D)=(A ×C)∪(B ×D) (A B) ×(C D)=( A ×C) (B ×D)(1) x,yx,y ∈(A ∩B) ×(C ∩D) x ∈A ∩B y ∈ (x ∈B y ∈ D) x,y ∈(A ×B) x,y ∈(C ×D) x,y ∈ (A ∩B) ×(C ∩D)=(A ×C) ∩B (×D)A={1,2}, B={2,3}, C={1,2}, D={2,3}(2)都不成立, 反例: (A ∪B) ×(C )={1,2,3} {×1,2,3} (A ×C)∪(B ×D) (AB) ×(C D)={1} ×{1} (A ×C) (B ×D)7.7. 列出集合 A={2, 3, 4} 上的恒等关系 I A , 全域关系 E A , 小于或等于关系 L A , 整除关系 D A . I A ={ 2,2 ,3,3 ,4,4 }E A =A ×A={ 2,2, 2,3 , 2,4 , 3,2 , 3,3 , 3,4 , 4,2 , 4,3, 4,4}L A ={ 2,2 , 2,3 , 2,4 , 3,3 , 3,4 , 4,4 }D A ={ 2,2 , 2,4 , 3,3 , 4,4 }7.8. 列出集合 A={ , { }, { , { }}, { , { }, { , { }}}} 上的包含关系R ={ , , ,{ } , ,{ ,{ }} , ,{ ,{ },{ ,{ }}} ,{ },{ } , { },{ ,{ }} , { },{ ,{ }, ,{ }},{ ,{ }}, { ,{ }} ,{ ,{ }},{ ,{ },{ ,{ }}} , { ,{ },{ ,{ }}},{ ,{ },{ ,{ }}} }7.9. 设 A={1, 2, 4, 6}, 列出下列关系 R: (1) R={ x, y|x, y ∈ A x+y 2} (2) R={ x, y|x, y ∈A |x y|=1}C ∩D (x ∈AA ×B ∩C × D7.4. 略7.5. 设 A, B 为任意集合 , 证明 若 A ×A=B ×B, 则 A=B.x ∈B) (y ∈C ∈A y ∈C)(3) R={ x, y |x, y ∈A x/y ∈A}(4) R={ x, y |x, y ∈A y 为素数 }(1)R={ 1,2 , 1,4 , 1,6 , 2,1 , 2,2 , 2,4 , 2,6 , 4,1 , 4,2 , 4,4 , 4,6 , 6,1 , 6,2 , 6,4 , 6,6 }=E A {1,1} (2)R={ 1,2 ,2,1 } (3)R={ 1,1,2,2, 4,4, 6,6,2,1,4,2,4,1} (4)R={ 1,2,2,2, 4,2, 6,2} 7.10. 略7.11. R i 是 X 上的二元关系 , 对于 x ∈X 定义集合 R i (x)={y|xR i y}.显然 Ri(x) X. 如果 X={ 4, 3, 2, 1, 0, 1, 2, 3, 4}, 且令 R 1={ x, y |x, y ∈ X x<y} R 2={ x, y |x, y ∈ X y 1<x<y+2}R 3={ x,2y |x, y ∈ X x 1 2≤y}求 R 1(0), R 1(1), R 2(0), R 2( 1), R 3(3).R 1(0)={1,2,3,4}R 1(1)={2,3,4}R 2(0)={ 1,0}R 2( 1)={ 2, 1}R 3(3)=7.12. 设A={0, 1, 2, 3}, R 是A 上的关系 , 且R={0, 0, 0, 3, 2, 0, 2, 1, 2, 3, 3, 2} 给出 R 的关系矩阵和关系图 .7.13. 设A = { 1, 2, 2, 4 , 3, 3}B = { 1, 3, 2, 4 , 4, 2}求 A ∪B, A ∩B, domA, dom(A ∪B), ranA, ranB, ran(A ∩B), fld(A B).R={ 0,1 , 0,2 , 0,3 , 1,2 , 1,3 , 2,3} 求 R ○R,R 1 ,R?{0,1}, R[{1,2}]. R ○R={ 0,2 , 0,3 , 1,3 }1R 1={ 1,0 , 2,0 , 3,0 , 2,1 ,3,1 , 3,2 } R?{0,1}={ 0,1 , 0,2 , 0,3 , 1,2 , 1,3 } R[{1,2}]={2,3}7.15. 设A={ ,{ ,{ }} , { }, }求 A 1,A 2,A 3,A?{ },A[ ],A? ,A?{{ }}, A[{{ }}].1 A 1={ { ,{ }}, , ,{ } },2A 2={ { },{ ,{ }} }, A 3= ,A?{ }={ ,{ ,{ }} }, A[ ]={ ,{ }},A ∪ B={ 1 A ∩B= domA={1,2,3}dom(A ∪B)={1,2,3,4}ranA={2,3,4}ranB={3,4,2}ran(A ∩B)={4} fld(A B)={1,2,3} 4,2}7.14.设, 1,3 , 2,4 ,A? = ,A?{{ }}={ { }, }, A[{{ }}]=7.16. 设A={a,b,c,d}, R 1,R 2 为A 上的关系 , 其中 R 1={ a,a , a,b , b,d } R 2={ a,d 2, b,c 3 , b,d , c,b } 求 R1○R 2,R 2○R 1,R 1 ,R 2 .R 1○R 2={ a,a, a,c , a,d }, R 2○R 1={ c,d },2R 1 ={ a,a , a,b , a,d }, 3R 2 ={ b,c, b,d , c,b }2 37.17. 设 A={ a,b,c}, 试给出 A 上两个不同的关系 R 1 和 R 2,使得 R 1 =R 1, R 2 =R 2.(2) (G ∪H) ○F=G ○F ∪H ○F 任取 x,y ,x,y ∈(G ∪H) ○F t( x,t∈(G ∪H) t,y ∈F) t(( x,t ∈ G t(( x,t ∈ G t( x,t ∈G x,y ∈G ○F x,y∈G ○F ∪H ○F(4) (G ∩H) ○F G ○F ∩H ○F 任取 x,y ,x,y ∈(G ∩H) ○Ft( x,t ∈(G ∩H) t,y ∈ F)t(( x,t ∈G t,y ∈H) t,y ∈ F))t(( x,t ∈ G t,y ∈F) ( x,t ∈H t,y ∈F)) t( x,t ∈G t,y ∈F) t( x,t ∈H t,y ∈F)) x,y ∈G ○F x,y ∈H ○F x,y ∈G ○F ∪H ○F7.19.证明定理 7.5 的(2), (3).(2) F[A ∪B]=F[A]∪F[B] 任取 y,R 1={ a,a , b,b },R 2={ b,c , c,b }7.18.证明定理 7.4 的(1), (2), (4).(1)F ○(G ∪H)=F ○G ∪F ○H 任取 x,y ,x,y ∈ F ○(G ∪H)t( x,t ∈ Ft( x,t ∈ F t(( x,t ∈ F t( x,t ∈ F x, t,y ∈G ∪ H( t,y ∈G t,y ∈H))t,y ∈ t,y ∈ x,y ∈∩F ○H所以有 F ○(G ∩H) F ○G ∩F ○H.x,t,y ∈ H))t,y ∈ H)) F ) ( x, t( x,t ∈ F t,y t,y t,y x,y ∈H) t,y ∈ ∈ F) ( x,t ∈ F) t( x,t ) H t,y ∈F))t,y ∈F))y ∈F[A ∪B] x( x,y ∈F x ∈ A ∪B)x( x,y ∈F (x ∈ A x ∈B))x(( x,y ∈ F x ∈A) ( x,y ∈F x ∈ B)) x( x,y ∈F x ∈ A) x( x,y ∈F x ∈B) y ∈F[A] y ∈F[B] y ∈F[A] ∪F[B]所以有 F[A ∩B]=F[A]∪F[B].(3) F? (A ∩B) F?A ∩F?B任取 x,yx,y ∈ F? (A ∩B)x,y ∈F x ∈(A ∩B) x,y ∈F (x ∈A x ∈B)( x,y ∈F x ∈ A) ( x,y ∈F x ∈ B) x,y ∈F?A x,y ∈F?Bx,y ∈ F?A ∩F?B 所以有 F? (A ∪B) F?A ∩F?B.∈(R 1∩R 2)∈R 1 1 (y,x)∈ R 2) x,y 1 ∈R 2 R 2 所以 (R 1∪R 2) 1=R 1 ∩R 2117.21. 略 7.22. 略 7.23. 略 7.24. 略 7.25. 略 7.26. 略 7.27. 略 7.28. 略 7.29. 略 7.30. 略 7.31. 略 7.32. 略 7.33. 略 7.34. 略 7.35. 略 7.36. 略 7.37. 略 7.38. 略 7.39. 略 7.40. 略7.20.设 R 1 和 R 2 为 A 上的关系 , 证明:(1)( R 1∪ R 2) 1=R 1 ∪R 21 11 1 ∩R 21 (2)( R 1∩R 2) 1=R 1(1)( R 1∪ R 2) 1=R 1 ∪ R 2任取 x,y x, y,x y,x x,y x,y 所以 (R 1∪R 2) (2)( R 1∩ y ∈ (R 1∪R 2)∈(R 1∪R 2) ∈R 1 1 (y,x)∈ ∈R 1 1 x,y 1 ∈ ∈R R 1 21R 1 ∪ R 2 1=R 1∩R 2 1 1R 1R 2 )21任取 x,y1x,y ∈ (R 1∩R 2) 1 y,x y,x x,y x,y∈ R 11∈R7.41. 略7.42. 略7.43. 略7.44. 略7.45. 略7.46. 略7.47. 略7.48. 略7.49. 略7.50. 略若 x 为奇 数 若 x 为偶数求 f(0), f({0}), f(1), f({1}), f({0, 2, 4, 6, ⋯}), f({4, 6, 8}), f({1, 3, 5, 7})(1) f: R (2) f: R (3) f: N (4) f: N (5) f: Z (6) f: S (7) f: S(8) f: S 对以上每一组 f 和 A, B, 分别回答以下问题 :(a) f 是不是满射 , 单射和双射的 ?如果 f 是双射的 , 求f 的反函数 . (b) 求A 在 f 下的像 f(A)和 B 在 f 下的完全原像 f -1(B).8.4. 4.判断下列函数中那些是满射的 ? 哪些是单射的 ? 哪些是双射的 ? 2(1) f: ? ? , f(x) = x 2 + 2(2) f: ? ?, f(x) = (x)mod 3, x 除以 3 的余数.1 若 x 为奇(3) f: ? ? , f (x) 0数 若x0 为偶数若 x 为奇数(4) f: ? {0, 1}, f (x) 1 若x 为偶数(5) f: ? {0} R, f(x)=log 10x (6) f: R R, f(x)=x 2 2x 158.1. 1 设f: ? ? , 且习题八f(0) = 0, f({0}) = { f(0)} = {0}, f(1) = 1, f({1}) = { f(1)} = {1}, f({0, 2, 4, 6, ⋯ = }{)f(0), f(2), f(4), f(6), ⋯ =} {0, 1, 2, 3, =⋯ ?}, f({4, 6, 8}) = { f(4), f(6), f(8)} = {2, 3, 4}, f({1, 3, 5, 7}) = {1, 1, 1, 1} = {1}. 8.2. 2.设A={1, 2}, B={a, b, c}, 求B A . AB A ={ f 1, f 2, f 3, f 4, f 5, f 6, f 7, f 8, f 9} f 1 = { 1, a, 2, a}, f 2 = { 1, a, 2, b}, f 3 = { f 4 = { 1, b, 2, a}, f 5 = { 1, b, 2, f 7 = { 1, c, 2, a}, f 8 = { 1, c , 2,}, f 6 = { f 9 = { 1, c, 2, c }.1, a , 2, c }, 1, b , 2, c }, f (x)8.3. 3.给定函数 f 和集合 A, B 如下:R, f(x)=x, A={8}, B={4}+R +, f(x)=2x, A={1}, B={1, 2}N N, f(x)= x, x+1}, A={5}, B={ 2, 3 } N,f(x)=2x+1, A={2, 3}, B={1, 3} N, f(x)=|x|, A={ 1, 2}, B={1}S, S=[0, 1], f(x)=x/2+1/4, A=(0, 1), B=[1/4, 1/2] R, S=[0, + ∞f)(,x)=1/(x+1), A={0, 1/2}, B={1/2} R +, S=(0, 1), f(x)=1/x, A=S, B={2, 3}.。

离散数学答案屈婉玲版第二版高等教育出版社课后答案

离散数学答案屈婉玲版第二版高等教育出版社课后答案

离散数学答案屈婉玲版第二版高等教育出版社课后答案离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1) p V (q A r)二0 V (0 A 1) =0(2) ( p?r)A (「q V s)二(0?1)A (1 V 1) = 0A 1= 0.(3) ( — p A 一q A r) ?(p A q A「r)二(1 A 1 A 1) ? (0 A 0A 0)=0(4) (一「A s)—(p A _q) = (0A 1)—(1 A 0) =0—0=117.判断下面一段论述是否为真:“二是无理数。

并且,如果3是无理数,则也是无理数。

另外6能被2整除,6才能被4整除。

”答:p:二是无理数1q: 3 是无理数0r: ' 2是无理数1s: 6能被2整除1t: 6 能被4整除0命题符号化为:p A (q —r) A (t —s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4) (p —q) —( 一q—一p)(5) (p A r) ' ( 一p A 一q)(6) ((p —q) A (q —r)) —(p —r)答:(4)p q p —q _q _p —q—一p (p —q) — (一q—一p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5) 公式类型为可满足式(方法如上例)(6) 公式类型为永真式(方法如上例)第二章部分课后习题参考答案3. 用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值?⑴飞A q-q)(2) (p -(p V q)) V (p -r)(3) (p V q) -(p A r)答:(2) (p—(p V q) )V (p —r)=(—p V (p V q)) V (_p V r) u - p V p V q V r= 1 所以公式类型为永真式⑶P q r p V q p A r (p V q)—(p A r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4. 用等值演算法证明下面等值式:(2) (p —q) A (p —r)二(p —(q A r))⑷(p A - q) V (-p A q)=(p V q) A 一(p A q)证明(2) (p —q) A (p —r)(一p V q) A ( 一p V r):二_ p V (q A r))二p—(q A r)(4) (p A - q) V ( 一p A q)u (p V (一p A q)) A(_ q V (一p A q)-(p V _ p) A (p V q) A ( 一q V 一p) A ( 一q V q)=1 A (p V q) A 一(p A q) A 1二(p V q) A _ (p A q)5. 求下列公式的主析取范式与主合取范式,并求成真赋值(1) ( _p—q) —(一q V p)(2) _(P —q) A q A r(3) (p V (q A r)) -(p V q V r)解:(1) 主析取范式(- p-q) —( 一q p)二_(p q) ( 一q p)=(- p -q) ( 一q p)=(一p _q) (一q p) (一q _p) (p q) (p _q)u ( - p _q) (p _q) (p q)-刀(0,2,3)主合取范式:(_p—q) —( 一q p)-_(p q) ( 一q p)=(- p -q) ( 一q p)=(一P (一q P)) (一q (一q p))=1 (p — q)二(p —q)二M i=n (i)(2) 主合取范式为:_(p —q) q r=—(一p q) q ru (p _q) q 产0所以该式为矛盾式?主合取范式为n (0,123,4,5,6,7)矛盾式的主析取范式为0(3) 主合取范式为:(p (q r)) —(p q r)=一(p (q r)) —(p q r)=(一p (一q _r)) (p q r)=(一p (p q r)) (( _q - r)) (p q r))二 1 i二 1所以该式为永真式永真式的主合取范式为1主析取范式为刀(0,123,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2) 前提:p—. q, —(q r),r(4)前提:q— p,q『s,s『t,t r结论:p q证明:(2)①—(q r) 前提引入②—q —r ①置换③q,一「②蕴含等值式④r 前提引入⑤一q ③④拒取式⑥p- q 前提引入⑦」p (3)⑤⑥拒取式证明(4):①t r 前提引入②t ①化简律③qi s 前提引入④s—?t 前提引入⑤q r t ③④等价三段论( q > t)(t r q)?⑤置换炉(q >t)⑥化简⑧q ②⑥假言推理⑨ q—;p 前提引入⑩p ⑧⑨假言推理(11)p q ⑧⑩合取15在自然推理系统P中用附加前提法证1 F面各推理:结论:_ p(1)前提:pr (qr r),s r p,q结论:s —? r ①s 附加前提引入②Sr P前提引入③P①②假言推理④ p —;(q —; r)前提引入⑤q — r③④假言推理⑥q 前提引入⑦r⑤⑥假言推理16在自然推理系统 P 中用归谬法证明下面各推理:(1)前提:p ,—q, - r q,r _s结论:- p 证明:①p 结论的否定引入② p —「q 前提引入q ①②假言推理 r q 前提引入⑤「r ④化简律⑥r 「s 前提引入⑦r ⑥化简律⑧r 「r ⑤⑦合取由于最后一步r 「r 是矛盾式,所以推理正确. 第四章部分课后习题参考答案3.在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为的真值:(1)对于任意 x,均有 2=(x+ )(x ).证明(a),(b) 条件时命题(2)存在x,使得x+5=9. 其中(a)个体域为自然数集合. (b)个体域为实数集合.解:F(x): 2=(x+ 一)(x 一).G(x): x+5=9.(1) 在两个个体域中都解释为-xF(x),在(a)中为假命题,在(b)中为真命题。

离散数学第三版-屈婉玲-课后习题答案

离散数学第三版-屈婉玲-课后习题答案

离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语p q解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是(9)只有天下大雨,他才乘班车上班q p解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是(11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是(p q)r15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(p q r)((p q)r)(4)解:p=1,q=1,r=0,(p q r)(110)1,((p q)r)((11)0)(00)1 (p q r)((p q)r)111 19、用真值表判断下列公式的类型:(p p)q(2)解:列出公式的真值表,如下所示:p p qq(p p)(p p)q0 0 1 1 1 10 1 1 0 1 01 0 0 1 0 11 1 0 0 0 1由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。

20、求下列公式的成真赋值:(4)(p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:p0(p q) 1q0q0成真赋值有:01,10,11。

所以公式的习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)(p q)(q r)解:原式(p q)q r(p p)q rq r,此即公式的主析取范式,m m(p q r)(p q r)37所以成真赋值为011,111。

*6、求下列公式的主合取范式,并求成假赋值:(2)(p q)(p r)解:原式,此即公式的主合取范式,M(p p r)(p q r)(p q r)4所以成假赋值为100。

7、求下列公式的主析取范式,再用主析取范式求主合取范式:(1)(p q)r解:原式p q(r r)((p p)(q q)r)(p q r)(p q)r(p q)r(p q)r(p q)r(pq r(p q r)(p q)r(p q)r(p q)r(pq r,此即主析取范式。

离散数学最全课后答案(屈婉玲版)

离散数学最全课后答案(屈婉玲版)

1.1.略1.2.略1.3.略1.4.略1.5.略1.6.略1.7.略1.8.略1.9.略1.10.略1.11.略1.12.将下列命题符号化, 并给出各命题的真值:(1)2+2=4 当且仅当3+3=6. (2)2+2=4 的充要条件是3+3≠6. (3)2+2≠4与3+3=6 互为充要条件. (4)若2+2≠4, 则3+3≠6, 反之亦然.(1)p↔q, 其中, p: 2+2=4, q: 3+3=6, 真值为1.(2)p↔⌝q, 其中, p: 2+2=4, q: 3+3=6, 真值为0.(3) ⌝p↔q, 其中, p: 2+2=4, q: 3+3=6, 真值为0.(4) ⌝p↔⌝q, 其中, p: 2+2=4, q: 3+3=6, 真值为1.1.13.将下列命题符号化, 并给出各命题的真值:(1)若今天是星期一, 则明天是星期二. (2)只有今天是星期一, 明天才是星期二. (3)今天是星期一当且仅当明天是星期二. (4)若今天是星期一, 则明天是星期三.令p: 今天是星期一; q: 明天是星期二; r: 明天是星期三.(1) p→q ⇔ 1.(2) q→p ⇔ 1.(3) p↔q ⇔ 1.(4) p→r 当p ⇔ 0 时为真; p ⇔ 1 时为假.1.14.将下列命题符号化.(1) 刘晓月跑得快, 跳得高.(2)老王是山东人或河北人.(3)因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小组.(5)李辛与李末是兄弟.(6)王强与刘威都学过法语. (7)他一面吃饭, 一面听音乐. (8)如果天下大雨, 他就乘班车上班. (9)只有天下大雨, 他才乘班车上班. (10)除非天下大雨, 他才乘班车上班. (11)下雪路滑, 他迟到了.(12)2 与4 都是素数, 这是不对的.(13)“2或4 是素数, 这是不对的”是不对的.(1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高.(2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人.(3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服.(4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题.(5)p, 其中, p: 李辛与李末是兄弟.(6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语.(7)p∧q, 其中, p: 他吃饭, q: 他听音乐.(8)p→q, 其中, p: 天下大雨, q: 他乘班车上班.(9)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(10)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(11)p→q, 其中, p: 下雪路滑, q: 他迟到了.12) ⌝ (p∧q)或⌝p∨⌝q, 其中, p: 2 是素数, q: 4 是素数.(13) ⌝⌝ (p∨q)或p∨q, 其中, p: 2 是素数, q: 4 是素数.1.15.设p: 2+3=5.q: 大熊猫产在中国.r: 复旦大学在广州. 求下列复合命题的真值:(1)(p↔q) →r(2)(r→ (p∧q)) ↔ ⌝p(3) ⌝r→ (⌝p∨⌝q∨r)(4)(p∧q∧⌝r) ↔ (( ⌝p∨⌝q) →r)(1)真值为0.(2)真值为0.(3)真值为0.(4)真值为1.注意: p, q 是真命题, r 是假命题.1.16.略1.17.略1.18.略1.19.用真值表判断下列公式的类型:(1)p→ (p∨q∨r)(2)(p→⌝q) →⌝q(3) ⌝ (q→r) ∧r(4)(p→q) → (⌝q→⌝p)(5)(p∧r) ↔ ( ⌝p∧⌝q)(6)((p→q) ∧ (q→r)) → (p→r)(7)(p→q) ↔ (r↔s)(1), (4), (6)为重言式.(3)为矛盾式.(2), (5), (7)为可满足式.1.20.略1.21.略1.22.略1.23.略1.24.略1.25.略1.26.略1.27.略1.28.略1.29.略1.30.略1.31.将下列命题符号化, 并给出各命题的真值:(1)若3+=4, 则地球是静止不动的.(2)若3+2=4, 则地球是运动不止的. (3)若地球上没有树木, 则人类不能生存.(4)若地球上没有水, 则 3 是无理数.(1)p→q, 其中, p: 2+2=4, q: 地球静止不动, 真值为0.(2)p→q, 其中, p: 2+2=4, q: 地球运动不止, 真值为1.(3) ⌝p→⌝q, 其中, p: 地球上有树木, q: 人类能生存, 真值为1.(4) ⌝p→q, 其中, p: 地球上有水, q: 3 是无理数, 真值为1.习题二2.1. 设公式A = p→q, B = p⌝∧q, 用真值表验证公式A 和B 适合德摩根律:⌝(A∨B) ⇔ ⌝A⌝∧B.p q A =p→q B =p⌝∧q⌝(A∨B)⌝A⌝∧B0 0 1 0 0 00 1 1 0 0 01 0 0 1 0 01 1 1 0 0 0因为⌝(A∨B)和⌝A⌝∧B 的真值表相同, 所以它们等值.2.2. 略2.3. 用等值演算法判断下列公式的类型, 对不是重言式的可满足式, 再用真值表法求出成真赋值.(1) ⌝ (p∧q→q)(2)(p→ (p∨q)) ∨ (p→r)(3)(p∨q) → (p∧r)(1) ⌝ (p∧q→q)⇔ ⌝ (⌝(p∧q) ∨ q) ⇔ ⌝ (⌝p ∨ ⌝q ∨ q) ⇔ p∧q∧⌝q ⇔ p∧0 ⇔ 0 ⇔ 0. 矛盾式.(2)重言式.(3) (p∨q) → (p∧r) ⇔ ⌝(p∨q) ∨ (p∧r) ⇔ ⌝p⌝∧q ∨ p∧r 易见, 是可满足式, 但不是重言式. 成真赋值为: 000, 001, 101, 111p q r←p ∍ ←q (p∍r0 0 0 1 1 1 1 00 0 1 1 1 1 1 00 1 0 1 0 0 0 00 1 1 1 0 0 0 01 0 0 0 0 1 0 01 0 1 0 0 1 1 11 1 0 0 0 0 0 01 1 1 0 0 0 1 12.4. 用等值演算法证明下面等值式:(1) p⇔ (p∧q) ∨ (p∧⌝q)(3) ⌝ (p↔q) ⇔ (p∨q) ∧⌝ (p∧q)(4) (p∧⌝q) ∨ (⌝p∧q) ⇔ (p∨q) ∧⌝ (p∧q)(1) (p∧q) ∨ (p∧⌝q) ⇔ p ∧ (q⌝∨q) ⇔ p ∧ 1 ⇔ p.(3) ⌝ (p↔q)⇔⌝ ((p→q) ∧ (q→p))⇔⌝ ((⌝p∨q) ∧ (⌝q∨p))⇔ (p∧⌝q) ∨ (q∧⌝p)⇔ (p∨q) ∧ (p∨⌝p) ∧ (⌝q∨q) ∧ (⌝p∨⌝q)⇔ (p∨q) ∧⌝ (p∧q)(4) (p∧⌝q) ∨ (⌝p∧q)⇔ (p∨⌝p) ∧ (p∨q) ∧ (⌝q∨⌝p) ∧ (⌝q∨q)⇔ (p∨q) ∧⌝ (p∧q)2.5. 求下列公式的主析取范式, 并求成真赋值:(1)( ⌝p→q) → (⌝q∨p)(2) ⌝ (p→q) ∧q∧r(3)(p∨ (q∧r)) → (p∨q∨r)(1)(⌝p→q) → (⌝q∨p)⇔ ⌝(p∨q) ∨ (⌝q∨p)⇔ ⌝p∧⌝q ∨ ⌝q ∨ p⇔ ⌝p∧⌝q ∨ ⌝q ∨ p(吸收律)⇔ (p⌝∨p)⌝∧q ∨ p∧(q⌝∨q)⇔ p⌝∧q ⌝∨p⌝∧q ∨ p∧q ∨ p⌝∧q⇔ m10 ∨ m00 ∨ m11 ∨ m10⇔ m0 ∨ m2 ∨ m3⇔ ∑(0, 2, 3).成真赋值为00, 10, 11.(2)主析取范式为0, 无成真赋值, 为矛盾式.(3)m0∨m1∨m2∨m3∨m4∨m5∨m6∨m7, 为重言式.2.6. 求下列公式的主合取范式, 并求成假赋值:(1) ⌝ (q→⌝p) ∧⌝p(2)(p∧q) ∨ (⌝p∨r)(3)(p→ (p∨q)) ∨r(1) ⌝ (q⌝→p) ∧ ⌝p⇔ ⌝(⌝q⌝∨p) ∧ ⌝p⇔ q∧p ∧ ⌝p⇔ q∧0⇔ 0⇔ M0∧M1∧M2∧M3这是矛盾式. 成假赋值为00, 01, 10, 11.(2)M4, 成假赋值为100.(3)主合取范式为1, 为重言式.2.7. 求下列公式的主析取范式, 再用主析取范式求合取范式:(1)(p∧q) ∨r(2)(p→q) ∧ (q→r)(1)m1∨m3∨m5∨m6∨m7⇔M0∧M2∧M4(2)m0∨m1∨m3∨m7⇔M2∧M4∧M5∧M62.8. 略2.9. 用真值表求下面公式的主析取范式.(2) (p→q) → (p⌝↔q)p q(p q) (p ←  q)0 0 1 0 0 10 1 1 1 1 01 0 0 1 1 11 1 1 0 0 0(2)从真值表可见成真赋值为01, 10. 于是(p → q) → (p⌝ ↔ q) ⇔ m1 ∨ m2.2.10. 略2.11. 略2.12. 略2.13. 略2.14. 略2.15. 用主析取范式判断下列公式是否等值:(1)(p→q) →r 与q→ (p→r)(2)(p→q) →r⇔ ⌝(⌝p∨q) ∨ r⇔ ⌝(⌝p∨q) ∨ r⇔ p⌝∧q ∨ r⇔ p⌝∧q∧(r⌝∨r) ∨ (p⌝∨p) ∧ (q⌝∨q)∧r⇔ p⌝∧q∧r ∨ p⌝∧q∧⌝r ∨p∧q∧r ∨ p∧⌝q∧r ∨ ⌝p∧q∧r ∨ ⌝p∧⌝q∧r= m101 ∨ m100 ∨ m111 ∨ m101 ∨ m011 ∨ m001⇔ m1 ∨ m3 ∨ m4 ∨ m5 ∨ m7= ∑(1, 3, 4, 5, 7).而q→(p→r)⇔ ⌝q ∨ (⌝p∨r)⇔ ⌝q ∨ ⌝p ∨r⇔ (⌝p∨p)⌝∧q∧(⌝r∨r) ∨ ⌝p∧(⌝q∨q)∧(⌝r∨r)∨ (⌝p∨p)∧(⌝q∨q)∧r⇔ (⌝p⌝∧q∧⌝r)∨(⌝p⌝∧q∧r)∨(p⌝∧q∧⌝r)∨(p⌝∧q∧r)∨(⌝p∧⌝q∧⌝r)∨(⌝p∧⌝q∧r)∨(⌝p∧q∧⌝r)∨(⌝p∧q∧r)∨(⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨(p∧⌝q∧r)∨(p∧q∧r)= m0 ∨ m1 ∨ m4 ∨ m5∨ m0 ∨ m1 ∨ m2 ∨ m3∨ m1 ∨ m3 ∨ m5 ∨ m7⇔ m0 ∨ m1 ∨ m2 ∨ m3 ∨ m4 ∨ m5 ∨ m7⇔ ∑(0, 1, 2, 3, 4, 5, 7).两个公式的主吸取范式不同, 所以(p→q) →rœq→ (p→r).2.16. 用主析取范式判断下列公式是否等值:(1)(p→q) →r 与q→ (p→r)(2) ⌝ (p∧q)与⌝ (p∨q)(1)(p→q) →r) ⇔m1∨m3∨m4∨m5∨m7q→ (p→r) ⇔m0∨m1∨m2∨m3∨m4∨m5∨m7所以(p→q) →r) œq→ (p→r)(2)⌝ (p∧q) ⇔m0∨m1∨m2⌝ (p∨q) ⇔m0所以⌝ (p∧q) œ⌝ (p∨q)2.17. 用主合取范式判断下列公式是否等值:(1)p→ (q→r)与⌝ (p∧q) ∨r(2)p→ (q→r)与(p→q) →r(1)p→ (q→r) ⇔M6⌝ (p∧q) ∨r⇔M6所以p→ (q→r) ⇔ ⌝ (p∧q) ∨r(2)p→ (q→r) ⇔M6(p→q) →r⇔M0∧M1∧M2∧M6所以p→ (q→r) œ(p→q) →r2.18. 略2.19. 略2.20.将下列公式化成与之等值且仅含{⌝, →} 中联结词的公式.(3) (p∧q)↔r.注意到A↔B ⇔ (A→B)∧(B→A)和A∧B ⇔ ⌝(⌝A⌝∨B) ⇔ ⌝(A⌝→B)以及A∨B ⇔ ⌝A→B. (p∧q)↔r⇔ (p∧q → r) ∧ (r → p∧q)⇔ (⌝(p⌝→q) → r) ∧ (r → ⌝(p⌝→q))⇔ ⌝((⌝(p⌝→q) → r) → ⌝(r → ⌝(p⌝→q)))注 联结词越少, 公式越长.2.21. 证明:(1) (p↑q) ⇔ (q↑p), (p↓q) ⇔ (q↓p).(p↑q) ⇔ ⌝(p∧q) ⇔ ⌝(q∧p) ⇔ (q↑p).(p↓q) ⇔ ⌝(p∨q) ⇔ ⌝(q∨p) ⇔ (q↓p).2.22. 略2.23. 略2.24. 略2.25. 设A, B, C 为任意的命题公式.(1)若A∨C⇔B∨C, 举例说明A⇔B 不一定成立. (2)已知A∧C⇔B∧C, 举例说明A⇔B 不一定成立. (3)已知⌝A⇔⌝B, 问: A⇔B 一定成立吗?(1) 取A = p, B = q, C = 1 (重言式), 有A∨C ⇔ B∨C, 但A œB.(2) 取A = p, B = q, C = 0 (矛盾式), 有A∧C ⇔ B∧C, 但A œB.好的例子是简单, 具体, 而又说明问题的. (3)一定.2.26. 略2.27.某电路中有一个灯泡和三个开关A,B,C. 已知在且仅在下述四种情况下灯亮:(1)C 的扳键向上, A,B 的扳键向下.(2)A 的扳键向上, B,C 的扳键向下.(3)B,C 的扳键向上, A 的扳键向下.(4)A,B 的扳键向上, C 的扳键向下.设F 为1 表示灯亮, p,q,r 分别表示A,B,C 的扳键向上. (a)求F 的主析取范式.(b)在联结词完备集{⌝, ∧}上构造F. (c)在联结词完备集{⌝, →,↔}上构造F.(a)由条件(1)-(4)可知, F 的主析取范式为F⇔ (⌝p∧⌝q∧r) ∨ (p∧⌝q∧⌝r) ∨ (⌝p∧q∧r) ∨ (p∧q∧⌝r)⇔m1∨m4∨m3∨m6⇔m1∨m3∨m4∨m6(b)先化简公式F⇔ (⌝p∧⌝q∧r) ∨ (p∧⌝q∧⌝r) ∨ (⌝p∧q∧r) ∨ (p∧q∧⌝r)⇔⌝q∧ ((⌝p∧r) ∨ (p∧⌝r)) ∨q∧ ((⌝p∧r) ∨ (p∧⌝r))⇔ (⌝q∨q) ∧ ((⌝p∧r) ∨ (p∧⌝r))⇔ (⌝p∧r) ∨ (p∧⌝r)⇔⌝ (⌝ (⌝p∧r) ∧⌝ (p∧⌝r)) (已为{⌝, ∧}中公式)(c)F⇔ (⌝p∧r) ∨ (p∧⌝r)⇔⌝⌝ (⌝p∧r) ∨ (p∧⌝r)⇔⌝ (⌝p∧r) → (p∧⌝r)⇔ (p∨⌝r) →⌝ (⌝p∨r)⇔ (r→p) →⌝ (p→r) (已为{⌝, →,↔}中公式)2.28.一个排队线路, 输入为A,B,C, 其输出分别为F A,F B,F C. 本线路中, 在同一时间内只能有一个信号通过, 若同时有两个和两个以上信号申请输出时, 则按A,B,C 的顺序输出. 写出F A,F B,F C 在联结词完备集{⌝, ∨}中的表达式.根据题目中的要求, 先写出F A,F B,F C 的真值表(自己写) 由真值表可先求出他们的主析取范式, 然后化成{⌝, ∧}中的公式F A⇔m4∨m5∨m6∨m7⇔p (已为{⌝, ∧}中公式)F B⇔m2∨m3⇔⌝p∧q (已为{⌝, ∧}中公式)F C⇔m1⇔⌝p∧⌝q∧r (已为{⌝, ∧}中公式)2.29. 略2.30. 略习题三3.1. 略3.2. 略3.3. 略3.4. 略3.5. 略3.6. 判断下面推理是否正确. 先将简单命题符号化, 再写出前提, 结论, 推理的形式结构(以蕴涵式的形式给出)和判断过程(至少给出两种判断方法):(1)若今天是星期一, 则明天是星期三;今天是星期一. 所以明天是星期三. (2)若今天是星期一, 则明天是星期二;明天是星期二. 所以今天是星期一. (3)若今天是星期一, 则明天是星期三;明天不是星期三. 所以今天不是星期一. (4)若今天是星期一, 则明天是星期二;今天不是星期一. 所以明天不是星期二. (5)若今天是星期一, 则明天是星期二或星期三. (6)今天是星期一当且仅当明天是星期三;今天不是星期一. 所以明天不是星期三.设p: 今天是星期一, q: 明天是星期二, r: 明天是星期三. (1)推理的形式结构为(p→r) ∧p→r此形式结构为重言式, 即(p→r) ∧p⇒r 所以推理正确. (2)推理的形式结构为(p→q) ∧q→p 此形式结构不是重言式, 故推理不正确. (3)推理形式结构为(p→r) ∧⌝r→⌝p此形式结构为重言式, 即(p→r) ∧⌝r⇒⌝p故推理正确. (4)推理形式结构为(p→q) ∧⌝p→⌝q此形式结构不是重言式, 故推理不正确.(5)推理形式结构为p→ (q∨r)它不是重言式, 故推理不正确. (6)推理形式结构为(p⇒r) ∧⌝p→⌝r此形式结构为重言式, 即(p⇒r) ∧⌝p⇒⌝r故推理正确.推理是否正确, 可用多种方法证明. 证明的方法有真值表法, 等式演算法. 证明推理正确还可用构造证明法.下面用构造证明法证明(6)推理正确.前提: p⇒r, ⌝p结论: ⌝r证明: ①p⇒r 前提引入②(p→r) ∧ (r→p) ①置换③r→p ②化简律④⌝p 前提引入⑤⌝r ③④拒取式所以, 推理正确.3.7. 略3.8. 略3.9. 用三种方法(真值表法, 等值演算法, 主析取范式法)证明下面推理是正确的:若a 是奇数, 则a 不能被2 整除. 若a 是偶数, 则a 能被2 整除. 因此, 如果a 是偶数, 则a 不是奇数.令p: a 是奇数; q: a 能被2 整除; r: a 是偶数. 前提: p → ⌝q, r → q.结论: r → ⌝p.形式结构: (p → ⌝q) ∧ (r → q) → (r → ⌝p).……3.10.略3.11.略3.12.略3.13.略3.14.在自然推理系统P 中构造下面推理的证明:(1)前提: p→ (q→r), p, q结论: r∨s(2)前提: p→q, ⌝ (q∧r), r结论: ⌝p(3)前提: p→q结论: p→ (p∧q)(4)前提: q→p, q⇒s, s⇒t, t∧r结论: p∧q(5)前提: p→r, q→s, p∧q结论: r∧s(6)前提: ⌝p∨r, ⌝q∨s, p∧q结论: t→ (r∨s) (1)证明:①②p→(q→r)p前提引入前提引入③④q→rq①②假言推理前提引入⑤r③④假言推理⑥r∨s⑤附加律(2)证明:①②③⌝ (q∧r)⌝q∨⌝rr前提引入①置换前提引入④⑤⑥⌝qp→q⌝p②③析取三段论前提引入④⑤拒取式(3)证明:①p→q前提引入②⌝p∨q①置换③(⌝p∨q) ∧ (⌝p∨p)②置换④⌝p∨ (p∧q)③置换⑤p→ (p∧q) ④置换也可以用附加前提证明法, 更简单些.(4)证明:①②③④⑤s⇒t(s→t) ∧ (t→s)t→st∧rt前提引入①置换②化简前提引入④化简⑥s③⑤假言推理⑦⑧⑨⑩q⇒s(s→q) ∧ (q→s)s→qq前提引入⑦置换⑧化简⑥⑥假言推理○11 q →p前提引入○12 ○13 pp∧q⑩○11 假言推理⑩○12 合取(5)证明:①②p→rq→s前提引入前提引入③④p∧qp前提引入③化简⑤q③化简⑥r①④假言推理⑦s②⑤假言推理⑧r∧s⑥⑦合取(6)证明:①②t⌝p∨r附加前提引入前提引入③④p∧qp前提引入③化简⑤r②④析取三段论⑥r∨s⑤附加说明: 证明中, 附加提前t, 前提⌝q∨s 没用上. 这仍是正确的推理.3.15.在自然推理系统P 中用附加前提法证明下面各推理:(1)前提: p→ (q→r), s→p, q结论: s→r(2)前提: (p∨q) → (r∧s), (s∨t) →u结论: p→u(1)证明:①②ss→p附加前提引入前提引入③p①②假言推理④⑤⑥p→ (q→r)q→rq前提引入③④假言推理前提引入⑦r⑤⑥假言推理(2)证明:①②Pp∨q附加前提引入①附加③(p∨q) → (r∧s) 前提引入④⑤r∧sS②③假言推理④化简⑥⑦⑧s∨t(s∨t) →uu⑤附加前提引入⑥⑦假言推理3.16.在自然推理系统P 中用归谬法证明下面推理:(1)前提: p→⌝q, ⌝r∨q, r∧⌝s结论: ⌝p(2)前提: p∨q, p→r, q→s结论: r∨s(1)证明:①②Pp→⌝q结论否定引入前提引入③④⑤⑥⑦⌝q⌝r∨q⌝rr∧⌝sr①②假言推理前提引入③④析取三段论前提引入⑥化简⑧⌝r∧r⑤⑦合取⑧为矛盾式, 由归谬法可知, 推理正确.(2)证明:①⌝ (r∨s)结论否定引入②p∨q前提引入③p→r前提引入④q→s前提引入⑤r∨s②③④构造性二难⑥⌝ (r∨s) ∧ (r∨s)①⑤合取①②③④⑤⑥⑦pp q(rq(rss ←q←qr①②假言推理前提引入前提引入⑥为矛盾式, 所以推理正确.3.17.P53 17. 在自然推理系统P 中构造下面推理的证明:只要A 曾到过受害者房间并且11 点以前没用离开, A 就犯了谋杀罪. A 曾到过受害者房间. 如果A 在11 点以前离开, 看门人会看到他. 看门人没有看到他. 所以A 犯了谋杀罪.令p: A 曾到过受害者房间; q: A 在11 点以前离开了; r: A 就犯了谋杀罪; s:看门人看到A.前提: p⌝∧q → r, p, q → s, ⌝s.结论: r.前提: p⌝∧q → r, p, q → s, ⌝s; 结论: r.证明:①⌝s 前提引入②q → s 前提引入③⌝q ①②拒取④p 前提引入⑤p⌝∧q ③④合取⑥p⌝∧q → r 前提引入⑦r ⑤⑥假言推理3.18.在自然推理系统P 中构造下面推理的证明.(1)如果今天是星期六, 我们就要到颐和园或圆明园去玩. 如果颐和园游人太多, 我们就不去颐和园玩.今天是星期六. 颐和园游人太多. 所以我们去圆明园玩.(2)如果小王是理科学生, 他的数学成绩一定很好. 如果小王不是文科生, 他必是理科生. 小王的数学成绩不好. 所以小王是文科学生.(3)明天是晴天, 或是雨天;若明天是晴天, 我就去看电影;若我看电影, 我就不看书. 所以, 如果我看书,则明天是雨天.(1)令p: 今天是星期六; q: 我们要到颐和园玩; r: 我们要到圆明园玩; s:颐和园游人太多.前提: p→ (q∨r), s → ⌝q, p, s.结论: r.前提引入前提引入p p→q∨rq∨rs s → ⌝q⌝qr④⑤假言推理(1)的证明树③⑥析取三段论① p →r 前提引入 ② ⌝r 前提引入 ③ ⌝p ①②拒取式 ④ ⌝q →p 前提引入 ⑤q③④拒取式(2) 令 p : 小王是理科生, q : 小王是文科生, r : 小王的数学成绩很好. 前提: p →r , ⌝q →p , ⌝r 结论: q 证明:⌝qp →q⌝p⌝r →p(2)的证明树 r(3)令 p : 明天是晴天, q : 明天是雨天, r : 我看电影, s : 我看书. 前提: p ∨q , p →r , r →⌝s结论: s →q 证明:① ② s r →⌝s 附加前提引入 前提引入 ③ ⌝r ①②拒取式 ④ p →r 前提引入 ⑤ ⌝p ③④拒取式 ⑥ p ∨q 前提引入 ⑦q⑤⑥析取三段论习题四4.1. 将下面命题用0 元谓词符号化:(1)小王学过英语和法语. (2)除非李建是东北人, 否则他一定怕冷.(1) 令F(x): x 学过英语; F(x): x 学过法语; a: 小王. 符号化为F(a)∧F(b).或进一步细分, 令L(x, y): x 学过y; a: 小王; b1: 英语; b2: 法语. 则符号化为L(a, b1)∧L(a, b2).(2) 令F(x): x 是东北人; G(x): x 怕冷; a: 李建. 符号化为⌝F(a)→G(a) 或⌝G(a)→F(a).或进一步细分, 令H(x, y): x 是y 地方人; G(x): x 怕冷; a: 小王; b: 东北. 则符号化为⌝H(a, b)→G(a) 或⌝G(a)→ H(a, b).4.2. 在一阶逻辑中将下面命题符号化, 并分别讨论个体域限制为(a),(b)时命题的真值:(1)凡有理数都能被2 整除.(2)有的有理数能被2 整除. 其中(a)个体域为有理数集合, (b)个体域为实数集合.(1)(a)中, ∀xF(x), 其中, F(x): x 能被2 整除, 真值为0.(b)中, ∀x(G(x) ∧F(x)), 其中, G(x): x 为有理数, F(x)同(a)中, 真值为0. (2)(a)中, ∃xF(x), 其中, F(x): x 能被2 整除, 真值为1.(b)中, ∃x(G(x) ∧F(x)), 其中, F(x)同(a)中, G(x): x 为有理数, 真值为1.4.3. 在一阶逻辑中将下面命题符号化, 并分别讨论个体域限制为(a),(b)时命题的真值:(1)对于任意的x, 均有x2-2=(x+ 2 )(x- 2 ).(2)存在x, 使得x+5=9.其中(a)个体域为自然数集合, (b)个体域为实数集合.(1)(a)中, ∀x(x2-2=(x+ 2 x- 2 真值为1.(b)中, ∀x(F(x) → (x2-2=(x+ 2 x- 2 其中, F(x): x 为实数, 真值为1. (2)(a)中, ∃x(x+5=9), 真值为1.(b)中, ∃x(F(x) ∧ (x+5=9)), 其中, F(x): x 为实数, 真值为1.4.4. 在一阶逻辑中将下列命题符号化:(1)没有不能表示成分数的有理数.(2)在北京卖菜的人不全是外地人.(3)乌鸦都是黑色的. (4)有的人天天锻炼身体.没指定个体域, 因而使用全总个体域.(1) ⌝∃x(F(x) ∧⌝G(x))或∀x(F(x) →G(x)), 其中, F(x): x 为有理数, G(x): x 能表示成分数.(2) ⌝∀x(F(x) →G(x))或∃x(F(x) ∧⌝G(x)), 其中, F(x): x 在北京卖菜, G(x): x 是外地人.(3) ∀x(F(x) →G(x)), 其中, F(x): x 是乌鸦, G(x): x 是黑色的.(4) ∃x(F(x) ∧G(x)), 其中, F(x): x 是人, G(x): x 天天锻炼身体.4.5. 在一阶逻辑中将下列命题符号化:(1)火车都比轮船快. (2)有的火车比有的汽车快. (3)不存在比所有火车都快的汽车. (4)“凡是汽车就比火车慢”是不对的.因为没指明个体域, 因而使用全总个体域(1) ∀x∀y(F(x) ∧G(y) →H(x,y)), 其中, F(x): x 是火车, G(y): y 是轮船, H(x,y):x 比y 快.(2) ∃x∃y(F(x) ∧G(y) ∧H(x,y)), 其中, F(x): x 是火车, G(y): y 是汽车, H(x,y):x 比y 快.(3) ⌝∃x(F(x) ∧∀y(G(y) →H(x,y)))或∀x(F(x) →∃y(G(y) ∧⌝H(x,y))), 其中, F(x): x 是汽车, G(y): y 是火车, H(x,y):x 比y 快.(4) ⌝∀x∀y(F(x) ∧G(y) →H(x,y))或∃x∃y(F(x) ∧G(y) ∧⌝H(x,y) ), 其中, F(x): x 是汽车, G(y): y 是火车, H(x,y):x 比y 慢.4.6. 略4.7. 将下列各公式翻译成自然语言, 个体域为整数集®, 并判断各命题的真假.(1) ∀x∀y∃z(x - y = z);(2) ∀x∃y(x⋅y = 1).(1) 可选的翻译:①“任意两个整数的差是整数.”②“对于任意两个整数, 都存在第三个整数, 它等于这两个整数相减.”③“对于任意整数x 和y, 都存在整数z, 使得x - y = z.”选③, 直接翻译, 无需数理逻辑以外的知识. 以下翻译意思相同, 都是错的:“有个整数, 它是任意两个整数的差.”“存在一个整数, 对于任意两个整数, 第一个整数都等于这两个整数相减.”❶ “存在整数z, 使得对于任意整数x 和y, 都有x - y = z.”这3 个句子都可以符号化为∃z∀x∀y(x - y = z).0量词顺序不可随意调换.(2) 可选的翻译:①“每个整数都有一个倒数.”②“对于每个整数, 都能找到另一个整数, 它们相乘结果是零.”③“对于任意整数x, 都存在整数y, 使得x⋅y = z.”选③, 是直接翻译, 无需数理逻辑以外的知识.4.8. 指出下列公式中的指导变元, 量词的辖域, 各个体变项的自由出现和约束出现:(3)∀x∃y(F(x, y) ∧ G(y, z)) ∨ ∃xH(x, y, z)∀x∃y(F(x,y)∧ G(y,z))∨ ∃x H(x,y,z)前件∀x∃y(F(x, y)∧G(y, z)) 中, ∀ 的指导变元是x, ∀ 的辖域是∃y(F(x, y)∧G(y, z)); ∃ 的指导变元是y, ∃ 的辖域是(F(x, y)∧G(y, z)).后件∃xH(x, y, z) 中, ∃ 的指导变元是x, ∃ 的辖域是H(x, y, z).整个公式中, x 约束出现两次, y 约束出现两次, 自由出现一次; z 自由出现两次.4.9. 给定解释I 如下:(a)个体域D I 为实数集合\.(b)D I 中特定元素↓a =0.(c)特定函数↓f (x,y)=x-y, x,y∈D I.(d)特定谓词↓F(x,y): x=y,↓G(x,y): x<y, x,y∈D I. 说明下列公式在I 下的含义, 并指出各公式的真值:(1)∀x∀y(G(x,y) →⌝F(x,y))(2) ∀x∀y(F(f(x,y),a) →G(x,y))(3) ∀x∀y(G(x,y) →⌝F(f(x,y),a))(4) ∀x∀y(G(f(x,y),a) →F(x,y))(1) ∀x∀y(x<y→x≠y), 真值为1.(2) ∀x∀y((x-y=0) →x<y), 真值为0.(3) ∀x∀y((x<y) → (x-y≠0)), 真值为1.(4) ∀x∀y((x-y<0) → (x=y)), 真值为0.4.10.给定解释I 如下:(a)个体域D=Æ(Æ为自然数).(b)D 中特定元素↓a=2.(c)D 上函数↓f (x,y)=x+y,↓g (x,y)=x·y.(d)D 上谓词↓F (x,y): x=y.说明下列公式在I 下的含义, 并指出各公式的真值:(1) ∀xF(g(x,a),x)(2) ∀x∀y(F(f(x,a),y) →F(f(y,a),x))(3) ∀x∀y∃z(F(f(x,y),z)(4) ∃xF(f(x,x),g(x,x))(1) ∀x(x·2=x), 真值为0.(2) ∀x∀y((x+2=y) → (y+2=x)), 真值为0.(3) ∀x∀y∃z(x+y=z),真值为1.(4) ∃x(x+x=x·x),真值为1.4.11.判断下列各式的类型:(1) F(x, y) → (G(x, y) → F(x, y)).(3) ∀x∃yF(x, y) → ∃x∀yF(x, y).(5) ∀x∀y(F(x, y) → F(y, x)).(1) 是命题重言式p → (q → p) 的代换实例, 所以是永真式.(3) 在某些解释下为假(举例), 在某些解释下为真(举例), 所以是非永真式的可满足式.(5) 同(3).4.12.P69 12. 设I 为一个任意的解释, 在解释I 下, 下面哪些公式一定是命题?(1) ∀xF(x, y) → ∃yG(x, y).(2) ∀x(F(x) → G(x)) ∧ ∃y(F( y) ∧ H( y)).(3) ∀x(∀yF(x, y) → ∃yG(x, y)).(4) ∀x(F(x) ∧ G(x)) ∧ H( y).(2), (3) 一定是命题, 因为它们是闭式.4.13.略4.14.证明下面公式既不是永真式也不是矛盾式:(1) ∀x(F(x) →∃y(G(y) ∧H(x,y)))(2) ∀x∀y(F(x) ∧G(y) →H(x,y))(1) 取个体域为全总个体域.解释I1: F(x): x 为有理数, G(y): y 为整数, H(x,y): x<y在I1 下: ∀x(F(x) →∃y(G(y) ∧H(x,y)))为真命题, 所以该公式不是矛盾式.解释I2: F(x),G(y)同I1, H(x,y): y 整除x.在I2 下: ∀x(F(x) →∃y(G(y) ∧H(x,y)))为假命题, 所以该公式不是永真式.(2) 请读者给出不同解释, 使其分别为成真和成假的命题即可.4.15.(1) 给出一个非闭式的永真式.(2) 给出一个非闭式的永假式.(3) 给出一个非闭式的可满足式, 但不是永真式.(1) F(x) ∨ ⌝F(x).(2) F(x) ∧ ⌝F(x).(3) ∀x(F(x, y) → F(y, x)).习题五5.1. 略5.2. 设个体域D={a,b,c}, 消去下列各式的量词:(1) ∀x∃y(F(x) ∧G(y))(2) ∀x∀y(F(x) ∨G(y))(3) ∀xF(x) →∀yG(y)(4) ∀x(F(x,y) →∃yG(y))(1) ∀x∃y(F(x) ∧G(y))⇔∀xF(x) ∧∃yG(y)⇔ (F(a) ∧F(b)) ∧F(c)) ∧ (G(a) ∨G(b) ∨G(c))(2) ∀x∀y(F(x) ∨G(y))⇔∀xF(x) ∨∀yG(y)⇔ (F(a) ∧F(b) ∧F(c)) ∨ (G(a) ∧G(b) ∧G(c))(3) ∀xF(x) →∀yG(y)⇔ (F(a) ∧F(b) ∧F(c)) → (G(a) ∧G(b) ∧G(c))(4) ∀x(F(x,y) →∃yG(y))⇔∃xF(x,y) →∃yG(y)⇔ (F(a,y) ∨F(b,y) ∨F(c,y)) → (G(a) ∨G(b) ∨G(c))5.3. 设个体域D={1,2}, 请给出两种不同的解释I1 和I2, 使得下面公式在I1 下都是真命题, 而在I2 下都是假命题.(1) ∀x(F(x) →G(x))(2) ∃x(F(x) ∧G(x))(1)I1: F(x):x≤2,G(x):x≤3F(1),F(2),G(1),G(2)均为真, 所以∀x(F(x) →G(x))⇔ (F(1) →G(1) ∧ (F(2) →G(2))为真.I2: F(x)同I1,G(x):x≤0则F(1),F(2)均为真, 而G(1),G(2)均为假,∀x(F(x) →G(x))为假. (2)留给读者自己做.5.4. 略5.5. 给定解释I 如下:(a)个体域D={3,4}.(b)↓f (x)为↓f (3)=4,↓f (4)=3. (c)↓F(x,y)为↓F(3,3)=↓F(4,4)=0,↓F(3,4)=↓F(4,3)=1.试求下列公式在I 下的真值:(1)∀x∃yF(x,y)(2)∃x∀yF(x,y)(3) ∀x∀y(F(x,y) →F(f(x),f(y)))(1)∀x∃yF(x,y)⇔ (F(3,3) ∨F(3,4)) ∧ (F(4,3) ∨F(4,4))⇔ (0∨1) ∧ (1∨0) ⇔1(2)∃x∀yF(x,y)⇔ (F(3,3) ∧F(3,4)) ∨ (F(4,3) ∧F(4,4))⇔ (0∧1) ∨ (1∧0) ⇔0(3) ∀x∀y(F(x,y) →F(f(x),f(y)))⇔ (F(3,3) →F(f(3),f(3)))∧ (F(4,3) →F(f(4),f(3)))∧ (F(3,4) →F(f(3),f(4)))∧ (F(4,4) →F(f(4),f(4)))⇔ (0→0) ∧ (1→1) ∧ (1→1) ∧ (0→0) ⇔15.6. 略5.7. 略5.8. 在一阶逻辑中将下列命题符号化, 要求用两种不同的等值形式.(1) 没有小于负数的正数.(2) 相等的两个角未必都是对顶角.(1) 令F(x): x 小于负数, G(x): x 是正数. 符合化为:∃⌝x((F(x) ∧ G(x)) ⇔ ∀x(G(x) → ⌝G(x)).(2) 令F(x): x 是角, H(x, y): x 和y 是相等的, L(x, y): x 与y 是对顶角. 符合化为:⌝∀x∀y(F(x) ∧ F(y) ∧ H(x, y) → L(x, y))⇔ ∃x∃y(F(x) ∧ F(y) ∧ H(x, y) ∧ ⌝L(x, y))⇔ ∃x(F(x) ∧ (∃y(F(y) ∧ H(x, y) ∧ ⌝L(x, y))).5.9. 略5.10.略5.11.略5.12.求下列各式的前束范式.(1) ∀xF(x) → ∀yG(x, y);(3) ∀xF(x, y) ↔ ∃xG(x, y);(5) ∃x1F(x1, x2) → (F(x1) → ∃⌝x2G(x1, x2)).前束范式不是唯一的.(1) ∀xF(x) → ∀yG(x, y)⇔ ∃x(F(x) → ∀yG(x, y))⇔ ∃x∀y(F(x) → G(x, y)).(3) ∀xF(x, y) ↔ ∃xG(x, y)⇔ (∀xF(x, y) → ∃xG(x, y)) ∧ (∃xG(x, y) → ∀xF(x, y))⇔ (∀x1F(x1, y) → ∃x2G(x2, y)) ∧ (∃x3G(x3, y) → ∀x4F(x4, y))⇔ ∃x1∃x2(F(x1, y) → G(x2, y)) ∧ ∀x3∀x4(G(x3, y) → F(x4, y))⇔ ∃x1∃x2∀x3∀x4((F(x1, y) → G(x2, y)) ∧ (G(x3, y) → F(x4, y))).5.13.将下列命题符号化, 要求符号化的公式全为前束范式:(1) 有的汽车比有的火车跑得快.(2) 有的火车比所有的汽车跑得快.(3) 说所有的火车比所有的汽车跑得快是不对的.(4) 说有的飞机比有的汽车慢是不对的.(1) 令F(x): x 是汽车, G( y): y 是火车, H(x, y): x 比y 跑得快.∃x(F(x) ∧ ∃y(G( y) ∧ H(x, y))⇔ ∃x∃y(F(x) ∧ G( y) ∧ H(x, y)).(2)令F(x): x 是火车, G( y): y 是汽车, H(x, y): x 比y 跑得快.∃x(F(x) ∧ ∀y(G( y) → H(x, y)))⇔ ∃x∀y(F(x) ∧ (G( y) → H(x, y))).0错误的答案: ∃x∀y(F(x) ∧ G( y) → H(x, y)).(3)令F(x): x 是火车, G( y): y 是汽车, H(x, y): x 比y 跑得快.⌝∀x(F(x) → ∀y(G( y) → H(x, y)))⇔ ⌝∀x∀y(F(x) → (G( y) → H(x, y)))⇔ ⌝∀x∀y(F(x) ∧ G( y) → H(x, y)) (不是前束范式)⇔ ∃x∃y(F(x) ∧ G( y) ∧ H(x, y)).(4)令F(x): x 是飞机, G( y): y 是汽车, H(x, y): x 比y 跑得慢.⌝ ∃x(F(x) ∧ ∃y(G( y) ∧ H(x, y)))⇔ ⌝ ∃x∃y(F(x) ∧ G( y) ∧ H(x, y)) (不是前束范式)⇔ ∀x∀y ⌝ (F(x) ∧ G( y) ∧ H(x, y))⇔ ∀x∀y(F(x) ∧ G( y) → ⌝H(x, y)).5.14.略5.15.在自然推理系统F 中构造下面推理的证明:(1) 前提: ∃xF(x) → ∀y((F(y) ∨ G(y)) → R(y)), ∃xF(x)结论: ∃xR(x).(2) 前提: ∀x(F(x) → (G(a) ∧R(x))), ∃xF(x)结论: ∃x(F(x) ∧R(x))(3) 前提: ∀x(F(x) ∨G(x)), ⌝∃xG(x)结论: ∃xF(x)(4) 前提: ∀x(F(x) ∨G(x)), ∀x(⌝G(x) ∨⌝R(x)), ∀xR(x)结论: ∀xF(x)①∃xF(x) → ∀y((F(y) ∨ G(y)) → R(y)) 前提引入②∃xF(x) 前提引入③∀y((F(y) ∨ G(y)) → R(y)) ①②假言推理④(F(c) ∨ G(c)) → R(c) ③UI⑤F(c) ①EI⑥F(c) ∨ G(c) ⑤附加⑦⑧R(c)∃xR(x)④⑥假言推理⑦EG(2) 证明:①∃xF(x) 前提引入②F(c) ①EI③∀x(F(x) → (G(a) ∧ (R(x))) 前提引入④F(c) → (G(a) ∧R(c)) ④UI⑤G(a) ∧R(c) ②④假言推理⑥R(c) ⑤化简⑦F(c) ∧R(c) ②⑥合取⑧∃x(F(x) ∧R(x)) ⑥E G(3) 证明:①⌝∃xG(x) 前提引入②∀x⌝G(x) ①置换③⌝G(c)②UI④∀x(F(x) ∨G(x) 前提引入⑤F(c) ∨G(c) ④UI⑥F(c) ③⑤析取三段论⑦∃xF(x) ⑥E G(4) 证明:①∀x(F(x) ∨G(x)) 前提引入②F(y) ∨G(y) ①UI③∀x(⌝G(x) ∨⌝R(x)) 前提引入④⌝G(y) ∨⌝R(y)③UI⑤∀xR(x) 前提引入⑥R(y) ⑤UI⑦⌝G(y) ④⑥析取三段论⑧F(y) ②⑦析取三段论⑥∀xF(x) U G5.16.略5.18.略5.19.略5.20.略5.21.略5.22.略5.23.在自然推理系统F 中, 证明下面推理:(1) 每个有理数都是实数, 有的有理数是整数, 因此有的实数是整数.(2) 有理数, 无理数都是实数, 虚数不是实数, 因此虚数既不是有理数, 也不是无理数.(3) 不存在能表示成分数的无理数, 有理数都能表示成分数, 因此有理数都不是无理数.(1)设F(x):x 为有理数, R(x):x 为实数, G(x):x 是整数.前提: ∀x(F(x) →R(x)), ∃x(F(x) ∧G(x))结论: ∃x(R(x) ∧G(x))证明:①∃x(F(x) ∧G(x)) 前提引入②F(c) ∧G(c) ①EI③F(c) ②化简④G(c) ②化简⑤∀x(F(x) →R(x)) 前提引入⑥F(c) →R(c) ⑤UI⑦R(c) ③⑥假言推理⑧R(c) ∧G(c) ④⑦合取⑥∃x(R(x) ∧G(x)) ⑧EG(2)设: F(x):x 为有理数, G(x):x 为无理数, R(x)为实数, H(x)为虚数前提: ∀x((F(x) ∨G(x)) →R(x)), ∀x(H(x) →⌝R(x))结论: ∀x(H(x) → (⌝F(x) ∧⌝G(x)))证明:①∀x((F(x) ∨G(x) →R(x)) 前提引入②F(y) ∨G(y)) →R(y) ①UI③∀x(H(x) →⌝R(x)) 前提引入④H(y) →⌝R(y)③UI⑤⌝R(y) →⌝ (F(y) ∨G(y)) ②置换⑥H(y) →⌝ (F(y) ∨G(y)) ④⑤假言三段论⑦H(y) → (⌝F(y) ∧⌝G(y)) ⑥置换⑧∀x(H(x) → (⌝F(x) ∧⌝G(x)))⑦UG(3)设: F(x):x 能表示成分数, G(x):x 为无理数, H(x)为有理数前提: ∀x(G(x) →⌝F(x)), ∀x(H(x) →F(x))结论: ∀x(H(x) →⌝G(x))证明:①∀x(H(x) →F(x)) 前提引入②H(y) →F(y) ①UI③∀x(G(x) →⌝F(x)) 前提引入④G(y) →⌝F(y)③UI⑤F(y) →⌝G(y) ④置换⑥H(y) →⌝G(y) ②⑤假言三段论⑦∀x(H(x) →⌝G(x))⑥UG5.24.在自然推理系统F 中, 构造下面推理的证明:每个喜欢步行的人都不喜欢骑自行车. 每个人或者喜欢骑自行车或者喜欢乘汽车. 有的人不喜欢乘汽车, 所以有的人不喜欢步行. (个体域为人类集合)令F(x): x 喜欢步行, G( x): x 喜欢骑自行车, H(x): x 喜欢乘汽车.前提: ∀x(F(x) → ⌝G(x)), ∀x(G(x) ∨ H(y)), ∃x⌝H(x).结论: ∃x⌝F(x).①∀x(G(x) ∨ H(y)) 前提引入②G(c) ∨ H(c) ①UI③∃x⌝H(x) 前提引入④⌝H(c) ③UI⑤G(c) ②④析取三段⑥∀x(F(x) → ⌝G(x)) 前提引入⑦F(c) → ⌝G(c) ⑥UI⑧⌝F(c) ⑤⑦拒取⑨∃x⌝F(x) ⑧EG5.25.略习题六6.1. 选择适当的谓词表示下列集合:(1)小于5 的非负整数(2)奇整数集合(3)10 的整倍数的集合(1){x|x∈®∧0≤x<5}(2){x|x=2k+1∧k∈®}(3){x|x=10k∧k∈®}6.2. 用列元素法表示下列集合:(1)S1={x|x 是十进制的数字}(2)S2={x|x=2∨x=5}(3)S3={x|x=x∈®∧3<x<12}(4)S4={x|x∈\∧x2-1=0∧x>3}(5)S5={〈x, y>|x, y∈®∧0≤x≤2∧-1≤y≤0}(1) S1={0,1,2,3,4,5,6,7,8,9}(2) S2={2,5}(3) S3={4,5,6,7,8,9,10,11}(4) S4=∅(5) S5={〈0, -1〉,〈1, -1〉,〈2, -1〉,〈0,0〉,〈1,0〉,〈2,0〉}6.3. 略6.4. 设F 表示一年级大学生的集合, S 表示二年级大学生的集合, M 表示数学专业学生的集合, R 表示计算机专业学生的集合, T 表示听离散数学课学生的集合, G 表示星期一晚上参加音乐会的学生的集合, H 表示星期一晚上很迟才睡觉的学生的集合. 问下列各句子所对应的集合表达式分别是什么? 请从备选的答案中挑出来.(1)所有计算机专业二年级的学生在学离散数学课. (2)这些且只有这些学离散数学课的学生或者星期一晚上去听音乐会的学生在星期一晚上很迟才睡觉.(3)听离散数学课的学生都没参加星期一晚上的音乐会.(4)这个音乐会只有大学一, 二年级的学生参加. (5)除去数学专业和计算机专业以外的二年级学生都去参加了音乐会.备选答案:①T⊆G∪H ②G∪H⊆T ③S∩R⊆T④H=G∪T ⑤T∩G=∅ ⑥F∪S⊆G⑦G⊆F∪S ⑧S- (R∪M) ⊆G ⑥G⊆S- (R∩M)答案:(1)③S∩R⊆T(2)④H=G∪T(3) ⑤T∩G=∅(4)⑦G⊆F∪S(5) ⑧S- (R∪M) ⊆G6.5. 确定下列命题是否为真:(1) ∅⊆∅(2) ∅∈∅(3) ∅⊆{∅}(4) ∅∈{∅}(5){a, b}⊆{a, b, c, {a, b, c}}(6){a, b}∈{a, b, c, {a, b }}(7){a, b} {a, b, {{a, b}}}(8){a, b}∈{a, b, {{a, b}}}(1) 真(2)假(3) 真(4) 真(5) 真(6) 真(7) 真(8) 假6.6. 略6.7. 略6.8. 略6.9. 略6.10.略6.11.略6.12.略6.13.略6.14.略6.15.略6.16.略6.17.略6.18.略6.19.略6.20.略6.21.略6.22.略6.23.略6.24.略6.25.略6.26.略6.27.略6.28.略6.29.略6.30.略6.31.略6.32.略6.33.略6.34.略6.35.略6.36.略6.37.略6.38.略6.39.略6.40.略6.41.略6.42.略6.43.略6.44.略6.45.略习题七7.1. 已知A={∅,{∅}},求A×P(A).A×P(A)={ 〈 ∅,∅〉,〈∅,{∅}〉,〈∅,{{∅}}〉,〈∅,{∅,{∅}}〉,〈{∅},∅〉,〈{∅},{∅}〉,〈{∅},{{∅}}〉, 〈{∅},{∅,{∅}}〉}7.2. 对于任意集合A,B,C, 若A×B⊆A×C,是否一定有B⊆C 成立? 为什么?不一定, 因为有反例: A=∅,B={1},C={2},B⊆C,A×B=∅=A×C.7.3. 设A, B, C, D 是任意集合,(1) 求证(A∩B)×(C∩D)=(A×C)∩(B×D).(2) 下列等式中哪个成立? 那些不成立?对于成立的给出证明, 对于不成立的举一反例.(A∪B)×(C∪D)=(A×C)∪(B×D)(A-B)×(C-D)=(A×C) - (B×D)(1) ∀〈x,y〉〈x,y〉∈(A∩B)×(C∩D) ⇔x∈A∩B∧y∈C∩D⇔ (x∈A∧x∈B) ∧ (y∈C∧y∈D) ⇔ (x∈A∧y∈C) ∧ (x∈B∧y∈D)⇔〈x,y〉∈(A×B) ∧〈x,y〉∈(C×D) ⇔〈x,y〉∈A×B∩C×D(A∩B)×(C∩D)=(A×C)∩(B×D)(2)都不成立, 反例: A={1,2},B={2,3},C={1,2},D={2,3}(A∪B)×(C∪D)={1,2,3}×{1,2,3}⊃(A×C)∪(B×D)(A-B)×(C-D)={1}×{1}⊂(A×C) - (B×D)7.4. 略7.5. 设A, B 为任意集合, 证明若A×A=B×B, 则A=B.∀x,x∈A⇔〈x,x〉∈A×A⇔〈x,x〉∈B×B⇔x∈BA=B7.6. 列出从集合A={1, 2}到B={1}的所有的二元关系.R1=∅ ,R2={〈1,1〉},R2={〈2,1〉},R3={〈1,1〉,〈2,1〉}.7.7. 列出集合A={2, 3, 4}上的恒等关系I A, 全域关系E A, 小于或等于关系L A, 整除关系D A.I A={〈2,2〉,〈3,3〉,〈4,4〉}E A=A×A={〈2,2〉,〈2,3〉,〈2,4〉,〈3,2〉,〈3,3〉,〈3,4〉,〈4,2〉,〈4,3〉,〈4,4〉}L A={〈2,2〉,〈2,3〉,〈2,4〉,〈3,3〉,〈3,4〉,〈4,4〉}D A={〈2,2〉,〈2,4〉,〈3,3〉,〈4,4〉}7.8. 列出集合A={∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}上的包含关系.R⊆={〈∅,∅〉,〈∅,{∅}〉,〈∅,{∅,{∅}}〉,〈∅,{∅,{∅},{∅,{∅}}}〉,〈{∅},{∅}〉,〈{∅},{∅,{∅}}〉,〈{∅},{∅,{∅},〈∅,{ ∅}〉}〉,〈{∅,{∅}}, {∅,{∅}}〉,〈{∅,{∅}},{∅,{∅},{∅,{∅}}}〉, 〈{∅,{∅},{∅,{∅}}},{∅,{∅},{∅,{∅}}}〉}7.9. 设A={1, 2, 4, 6}, 列出下列关系R:(1) R={〈x, y〉|x, y∈A∧x+y≠2}(2) R={〈x, y〉|x, y∈A∧|x-y|=1}(3) R={〈x, y〉|x, y∈A∧x/y∈A}(4) R={〈x, y〉|x, y∈A∧y 为素数}(1)R={〈1,2〉,〈1,4〉,〈1,6〉,〈2,1〉,〈2,2〉,〈2,4〉,〈2,6〉,〈4,1〉,〈4,2〉,〈4,4〉,〈4,6〉,〈6,1〉,〈6,2〉,〈6,4〉,〈6,6〉}=E A-{〈1,1〉}(2)R={〈1,2〉,〈2,1〉}(3)R={〈1,1〉,〈2,2〉,〈4,4〉,〈6,6〉,〈2,1〉,〈4,2〉,〈4,1〉}(4)R={〈1,2〉,〈2,2〉,〈4,2〉,〈6,2〉}7.10.略7.11.R i 是X 上的二元关系, 对于x∈X 定义集合R i(x)={y|xR i y}.显然Ri(x) ⊆X. 如果X={-4, -3, -2, -1, 0, 1, 2, 3, 4}, 且令R1={〈x, y〉|x, y∈X∧x<y}R2={〈x,y〉|x, y∈X∧y-1<x<y+2}R3={〈x,y〉|x, y∈X∧x2≤y}求R1(0), R1(1), R2(0), R2(-1), R3(3).R1(0)={1,2,3,4}R1(1)={2,3,4}R2(0)={ -1,0}R2(-1)={ -2, -1}R3(3)= ∅7.12.设A={0, 1, 2, 3}, R 是A 上的关系, 且R={〈0, 0〉, 〈0, 3〉, 〈2, 0〉, 〈2, 1〉, 〈2, 3〉, 〈3, 2〉}给出R 的关系矩阵和关系图.7.13.设A = {〈1, 2〉, 〈2, 4〉, 〈3, 3〉}B = {〈1, 3〉, 〈2, 4〉, 〈4, 2〉}求A∪B, A∩B, dom A, dom(A∪B), ran A, ran B, ran(A∩B), fld(A-B).A∪B={〈1,2〉, 〈1,3〉, 〈2,4〉, 〈3,3〉, 〈4,2〉}A∩B={〈2,4〉}dom A={1,2,3}dom(A∪B)={1,2,3,4}r an A={2,3,4}r an B={3,4,2}r an(A∩B)={4}fld(A-B)={1,2,3}7.14.设R={〈0,1〉,〈0,2〉,〈0,3〉,〈1,2〉,〈1,3〉,〈2,3〉}求R○R,R-1 ,R†{0,1},R[{1,2}].R○R={〈0,2〉, 〈0,3〉, 〈1,3〉}R-1={〈1,0〉,〈2,0〉,〈3,0〉,〈2,1〉,〈3,1〉,〈3,2〉}R†{0,1}={〈0,1〉, 〈0,2〉, 〈0,3〉, 〈1,2〉, 〈1,3〉}R[{1,2}]={2,3}7.15.设A={〈∅,{∅,{∅}}〉,〈{∅},∅〉}求A-1,A2,A3,A†{∅},A[∅],A†∅,A†{{∅}},A[{{∅}}].A-1={〈{∅,{∅}},∅〉,〈∅,{∅}〉},A2={〈{∅},{∅,{∅}}〉},A3=∅,A†{∅}={〈∅,{∅,{∅}}〉},A[∅]={∅,{∅}},1 2A †∅=∅,A †{{∅}}={〈{∅},∅〉}, A [{{∅}}]=∅7.16.设 A ={a ,b ,c ,d }, R 1,R 2 为 A 上的关系, 其中R 1={〈a ,a 〉,〈a ,b 〉,〈b ,d 〉} R 2={〈a ,d 〉,〈b ,c 〉,〈b ,d 〉,〈c ,b 〉} 2 3求 R 1○R 2, R 2○R 1,R 1 ,R 2 .R 1○R 2={〈a ,a 〉,〈a ,c 〉,〈a ,d 〉}, R 2○R 1={〈c ,d 〉}, R 2={〈a ,a 〉,〈a ,b 〉,〈a ,d 〉}, R 3={〈b ,c 〉,〈b ,d 〉,〈c ,b 〉}237.17.设 A ={a ,b ,c }, 试给出 A 上两个不同的关系 R 1 和 R 2,使得 R 1 =R 1, R 2 =R 2.R 1={〈a ,a 〉,〈b ,b 〉}, R 2={〈b ,c 〉,〈c ,b 〉}7.18.证明定理 7.4 的(1), (2), (4).(1) F ○ (G ∪H )=F ○G ∪F ○H任取〈x ,y 〉,〈x ,y 〉∈F ○ (G ∪H )⇔∃t (〈x ,t 〉∈F ∧〈t ,y 〉∈G ∪H )⇔∃t (〈x ,t 〉∈F ∧ (〈t ,y 〉∈G ∨〈t ,y 〉∈H ))⇔∃t ((〈x ,t 〉∈F ∧〈t ,y 〉∈G ) ∨ (〈x ,t 〉∈F ∧〈t ,y 〉∈H )) ⇔∃t (〈x ,t 〉∈F ∧〈t ,y 〉∈G ) ∨∃t (〈x ,t 〉∈F ∧〈t ,y 〉∈H )) ⇔〈x ,y 〉∈F ○G ∨〈x ,y 〉∈F ○H ⇔〈x ,y 〉∈F ○G ∩F ○H 所以有 F ○ (G ∩H )⊆ F ○G ∩F ○H .(2) (G ∪H ) ○F =G ○F ∪H ○F 任取〈x ,y 〉,〈x ,y 〉∈(G ∪H ) ○F⇔∃t (〈x ,t 〉∈(G ∪H ) ∧〈t ,y 〉∈F )⇔∃t ((〈x ,t 〉∈G ∨〈t ,y 〉∈H ) ∧〈t ,y 〉∈F ))⇔∃t ((〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∨ (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇔∃t (〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∨∃t (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇔〈x ,y 〉∈G ○F ∨〈x ,y 〉∈H ○F ⇔〈x ,y 〉∈G ○F ∪H ○F(4) (G ∩H ) ○F ⊆G ○F ∩H ○F 任取〈x ,y 〉,〈x ,y 〉∈(G ∩H ) ○F⇔∃t (〈x ,t 〉∈(G ∩H ) ∧〈t ,y 〉∈F )⇔∃t ((〈x ,t 〉∈G ∧〈t ,y 〉∈H ) ∧〈t ,y 〉∈F ))⇔∃t ((〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∧ (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇒∃t (〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∧∃t (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇔〈x ,y 〉∈G ○F ∨〈x ,y 〉∈H ○F ⇔〈x ,y 〉∈G ○F ∪H ○F7.19.证明定理 7.5 的(2), (3).(2) F [A ∪B ]=F [A ]∪F [B ]任取 y ,。

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p?r)∧(﹁q∨s) ⇔(0?1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)?(p∧q∧﹁r) ⇔(1∧1∧1)? (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q)? ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x ).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解: F(x): 2=(x+)(x ).G(x): x+5=9.(1)在两个个体域中都解释为)(x xF ∀,在(a )中为假命题,在(b)中为真命题。

离散数学屈婉玲版课后习题

离散数学屈婉玲版课后习题

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔ 0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数 0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1 所以公式类型为永真式(3) P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p →q)∧(p →r)⇔(p →(q ∧r))(4)(p ∧⌝q)∨(⌝p ∧q)⇔(p ∨q) ∧⌝(p ∧q) 证明(2)(p →q)∧(p →r)⇔ (⌝p ∨q)∧(⌝p ∨r) ⇔⌝p ∨(q ∧r))⇔p →(q ∧r)(4)(p ∧⌝q)∨(⌝p ∧q)⇔(p ∨(⌝p ∧q)) ∧(⌝q ∨(⌝p ∧q)⇔(p ∨⌝p)∧(p ∨q)∧(⌝q ∨⌝p) ∧(⌝q ∨q) ⇔1∧(p ∨q)∧⌝(p ∧q)∧1 ⇔(p ∨q)∧⌝(p ∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p →q)→(⌝q ∨p)(2)⌝(p →q)∧q ∧r (3)(p ∨(q ∧r))→(p ∨q ∨r) 解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q) ⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p) ⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p∨(⌝q∨p))∧(⌝q∨(⌝q∨p))⇔1∧(p∨⌝q)⇔(p∨⌝q) ⇔ M1⇔∏(1)(2) 主合取范式为:⌝(p→q)∧q∧r⇔⌝(⌝p∨q)∧q∧r⇔(p∧⌝q)∧q∧r⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p∨(q∧r))→(p∨q∨r)⇔⌝(p∨(q∧r))→(p∨q∨r)⇔(⌝p∧(⌝q∨⌝r))∨(p∨q∨r)⇔(⌝p∨(p∨q∨r))∧((⌝q∨⌝r))∨(p∨q∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p →(q →r) 前提引入 ⑤q →r ③④假言推理 ⑥q 前提引入 ⑦r ⑤⑥假言推理16在自然推理系统P 中用归谬法证明下面各推理:(1)前提:p →⌝q,⌝r ∨q,r ∧⌝s 结论:⌝p 证明:①p 结论的否定引入 ②p →﹁q 前提引入 ③﹁q ①②假言推理 ④¬r ∨q 前提引入 ⑤¬r ④化简律 ⑥r ∧¬s 前提引入 ⑦r ⑥化简律 ⑧r ∧﹁r ⑤⑦ 合取由于最后一步r ∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值: (1) 对于任意x,均有错误!未找到引用源。

离散数学最全答案 屈婉玲

离散数学最全答案  屈婉玲

第一章 命题逻辑基本概念课后练习题答案4.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e 是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.5.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p :刘晓月选学英语,q :刘晓月选学日语;.7.因为p 与q 不能同时为真.13.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)pq ,真值为1;(4)p→r,若p 为真,则p→r 真值为0,否则,p→r 真值为1.16 设p 、q 的真值为0;r 、s 的真值为1,求下列各命题公式的真值。

(1)p ∨(q ∧r)⇔ 0∨(0∧1) ⇔0(2)(p?r )∧(﹁q ∨s) ⇔(0?1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p ∧⌝q ∧r )?(p ∧q ∧﹁r) ⇔(1∧1∧1) ? (0∧0∧0)⇔0(4)(⌝r ∧s )→(p ∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

离散数学最全课后答案(屈婉玲版)_0

离散数学最全课后答案(屈婉玲版)_0

离散数学最全课后答案(屈婉玲版)离散数学习题解1习题11 . 1 .2 . 1 .3 . 1 .4 . 1 .5 . 1 .6 . 1 .7 . 1 .8 . 1 .9 .|下列命题用符号表示,并给出其真值:(1) 2+2(2) 2+2 = 4的充要条件是3+3?6.(3)2+2?4和3+3 = 6都是必要和充分的条件。

(4)如果2+2?4,然后3+3?6,反之亦然。

(1)p?q,其中p: 2+2 = 4,q: 3+3 = 6,真值为1。

(2)p??q,其中p: 2+2 = 4,q: 3+3 = 6,真值为0。

(3)?p?q,其中p: 2+2 = 4,q: 3+3 = 6,真值为0。

(4)?p??q,其中p: 2+2 = 4,q: 3+3 = 6,真值为1.1.13。

用符号表示下列命题,并给出每个命题的真实值:(1)如果今天是星期一,明天就是星期二。

只有今天是星期一。

明天是星期二。

(3)今天是星期一,只有明天是星期二。

(4)如果今天是星期一,明天就是星期三。

订单P:今天是星期一;问:明天是星期二;明天是星期三。

问??1.(2) q?p??1.(3) p?问??1.(4) p?r何时p??0为真;p??一小时是假的。

1.14。

象征以下命题。

(1)刘跑得快,跳得高。

老王来自山东或河北。

(3)因为天气寒冷。

所以我穿上了羽绒服。

(4)王欢和李乐组成一个小组。

(5)李欣和李默是兄弟。

(6)王强和刘伟都学过法语。

他一边吃饭一边听音乐。

如果下大雨,他就乘公共汽车去上班。

只有下大雨时,他才乘公共汽车去上班。

除非下大雨。

他刚刚乘公共汽车去上班。

雪很滑,他迟到了。

(12)2和4是质数,这是错误的。

(13)“2或4是质数,这是错误的”是错误的。

离散数学习题解答(1)p?其中,刘跑得快,刘跳得高。

(2)p?其中,p:老王来自山东,q:老王来自河北。

(3)p?问:那里的天气很冷,问:我穿着羽绒服。

(4)p,其中P:王欢和李乐组成一个组,这是一个简单的命题。

(完整word版)离散数学第二版 屈婉玲 1-5章(答案)

(完整word版)离散数学第二版 屈婉玲  1-5章(答案)

《离散数学1-5章》练习题答案第2,3章(数理逻辑)1.答:(2),(3),(4)2.答:(2),(3),(4),(5),(6)3.答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是4.答:(4)5.答:⌝P ,Q→P6.答:P(x)∨∃yR(y)7.答:⌝∀x(R(x)→Q(x))8、c、P→(P∧(Q→P))解:P→(P∧(Q→P))⇔⌝P∨(P∧(⌝Q∨P))⇔⌝P∨P⇔ 1 (主合取范式)⇔ m0∨ m1∨m2∨ m3 (主析取范式)d、P∨(⌝P→(Q∨(⌝Q→R)))解:P∨(⌝P→(Q∨(⌝Q→R)))⇔ P∨(P∨(Q∨(Q∨R)))⇔ P∨Q∨R⇔ M0 (主合取范式)⇔ m1∨ m2∨m3∨ m4∨ m5∨m6 ∨m7 (主析取范式) 9、b、P→(Q→R),R→(Q→S) => P→(Q→S)证明:(1) P 附加前提(2) Q 附加前提(3) P→(Q→R) 前提(4) Q→R (1),(3)假言推理(5) R (2),(4)假言推理(6) R→(Q→S) 前提(7) Q→S (5),(6)假言推理(8) S (2),(7)假言推理d、P→⌝Q,Q∨⌝R,R∧⌝S⇒⌝P证明、(1) P 附加前提(2) P→⌝Q 前提(3)⌝Q (1),(2)假言推理(4) Q∨⌝R 前提(5) ⌝R (3),(4)析取三段论(6 ) R∧⌝S 前提(7) R (6)化简(8) R∧⌝R 矛盾(5),(7)合取所以该推理正确10.写出∀x(F(x)→G(x))→(∃xF(x) →∃xG(x))的前束范式。

解:原式⇔∀x(⌝F(x)∨G(x))→(⌝(∃x)F(x) ∨ (∃x)G(x))⇔⌝(∀x)(⌝F(x)∨G(x)) ∨(⌝(∃x)F(x) ∨ (∃x)G(x))⇔ (∃x)((F(x)∧⌝ G(x)) ∨G(x)) ∨ (∀x) ⌝F(x)⇔ (∃x)((F(x) ∨G(x)) ∨ (∀x) ⌝F(x)⇔ (∃x)((F(x) ∨G(x)) ∨ (∀y) ⌝F(y)⇔ (∃x) (∀y) (F(x) ∨G(x) ∨⌝F(y))(集合论部分)1、答:(4)2.答:323.答:(3)4. 答:(4)5.答:(2),(4)6、设A,B,C是三个集合,证明:a、A⋂ (B-C)=(A⋂B)-(A⋂C)证明:(A⋂B)-(A⋂C)= (A⋂B)⋂~(A⋂C)=(A⋂B) ⋂(~A⋃~C)=(A⋂B⋂~A)⋃(A⋂B⋂~C)= A⋂B⋂~C=A⋂(B⋂~C)=A⋂(B-C)b、(A-B)⋃(A-C)=A-(B⋂C)证明:(A-B)⋃(A-C)=(A⋂~B)⋃(A⋂⋂~C) =A⋂ (~B ⋃~C)=A⋂~(B⋂C)= A-(B⋂C)(二元关系部分)1、答:(1)R={<1,1>,<4,2>} (2) R1-={<1,1>,<2,4>}2.答:RοR ={〈1,1〉,〈1,3〉,〈2,2〉,〈2,4〉}R-1 ={〈2,1〉,〈1,2〉,〈3,2〉,〈4,3〉}3.答:R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,4>,<2,6>,<3,6>}4.答:R 的关系矩阵=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡000000001000000001 R 1-的关系矩阵=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0000000100000000015、解:(1)R={<2,1>,<3,1>,<2,3>};M R =⎪⎪⎪⎭⎫ ⎝⎛001101000;它是反自反的、反对称的、传递的;(2)R={<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};M R =⎪⎪⎪⎭⎫⎝⎛011101110;它是反自反的、对称的;(3)R={<1,2>,<2,1>,<1,3>,<3,3>};M R =⎪⎪⎪⎭⎫⎝⎛100001110;它既不是自反的、也不是反自反的、也不是对称的、也不是反对称的、也不是传递的。

离散数学最全课后答案(屈婉玲版)

离散数学最全课后答案(屈婉玲版)

1.1.略1.2.略1.3.略1.4.略1.5.略1.6.略1.7.略1.8.略1.9.略1.10.略1.11.略1.12.将下列命题符号化, 并给出各命题的真值:(1)2+2=4 当且仅当3+3=6. (2)2+2=4 的充要条件是3+3≠6. (3)2+2≠4与3+3=6 互为充要条件. (4)若2+2≠4, 则3+3≠6, 反之亦然.(1)p↔q, 其中, p: 2+2=4, q: 3+3=6, 真值为1.(2)p↔⌝q, 其中, p: 2+2=4, q: 3+3=6, 真值为0.(3) ⌝p↔q, 其中, p: 2+2=4, q: 3+3=6, 真值为0.(4) ⌝p↔⌝q, 其中, p: 2+2=4, q: 3+3=6, 真值为1.1.13.将下列命题符号化, 并给出各命题的真值:(1)若今天是星期一, 则明天是星期二. (2)只有今天是星期一, 明天才是星期二. (3)今天是星期一当且仅当明天是星期二. (4)若今天是星期一, 则明天是星期三.令p: 今天是星期一; q: 明天是星期二; r: 明天是星期三.(1) p→q ⇔ 1.(2) q→p ⇔ 1.(3) p↔q ⇔ 1.(4) p→r 当p ⇔ 0 时为真; p ⇔ 1 时为假.1.14.将下列命题符号化.(1) 刘晓月跑得快, 跳得高.(2)老王是山东人或河北人.(3)因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小组.(5)李辛与李末是兄弟.(6)王强与刘威都学过法语. (7)他一面吃饭, 一面听音乐. (8)如果天下大雨, 他就乘班车上班. (9)只有天下大雨, 他才乘班车上班. (10)除非天下大雨, 他才乘班车上班. (11)下雪路滑, 他迟到了.(12)2 与4 都是素数, 这是不对的.(13)“2或4 是素数, 这是不对的”是不对的.(1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高.(2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人.(3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服.(4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题.(5)p, 其中, p: 李辛与李末是兄弟.(6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语.(7)p∧q, 其中, p: 他吃饭, q: 他听音乐.(8)p→q, 其中, p: 天下大雨, q: 他乘班车上班.(9)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(10)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(11)p→q, 其中, p: 下雪路滑, q: 他迟到了.12) ⌝ (p∧q)或⌝p∨⌝q, 其中, p: 2 是素数, q: 4 是素数.(13) ⌝⌝ (p∨q)或p∨q, 其中, p: 2 是素数, q: 4 是素数.1.15.设p: 2+3=5.q: 大熊猫产在中国.r: 复旦大学在广州. 求下列复合命题的真值:(1)(p↔q) →r(2)(r→ (p∧q)) ↔ ⌝p(3) ⌝r→ (⌝p∨⌝q∨r)(4)(p∧q∧⌝r) ↔ (( ⌝p∨⌝q) →r)(1)真值为0.(2)真值为0.(3)真值为0.(4)真值为1.注意: p, q 是真命题, r 是假命题.1.16.略1.17.略1.18.略1.19.用真值表判断下列公式的类型:(1)p→ (p∨q∨r)(2)(p→⌝q) →⌝q(3) ⌝ (q→r) ∧r(4)(p→q) → (⌝q→⌝p)(5)(p∧r) ↔ ( ⌝p∧⌝q)(6)((p→q) ∧ (q→r)) → (p→r)(7)(p→q) ↔ (r↔s)(1), (4), (6)为重言式.(3)为矛盾式.(2), (5), (7)为可满足式.1.20.略1.21.略1.22.略1.23.略1.24.略1.25.略1.26.略1.27.略1.28.略1.29.略1.30.略1.31.将下列命题符号化, 并给出各命题的真值:(1)若3+=4, 则地球是静止不动的.(2)若3+2=4, 则地球是运动不止的. (3)若地球上没有树木, 则人类不能生存.(4)若地球上没有水, 则 3 是无理数.(1)p→q, 其中, p: 2+2=4, q: 地球静止不动, 真值为0.(2)p→q, 其中, p: 2+2=4, q: 地球运动不止, 真值为1.(3) ⌝p→⌝q, 其中, p: 地球上有树木, q: 人类能生存, 真值为1.(4) ⌝p→q, 其中, p: 地球上有水, q: 3 是无理数, 真值为1.习题二2.1. 设公式A = p→q, B = p⌝∧q, 用真值表验证公式A 和B 适合德摩根律:⌝(A∨B) ⇔ ⌝A⌝∧B.p q A =p→q B =p⌝∧q⌝(A∨B)⌝A⌝∧B0 0 1 0 0 00 1 1 0 0 01 0 0 1 0 01 1 1 0 0 0因为⌝(A∨B)和⌝A⌝∧B 的真值表相同, 所以它们等值.2.2. 略2.3. 用等值演算法判断下列公式的类型, 对不是重言式的可满足式, 再用真值表法求出成真赋值.(1) ⌝ (p∧q→q)(2)(p→ (p∨q)) ∨ (p→r)(3)(p∨q) → (p∧r)(1) ⌝ (p∧q→q)⇔ ⌝ (⌝(p∧q) ∨ q) ⇔ ⌝ (⌝p ∨ ⌝q ∨ q) ⇔ p∧q∧⌝q ⇔ p∧0 ⇔ 0 ⇔ 0. 矛盾式.(2)重言式.(3) (p∨q) → (p∧r) ⇔ ⌝(p∨q) ∨ (p∧r) ⇔ ⌝p⌝∧q ∨ p∧r 易见, 是可满足式, 但不是重言式. 成真赋值为: 000, 001, 101, 111p q r←p ∍ ←q (p∍r0 0 0 1 1 1 1 00 0 1 1 1 1 1 00 1 0 1 0 0 0 00 1 1 1 0 0 0 01 0 0 0 0 1 0 01 0 1 0 0 1 1 11 1 0 0 0 0 0 01 1 1 0 0 0 1 12.4. 用等值演算法证明下面等值式:(1) p⇔ (p∧q) ∨ (p∧⌝q)(3) ⌝ (p↔q) ⇔ (p∨q) ∧⌝ (p∧q)(4) (p∧⌝q) ∨ (⌝p∧q) ⇔ (p∨q) ∧⌝ (p∧q)(1) (p∧q) ∨ (p∧⌝q) ⇔ p ∧ (q⌝∨q) ⇔ p ∧ 1 ⇔ p.(3) ⌝ (p↔q)⇔⌝ ((p→q) ∧ (q→p))⇔⌝ ((⌝p∨q) ∧ (⌝q∨p))⇔ (p∧⌝q) ∨ (q∧⌝p)⇔ (p∨q) ∧ (p∨⌝p) ∧ (⌝q∨q) ∧ (⌝p∨⌝q)⇔ (p∨q) ∧⌝ (p∧q)(4) (p∧⌝q) ∨ (⌝p∧q)⇔ (p∨⌝p) ∧ (p∨q) ∧ (⌝q∨⌝p) ∧ (⌝q∨q)⇔ (p∨q) ∧⌝ (p∧q)2.5. 求下列公式的主析取范式, 并求成真赋值:(1)( ⌝p→q) → (⌝q∨p)(2) ⌝ (p→q) ∧q∧r(3)(p∨ (q∧r)) → (p∨q∨r)(1)(⌝p→q) → (⌝q∨p)⇔ ⌝(p∨q) ∨ (⌝q∨p)⇔ ⌝p∧⌝q ∨ ⌝q ∨ p⇔ ⌝p∧⌝q ∨ ⌝q ∨ p(吸收律)⇔ (p⌝∨p)⌝∧q ∨ p∧(q⌝∨q)⇔ p⌝∧q ⌝∨p⌝∧q ∨ p∧q ∨ p⌝∧q⇔ m10 ∨ m00 ∨ m11 ∨ m10⇔ m0 ∨ m2 ∨ m3⇔ ∑(0, 2, 3).成真赋值为00, 10, 11.(2)主析取范式为0, 无成真赋值, 为矛盾式.(3)m0∨m1∨m2∨m3∨m4∨m5∨m6∨m7, 为重言式.2.6. 求下列公式的主合取范式, 并求成假赋值:(1) ⌝ (q→⌝p) ∧⌝p(2)(p∧q) ∨ (⌝p∨r)(3)(p→ (p∨q)) ∨r(1) ⌝ (q⌝→p) ∧ ⌝p⇔ ⌝(⌝q⌝∨p) ∧ ⌝p⇔ q∧p ∧ ⌝p⇔ q∧0⇔ 0⇔ M0∧M1∧M2∧M3这是矛盾式. 成假赋值为00, 01, 10, 11.(2)M4, 成假赋值为100.(3)主合取范式为1, 为重言式.2.7. 求下列公式的主析取范式, 再用主析取范式求合取范式:(1)(p∧q) ∨r(2)(p→q) ∧ (q→r)(1)m1∨m3∨m5∨m6∨m7⇔M0∧M2∧M4(2)m0∨m1∨m3∨m7⇔M2∧M4∧M5∧M62.8. 略2.9. 用真值表求下面公式的主析取范式.(2) (p→q) → (p⌝↔q)p q(p q) (p ←  q)0 0 1 0 0 10 1 1 1 1 01 0 0 1 1 11 1 1 0 0 0(2)从真值表可见成真赋值为01, 10. 于是(p → q) → (p⌝ ↔ q) ⇔ m1 ∨ m2.2.10. 略2.11. 略2.12. 略2.13. 略2.14. 略2.15. 用主析取范式判断下列公式是否等值:(1)(p→q) →r 与q→ (p→r)(2)(p→q) →r⇔ ⌝(⌝p∨q) ∨ r⇔ ⌝(⌝p∨q) ∨ r⇔ p⌝∧q ∨ r⇔ p⌝∧q∧(r⌝∨r) ∨ (p⌝∨p) ∧ (q⌝∨q)∧r⇔ p⌝∧q∧r ∨ p⌝∧q∧⌝r ∨p∧q∧r ∨ p∧⌝q∧r ∨ ⌝p∧q∧r ∨ ⌝p∧⌝q∧r= m101 ∨ m100 ∨ m111 ∨ m101 ∨ m011 ∨ m001⇔ m1 ∨ m3 ∨ m4 ∨ m5 ∨ m7= ∑(1, 3, 4, 5, 7).而q→(p→r)⇔ ⌝q ∨ (⌝p∨r)⇔ ⌝q ∨ ⌝p ∨r⇔ (⌝p∨p)⌝∧q∧(⌝r∨r) ∨ ⌝p∧(⌝q∨q)∧(⌝r∨r)∨ (⌝p∨p)∧(⌝q∨q)∧r⇔ (⌝p⌝∧q∧⌝r)∨(⌝p⌝∧q∧r)∨(p⌝∧q∧⌝r)∨(p⌝∧q∧r)∨(⌝p∧⌝q∧⌝r)∨(⌝p∧⌝q∧r)∨(⌝p∧q∧⌝r)∨(⌝p∧q∧r)∨(⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨(p∧⌝q∧r)∨(p∧q∧r)= m0 ∨ m1 ∨ m4 ∨ m5∨ m0 ∨ m1 ∨ m2 ∨ m3∨ m1 ∨ m3 ∨ m5 ∨ m7⇔ m0 ∨ m1 ∨ m2 ∨ m3 ∨ m4 ∨ m5 ∨ m7⇔ ∑(0, 1, 2, 3, 4, 5, 7).两个公式的主吸取范式不同, 所以(p→q) →rœq→ (p→r).2.16. 用主析取范式判断下列公式是否等值:(1)(p→q) →r 与q→ (p→r)(2) ⌝ (p∧q)与⌝ (p∨q)(1)(p→q) →r) ⇔m1∨m3∨m4∨m5∨m7q→ (p→r) ⇔m0∨m1∨m2∨m3∨m4∨m5∨m7所以(p→q) →r) œq→ (p→r)(2)⌝ (p∧q) ⇔m0∨m1∨m2⌝ (p∨q) ⇔m0所以⌝ (p∧q) œ⌝ (p∨q)2.17. 用主合取范式判断下列公式是否等值:(1)p→ (q→r)与⌝ (p∧q) ∨r(2)p→ (q→r)与(p→q) →r(1)p→ (q→r) ⇔M6⌝ (p∧q) ∨r⇔M6所以p→ (q→r) ⇔ ⌝ (p∧q) ∨r(2)p→ (q→r) ⇔M6(p→q) →r⇔M0∧M1∧M2∧M6所以p→ (q→r) œ(p→q) →r2.18. 略2.19. 略2.20.将下列公式化成与之等值且仅含{⌝, →} 中联结词的公式.(3) (p∧q)↔r.注意到A↔B ⇔ (A→B)∧(B→A)和A∧B ⇔ ⌝(⌝A⌝∨B) ⇔ ⌝(A⌝→B)以及A∨B ⇔ ⌝A→B. (p∧q)↔r⇔ (p∧q → r) ∧ (r → p∧q)⇔ (⌝(p⌝→q) → r) ∧ (r → ⌝(p⌝→q))⇔ ⌝((⌝(p⌝→q) → r) → ⌝(r → ⌝(p⌝→q)))注 联结词越少, 公式越长.2.21. 证明:(1) (p↑q) ⇔ (q↑p), (p↓q) ⇔ (q↓p).(p↑q) ⇔ ⌝(p∧q) ⇔ ⌝(q∧p) ⇔ (q↑p).(p↓q) ⇔ ⌝(p∨q) ⇔ ⌝(q∨p) ⇔ (q↓p).2.22. 略2.23. 略2.24. 略2.25. 设A, B, C 为任意的命题公式.(1)若A∨C⇔B∨C, 举例说明A⇔B 不一定成立. (2)已知A∧C⇔B∧C, 举例说明A⇔B 不一定成立. (3)已知⌝A⇔⌝B, 问: A⇔B 一定成立吗?(1) 取A = p, B = q, C = 1 (重言式), 有A∨C ⇔ B∨C, 但A œB.(2) 取A = p, B = q, C = 0 (矛盾式), 有A∧C ⇔ B∧C, 但A œB.好的例子是简单, 具体, 而又说明问题的. (3)一定.2.26. 略2.27.某电路中有一个灯泡和三个开关A,B,C. 已知在且仅在下述四种情况下灯亮:(1)C 的扳键向上, A,B 的扳键向下.(2)A 的扳键向上, B,C 的扳键向下.(3)B,C 的扳键向上, A 的扳键向下.(4)A,B 的扳键向上, C 的扳键向下.设F 为1 表示灯亮, p,q,r 分别表示A,B,C 的扳键向上. (a)求F 的主析取范式.(b)在联结词完备集{⌝, ∧}上构造F. (c)在联结词完备集{⌝, →,↔}上构造F.(a)由条件(1)-(4)可知, F 的主析取范式为F⇔ (⌝p∧⌝q∧r) ∨ (p∧⌝q∧⌝r) ∨ (⌝p∧q∧r) ∨ (p∧q∧⌝r)⇔m1∨m4∨m3∨m6⇔m1∨m3∨m4∨m6(b)先化简公式F⇔ (⌝p∧⌝q∧r) ∨ (p∧⌝q∧⌝r) ∨ (⌝p∧q∧r) ∨ (p∧q∧⌝r)⇔⌝q∧ ((⌝p∧r) ∨ (p∧⌝r)) ∨q∧ ((⌝p∧r) ∨ (p∧⌝r))⇔ (⌝q∨q) ∧ ((⌝p∧r) ∨ (p∧⌝r))⇔ (⌝p∧r) ∨ (p∧⌝r)⇔⌝ (⌝ (⌝p∧r) ∧⌝ (p∧⌝r)) (已为{⌝, ∧}中公式)(c)F⇔ (⌝p∧r) ∨ (p∧⌝r)⇔⌝⌝ (⌝p∧r) ∨ (p∧⌝r)⇔⌝ (⌝p∧r) → (p∧⌝r)⇔ (p∨⌝r) →⌝ (⌝p∨r)⇔ (r→p) →⌝ (p→r) (已为{⌝, →,↔}中公式)2.28.一个排队线路, 输入为A,B,C, 其输出分别为F A,F B,F C. 本线路中, 在同一时间内只能有一个信号通过, 若同时有两个和两个以上信号申请输出时, 则按A,B,C 的顺序输出. 写出F A,F B,F C 在联结词完备集{⌝, ∨}中的表达式.根据题目中的要求, 先写出F A,F B,F C 的真值表(自己写) 由真值表可先求出他们的主析取范式, 然后化成{⌝, ∧}中的公式F A⇔m4∨m5∨m6∨m7⇔p (已为{⌝, ∧}中公式)F B⇔m2∨m3⇔⌝p∧q (已为{⌝, ∧}中公式)F C⇔m1⇔⌝p∧⌝q∧r (已为{⌝, ∧}中公式)2.29. 略2.30. 略习题三3.1. 略3.2. 略3.3. 略3.4. 略3.5. 略3.6. 判断下面推理是否正确. 先将简单命题符号化, 再写出前提, 结论, 推理的形式结构(以蕴涵式的形式给出)和判断过程(至少给出两种判断方法):(1)若今天是星期一, 则明天是星期三;今天是星期一. 所以明天是星期三. (2)若今天是星期一, 则明天是星期二;明天是星期二. 所以今天是星期一. (3)若今天是星期一, 则明天是星期三;明天不是星期三. 所以今天不是星期一. (4)若今天是星期一, 则明天是星期二;今天不是星期一. 所以明天不是星期二. (5)若今天是星期一, 则明天是星期二或星期三. (6)今天是星期一当且仅当明天是星期三;今天不是星期一. 所以明天不是星期三.设p: 今天是星期一, q: 明天是星期二, r: 明天是星期三. (1)推理的形式结构为(p→r) ∧p→r此形式结构为重言式, 即(p→r) ∧p⇒r 所以推理正确. (2)推理的形式结构为(p→q) ∧q→p 此形式结构不是重言式, 故推理不正确. (3)推理形式结构为(p→r) ∧⌝r→⌝p此形式结构为重言式, 即(p→r) ∧⌝r⇒⌝p故推理正确. (4)推理形式结构为(p→q) ∧⌝p→⌝q此形式结构不是重言式, 故推理不正确.(5)推理形式结构为p→ (q∨r)它不是重言式, 故推理不正确. (6)推理形式结构为(p⇒r) ∧⌝p→⌝r此形式结构为重言式, 即(p⇒r) ∧⌝p⇒⌝r故推理正确.推理是否正确, 可用多种方法证明. 证明的方法有真值表法, 等式演算法. 证明推理正确还可用构造证明法.下面用构造证明法证明(6)推理正确.前提: p⇒r, ⌝p结论: ⌝r证明: ①p⇒r 前提引入②(p→r) ∧ (r→p) ①置换③r→p ②化简律④⌝p 前提引入⑤⌝r ③④拒取式所以, 推理正确.3.7. 略3.8. 略3.9. 用三种方法(真值表法, 等值演算法, 主析取范式法)证明下面推理是正确的:若a 是奇数, 则a 不能被2 整除. 若a 是偶数, 则a 能被2 整除. 因此, 如果a 是偶数, 则a 不是奇数.令p: a 是奇数; q: a 能被2 整除; r: a 是偶数. 前提: p → ⌝q, r → q.结论: r → ⌝p.形式结构: (p → ⌝q) ∧ (r → q) → (r → ⌝p).……3.10.略3.11.略3.12.略3.13.略3.14.在自然推理系统P 中构造下面推理的证明:(1)前提: p→ (q→r), p, q结论: r∨s(2)前提: p→q, ⌝ (q∧r), r结论: ⌝p(3)前提: p→q结论: p→ (p∧q)(4)前提: q→p, q⇒s, s⇒t, t∧r结论: p∧q(5)前提: p→r, q→s, p∧q结论: r∧s(6)前提: ⌝p∨r, ⌝q∨s, p∧q结论: t→ (r∨s) (1)证明:①②p→(q→r)p前提引入前提引入③④q→rq①②假言推理前提引入⑤r③④假言推理⑥r∨s⑤附加律(2)证明:①②③⌝ (q∧r)⌝q∨⌝rr前提引入①置换前提引入④⑤⑥⌝qp→q⌝p②③析取三段论前提引入④⑤拒取式(3)证明:①p→q前提引入②⌝p∨q①置换③(⌝p∨q) ∧ (⌝p∨p)②置换④⌝p∨ (p∧q)③置换⑤p→ (p∧q) ④置换也可以用附加前提证明法, 更简单些.(4)证明:①②③④⑤s⇒t(s→t) ∧ (t→s)t→st∧rt前提引入①置换②化简前提引入④化简⑥s③⑤假言推理⑦⑧⑨⑩q⇒s(s→q) ∧ (q→s)s→qq前提引入⑦置换⑧化简⑥⑥假言推理○11 q →p前提引入○12 ○13 pp∧q⑩○11 假言推理⑩○12 合取(5)证明:①②p→rq→s前提引入前提引入③④p∧qp前提引入③化简⑤q③化简⑥r①④假言推理⑦s②⑤假言推理⑧r∧s⑥⑦合取(6)证明:①②t⌝p∨r附加前提引入前提引入③④p∧qp前提引入③化简⑤r②④析取三段论⑥r∨s⑤附加说明: 证明中, 附加提前t, 前提⌝q∨s 没用上. 这仍是正确的推理.3.15.在自然推理系统P 中用附加前提法证明下面各推理:(1)前提: p→ (q→r), s→p, q结论: s→r(2)前提: (p∨q) → (r∧s), (s∨t) →u结论: p→u(1)证明:①②ss→p附加前提引入前提引入③p①②假言推理④⑤⑥p→ (q→r)q→rq前提引入③④假言推理前提引入⑦r⑤⑥假言推理(2)证明:①②Pp∨q附加前提引入①附加③(p∨q) → (r∧s) 前提引入④⑤r∧sS②③假言推理④化简⑥⑦⑧s∨t(s∨t) →uu⑤附加前提引入⑥⑦假言推理3.16.在自然推理系统P 中用归谬法证明下面推理:(1)前提: p→⌝q, ⌝r∨q, r∧⌝s结论: ⌝p(2)前提: p∨q, p→r, q→s结论: r∨s(1)证明:①②Pp→⌝q结论否定引入前提引入③④⑤⑥⑦⌝q⌝r∨q⌝rr∧⌝sr①②假言推理前提引入③④析取三段论前提引入⑥化简⑧⌝r∧r⑤⑦合取⑧为矛盾式, 由归谬法可知, 推理正确.(2)证明:①⌝ (r∨s)结论否定引入②p∨q前提引入③p→r前提引入④q→s前提引入⑤r∨s②③④构造性二难⑥⌝ (r∨s) ∧ (r∨s)①⑤合取①②③④⑤⑥⑦pp q(rq(rss ←q←qr①②假言推理前提引入前提引入⑥为矛盾式, 所以推理正确.3.17.P53 17. 在自然推理系统P 中构造下面推理的证明:只要A 曾到过受害者房间并且11 点以前没用离开, A 就犯了谋杀罪. A 曾到过受害者房间. 如果A 在11 点以前离开, 看门人会看到他. 看门人没有看到他. 所以A 犯了谋杀罪.令p: A 曾到过受害者房间; q: A 在11 点以前离开了; r: A 就犯了谋杀罪; s:看门人看到A.前提: p⌝∧q → r, p, q → s, ⌝s.结论: r.前提: p⌝∧q → r, p, q → s, ⌝s; 结论: r.证明:①⌝s 前提引入②q → s 前提引入③⌝q ①②拒取④p 前提引入⑤p⌝∧q ③④合取⑥p⌝∧q → r 前提引入⑦r ⑤⑥假言推理3.18.在自然推理系统P 中构造下面推理的证明.(1)如果今天是星期六, 我们就要到颐和园或圆明园去玩. 如果颐和园游人太多, 我们就不去颐和园玩.今天是星期六. 颐和园游人太多. 所以我们去圆明园玩.(2)如果小王是理科学生, 他的数学成绩一定很好. 如果小王不是文科生, 他必是理科生. 小王的数学成绩不好. 所以小王是文科学生.(3)明天是晴天, 或是雨天;若明天是晴天, 我就去看电影;若我看电影, 我就不看书. 所以, 如果我看书,则明天是雨天.(1)令p: 今天是星期六; q: 我们要到颐和园玩; r: 我们要到圆明园玩; s:颐和园游人太多.前提: p→ (q∨r), s → ⌝q, p, s.结论: r.前提引入前提引入p p→q∨rq∨rs s → ⌝q⌝qr④⑤假言推理(1)的证明树③⑥析取三段论① p →r 前提引入 ② ⌝r 前提引入 ③ ⌝p ①②拒取式 ④ ⌝q →p 前提引入 ⑤q③④拒取式(2) 令 p : 小王是理科生, q : 小王是文科生, r : 小王的数学成绩很好. 前提: p →r , ⌝q →p , ⌝r 结论: q 证明:⌝qp →q⌝p⌝r →p(2)的证明树 r(3)令 p : 明天是晴天, q : 明天是雨天, r : 我看电影, s : 我看书. 前提: p ∨q , p →r , r →⌝s结论: s →q 证明:① ② s r →⌝s 附加前提引入 前提引入 ③ ⌝r ①②拒取式 ④ p →r 前提引入 ⑤ ⌝p ③④拒取式 ⑥ p ∨q 前提引入 ⑦q⑤⑥析取三段论习题四4.1. 将下面命题用0 元谓词符号化:(1)小王学过英语和法语. (2)除非李建是东北人, 否则他一定怕冷.(1) 令F(x): x 学过英语; F(x): x 学过法语; a: 小王. 符号化为F(a)∧F(b).或进一步细分, 令L(x, y): x 学过y; a: 小王; b1: 英语; b2: 法语. 则符号化为L(a, b1)∧L(a, b2).(2) 令F(x): x 是东北人; G(x): x 怕冷; a: 李建. 符号化为⌝F(a)→G(a) 或⌝G(a)→F(a).或进一步细分, 令H(x, y): x 是y 地方人; G(x): x 怕冷; a: 小王; b: 东北. 则符号化为⌝H(a, b)→G(a) 或⌝G(a)→ H(a, b).4.2. 在一阶逻辑中将下面命题符号化, 并分别讨论个体域限制为(a),(b)时命题的真值:(1)凡有理数都能被2 整除.(2)有的有理数能被2 整除. 其中(a)个体域为有理数集合, (b)个体域为实数集合.(1)(a)中, ∀xF(x), 其中, F(x): x 能被2 整除, 真值为0.(b)中, ∀x(G(x) ∧F(x)), 其中, G(x): x 为有理数, F(x)同(a)中, 真值为0. (2)(a)中, ∃xF(x), 其中, F(x): x 能被2 整除, 真值为1.(b)中, ∃x(G(x) ∧F(x)), 其中, F(x)同(a)中, G(x): x 为有理数, 真值为1.4.3. 在一阶逻辑中将下面命题符号化, 并分别讨论个体域限制为(a),(b)时命题的真值:(1)对于任意的x, 均有x2-2=(x+ 2 )(x- 2 ).(2)存在x, 使得x+5=9.其中(a)个体域为自然数集合, (b)个体域为实数集合.(1)(a)中, ∀x(x2-2=(x+ 2 x- 2 真值为1.(b)中, ∀x(F(x) → (x2-2=(x+ 2 x- 2 其中, F(x): x 为实数, 真值为1. (2)(a)中, ∃x(x+5=9), 真值为1.(b)中, ∃x(F(x) ∧ (x+5=9)), 其中, F(x): x 为实数, 真值为1.4.4. 在一阶逻辑中将下列命题符号化:(1)没有不能表示成分数的有理数.(2)在北京卖菜的人不全是外地人.(3)乌鸦都是黑色的. (4)有的人天天锻炼身体.没指定个体域, 因而使用全总个体域.(1) ⌝∃x(F(x) ∧⌝G(x))或∀x(F(x) →G(x)), 其中, F(x): x 为有理数, G(x): x 能表示成分数.(2) ⌝∀x(F(x) →G(x))或∃x(F(x) ∧⌝G(x)), 其中, F(x): x 在北京卖菜, G(x): x 是外地人.(3) ∀x(F(x) →G(x)), 其中, F(x): x 是乌鸦, G(x): x 是黑色的.(4) ∃x(F(x) ∧G(x)), 其中, F(x): x 是人, G(x): x 天天锻炼身体.4.5. 在一阶逻辑中将下列命题符号化:(1)火车都比轮船快. (2)有的火车比有的汽车快. (3)不存在比所有火车都快的汽车. (4)“凡是汽车就比火车慢”是不对的.因为没指明个体域, 因而使用全总个体域(1) ∀x∀y(F(x) ∧G(y) →H(x,y)), 其中, F(x): x 是火车, G(y): y 是轮船, H(x,y):x 比y 快.(2) ∃x∃y(F(x) ∧G(y) ∧H(x,y)), 其中, F(x): x 是火车, G(y): y 是汽车, H(x,y):x 比y 快.(3) ⌝∃x(F(x) ∧∀y(G(y) →H(x,y)))或∀x(F(x) →∃y(G(y) ∧⌝H(x,y))), 其中, F(x): x 是汽车, G(y): y 是火车, H(x,y):x 比y 快.(4) ⌝∀x∀y(F(x) ∧G(y) →H(x,y))或∃x∃y(F(x) ∧G(y) ∧⌝H(x,y) ), 其中, F(x): x 是汽车, G(y): y 是火车, H(x,y):x 比y 慢.4.6. 略4.7. 将下列各公式翻译成自然语言, 个体域为整数集®, 并判断各命题的真假.(1) ∀x∀y∃z(x - y = z);(2) ∀x∃y(x⋅y = 1).(1) 可选的翻译:①“任意两个整数的差是整数.”②“对于任意两个整数, 都存在第三个整数, 它等于这两个整数相减.”③“对于任意整数x 和y, 都存在整数z, 使得x - y = z.”选③, 直接翻译, 无需数理逻辑以外的知识. 以下翻译意思相同, 都是错的:“有个整数, 它是任意两个整数的差.”“存在一个整数, 对于任意两个整数, 第一个整数都等于这两个整数相减.”❶ “存在整数z, 使得对于任意整数x 和y, 都有x - y = z.”这3 个句子都可以符号化为∃z∀x∀y(x - y = z).0量词顺序不可随意调换.(2) 可选的翻译:①“每个整数都有一个倒数.”②“对于每个整数, 都能找到另一个整数, 它们相乘结果是零.”③“对于任意整数x, 都存在整数y, 使得x⋅y = z.”选③, 是直接翻译, 无需数理逻辑以外的知识.4.8. 指出下列公式中的指导变元, 量词的辖域, 各个体变项的自由出现和约束出现:(3)∀x∃y(F(x, y) ∧ G(y, z)) ∨ ∃xH(x, y, z)∀x∃y(F(x,y)∧ G(y,z))∨ ∃x H(x,y,z)前件∀x∃y(F(x, y)∧G(y, z)) 中, ∀ 的指导变元是x, ∀ 的辖域是∃y(F(x, y)∧G(y, z)); ∃ 的指导变元是y, ∃ 的辖域是(F(x, y)∧G(y, z)).后件∃xH(x, y, z) 中, ∃ 的指导变元是x, ∃ 的辖域是H(x, y, z).整个公式中, x 约束出现两次, y 约束出现两次, 自由出现一次; z 自由出现两次.4.9. 给定解释I 如下:(a)个体域D I 为实数集合\.(b)D I 中特定元素↓a =0.(c)特定函数↓f (x,y)=x-y, x,y∈D I.(d)特定谓词↓F(x,y): x=y,↓G(x,y): x<y, x,y∈D I. 说明下列公式在I 下的含义, 并指出各公式的真值:(1)∀x∀y(G(x,y) →⌝F(x,y))(2) ∀x∀y(F(f(x,y),a) →G(x,y))(3) ∀x∀y(G(x,y) →⌝F(f(x,y),a))(4) ∀x∀y(G(f(x,y),a) →F(x,y))(1) ∀x∀y(x<y→x≠y), 真值为1.(2) ∀x∀y((x-y=0) →x<y), 真值为0.(3) ∀x∀y((x<y) → (x-y≠0)), 真值为1.(4) ∀x∀y((x-y<0) → (x=y)), 真值为0.4.10.给定解释I 如下:(a)个体域D=Æ(Æ为自然数).(b)D 中特定元素↓a=2.(c)D 上函数↓f (x,y)=x+y,↓g (x,y)=x·y.(d)D 上谓词↓F (x,y): x=y.说明下列公式在I 下的含义, 并指出各公式的真值:(1) ∀xF(g(x,a),x)(2) ∀x∀y(F(f(x,a),y) →F(f(y,a),x))(3) ∀x∀y∃z(F(f(x,y),z)(4) ∃xF(f(x,x),g(x,x))(1) ∀x(x·2=x), 真值为0.(2) ∀x∀y((x+2=y) → (y+2=x)), 真值为0.(3) ∀x∀y∃z(x+y=z),真值为1.(4) ∃x(x+x=x·x),真值为1.4.11.判断下列各式的类型:(1) F(x, y) → (G(x, y) → F(x, y)).(3) ∀x∃yF(x, y) → ∃x∀yF(x, y).(5) ∀x∀y(F(x, y) → F(y, x)).(1) 是命题重言式p → (q → p) 的代换实例, 所以是永真式.(3) 在某些解释下为假(举例), 在某些解释下为真(举例), 所以是非永真式的可满足式.(5) 同(3).4.12.P69 12. 设I 为一个任意的解释, 在解释I 下, 下面哪些公式一定是命题?(1) ∀xF(x, y) → ∃yG(x, y).(2) ∀x(F(x) → G(x)) ∧ ∃y(F( y) ∧ H( y)).(3) ∀x(∀yF(x, y) → ∃yG(x, y)).(4) ∀x(F(x) ∧ G(x)) ∧ H( y).(2), (3) 一定是命题, 因为它们是闭式.4.13.略4.14.证明下面公式既不是永真式也不是矛盾式:(1) ∀x(F(x) →∃y(G(y) ∧H(x,y)))(2) ∀x∀y(F(x) ∧G(y) →H(x,y))(1) 取个体域为全总个体域.解释I1: F(x): x 为有理数, G(y): y 为整数, H(x,y): x<y在I1 下: ∀x(F(x) →∃y(G(y) ∧H(x,y)))为真命题, 所以该公式不是矛盾式.解释I2: F(x),G(y)同I1, H(x,y): y 整除x.在I2 下: ∀x(F(x) →∃y(G(y) ∧H(x,y)))为假命题, 所以该公式不是永真式.(2) 请读者给出不同解释, 使其分别为成真和成假的命题即可.4.15.(1) 给出一个非闭式的永真式.(2) 给出一个非闭式的永假式.(3) 给出一个非闭式的可满足式, 但不是永真式.(1) F(x) ∨ ⌝F(x).(2) F(x) ∧ ⌝F(x).(3) ∀x(F(x, y) → F(y, x)).习题五5.1. 略5.2. 设个体域D={a,b,c}, 消去下列各式的量词:(1) ∀x∃y(F(x) ∧G(y))(2) ∀x∀y(F(x) ∨G(y))(3) ∀xF(x) →∀yG(y)(4) ∀x(F(x,y) →∃yG(y))(1) ∀x∃y(F(x) ∧G(y))⇔∀xF(x) ∧∃yG(y)⇔ (F(a) ∧F(b)) ∧F(c)) ∧ (G(a) ∨G(b) ∨G(c))(2) ∀x∀y(F(x) ∨G(y))⇔∀xF(x) ∨∀yG(y)⇔ (F(a) ∧F(b) ∧F(c)) ∨ (G(a) ∧G(b) ∧G(c))(3) ∀xF(x) →∀yG(y)⇔ (F(a) ∧F(b) ∧F(c)) → (G(a) ∧G(b) ∧G(c))(4) ∀x(F(x,y) →∃yG(y))⇔∃xF(x,y) →∃yG(y)⇔ (F(a,y) ∨F(b,y) ∨F(c,y)) → (G(a) ∨G(b) ∨G(c))5.3. 设个体域D={1,2}, 请给出两种不同的解释I1 和I2, 使得下面公式在I1 下都是真命题, 而在I2 下都是假命题.(1) ∀x(F(x) →G(x))(2) ∃x(F(x) ∧G(x))(1)I1: F(x):x≤2,G(x):x≤3F(1),F(2),G(1),G(2)均为真, 所以∀x(F(x) →G(x))⇔ (F(1) →G(1) ∧ (F(2) →G(2))为真.I2: F(x)同I1,G(x):x≤0则F(1),F(2)均为真, 而G(1),G(2)均为假,∀x(F(x) →G(x))为假. (2)留给读者自己做.5.4. 略5.5. 给定解释I 如下:(a)个体域D={3,4}.(b)↓f (x)为↓f (3)=4,↓f (4)=3. (c)↓F(x,y)为↓F(3,3)=↓F(4,4)=0,↓F(3,4)=↓F(4,3)=1.试求下列公式在I 下的真值:(1)∀x∃yF(x,y)(2)∃x∀yF(x,y)(3) ∀x∀y(F(x,y) →F(f(x),f(y)))(1)∀x∃yF(x,y)⇔ (F(3,3) ∨F(3,4)) ∧ (F(4,3) ∨F(4,4))⇔ (0∨1) ∧ (1∨0) ⇔1(2)∃x∀yF(x,y)⇔ (F(3,3) ∧F(3,4)) ∨ (F(4,3) ∧F(4,4))⇔ (0∧1) ∨ (1∧0) ⇔0(3) ∀x∀y(F(x,y) →F(f(x),f(y)))⇔ (F(3,3) →F(f(3),f(3)))∧ (F(4,3) →F(f(4),f(3)))∧ (F(3,4) →F(f(3),f(4)))∧ (F(4,4) →F(f(4),f(4)))⇔ (0→0) ∧ (1→1) ∧ (1→1) ∧ (0→0) ⇔15.6. 略5.7. 略5.8. 在一阶逻辑中将下列命题符号化, 要求用两种不同的等值形式.(1) 没有小于负数的正数.(2) 相等的两个角未必都是对顶角.(1) 令F(x): x 小于负数, G(x): x 是正数. 符合化为:∃⌝x((F(x) ∧ G(x)) ⇔ ∀x(G(x) → ⌝G(x)).(2) 令F(x): x 是角, H(x, y): x 和y 是相等的, L(x, y): x 与y 是对顶角. 符合化为:⌝∀x∀y(F(x) ∧ F(y) ∧ H(x, y) → L(x, y))⇔ ∃x∃y(F(x) ∧ F(y) ∧ H(x, y) ∧ ⌝L(x, y))⇔ ∃x(F(x) ∧ (∃y(F(y) ∧ H(x, y) ∧ ⌝L(x, y))).5.9. 略5.10.略5.11.略5.12.求下列各式的前束范式.(1) ∀xF(x) → ∀yG(x, y);(3) ∀xF(x, y) ↔ ∃xG(x, y);(5) ∃x1F(x1, x2) → (F(x1) → ∃⌝x2G(x1, x2)).前束范式不是唯一的.(1) ∀xF(x) → ∀yG(x, y)⇔ ∃x(F(x) → ∀yG(x, y))⇔ ∃x∀y(F(x) → G(x, y)).(3) ∀xF(x, y) ↔ ∃xG(x, y)⇔ (∀xF(x, y) → ∃xG(x, y)) ∧ (∃xG(x, y) → ∀xF(x, y))⇔ (∀x1F(x1, y) → ∃x2G(x2, y)) ∧ (∃x3G(x3, y) → ∀x4F(x4, y))⇔ ∃x1∃x2(F(x1, y) → G(x2, y)) ∧ ∀x3∀x4(G(x3, y) → F(x4, y))⇔ ∃x1∃x2∀x3∀x4((F(x1, y) → G(x2, y)) ∧ (G(x3, y) → F(x4, y))).5.13.将下列命题符号化, 要求符号化的公式全为前束范式:(1) 有的汽车比有的火车跑得快.(2) 有的火车比所有的汽车跑得快.(3) 说所有的火车比所有的汽车跑得快是不对的.(4) 说有的飞机比有的汽车慢是不对的.(1) 令F(x): x 是汽车, G( y): y 是火车, H(x, y): x 比y 跑得快.∃x(F(x) ∧ ∃y(G( y) ∧ H(x, y))⇔ ∃x∃y(F(x) ∧ G( y) ∧ H(x, y)).(2)令F(x): x 是火车, G( y): y 是汽车, H(x, y): x 比y 跑得快.∃x(F(x) ∧ ∀y(G( y) → H(x, y)))⇔ ∃x∀y(F(x) ∧ (G( y) → H(x, y))).0错误的答案: ∃x∀y(F(x) ∧ G( y) → H(x, y)).(3)令F(x): x 是火车, G( y): y 是汽车, H(x, y): x 比y 跑得快.⌝∀x(F(x) → ∀y(G( y) → H(x, y)))⇔ ⌝∀x∀y(F(x) → (G( y) → H(x, y)))⇔ ⌝∀x∀y(F(x) ∧ G( y) → H(x, y)) (不是前束范式)⇔ ∃x∃y(F(x) ∧ G( y) ∧ H(x, y)).(4)令F(x): x 是飞机, G( y): y 是汽车, H(x, y): x 比y 跑得慢.⌝ ∃x(F(x) ∧ ∃y(G( y) ∧ H(x, y)))⇔ ⌝ ∃x∃y(F(x) ∧ G( y) ∧ H(x, y)) (不是前束范式)⇔ ∀x∀y ⌝ (F(x) ∧ G( y) ∧ H(x, y))⇔ ∀x∀y(F(x) ∧ G( y) → ⌝H(x, y)).5.14.略5.15.在自然推理系统F 中构造下面推理的证明:(1) 前提: ∃xF(x) → ∀y((F(y) ∨ G(y)) → R(y)), ∃xF(x)结论: ∃xR(x).(2) 前提: ∀x(F(x) → (G(a) ∧R(x))), ∃xF(x)结论: ∃x(F(x) ∧R(x))(3) 前提: ∀x(F(x) ∨G(x)), ⌝∃xG(x)结论: ∃xF(x)(4) 前提: ∀x(F(x) ∨G(x)), ∀x(⌝G(x) ∨⌝R(x)), ∀xR(x)结论: ∀xF(x)①∃xF(x) → ∀y((F(y) ∨ G(y)) → R(y)) 前提引入②∃xF(x) 前提引入③∀y((F(y) ∨ G(y)) → R(y)) ①②假言推理④(F(c) ∨ G(c)) → R(c) ③UI⑤F(c) ①EI⑥F(c) ∨ G(c) ⑤附加⑦⑧R(c)∃xR(x)④⑥假言推理⑦EG(2) 证明:①∃xF(x) 前提引入②F(c) ①EI③∀x(F(x) → (G(a) ∧ (R(x))) 前提引入④F(c) → (G(a) ∧R(c)) ④UI⑤G(a) ∧R(c) ②④假言推理⑥R(c) ⑤化简⑦F(c) ∧R(c) ②⑥合取⑧∃x(F(x) ∧R(x)) ⑥E G(3) 证明:①⌝∃xG(x) 前提引入②∀x⌝G(x) ①置换③⌝G(c)②UI④∀x(F(x) ∨G(x) 前提引入⑤F(c) ∨G(c) ④UI⑥F(c) ③⑤析取三段论⑦∃xF(x) ⑥E G(4) 证明:①∀x(F(x) ∨G(x)) 前提引入②F(y) ∨G(y) ①UI③∀x(⌝G(x) ∨⌝R(x)) 前提引入④⌝G(y) ∨⌝R(y)③UI⑤∀xR(x) 前提引入⑥R(y) ⑤UI⑦⌝G(y) ④⑥析取三段论⑧F(y) ②⑦析取三段论⑥∀xF(x) U G5.16.略5.18.略5.19.略5.20.略5.21.略5.22.略5.23.在自然推理系统F 中, 证明下面推理:(1) 每个有理数都是实数, 有的有理数是整数, 因此有的实数是整数.(2) 有理数, 无理数都是实数, 虚数不是实数, 因此虚数既不是有理数, 也不是无理数.(3) 不存在能表示成分数的无理数, 有理数都能表示成分数, 因此有理数都不是无理数.(1)设F(x):x 为有理数, R(x):x 为实数, G(x):x 是整数.前提: ∀x(F(x) →R(x)), ∃x(F(x) ∧G(x))结论: ∃x(R(x) ∧G(x))证明:①∃x(F(x) ∧G(x)) 前提引入②F(c) ∧G(c) ①EI③F(c) ②化简④G(c) ②化简⑤∀x(F(x) →R(x)) 前提引入⑥F(c) →R(c) ⑤UI⑦R(c) ③⑥假言推理⑧R(c) ∧G(c) ④⑦合取⑥∃x(R(x) ∧G(x)) ⑧EG(2)设: F(x):x 为有理数, G(x):x 为无理数, R(x)为实数, H(x)为虚数前提: ∀x((F(x) ∨G(x)) →R(x)), ∀x(H(x) →⌝R(x))结论: ∀x(H(x) → (⌝F(x) ∧⌝G(x)))证明:①∀x((F(x) ∨G(x) →R(x)) 前提引入②F(y) ∨G(y)) →R(y) ①UI③∀x(H(x) →⌝R(x)) 前提引入④H(y) →⌝R(y)③UI⑤⌝R(y) →⌝ (F(y) ∨G(y)) ②置换⑥H(y) →⌝ (F(y) ∨G(y)) ④⑤假言三段论⑦H(y) → (⌝F(y) ∧⌝G(y)) ⑥置换⑧∀x(H(x) → (⌝F(x) ∧⌝G(x)))⑦UG(3)设: F(x):x 能表示成分数, G(x):x 为无理数, H(x)为有理数前提: ∀x(G(x) →⌝F(x)), ∀x(H(x) →F(x))结论: ∀x(H(x) →⌝G(x))证明:①∀x(H(x) →F(x)) 前提引入②H(y) →F(y) ①UI③∀x(G(x) →⌝F(x)) 前提引入④G(y) →⌝F(y)③UI⑤F(y) →⌝G(y) ④置换⑥H(y) →⌝G(y) ②⑤假言三段论⑦∀x(H(x) →⌝G(x))⑥UG5.24.在自然推理系统F 中, 构造下面推理的证明:每个喜欢步行的人都不喜欢骑自行车. 每个人或者喜欢骑自行车或者喜欢乘汽车. 有的人不喜欢乘汽车, 所以有的人不喜欢步行. (个体域为人类集合)令F(x): x 喜欢步行, G( x): x 喜欢骑自行车, H(x): x 喜欢乘汽车.前提: ∀x(F(x) → ⌝G(x)), ∀x(G(x) ∨ H(y)), ∃x⌝H(x).结论: ∃x⌝F(x).①∀x(G(x) ∨ H(y)) 前提引入②G(c) ∨ H(c) ①UI③∃x⌝H(x) 前提引入④⌝H(c) ③UI⑤G(c) ②④析取三段⑥∀x(F(x) → ⌝G(x)) 前提引入⑦F(c) → ⌝G(c) ⑥UI⑧⌝F(c) ⑤⑦拒取⑨∃x⌝F(x) ⑧EG5.25.略习题六6.1. 选择适当的谓词表示下列集合:(1)小于5 的非负整数(2)奇整数集合(3)10 的整倍数的集合(1){x|x∈®∧0≤x<5}(2){x|x=2k+1∧k∈®}(3){x|x=10k∧k∈®}6.2. 用列元素法表示下列集合:(1)S1={x|x 是十进制的数字}(2)S2={x|x=2∨x=5}(3)S3={x|x=x∈®∧3<x<12}(4)S4={x|x∈\∧x2-1=0∧x>3}(5)S5={〈x, y>|x, y∈®∧0≤x≤2∧-1≤y≤0}(1) S1={0,1,2,3,4,5,6,7,8,9}(2) S2={2,5}(3) S3={4,5,6,7,8,9,10,11}(4) S4=∅(5) S5={〈0, -1〉,〈1, -1〉,〈2, -1〉,〈0,0〉,〈1,0〉,〈2,0〉}6.3. 略6.4. 设F 表示一年级大学生的集合, S 表示二年级大学生的集合, M 表示数学专业学生的集合, R 表示计算机专业学生的集合, T 表示听离散数学课学生的集合, G 表示星期一晚上参加音乐会的学生的集合, H 表示星期一晚上很迟才睡觉的学生的集合. 问下列各句子所对应的集合表达式分别是什么? 请从备选的答案中挑出来.(1)所有计算机专业二年级的学生在学离散数学课. (2)这些且只有这些学离散数学课的学生或者星期一晚上去听音乐会的学生在星期一晚上很迟才睡觉.(3)听离散数学课的学生都没参加星期一晚上的音乐会.(4)这个音乐会只有大学一, 二年级的学生参加. (5)除去数学专业和计算机专业以外的二年级学生都去参加了音乐会.备选答案:①T⊆G∪H ②G∪H⊆T ③S∩R⊆T④H=G∪T ⑤T∩G=∅ ⑥F∪S⊆G⑦G⊆F∪S ⑧S- (R∪M) ⊆G ⑥G⊆S- (R∩M)答案:(1)③S∩R⊆T(2)④H=G∪T(3) ⑤T∩G=∅(4)⑦G⊆F∪S(5) ⑧S- (R∪M) ⊆G6.5. 确定下列命题是否为真:(1) ∅⊆∅(2) ∅∈∅(3) ∅⊆{∅}(4) ∅∈{∅}(5){a, b}⊆{a, b, c, {a, b, c}}(6){a, b}∈{a, b, c, {a, b }}(7){a, b} {a, b, {{a, b}}}(8){a, b}∈{a, b, {{a, b}}}(1) 真(2)假(3) 真(4) 真(5) 真(6) 真(7) 真(8) 假6.6. 略6.7. 略6.8. 略6.9. 略6.10.略6.11.略6.12.略6.13.略6.14.略6.15.略6.16.略6.17.略6.18.略6.19.略6.20.略6.21.略6.22.略6.23.略6.24.略6.25.略6.26.略6.27.略6.28.略6.29.略6.30.略6.31.略6.32.略6.33.略6.34.略6.35.略6.36.略6.37.略6.38.略6.39.略6.40.略6.41.略6.42.略6.43.略6.44.略6.45.略习题七7.1. 已知A={∅,{∅}},求A×P(A).A×P(A)={ 〈 ∅,∅〉,〈∅,{∅}〉,〈∅,{{∅}}〉,〈∅,{∅,{∅}}〉,〈{∅},∅〉,〈{∅},{∅}〉,〈{∅},{{∅}}〉, 〈{∅},{∅,{∅}}〉}7.2. 对于任意集合A,B,C, 若A×B⊆A×C,是否一定有B⊆C 成立? 为什么?不一定, 因为有反例: A=∅,B={1},C={2},B⊆C,A×B=∅=A×C.7.3. 设A, B, C, D 是任意集合,(1) 求证(A∩B)×(C∩D)=(A×C)∩(B×D).(2) 下列等式中哪个成立? 那些不成立?对于成立的给出证明, 对于不成立的举一反例.(A∪B)×(C∪D)=(A×C)∪(B×D)(A-B)×(C-D)=(A×C) - (B×D)(1) ∀〈x,y〉〈x,y〉∈(A∩B)×(C∩D) ⇔x∈A∩B∧y∈C∩D⇔ (x∈A∧x∈B) ∧ (y∈C∧y∈D) ⇔ (x∈A∧y∈C) ∧ (x∈B∧y∈D)⇔〈x,y〉∈(A×B) ∧〈x,y〉∈(C×D) ⇔〈x,y〉∈A×B∩C×D(A∩B)×(C∩D)=(A×C)∩(B×D)(2)都不成立, 反例: A={1,2},B={2,3},C={1,2},D={2,3}(A∪B)×(C∪D)={1,2,3}×{1,2,3}⊃(A×C)∪(B×D)(A-B)×(C-D)={1}×{1}⊂(A×C) - (B×D)7.4. 略7.5. 设A, B 为任意集合, 证明若A×A=B×B, 则A=B.∀x,x∈A⇔〈x,x〉∈A×A⇔〈x,x〉∈B×B⇔x∈BA=B7.6. 列出从集合A={1, 2}到B={1}的所有的二元关系.R1=∅ ,R2={〈1,1〉},R2={〈2,1〉},R3={〈1,1〉,〈2,1〉}.7.7. 列出集合A={2, 3, 4}上的恒等关系I A, 全域关系E A, 小于或等于关系L A, 整除关系D A.I A={〈2,2〉,〈3,3〉,〈4,4〉}E A=A×A={〈2,2〉,〈2,3〉,〈2,4〉,〈3,2〉,〈3,3〉,〈3,4〉,〈4,2〉,〈4,3〉,〈4,4〉}L A={〈2,2〉,〈2,3〉,〈2,4〉,〈3,3〉,〈3,4〉,〈4,4〉}D A={〈2,2〉,〈2,4〉,〈3,3〉,〈4,4〉}7.8. 列出集合A={∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}上的包含关系.R⊆={〈∅,∅〉,〈∅,{∅}〉,〈∅,{∅,{∅}}〉,〈∅,{∅,{∅},{∅,{∅}}}〉,〈{∅},{∅}〉,〈{∅},{∅,{∅}}〉,〈{∅},{∅,{∅},〈∅,{ ∅}〉}〉,〈{∅,{∅}}, {∅,{∅}}〉,〈{∅,{∅}},{∅,{∅},{∅,{∅}}}〉, 〈{∅,{∅},{∅,{∅}}},{∅,{∅},{∅,{∅}}}〉}7.9. 设A={1, 2, 4, 6}, 列出下列关系R:(1) R={〈x, y〉|x, y∈A∧x+y≠2}(2) R={〈x, y〉|x, y∈A∧|x-y|=1}(3) R={〈x, y〉|x, y∈A∧x/y∈A}(4) R={〈x, y〉|x, y∈A∧y 为素数}(1)R={〈1,2〉,〈1,4〉,〈1,6〉,〈2,1〉,〈2,2〉,〈2,4〉,〈2,6〉,〈4,1〉,〈4,2〉,〈4,4〉,〈4,6〉,〈6,1〉,〈6,2〉,〈6,4〉,〈6,6〉}=E A-{〈1,1〉}(2)R={〈1,2〉,〈2,1〉}(3)R={〈1,1〉,〈2,2〉,〈4,4〉,〈6,6〉,〈2,1〉,〈4,2〉,〈4,1〉}(4)R={〈1,2〉,〈2,2〉,〈4,2〉,〈6,2〉}7.10.略7.11.R i 是X 上的二元关系, 对于x∈X 定义集合R i(x)={y|xR i y}.显然Ri(x) ⊆X. 如果X={-4, -3, -2, -1, 0, 1, 2, 3, 4}, 且令R1={〈x, y〉|x, y∈X∧x<y}R2={〈x,y〉|x, y∈X∧y-1<x<y+2}R3={〈x,y〉|x, y∈X∧x2≤y}求R1(0), R1(1), R2(0), R2(-1), R3(3).R1(0)={1,2,3,4}R1(1)={2,3,4}R2(0)={ -1,0}R2(-1)={ -2, -1}R3(3)= ∅7.12.设A={0, 1, 2, 3}, R 是A 上的关系, 且R={〈0, 0〉, 〈0, 3〉, 〈2, 0〉, 〈2, 1〉, 〈2, 3〉, 〈3, 2〉}给出R 的关系矩阵和关系图.7.13.设A = {〈1, 2〉, 〈2, 4〉, 〈3, 3〉}B = {〈1, 3〉, 〈2, 4〉, 〈4, 2〉}求A∪B, A∩B, dom A, dom(A∪B), ran A, ran B, ran(A∩B), fld(A-B).A∪B={〈1,2〉, 〈1,3〉, 〈2,4〉, 〈3,3〉, 〈4,2〉}A∩B={〈2,4〉}dom A={1,2,3}dom(A∪B)={1,2,3,4}r an A={2,3,4}r an B={3,4,2}r an(A∩B)={4}fld(A-B)={1,2,3}7.14.设R={〈0,1〉,〈0,2〉,〈0,3〉,〈1,2〉,〈1,3〉,〈2,3〉}求R○R,R-1 ,R†{0,1},R[{1,2}].R○R={〈0,2〉, 〈0,3〉, 〈1,3〉}R-1={〈1,0〉,〈2,0〉,〈3,0〉,〈2,1〉,〈3,1〉,〈3,2〉}R†{0,1}={〈0,1〉, 〈0,2〉, 〈0,3〉, 〈1,2〉, 〈1,3〉}R[{1,2}]={2,3}7.15.设A={〈∅,{∅,{∅}}〉,〈{∅},∅〉}求A-1,A2,A3,A†{∅},A[∅],A†∅,A†{{∅}},A[{{∅}}].A-1={〈{∅,{∅}},∅〉,〈∅,{∅}〉},A2={〈{∅},{∅,{∅}}〉},A3=∅,A†{∅}={〈∅,{∅,{∅}}〉},A[∅]={∅,{∅}},1 2A †∅=∅,A †{{∅}}={〈{∅},∅〉}, A [{{∅}}]=∅7.16.设 A ={a ,b ,c ,d }, R 1,R 2 为 A 上的关系, 其中R 1={〈a ,a 〉,〈a ,b 〉,〈b ,d 〉} R 2={〈a ,d 〉,〈b ,c 〉,〈b ,d 〉,〈c ,b 〉} 2 3求 R 1○R 2, R 2○R 1,R 1 ,R 2 .R 1○R 2={〈a ,a 〉,〈a ,c 〉,〈a ,d 〉}, R 2○R 1={〈c ,d 〉}, R 2={〈a ,a 〉,〈a ,b 〉,〈a ,d 〉}, R 3={〈b ,c 〉,〈b ,d 〉,〈c ,b 〉}237.17.设 A ={a ,b ,c }, 试给出 A 上两个不同的关系 R 1 和 R 2,使得 R 1 =R 1, R 2 =R 2.R 1={〈a ,a 〉,〈b ,b 〉}, R 2={〈b ,c 〉,〈c ,b 〉}7.18.证明定理 7.4 的(1), (2), (4).(1) F ○ (G ∪H )=F ○G ∪F ○H任取〈x ,y 〉,〈x ,y 〉∈F ○ (G ∪H )⇔∃t (〈x ,t 〉∈F ∧〈t ,y 〉∈G ∪H )⇔∃t (〈x ,t 〉∈F ∧ (〈t ,y 〉∈G ∨〈t ,y 〉∈H ))⇔∃t ((〈x ,t 〉∈F ∧〈t ,y 〉∈G ) ∨ (〈x ,t 〉∈F ∧〈t ,y 〉∈H )) ⇔∃t (〈x ,t 〉∈F ∧〈t ,y 〉∈G ) ∨∃t (〈x ,t 〉∈F ∧〈t ,y 〉∈H )) ⇔〈x ,y 〉∈F ○G ∨〈x ,y 〉∈F ○H ⇔〈x ,y 〉∈F ○G ∩F ○H 所以有 F ○ (G ∩H )⊆ F ○G ∩F ○H .(2) (G ∪H ) ○F =G ○F ∪H ○F 任取〈x ,y 〉,〈x ,y 〉∈(G ∪H ) ○F⇔∃t (〈x ,t 〉∈(G ∪H ) ∧〈t ,y 〉∈F )⇔∃t ((〈x ,t 〉∈G ∨〈t ,y 〉∈H ) ∧〈t ,y 〉∈F ))⇔∃t ((〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∨ (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇔∃t (〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∨∃t (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇔〈x ,y 〉∈G ○F ∨〈x ,y 〉∈H ○F ⇔〈x ,y 〉∈G ○F ∪H ○F(4) (G ∩H ) ○F ⊆G ○F ∩H ○F 任取〈x ,y 〉,〈x ,y 〉∈(G ∩H ) ○F⇔∃t (〈x ,t 〉∈(G ∩H ) ∧〈t ,y 〉∈F )⇔∃t ((〈x ,t 〉∈G ∧〈t ,y 〉∈H ) ∧〈t ,y 〉∈F ))⇔∃t ((〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∧ (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇒∃t (〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∧∃t (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇔〈x ,y 〉∈G ○F ∨〈x ,y 〉∈H ○F ⇔〈x ,y 〉∈G ○F ∪H ○F7.19.证明定理 7.5 的(2), (3).(2) F [A ∪B ]=F [A ]∪F [B ]任取 y ,。

离散数学第三版 屈婉玲 课后习题答案

离散数学第三版 屈婉玲 课后习题答案

离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语p q解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是(9)只有天下大雨,他才乘班车上班q p解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是(11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是(p q)r15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(p q r)((p q)r)(4)解:p=1,q=1,r=0,(p q r)(110)1,((p q)r)((11)0)(00)1 (p q r)((p q)r)11119、用真值表判断下列公式的类型:(p p)q(2)解:列出公式的真值表,如下所示:p p qq(p p)(p p)q001111011010100101110001由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。

20、求下列公式的成真赋值:(4)(p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:p0(p q)1q0q0成真赋值有:01,10,11。

所以公式的习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)(p q)(q r)解:原式(p q)q r(p p)q rq r,此即公式的主析取范式,m m(p q r)(p q r)37所以成真赋值为011,111。

*6、求下列公式的主合取范式,并求成假赋值:(2)(p q)(p r)解:原式,此即公式的主合取范式,M(p p r)(p q r)(p q r)4所以成假赋值为100。

7、求下列公式的主析取范式,再用主析取范式求主合取范式:(1)(p q)r解:原式p q(r r)((p p)(q q)r)(p q r)(p q)r(p q)r(p q)r(p q)r(pq r(p q r)(p q)r(p q)r(pq)r(pq r,此即主析取范式。

离散数学答案屈婉玲版第二版高等教育出版社课后答案.docx

离散数学答案屈婉玲版第二版高等教育出版社课后答案.docx

离散数学答案屈婉玲版第⼆版⾼等教育出版社课后答案.docx离散数学答案屈婉玲版第⼆版⾼等教育出版社课后答案第⼀章部分课后习题参考答案16设p 、q 的真值为0; r 、S 的真值为1,求下列各命题公式的真值。

(1) p ∨ (q ∧ r)⼆ O V (0 ∧ 1) U 0(2) ( p? r )∧ (「q ∨ S)⼆ (0? 1)∧ (1 ∨ 1)⼆ 0∧ 1= 0. (3)( ⼀ p ∧⼀ q ∧ r ) ? (P ∧ q ∧, r)⼆(1∧ 1∧ 1)(0 ∧ 0∧ 0)=0(4) (⼀ r ∧ S )→(P ∧⼀ q) U (0∧ 1)→ (1 ∧ 0) = 0→O= 1 17 .判断下⾯⼀段论述是否为真:“⼆是⽆理数。

并且,如果3是⽆理数,则' 2也是⽆理数。

另外6能被2整除,6才能被4整除。

”答:p:⼆是⽆理数 1q: 3是⽆理数 0 r:2是⽆理数 1s: 6能被2整除1 t: 6能被4整除 0命题符号化为:p ∧ (q →r) ∧ (t →S)的真值为1,所以这⼀段的论述为真19.⽤真值表判断下列公式的类型: (4) (P → q) → (_q —_ P) (5) (P ∧ r)' (—p ∧⼀q) (6) ((P →q) ∧ (q → r)) →(p →r)(5) 公式类型为可满⾜式(⽅法如上例) (6) 公式类型为永真式(⽅法如上例)答:(4)_ p → q^q 1 1 1POOIOOI 1 1 1 0 所以公式类型为永真式P 1 1 0 0q —_p 1 1 0 1(p → q)→ (—q →-P) 1 1 1 1第⼆章部分课后习题参考答案3. ⽤等值演算法判断下列公式的类型,对不是重⾔式的可满⾜式,再⽤真值表法求出成真赋值?⑴⼀(p∧q→q)(2) (p→(P ∨q))∨(p→r)(3) (P∨q)→(P∧r)答:(2) (p→(p∨q))∨(p→r):= (⼀p∨(p∨q))∨(⼀p∨r):= ^ p∨p∨q∨r= 1 所以公式类型为永真式⑶P q r p∨q P ∧r (P∨q)→ (P∧0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满⾜式4. ⽤等值演算法证明下⾯等值式:⑵(P → q) ∧(P → r)⼆(P → (q ∧r))⑷(P ∧- q) ∨ (—p∧q)= (p ∨q) ∧⼀(P ∧q)证明(2)(P →q) ∧(P →r)(^p∨q) ∧( ⼀p∨r)=^p∨(q ∧r)):=p→ (q ∧ r)(4) (P ∧— q) ∨ (—p∧q) = (p ∨ (—p∧q)) ∧(~ q∨ ( —p∧q)⼆(P∨— P) ∧(P∨q)∧(⼀q∨-P) ∧Cq∨q)U 1 ∧(P ∨q) ∧^ (P ∧q) ∧1U (P ∨q) ∧^ (P ∧q)5. 求下列公式的主析取范式与主合取范式,并求成真赋值(1) ( ^P→q)→(⼀q∨P)(2) _(P→q) ∧q∧r(3) (P ∨(q ∧r)) →(P ∨q∨r)解:(1) 主析取范式(-p→ q) → (-q P)--(P q) (⼀q P)=(—P ^q) ( ⼀q P)=(-P ^q) (⼀q P) (⼀q -P) (P q) (P ^q)-(-P ^q) (P ^q) (P q)U m0m2m3U ∑ (0,2,3)主合取范式:(^P→q)→(⼀q P)--(P q) (⼀q P)U ( -p -q) (⼀q P)=(-p ( -q P)) ( -q (-q P))=1 (p — q)-(P _q) - M iU ∏ (1)(2) 主合取范式为:—(P → q) q r = ⼀(⼀p q) q r=(P _ q) q r = 0所以该式为⽭盾式?主合取范式为∏(0,1,2,3,4,5,6,7)⽭盾式的主析取范式为0(3) 主合取范式为:(P (q r)) → (P q r)u ⼀(P (q r)) → (P q r)=(⼀p ( ⼀q _ r)) (P q r)U ( ⼀p (P q r)) (( ⼀q ^ r)) (P q r)) =1 1所以该式为永真式?永真式的主合取范式为1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在⾃然推理系统P中构造下⾯推理的证明⑵前提:p—;q, —(q r),r结论:_ P(4)前提:q“ p,q s,s I t,t r结论:P q证明:(2)①—(q r) 前提引⼊②—q ⼀r ①置换③ q ? ⼀r ②蕴含等值式④r 前提引⼊⑤⼀q ③④拒取式⑥p— q 前提引⼊⑦」P (3)⑤⑥拒取式证明(4):①t r 前提引⼊②t ①化简律③qι S前提引⼊④SI t 前提引⼊⑤q t ③④等价三段论(q~ t)(t > q) ⑤置换⑦(q T )⑥化简⑧q ②⑥假⾔推理⑨ q—;P 前提引⼊⑩P ⑧⑨假⾔推理(11)p q ⑧⑩合取15在⾃然推理系统P中⽤附加前提法证明下⾯各推理(1)前提:p— (q > r),S > p,q结论:S-;r证明①S 附加前提引⼊②Sr P 前提引⼊③P ①②假⾔推理④P- (q - r) 前提引⼊⑤ q—;r ③④假⾔推理⑥q 前提引⼊⑦r ⑤⑥假⾔推理16在⾃然推理系统P中⽤归谬法证明下⾯各推理:(1)前提:p ■ —q, —r q,r - S结论:- P证明:①P 结论的否定引⼊② p—;「q 前提引⼊③⼚q ①②假⾔推理r q 前提引⼊⑤「r ④化简律⑥r 「S 前提引⼊⑦r ⑥化简律⑧r 「r ⑤⑦合取由于最后⼀步r 「r是⽭盾式,所以推理正确.第四章部分课后习题参考答案3.在⼀阶逻辑中将下⾯将下⾯命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意X,均有声-2=(x+ )(x T Q.(2) 存在x,使得x+5=9.其中(a)个体域为⾃然数集合.(b) 个体域为实数集合.解:F(x): F=2=(x+遢)(x :區).G(x): x+5=9.(1)在两个个体域中都解释为-XF(X),在(a)中为假命题,在(b)中为真命题。

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案,DOC

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案,DOC

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1)⇔0(2)(p?r)∧(﹁q∨s)⇔(0?1)∧(1∨1)⇔0∧1⇔0.(3)(⌝(4)(176能被2q:3r:2s:619(4)(p(5)(p(6)((p答:(pqp→q⌝0011111011011110010011110011所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P qrp∨qp∧r(p∨q)→(p∧r)0000010010014.(2)(p→(4)(p∧证明(2(45.(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∧p)∨(⌝q∧⌝p)∨(p∧q)∨(p∧⌝q)⇔(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)⇔∑(0,2,3)主合取范式:(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p⇔1∧(p⇔(p∨⇔∏(2)⌝(p→q)⇔(p∧(3)⇔⌝⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r)前提引入②⌝q∨⌝r①置换③q→⌝r②蕴含等值式④r⑤⌝q⑥p→q⑦¬p(3证明(4①t②t③q④s⑤q⑥(⑦(⑧q⑨q⑩p15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s附加前提引入②s→p前提引入③p①②假言推理④p→(q→r)前提引入⑤q→r③④假言推理⑥q前提引入⑦r⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p②p③﹁④¬⑤¬⑥r⑦r⑧r3.:(1)均有2=(x+)(x).(2)其中(a)(b)解:F(x):2=(x+)(x).G(x):x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命题,在(b)中为真命题。

离散数学(屈婉玲)答案_1-5章教学内容

离散数学(屈婉玲)答案_1-5章教学内容

离散数学(屈婉玲)答案_1-5章第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔ 0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数 0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式 //最后一列全为1(5)公式类型为可满足式(方法如上例)//最后一列至少有一个1(6)公式类型为永真式(方法如上例)//第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1 所以公式类型为永真式(3) P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p ∨(q ∧r))→(p ∨q ∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔(⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q) ⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r ∧﹁r ⑤⑦ 合取由于最后一步r ∧﹁r 是矛盾式,所以推理正确. 第四章部分课后习题参考答案 3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x ).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x ).G(x): x+5=9.(1)在两个个体域中都解释为)(x xF ∀,在(a )中为假命题,在(b)中为真命题。

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案,DOC

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案,DOC

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1)⇔0(2)(p?r)∧(﹁q∨s)⇔(0?1)∧(1∨1)⇔0∧1⇔0.(3)(⌝(4)(176能被2q:3r:2s:619(4)(p(5)(p(6)((p答:(pqp→q⌝0011111011011110010011110011所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P qrp∨qp∧r(p∨q)→(p∧r)0000010010014.(2)(p→(4)(p∧证明(2(45.(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∧p)∨(⌝q∧⌝p)∨(p∧q)∨(p∧⌝q)⇔(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)⇔∑(0,2,3)主合取范式:(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p⇔1∧(p⇔(p∨⇔∏(2)⌝(p→q)⇔(p∧(3)⇔⌝⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r)前提引入②⌝q∨⌝r①置换③q→⌝r②蕴含等值式④r⑤⌝q⑥p→q⑦¬p(3证明(4①t②t③q④s⑤q⑥(⑦(⑧q⑨q⑩p15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s附加前提引入②s→p前提引入③p①②假言推理④p→(q→r)前提引入⑤q→r③④假言推理⑥q前提引入⑦r⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p②p③﹁④¬⑤¬⑥r⑦r⑧r3.:(1)均有2=(x+)(x).(2)其中(a)(b)解:F(x):2=(x+)(x).G(x):x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命题,在(b)中为真命题。

离散数学最全课后答案(屈婉玲版)

离散数学最全课后答案(屈婉玲版)

1.1.略1.2.略1.3.略1.4.略1.5.略1.6.略1.7.略1.8.略1.9.略1.10.略1.11.略1.12.将下列命题符号化, 并给出各命题的真值:(1)2+2=4 当且仅当3+3=6. (2)2+2=4 的充要条件是3+3≠6. (3)2+2≠4与3+3=6 互为充要条件. (4)若2+2≠4, 则3+3≠6, 反之亦然.(1)p↔q, 其中, p: 2+2=4, q: 3+3=6, 真值为1.(2)p↔⌝q, 其中, p: 2+2=4, q: 3+3=6, 真值为0.(3) ⌝p↔q, 其中, p: 2+2=4, q: 3+3=6, 真值为0.(4) ⌝p↔⌝q, 其中, p: 2+2=4, q: 3+3=6, 真值为1.1.13.将下列命题符号化, 并给出各命题的真值:(1)若今天是星期一, 则明天是星期二. (2)只有今天是星期一, 明天才是星期二. (3)今天是星期一当且仅当明天是星期二. (4)若今天是星期一, 则明天是星期三.令p: 今天是星期一; q: 明天是星期二; r: 明天是星期三.(1) p→q ⇔ 1.(2) q→p ⇔ 1.(3) p↔q ⇔ 1.(4) p→r 当p ⇔ 0 时为真; p ⇔ 1 时为假.1.14.将下列命题符号化.(1) 刘晓月跑得快, 跳得高.(2)老王是山东人或河北人.(3)因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小组.(5)李辛与李末是兄弟.(6)王强与刘威都学过法语. (7)他一面吃饭, 一面听音乐. (8)如果天下大雨, 他就乘班车上班. (9)只有天下大雨, 他才乘班车上班. (10)除非天下大雨, 他才乘班车上班. (11)下雪路滑, 他迟到了.(12)2 与4 都是素数, 这是不对的.(13)“2或4 是素数, 这是不对的”是不对的.(1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高.(2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人.(3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服.(4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题.(5)p, 其中, p: 李辛与李末是兄弟.(6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语.(7)p∧q, 其中, p: 他吃饭, q: 他听音乐.(8)p→q, 其中, p: 天下大雨, q: 他乘班车上班.(9)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(10)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(11)p→q, 其中, p: 下雪路滑, q: 他迟到了.12) ⌝ (p∧q)或⌝p∨⌝q, 其中, p: 2 是素数, q: 4 是素数.(13) ⌝⌝ (p∨q)或p∨q, 其中, p: 2 是素数, q: 4 是素数.1.15.设p: 2+3=5.q: 大熊猫产在中国.r: 复旦大学在广州. 求下列复合命题的真值:(1)(p↔q) →r(2)(r→ (p∧q)) ↔ ⌝p(3) ⌝r→ (⌝p∨⌝q∨r)(4)(p∧q∧⌝r) ↔ (( ⌝p∨⌝q) →r)(1)真值为0.(2)真值为0.(3)真值为0.(4)真值为1.注意: p, q 是真命题, r 是假命题.1.16.略1.17.略1.18.略1.19.用真值表判断下列公式的类型:(1)p→ (p∨q∨r)(2)(p→⌝q) →⌝q(3) ⌝ (q→r) ∧r(4)(p→q) → (⌝q→⌝p)(5)(p∧r) ↔ ( ⌝p∧⌝q)(6)((p→q) ∧ (q→r)) → (p→r)(7)(p→q) ↔ (r↔s)(1), (4), (6)为重言式.(3)为矛盾式.(2), (5), (7)为可满足式.1.20.略1.21.略1.22.略1.23.略1.24.略1.25.略1.26.略1.27.略1.28.略1.29.略1.30.略1.31.将下列命题符号化, 并给出各命题的真值:(1)若3+=4, 则地球是静止不动的.(2)若3+2=4, 则地球是运动不止的. (3)若地球上没有树木, 则人类不能生存.(4)若地球上没有水, 则 3 是无理数.(1)p→q, 其中, p: 2+2=4, q: 地球静止不动, 真值为0.(2)p→q, 其中, p: 2+2=4, q: 地球运动不止, 真值为1.(3) ⌝p→⌝q, 其中, p: 地球上有树木, q: 人类能生存, 真值为1.(4) ⌝p→q, 其中, p: 地球上有水, q: 3 是无理数, 真值为1.习题二2.1. 设公式A = p→q, B = p⌝∧q, 用真值表验证公式A 和B 适合德摩根律:⌝(A∨B) ⇔ ⌝A⌝∧B.p q A =p→q B =p⌝∧q⌝(A∨B)⌝A⌝∧B0 0 1 0 0 00 1 1 0 0 01 0 0 1 0 01 1 1 0 0 0因为⌝(A∨B)和⌝A⌝∧B 的真值表相同, 所以它们等值.2.2. 略2.3. 用等值演算法判断下列公式的类型, 对不是重言式的可满足式, 再用真值表法求出成真赋值.(1) ⌝ (p∧q→q)(2)(p→ (p∨q)) ∨ (p→r)(3)(p∨q) → (p∧r)(1) ⌝ (p∧q→q)⇔ ⌝ (⌝(p∧q) ∨ q) ⇔ ⌝ (⌝p ∨ ⌝q ∨ q) ⇔ p∧q∧⌝q ⇔ p∧0 ⇔ 0 ⇔ 0. 矛盾式.(2)重言式.(3) (p∨q) → (p∧r) ⇔ ⌝(p∨q) ∨ (p∧r) ⇔ ⌝p⌝∧q ∨ p∧r 易见, 是可满足式, 但不是重言式. 成真赋值为: 000, 001, 101, 111p q r←p ∍ ←q (p∍r0 0 0 1 1 1 1 00 0 1 1 1 1 1 00 1 0 1 0 0 0 00 1 1 1 0 0 0 01 0 0 0 0 1 0 01 0 1 0 0 1 1 11 1 0 0 0 0 0 01 1 1 0 0 0 1 12.4. 用等值演算法证明下面等值式:(1) p⇔ (p∧q) ∨ (p∧⌝q)(3) ⌝ (p↔q) ⇔ (p∨q) ∧⌝ (p∧q)(4) (p∧⌝q) ∨ (⌝p∧q) ⇔ (p∨q) ∧⌝ (p∧q)(1) (p∧q) ∨ (p∧⌝q) ⇔ p ∧ (q⌝∨q) ⇔ p ∧ 1 ⇔ p.(3) ⌝ (p↔q)⇔⌝ ((p→q) ∧ (q→p))⇔⌝ ((⌝p∨q) ∧ (⌝q∨p))⇔ (p∧⌝q) ∨ (q∧⌝p)⇔ (p∨q) ∧ (p∨⌝p) ∧ (⌝q∨q) ∧ (⌝p∨⌝q)⇔ (p∨q) ∧⌝ (p∧q)(4) (p∧⌝q) ∨ (⌝p∧q)⇔ (p∨⌝p) ∧ (p∨q) ∧ (⌝q∨⌝p) ∧ (⌝q∨q)⇔ (p∨q) ∧⌝ (p∧q)2.5. 求下列公式的主析取范式, 并求成真赋值:(1)( ⌝p→q) → (⌝q∨p)(2) ⌝ (p→q) ∧q∧r(3)(p∨ (q∧r)) → (p∨q∨r)(1)(⌝p→q) → (⌝q∨p)⇔ ⌝(p∨q) ∨ (⌝q∨p)⇔ ⌝p∧⌝q ∨ ⌝q ∨ p⇔ ⌝p∧⌝q ∨ ⌝q ∨ p(吸收律)⇔ (p⌝∨p)⌝∧q ∨ p∧(q⌝∨q)⇔ p⌝∧q ⌝∨p⌝∧q ∨ p∧q ∨ p⌝∧q⇔ m10 ∨ m00 ∨ m11 ∨ m10⇔ m0 ∨ m2 ∨ m3⇔ ∑(0, 2, 3).成真赋值为00, 10, 11.(2)主析取范式为0, 无成真赋值, 为矛盾式.(3)m0∨m1∨m2∨m3∨m4∨m5∨m6∨m7, 为重言式.2.6. 求下列公式的主合取范式, 并求成假赋值:(1) ⌝ (q→⌝p) ∧⌝p(2)(p∧q) ∨ (⌝p∨r)(3)(p→ (p∨q)) ∨r(1) ⌝ (q⌝→p) ∧ ⌝p⇔ ⌝(⌝q⌝∨p) ∧ ⌝p⇔ q∧p ∧ ⌝p⇔ q∧0⇔ 0⇔ M0∧M1∧M2∧M3这是矛盾式. 成假赋值为00, 01, 10, 11.(2)M4, 成假赋值为100.(3)主合取范式为1, 为重言式.2.7. 求下列公式的主析取范式, 再用主析取范式求合取范式:(1)(p∧q) ∨r(2)(p→q) ∧ (q→r)(1)m1∨m3∨m5∨m6∨m7⇔M0∧M2∧M4(2)m0∨m1∨m3∨m7⇔M2∧M4∧M5∧M62.8. 略2.9. 用真值表求下面公式的主析取范式.(2) (p→q) → (p⌝↔q)p q(p q) (p ←  q)0 0 1 0 0 10 1 1 1 1 01 0 0 1 1 11 1 1 0 0 0(2)从真值表可见成真赋值为01, 10. 于是(p → q) → (p⌝ ↔ q) ⇔ m1 ∨ m2.2.10. 略2.11. 略2.12. 略2.13. 略2.14. 略2.15. 用主析取范式判断下列公式是否等值:(1)(p→q) →r 与q→ (p→r)(2)(p→q) →r⇔ ⌝(⌝p∨q) ∨ r⇔ ⌝(⌝p∨q) ∨ r⇔ p⌝∧q ∨ r⇔ p⌝∧q∧(r⌝∨r) ∨ (p⌝∨p) ∧ (q⌝∨q)∧r⇔ p⌝∧q∧r ∨ p⌝∧q∧⌝r ∨p∧q∧r ∨ p∧⌝q∧r ∨ ⌝p∧q∧r ∨ ⌝p∧⌝q∧r= m101 ∨ m100 ∨ m111 ∨ m101 ∨ m011 ∨ m001⇔ m1 ∨ m3 ∨ m4 ∨ m5 ∨ m7= ∑(1, 3, 4, 5, 7).而q→(p→r)⇔ ⌝q ∨ (⌝p∨r)⇔ ⌝q ∨ ⌝p ∨r⇔ (⌝p∨p)⌝∧q∧(⌝r∨r) ∨ ⌝p∧(⌝q∨q)∧(⌝r∨r)∨ (⌝p∨p)∧(⌝q∨q)∧r⇔ (⌝p⌝∧q∧⌝r)∨(⌝p⌝∧q∧r)∨(p⌝∧q∧⌝r)∨(p⌝∧q∧r)∨(⌝p∧⌝q∧⌝r)∨(⌝p∧⌝q∧r)∨(⌝p∧q∧⌝r)∨(⌝p∧q∧r)∨(⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨(p∧⌝q∧r)∨(p∧q∧r)= m0 ∨ m1 ∨ m4 ∨ m5∨ m0 ∨ m1 ∨ m2 ∨ m3∨ m1 ∨ m3 ∨ m5 ∨ m7⇔ m0 ∨ m1 ∨ m2 ∨ m3 ∨ m4 ∨ m5 ∨ m7⇔ ∑(0, 1, 2, 3, 4, 5, 7).两个公式的主吸取范式不同, 所以(p→q) →rœq→ (p→r).2.16. 用主析取范式判断下列公式是否等值:(1)(p→q) →r 与q→ (p→r)(2) ⌝ (p∧q)与⌝ (p∨q)(1)(p→q) →r) ⇔m1∨m3∨m4∨m5∨m7q→ (p→r) ⇔m0∨m1∨m2∨m3∨m4∨m5∨m7所以(p→q) →r) œq→ (p→r)(2)⌝ (p∧q) ⇔m0∨m1∨m2⌝ (p∨q) ⇔m0所以⌝ (p∧q) œ⌝ (p∨q)2.17. 用主合取范式判断下列公式是否等值:(1)p→ (q→r)与⌝ (p∧q) ∨r(2)p→ (q→r)与(p→q) →r(1)p→ (q→r) ⇔M6⌝ (p∧q) ∨r⇔M6所以p→ (q→r) ⇔ ⌝ (p∧q) ∨r(2)p→ (q→r) ⇔M6(p→q) →r⇔M0∧M1∧M2∧M6所以p→ (q→r) œ(p→q) →r2.18. 略2.19. 略2.20.将下列公式化成与之等值且仅含{⌝, →} 中联结词的公式.(3) (p∧q)↔r.注意到A↔B ⇔ (A→B)∧(B→A)和A∧B ⇔ ⌝(⌝A⌝∨B) ⇔ ⌝(A⌝→B)以及A∨B ⇔ ⌝A→B. (p∧q)↔r⇔ (p∧q → r) ∧ (r → p∧q)⇔ (⌝(p⌝→q) → r) ∧ (r → ⌝(p⌝→q))⇔ ⌝((⌝(p⌝→q) → r) → ⌝(r → ⌝(p⌝→q)))注 联结词越少, 公式越长.2.21. 证明:(1) (p↑q) ⇔ (q↑p), (p↓q) ⇔ (q↓p).(p↑q) ⇔ ⌝(p∧q) ⇔ ⌝(q∧p) ⇔ (q↑p).(p↓q) ⇔ ⌝(p∨q) ⇔ ⌝(q∨p) ⇔ (q↓p).2.22. 略2.23. 略2.24. 略2.25. 设A, B, C 为任意的命题公式.(1)若A∨C⇔B∨C, 举例说明A⇔B 不一定成立. (2)已知A∧C⇔B∧C, 举例说明A⇔B 不一定成立. (3)已知⌝A⇔⌝B, 问: A⇔B 一定成立吗?(1) 取A = p, B = q, C = 1 (重言式), 有A∨C ⇔ B∨C, 但A œB.(2) 取A = p, B = q, C = 0 (矛盾式), 有A∧C ⇔ B∧C, 但A œB.好的例子是简单, 具体, 而又说明问题的. (3)一定.2.26. 略2.27.某电路中有一个灯泡和三个开关A,B,C. 已知在且仅在下述四种情况下灯亮:(1)C 的扳键向上, A,B 的扳键向下.(2)A 的扳键向上, B,C 的扳键向下.(3)B,C 的扳键向上, A 的扳键向下.(4)A,B 的扳键向上, C 的扳键向下.设F 为1 表示灯亮, p,q,r 分别表示A,B,C 的扳键向上. (a)求F 的主析取范式.(b)在联结词完备集{⌝, ∧}上构造F. (c)在联结词完备集{⌝, →,↔}上构造F.(a)由条件(1)-(4)可知, F 的主析取范式为F⇔ (⌝p∧⌝q∧r) ∨ (p∧⌝q∧⌝r) ∨ (⌝p∧q∧r) ∨ (p∧q∧⌝r)⇔m1∨m4∨m3∨m6⇔m1∨m3∨m4∨m6(b)先化简公式F⇔ (⌝p∧⌝q∧r) ∨ (p∧⌝q∧⌝r) ∨ (⌝p∧q∧r) ∨ (p∧q∧⌝r)⇔⌝q∧ ((⌝p∧r) ∨ (p∧⌝r)) ∨q∧ ((⌝p∧r) ∨ (p∧⌝r))⇔ (⌝q∨q) ∧ ((⌝p∧r) ∨ (p∧⌝r))⇔ (⌝p∧r) ∨ (p∧⌝r)⇔⌝ (⌝ (⌝p∧r) ∧⌝ (p∧⌝r)) (已为{⌝, ∧}中公式)(c)F⇔ (⌝p∧r) ∨ (p∧⌝r)⇔⌝⌝ (⌝p∧r) ∨ (p∧⌝r)⇔⌝ (⌝p∧r) → (p∧⌝r)⇔ (p∨⌝r) →⌝ (⌝p∨r)⇔ (r→p) →⌝ (p→r) (已为{⌝, →,↔}中公式)2.28.一个排队线路, 输入为A,B,C, 其输出分别为F A,F B,F C. 本线路中, 在同一时间内只能有一个信号通过, 若同时有两个和两个以上信号申请输出时, 则按A,B,C 的顺序输出. 写出F A,F B,F C 在联结词完备集{⌝, ∨}中的表达式.根据题目中的要求, 先写出F A,F B,F C 的真值表(自己写) 由真值表可先求出他们的主析取范式, 然后化成{⌝, ∧}中的公式F A⇔m4∨m5∨m6∨m7⇔p (已为{⌝, ∧}中公式)F B⇔m2∨m3⇔⌝p∧q (已为{⌝, ∧}中公式)F C⇔m1⇔⌝p∧⌝q∧r (已为{⌝, ∧}中公式)2.29. 略2.30. 略习题三3.1. 略3.2. 略3.3. 略3.4. 略3.5. 略3.6. 判断下面推理是否正确. 先将简单命题符号化, 再写出前提, 结论, 推理的形式结构(以蕴涵式的形式给出)和判断过程(至少给出两种判断方法):(1)若今天是星期一, 则明天是星期三;今天是星期一. 所以明天是星期三. (2)若今天是星期一, 则明天是星期二;明天是星期二. 所以今天是星期一. (3)若今天是星期一, 则明天是星期三;明天不是星期三. 所以今天不是星期一. (4)若今天是星期一, 则明天是星期二;今天不是星期一. 所以明天不是星期二. (5)若今天是星期一, 则明天是星期二或星期三. (6)今天是星期一当且仅当明天是星期三;今天不是星期一. 所以明天不是星期三.设p: 今天是星期一, q: 明天是星期二, r: 明天是星期三. (1)推理的形式结构为(p→r) ∧p→r此形式结构为重言式, 即(p→r) ∧p⇒r 所以推理正确. (2)推理的形式结构为(p→q) ∧q→p 此形式结构不是重言式, 故推理不正确. (3)推理形式结构为(p→r) ∧⌝r→⌝p此形式结构为重言式, 即(p→r) ∧⌝r⇒⌝p故推理正确. (4)推理形式结构为(p→q) ∧⌝p→⌝q此形式结构不是重言式, 故推理不正确.(5)推理形式结构为p→ (q∨r)它不是重言式, 故推理不正确. (6)推理形式结构为(p⇒r) ∧⌝p→⌝r此形式结构为重言式, 即(p⇒r) ∧⌝p⇒⌝r故推理正确.推理是否正确, 可用多种方法证明. 证明的方法有真值表法, 等式演算法. 证明推理正确还可用构造证明法.下面用构造证明法证明(6)推理正确.前提: p⇒r, ⌝p结论: ⌝r证明: ①p⇒r 前提引入②(p→r) ∧ (r→p) ①置换③r→p ②化简律④⌝p 前提引入⑤⌝r ③④拒取式所以, 推理正确.3.7. 略3.8. 略3.9. 用三种方法(真值表法, 等值演算法, 主析取范式法)证明下面推理是正确的:若a 是奇数, 则a 不能被2 整除. 若a 是偶数, 则a 能被2 整除. 因此, 如果a 是偶数, 则a 不是奇数.令p: a 是奇数; q: a 能被2 整除; r: a 是偶数. 前提: p → ⌝q, r → q.结论: r → ⌝p.形式结构: (p → ⌝q) ∧ (r → q) → (r → ⌝p).……3.10.略3.11.略3.12.略3.13.略3.14.在自然推理系统P 中构造下面推理的证明:(1)前提: p→ (q→r), p, q结论: r∨s(2)前提: p→q, ⌝ (q∧r), r结论: ⌝p(3)前提: p→q结论: p→ (p∧q)(4)前提: q→p, q⇒s, s⇒t, t∧r结论: p∧q(5)前提: p→r, q→s, p∧q结论: r∧s(6)前提: ⌝p∨r, ⌝q∨s, p∧q结论: t→ (r∨s) (1)证明:①②p→(q→r)p前提引入前提引入③④q→rq①②假言推理前提引入⑤r③④假言推理⑥r∨s⑤附加律(2)证明:①②③⌝ (q∧r)⌝q∨⌝rr前提引入①置换前提引入④⑤⑥⌝qp→q⌝p②③析取三段论前提引入④⑤拒取式(3)证明:①p→q前提引入②⌝p∨q①置换③(⌝p∨q) ∧ (⌝p∨p)②置换④⌝p∨ (p∧q)③置换⑤p→ (p∧q) ④置换也可以用附加前提证明法, 更简单些.(4)证明:①②③④⑤s⇒t(s→t) ∧ (t→s)t→st∧rt前提引入①置换②化简前提引入④化简⑥s③⑤假言推理⑦⑧⑨⑩q⇒s(s→q) ∧ (q→s)s→qq前提引入⑦置换⑧化简⑥⑥假言推理○11 q →p前提引入○12 ○13 pp∧q⑩○11 假言推理⑩○12 合取(5)证明:①②p→rq→s前提引入前提引入③④p∧qp前提引入③化简⑤q③化简⑥r①④假言推理⑦s②⑤假言推理⑧r∧s⑥⑦合取(6)证明:①②t⌝p∨r附加前提引入前提引入③④p∧qp前提引入③化简⑤r②④析取三段论⑥r∨s⑤附加说明: 证明中, 附加提前t, 前提⌝q∨s 没用上. 这仍是正确的推理.3.15.在自然推理系统P 中用附加前提法证明下面各推理:(1)前提: p→ (q→r), s→p, q结论: s→r(2)前提: (p∨q) → (r∧s), (s∨t) →u结论: p→u(1)证明:①②ss→p附加前提引入前提引入③p①②假言推理④⑤⑥p→ (q→r)q→rq前提引入③④假言推理前提引入⑦r⑤⑥假言推理(2)证明:①②Pp∨q附加前提引入①附加③(p∨q) → (r∧s) 前提引入④⑤r∧sS②③假言推理④化简⑥⑦⑧s∨t(s∨t) →uu⑤附加前提引入⑥⑦假言推理3.16.在自然推理系统P 中用归谬法证明下面推理:(1)前提: p→⌝q, ⌝r∨q, r∧⌝s结论: ⌝p(2)前提: p∨q, p→r, q→s结论: r∨s(1)证明:①②Pp→⌝q结论否定引入前提引入③④⑤⑥⑦⌝q⌝r∨q⌝rr∧⌝sr①②假言推理前提引入③④析取三段论前提引入⑥化简⑧⌝r∧r⑤⑦合取⑧为矛盾式, 由归谬法可知, 推理正确.(2)证明:①⌝ (r∨s)结论否定引入②p∨q前提引入③p→r前提引入④q→s前提引入⑤r∨s②③④构造性二难⑥⌝ (r∨s) ∧ (r∨s)①⑤合取①②③④⑤⑥⑦pp q(rq(rss ←q←qr①②假言推理前提引入前提引入⑥为矛盾式, 所以推理正确.3.17.P53 17. 在自然推理系统P 中构造下面推理的证明:只要A 曾到过受害者房间并且11 点以前没用离开, A 就犯了谋杀罪. A 曾到过受害者房间. 如果A 在11 点以前离开, 看门人会看到他. 看门人没有看到他. 所以A 犯了谋杀罪.令p: A 曾到过受害者房间; q: A 在11 点以前离开了; r: A 就犯了谋杀罪; s:看门人看到A.前提: p⌝∧q → r, p, q → s, ⌝s.结论: r.前提: p⌝∧q → r, p, q → s, ⌝s; 结论: r.证明:①⌝s 前提引入②q → s 前提引入③⌝q ①②拒取④p 前提引入⑤p⌝∧q ③④合取⑥p⌝∧q → r 前提引入⑦r ⑤⑥假言推理3.18.在自然推理系统P 中构造下面推理的证明.(1)如果今天是星期六, 我们就要到颐和园或圆明园去玩. 如果颐和园游人太多, 我们就不去颐和园玩.今天是星期六. 颐和园游人太多. 所以我们去圆明园玩.(2)如果小王是理科学生, 他的数学成绩一定很好. 如果小王不是文科生, 他必是理科生. 小王的数学成绩不好. 所以小王是文科学生.(3)明天是晴天, 或是雨天;若明天是晴天, 我就去看电影;若我看电影, 我就不看书. 所以, 如果我看书,则明天是雨天.(1)令p: 今天是星期六; q: 我们要到颐和园玩; r: 我们要到圆明园玩; s:颐和园游人太多.前提: p→ (q∨r), s → ⌝q, p, s.结论: r.前提引入前提引入p p→q∨rq∨rs s → ⌝q⌝qr④⑤假言推理(1)的证明树③⑥析取三段论① p →r 前提引入 ② ⌝r 前提引入 ③ ⌝p ①②拒取式 ④ ⌝q →p 前提引入 ⑤q③④拒取式(2) 令 p : 小王是理科生, q : 小王是文科生, r : 小王的数学成绩很好. 前提: p →r , ⌝q →p , ⌝r 结论: q 证明:⌝qp →q⌝p⌝r →p(2)的证明树 r(3)令 p : 明天是晴天, q : 明天是雨天, r : 我看电影, s : 我看书. 前提: p ∨q , p →r , r →⌝s结论: s →q 证明:① ② s r →⌝s 附加前提引入 前提引入 ③ ⌝r ①②拒取式 ④ p →r 前提引入 ⑤ ⌝p ③④拒取式 ⑥ p ∨q 前提引入 ⑦q⑤⑥析取三段论习题四4.1. 将下面命题用0 元谓词符号化:(1)小王学过英语和法语. (2)除非李建是东北人, 否则他一定怕冷.(1) 令F(x): x 学过英语; F(x): x 学过法语; a: 小王. 符号化为F(a)∧F(b).或进一步细分, 令L(x, y): x 学过y; a: 小王; b1: 英语; b2: 法语. 则符号化为L(a, b1)∧L(a, b2).(2) 令F(x): x 是东北人; G(x): x 怕冷; a: 李建. 符号化为⌝F(a)→G(a) 或⌝G(a)→F(a).或进一步细分, 令H(x, y): x 是y 地方人; G(x): x 怕冷; a: 小王; b: 东北. 则符号化为⌝H(a, b)→G(a) 或⌝G(a)→ H(a, b).4.2. 在一阶逻辑中将下面命题符号化, 并分别讨论个体域限制为(a),(b)时命题的真值:(1)凡有理数都能被2 整除.(2)有的有理数能被2 整除. 其中(a)个体域为有理数集合, (b)个体域为实数集合.(1)(a)中, ∀xF(x), 其中, F(x): x 能被2 整除, 真值为0.(b)中, ∀x(G(x) ∧F(x)), 其中, G(x): x 为有理数, F(x)同(a)中, 真值为0. (2)(a)中, ∃xF(x), 其中, F(x): x 能被2 整除, 真值为1.(b)中, ∃x(G(x) ∧F(x)), 其中, F(x)同(a)中, G(x): x 为有理数, 真值为1.4.3. 在一阶逻辑中将下面命题符号化, 并分别讨论个体域限制为(a),(b)时命题的真值:(1)对于任意的x, 均有x2-2=(x+ 2 )(x- 2 ).(2)存在x, 使得x+5=9.其中(a)个体域为自然数集合, (b)个体域为实数集合.(1)(a)中, ∀x(x2-2=(x+ 2 x- 2 真值为1.(b)中, ∀x(F(x) → (x2-2=(x+ 2 x- 2 其中, F(x): x 为实数, 真值为1. (2)(a)中, ∃x(x+5=9), 真值为1.(b)中, ∃x(F(x) ∧ (x+5=9)), 其中, F(x): x 为实数, 真值为1.4.4. 在一阶逻辑中将下列命题符号化:(1)没有不能表示成分数的有理数.(2)在北京卖菜的人不全是外地人.(3)乌鸦都是黑色的. (4)有的人天天锻炼身体.没指定个体域, 因而使用全总个体域.(1) ⌝∃x(F(x) ∧⌝G(x))或∀x(F(x) →G(x)), 其中, F(x): x 为有理数, G(x): x 能表示成分数.(2) ⌝∀x(F(x) →G(x))或∃x(F(x) ∧⌝G(x)), 其中, F(x): x 在北京卖菜, G(x): x 是外地人.(3) ∀x(F(x) →G(x)), 其中, F(x): x 是乌鸦, G(x): x 是黑色的.(4) ∃x(F(x) ∧G(x)), 其中, F(x): x 是人, G(x): x 天天锻炼身体.4.5. 在一阶逻辑中将下列命题符号化:(1)火车都比轮船快. (2)有的火车比有的汽车快. (3)不存在比所有火车都快的汽车. (4)“凡是汽车就比火车慢”是不对的.因为没指明个体域, 因而使用全总个体域(1) ∀x∀y(F(x) ∧G(y) →H(x,y)), 其中, F(x): x 是火车, G(y): y 是轮船, H(x,y):x 比y 快.(2) ∃x∃y(F(x) ∧G(y) ∧H(x,y)), 其中, F(x): x 是火车, G(y): y 是汽车, H(x,y):x 比y 快.(3) ⌝∃x(F(x) ∧∀y(G(y) →H(x,y)))或∀x(F(x) →∃y(G(y) ∧⌝H(x,y))), 其中, F(x): x 是汽车, G(y): y 是火车, H(x,y):x 比y 快.(4) ⌝∀x∀y(F(x) ∧G(y) →H(x,y))或∃x∃y(F(x) ∧G(y) ∧⌝H(x,y) ), 其中, F(x): x 是汽车, G(y): y 是火车, H(x,y):x 比y 慢.4.6. 略4.7. 将下列各公式翻译成自然语言, 个体域为整数集®, 并判断各命题的真假.(1) ∀x∀y∃z(x - y = z);(2) ∀x∃y(x⋅y = 1).(1) 可选的翻译:①“任意两个整数的差是整数.”②“对于任意两个整数, 都存在第三个整数, 它等于这两个整数相减.”③“对于任意整数x 和y, 都存在整数z, 使得x - y = z.”选③, 直接翻译, 无需数理逻辑以外的知识. 以下翻译意思相同, 都是错的:“有个整数, 它是任意两个整数的差.”“存在一个整数, 对于任意两个整数, 第一个整数都等于这两个整数相减.”❶ “存在整数z, 使得对于任意整数x 和y, 都有x - y = z.”这3 个句子都可以符号化为∃z∀x∀y(x - y = z).0量词顺序不可随意调换.(2) 可选的翻译:①“每个整数都有一个倒数.”②“对于每个整数, 都能找到另一个整数, 它们相乘结果是零.”③“对于任意整数x, 都存在整数y, 使得x⋅y = z.”选③, 是直接翻译, 无需数理逻辑以外的知识.4.8. 指出下列公式中的指导变元, 量词的辖域, 各个体变项的自由出现和约束出现:(3)∀x∃y(F(x, y) ∧ G(y, z)) ∨ ∃xH(x, y, z)∀x∃y(F(x,y)∧ G(y,z))∨ ∃x H(x,y,z)前件∀x∃y(F(x, y)∧G(y, z)) 中, ∀ 的指导变元是x, ∀ 的辖域是∃y(F(x, y)∧G(y, z)); ∃ 的指导变元是y, ∃ 的辖域是(F(x, y)∧G(y, z)).后件∃xH(x, y, z) 中, ∃ 的指导变元是x, ∃ 的辖域是H(x, y, z).整个公式中, x 约束出现两次, y 约束出现两次, 自由出现一次; z 自由出现两次.4.9. 给定解释I 如下:(a)个体域D I 为实数集合\.(b)D I 中特定元素↓a =0.(c)特定函数↓f (x,y)=x-y, x,y∈D I.(d)特定谓词↓F(x,y): x=y,↓G(x,y): x<y, x,y∈D I. 说明下列公式在I 下的含义, 并指出各公式的真值:(1)∀x∀y(G(x,y) →⌝F(x,y))(2) ∀x∀y(F(f(x,y),a) →G(x,y))(3) ∀x∀y(G(x,y) →⌝F(f(x,y),a))(4) ∀x∀y(G(f(x,y),a) →F(x,y))(1) ∀x∀y(x<y→x≠y), 真值为1.(2) ∀x∀y((x-y=0) →x<y), 真值为0.(3) ∀x∀y((x<y) → (x-y≠0)), 真值为1.(4) ∀x∀y((x-y<0) → (x=y)), 真值为0.4.10.给定解释I 如下:(a)个体域D=Æ(Æ为自然数).(b)D 中特定元素↓a=2.(c)D 上函数↓f (x,y)=x+y,↓g (x,y)=x·y.(d)D 上谓词↓F (x,y): x=y.说明下列公式在I 下的含义, 并指出各公式的真值:(1) ∀xF(g(x,a),x)(2) ∀x∀y(F(f(x,a),y) →F(f(y,a),x))(3) ∀x∀y∃z(F(f(x,y),z)(4) ∃xF(f(x,x),g(x,x))(1) ∀x(x·2=x), 真值为0.(2) ∀x∀y((x+2=y) → (y+2=x)), 真值为0.(3) ∀x∀y∃z(x+y=z),真值为1.(4) ∃x(x+x=x·x),真值为1.4.11.判断下列各式的类型:(1) F(x, y) → (G(x, y) → F(x, y)).(3) ∀x∃yF(x, y) → ∃x∀yF(x, y).(5) ∀x∀y(F(x, y) → F(y, x)).(1) 是命题重言式p → (q → p) 的代换实例, 所以是永真式.(3) 在某些解释下为假(举例), 在某些解释下为真(举例), 所以是非永真式的可满足式.(5) 同(3).4.12.P69 12. 设I 为一个任意的解释, 在解释I 下, 下面哪些公式一定是命题?(1) ∀xF(x, y) → ∃yG(x, y).(2) ∀x(F(x) → G(x)) ∧ ∃y(F( y) ∧ H( y)).(3) ∀x(∀yF(x, y) → ∃yG(x, y)).(4) ∀x(F(x) ∧ G(x)) ∧ H( y).(2), (3) 一定是命题, 因为它们是闭式.4.13.略4.14.证明下面公式既不是永真式也不是矛盾式:(1) ∀x(F(x) →∃y(G(y) ∧H(x,y)))(2) ∀x∀y(F(x) ∧G(y) →H(x,y))(1) 取个体域为全总个体域.解释I1: F(x): x 为有理数, G(y): y 为整数, H(x,y): x<y在I1 下: ∀x(F(x) →∃y(G(y) ∧H(x,y)))为真命题, 所以该公式不是矛盾式.解释I2: F(x),G(y)同I1, H(x,y): y 整除x.在I2 下: ∀x(F(x) →∃y(G(y) ∧H(x,y)))为假命题, 所以该公式不是永真式.(2) 请读者给出不同解释, 使其分别为成真和成假的命题即可.4.15.(1) 给出一个非闭式的永真式.(2) 给出一个非闭式的永假式.(3) 给出一个非闭式的可满足式, 但不是永真式.(1) F(x) ∨ ⌝F(x).(2) F(x) ∧ ⌝F(x).(3) ∀x(F(x, y) → F(y, x)).习题五5.1. 略5.2. 设个体域D={a,b,c}, 消去下列各式的量词:(1) ∀x∃y(F(x) ∧G(y))(2) ∀x∀y(F(x) ∨G(y))(3) ∀xF(x) →∀yG(y)(4) ∀x(F(x,y) →∃yG(y))(1) ∀x∃y(F(x) ∧G(y))⇔∀xF(x) ∧∃yG(y)⇔ (F(a) ∧F(b)) ∧F(c)) ∧ (G(a) ∨G(b) ∨G(c))(2) ∀x∀y(F(x) ∨G(y))⇔∀xF(x) ∨∀yG(y)⇔ (F(a) ∧F(b) ∧F(c)) ∨ (G(a) ∧G(b) ∧G(c))(3) ∀xF(x) →∀yG(y)⇔ (F(a) ∧F(b) ∧F(c)) → (G(a) ∧G(b) ∧G(c))(4) ∀x(F(x,y) →∃yG(y))⇔∃xF(x,y) →∃yG(y)⇔ (F(a,y) ∨F(b,y) ∨F(c,y)) → (G(a) ∨G(b) ∨G(c))5.3. 设个体域D={1,2}, 请给出两种不同的解释I1 和I2, 使得下面公式在I1 下都是真命题, 而在I2 下都是假命题.(1) ∀x(F(x) →G(x))(2) ∃x(F(x) ∧G(x))(1)I1: F(x):x≤2,G(x):x≤3F(1),F(2),G(1),G(2)均为真, 所以∀x(F(x) →G(x))⇔ (F(1) →G(1) ∧ (F(2) →G(2))为真.I2: F(x)同I1,G(x):x≤0则F(1),F(2)均为真, 而G(1),G(2)均为假,∀x(F(x) →G(x))为假. (2)留给读者自己做.5.4. 略5.5. 给定解释I 如下:(a)个体域D={3,4}.(b)↓f (x)为↓f (3)=4,↓f (4)=3. (c)↓F(x,y)为↓F(3,3)=↓F(4,4)=0,↓F(3,4)=↓F(4,3)=1.试求下列公式在I 下的真值:(1)∀x∃yF(x,y)(2)∃x∀yF(x,y)(3) ∀x∀y(F(x,y) →F(f(x),f(y)))(1)∀x∃yF(x,y)⇔ (F(3,3) ∨F(3,4)) ∧ (F(4,3) ∨F(4,4))⇔ (0∨1) ∧ (1∨0) ⇔1(2)∃x∀yF(x,y)⇔ (F(3,3) ∧F(3,4)) ∨ (F(4,3) ∧F(4,4))⇔ (0∧1) ∨ (1∧0) ⇔0(3) ∀x∀y(F(x,y) →F(f(x),f(y)))⇔ (F(3,3) →F(f(3),f(3)))∧ (F(4,3) →F(f(4),f(3)))∧ (F(3,4) →F(f(3),f(4)))∧ (F(4,4) →F(f(4),f(4)))⇔ (0→0) ∧ (1→1) ∧ (1→1) ∧ (0→0) ⇔15.6. 略5.7. 略5.8. 在一阶逻辑中将下列命题符号化, 要求用两种不同的等值形式.(1) 没有小于负数的正数.(2) 相等的两个角未必都是对顶角.(1) 令F(x): x 小于负数, G(x): x 是正数. 符合化为:∃⌝x((F(x) ∧ G(x)) ⇔ ∀x(G(x) → ⌝G(x)).(2) 令F(x): x 是角, H(x, y): x 和y 是相等的, L(x, y): x 与y 是对顶角. 符合化为:⌝∀x∀y(F(x) ∧ F(y) ∧ H(x, y) → L(x, y))⇔ ∃x∃y(F(x) ∧ F(y) ∧ H(x, y) ∧ ⌝L(x, y))⇔ ∃x(F(x) ∧ (∃y(F(y) ∧ H(x, y) ∧ ⌝L(x, y))).5.9. 略5.10.略5.11.略5.12.求下列各式的前束范式.(1) ∀xF(x) → ∀yG(x, y);(3) ∀xF(x, y) ↔ ∃xG(x, y);(5) ∃x1F(x1, x2) → (F(x1) → ∃⌝x2G(x1, x2)).前束范式不是唯一的.(1) ∀xF(x) → ∀yG(x, y)⇔ ∃x(F(x) → ∀yG(x, y))⇔ ∃x∀y(F(x) → G(x, y)).(3) ∀xF(x, y) ↔ ∃xG(x, y)⇔ (∀xF(x, y) → ∃xG(x, y)) ∧ (∃xG(x, y) → ∀xF(x, y))⇔ (∀x1F(x1, y) → ∃x2G(x2, y)) ∧ (∃x3G(x3, y) → ∀x4F(x4, y))⇔ ∃x1∃x2(F(x1, y) → G(x2, y)) ∧ ∀x3∀x4(G(x3, y) → F(x4, y))⇔ ∃x1∃x2∀x3∀x4((F(x1, y) → G(x2, y)) ∧ (G(x3, y) → F(x4, y))).5.13.将下列命题符号化, 要求符号化的公式全为前束范式:(1) 有的汽车比有的火车跑得快.(2) 有的火车比所有的汽车跑得快.(3) 说所有的火车比所有的汽车跑得快是不对的.(4) 说有的飞机比有的汽车慢是不对的.(1) 令F(x): x 是汽车, G( y): y 是火车, H(x, y): x 比y 跑得快.∃x(F(x) ∧ ∃y(G( y) ∧ H(x, y))⇔ ∃x∃y(F(x) ∧ G( y) ∧ H(x, y)).(2)令F(x): x 是火车, G( y): y 是汽车, H(x, y): x 比y 跑得快.∃x(F(x) ∧ ∀y(G( y) → H(x, y)))⇔ ∃x∀y(F(x) ∧ (G( y) → H(x, y))).0错误的答案: ∃x∀y(F(x) ∧ G( y) → H(x, y)).(3)令F(x): x 是火车, G( y): y 是汽车, H(x, y): x 比y 跑得快.⌝∀x(F(x) → ∀y(G( y) → H(x, y)))⇔ ⌝∀x∀y(F(x) → (G( y) → H(x, y)))⇔ ⌝∀x∀y(F(x) ∧ G( y) → H(x, y)) (不是前束范式)⇔ ∃x∃y(F(x) ∧ G( y) ∧ H(x, y)).(4)令F(x): x 是飞机, G( y): y 是汽车, H(x, y): x 比y 跑得慢.⌝ ∃x(F(x) ∧ ∃y(G( y) ∧ H(x, y)))⇔ ⌝ ∃x∃y(F(x) ∧ G( y) ∧ H(x, y)) (不是前束范式)⇔ ∀x∀y ⌝ (F(x) ∧ G( y) ∧ H(x, y))⇔ ∀x∀y(F(x) ∧ G( y) → ⌝H(x, y)).5.14.略5.15.在自然推理系统F 中构造下面推理的证明:(1) 前提: ∃xF(x) → ∀y((F(y) ∨ G(y)) → R(y)), ∃xF(x)结论: ∃xR(x).(2) 前提: ∀x(F(x) → (G(a) ∧R(x))), ∃xF(x)结论: ∃x(F(x) ∧R(x))(3) 前提: ∀x(F(x) ∨G(x)), ⌝∃xG(x)结论: ∃xF(x)(4) 前提: ∀x(F(x) ∨G(x)), ∀x(⌝G(x) ∨⌝R(x)), ∀xR(x)结论: ∀xF(x)①∃xF(x) → ∀y((F(y) ∨ G(y)) → R(y)) 前提引入②∃xF(x) 前提引入③∀y((F(y) ∨ G(y)) → R(y)) ①②假言推理④(F(c) ∨ G(c)) → R(c) ③UI⑤F(c) ①EI⑥F(c) ∨ G(c) ⑤附加⑦⑧R(c)∃xR(x)④⑥假言推理⑦EG(2) 证明:①∃xF(x) 前提引入②F(c) ①EI③∀x(F(x) → (G(a) ∧ (R(x))) 前提引入④F(c) → (G(a) ∧R(c)) ④UI⑤G(a) ∧R(c) ②④假言推理⑥R(c) ⑤化简⑦F(c) ∧R(c) ②⑥合取⑧∃x(F(x) ∧R(x)) ⑥E G(3) 证明:①⌝∃xG(x) 前提引入②∀x⌝G(x) ①置换③⌝G(c)②UI④∀x(F(x) ∨G(x) 前提引入⑤F(c) ∨G(c) ④UI⑥F(c) ③⑤析取三段论⑦∃xF(x) ⑥E G(4) 证明:①∀x(F(x) ∨G(x)) 前提引入②F(y) ∨G(y) ①UI③∀x(⌝G(x) ∨⌝R(x)) 前提引入④⌝G(y) ∨⌝R(y)③UI⑤∀xR(x) 前提引入⑥R(y) ⑤UI⑦⌝G(y) ④⑥析取三段论⑧F(y) ②⑦析取三段论⑥∀xF(x) U G5.16.略5.18.略5.19.略5.20.略5.21.略5.22.略5.23.在自然推理系统F 中, 证明下面推理:(1) 每个有理数都是实数, 有的有理数是整数, 因此有的实数是整数.(2) 有理数, 无理数都是实数, 虚数不是实数, 因此虚数既不是有理数, 也不是无理数.(3) 不存在能表示成分数的无理数, 有理数都能表示成分数, 因此有理数都不是无理数.(1)设F(x):x 为有理数, R(x):x 为实数, G(x):x 是整数.前提: ∀x(F(x) →R(x)), ∃x(F(x) ∧G(x))结论: ∃x(R(x) ∧G(x))证明:①∃x(F(x) ∧G(x)) 前提引入②F(c) ∧G(c) ①EI③F(c) ②化简④G(c) ②化简⑤∀x(F(x) →R(x)) 前提引入⑥F(c) →R(c) ⑤UI⑦R(c) ③⑥假言推理⑧R(c) ∧G(c) ④⑦合取⑥∃x(R(x) ∧G(x)) ⑧EG(2)设: F(x):x 为有理数, G(x):x 为无理数, R(x)为实数, H(x)为虚数前提: ∀x((F(x) ∨G(x)) →R(x)), ∀x(H(x) →⌝R(x))结论: ∀x(H(x) → (⌝F(x) ∧⌝G(x)))证明:①∀x((F(x) ∨G(x) →R(x)) 前提引入②F(y) ∨G(y)) →R(y) ①UI③∀x(H(x) →⌝R(x)) 前提引入④H(y) →⌝R(y)③UI⑤⌝R(y) →⌝ (F(y) ∨G(y)) ②置换⑥H(y) →⌝ (F(y) ∨G(y)) ④⑤假言三段论⑦H(y) → (⌝F(y) ∧⌝G(y)) ⑥置换⑧∀x(H(x) → (⌝F(x) ∧⌝G(x)))⑦UG(3)设: F(x):x 能表示成分数, G(x):x 为无理数, H(x)为有理数前提: ∀x(G(x) →⌝F(x)), ∀x(H(x) →F(x))结论: ∀x(H(x) →⌝G(x))证明:①∀x(H(x) →F(x)) 前提引入②H(y) →F(y) ①UI③∀x(G(x) →⌝F(x)) 前提引入④G(y) →⌝F(y)③UI⑤F(y) →⌝G(y) ④置换⑥H(y) →⌝G(y) ②⑤假言三段论⑦∀x(H(x) →⌝G(x))⑥UG5.24.在自然推理系统F 中, 构造下面推理的证明:每个喜欢步行的人都不喜欢骑自行车. 每个人或者喜欢骑自行车或者喜欢乘汽车. 有的人不喜欢乘汽车, 所以有的人不喜欢步行. (个体域为人类集合)令F(x): x 喜欢步行, G( x): x 喜欢骑自行车, H(x): x 喜欢乘汽车.前提: ∀x(F(x) → ⌝G(x)), ∀x(G(x) ∨ H(y)), ∃x⌝H(x).结论: ∃x⌝F(x).①∀x(G(x) ∨ H(y)) 前提引入②G(c) ∨ H(c) ①UI③∃x⌝H(x) 前提引入④⌝H(c) ③UI⑤G(c) ②④析取三段⑥∀x(F(x) → ⌝G(x)) 前提引入⑦F(c) → ⌝G(c) ⑥UI⑧⌝F(c) ⑤⑦拒取⑨∃x⌝F(x) ⑧EG5.25.略习题六6.1. 选择适当的谓词表示下列集合:(1)小于5 的非负整数(2)奇整数集合(3)10 的整倍数的集合(1){x|x∈®∧0≤x<5}(2){x|x=2k+1∧k∈®}(3){x|x=10k∧k∈®}6.2. 用列元素法表示下列集合:(1)S1={x|x 是十进制的数字}(2)S2={x|x=2∨x=5}(3)S3={x|x=x∈®∧3<x<12}(4)S4={x|x∈\∧x2-1=0∧x>3}(5)S5={〈x, y>|x, y∈®∧0≤x≤2∧-1≤y≤0}(1) S1={0,1,2,3,4,5,6,7,8,9}(2) S2={2,5}(3) S3={4,5,6,7,8,9,10,11}(4) S4=∅(5) S5={〈0, -1〉,〈1, -1〉,〈2, -1〉,〈0,0〉,〈1,0〉,〈2,0〉}6.3. 略6.4. 设F 表示一年级大学生的集合, S 表示二年级大学生的集合, M 表示数学专业学生的集合, R 表示计算机专业学生的集合, T 表示听离散数学课学生的集合, G 表示星期一晚上参加音乐会的学生的集合, H 表示星期一晚上很迟才睡觉的学生的集合. 问下列各句子所对应的集合表达式分别是什么? 请从备选的答案中挑出来.(1)所有计算机专业二年级的学生在学离散数学课. (2)这些且只有这些学离散数学课的学生或者星期一晚上去听音乐会的学生在星期一晚上很迟才睡觉.(3)听离散数学课的学生都没参加星期一晚上的音乐会.(4)这个音乐会只有大学一, 二年级的学生参加. (5)除去数学专业和计算机专业以外的二年级学生都去参加了音乐会.备选答案:①T⊆G∪H ②G∪H⊆T ③S∩R⊆T④H=G∪T ⑤T∩G=∅ ⑥F∪S⊆G⑦G⊆F∪S ⑧S- (R∪M) ⊆G ⑥G⊆S- (R∩M)答案:(1)③S∩R⊆T(2)④H=G∪T(3) ⑤T∩G=∅(4)⑦G⊆F∪S(5) ⑧S- (R∪M) ⊆G6.5. 确定下列命题是否为真:(1) ∅⊆∅(2) ∅∈∅(3) ∅⊆{∅}(4) ∅∈{∅}(5){a, b}⊆{a, b, c, {a, b, c}}(6){a, b}∈{a, b, c, {a, b }}(7){a, b} {a, b, {{a, b}}}(8){a, b}∈{a, b, {{a, b}}}(1) 真(2)假(3) 真(4) 真(5) 真(6) 真(7) 真(8) 假6.6. 略6.7. 略6.8. 略6.9. 略6.10.略6.11.略6.12.略6.13.略6.14.略6.15.略6.16.略6.17.略6.18.略6.19.略6.20.略6.21.略6.22.略6.23.略6.24.略6.25.略6.26.略6.27.略6.28.略6.29.略6.30.略6.31.略6.32.略6.33.略6.34.略6.35.略6.36.略6.37.略6.38.略6.39.略6.40.略6.41.略6.42.略6.43.略6.44.略6.45.略习题七7.1. 已知A={∅,{∅}},求A×P(A).A×P(A)={ 〈 ∅,∅〉,〈∅,{∅}〉,〈∅,{{∅}}〉,〈∅,{∅,{∅}}〉,〈{∅},∅〉,〈{∅},{∅}〉,〈{∅},{{∅}}〉, 〈{∅},{∅,{∅}}〉}7.2. 对于任意集合A,B,C, 若A×B⊆A×C,是否一定有B⊆C 成立? 为什么?不一定, 因为有反例: A=∅,B={1},C={2},B⊆C,A×B=∅=A×C.7.3. 设A, B, C, D 是任意集合,(1) 求证(A∩B)×(C∩D)=(A×C)∩(B×D).(2) 下列等式中哪个成立? 那些不成立?对于成立的给出证明, 对于不成立的举一反例.(A∪B)×(C∪D)=(A×C)∪(B×D)(A-B)×(C-D)=(A×C) - (B×D)(1) ∀〈x,y〉〈x,y〉∈(A∩B)×(C∩D) ⇔x∈A∩B∧y∈C∩D⇔ (x∈A∧x∈B) ∧ (y∈C∧y∈D) ⇔ (x∈A∧y∈C) ∧ (x∈B∧y∈D)⇔〈x,y〉∈(A×B) ∧〈x,y〉∈(C×D) ⇔〈x,y〉∈A×B∩C×D(A∩B)×(C∩D)=(A×C)∩(B×D)(2)都不成立, 反例: A={1,2},B={2,3},C={1,2},D={2,3}(A∪B)×(C∪D)={1,2,3}×{1,2,3}⊃(A×C)∪(B×D)(A-B)×(C-D)={1}×{1}⊂(A×C) - (B×D)7.4. 略7.5. 设A, B 为任意集合, 证明若A×A=B×B, 则A=B.∀x,x∈A⇔〈x,x〉∈A×A⇔〈x,x〉∈B×B⇔x∈BA=B7.6. 列出从集合A={1, 2}到B={1}的所有的二元关系.R1=∅ ,R2={〈1,1〉},R2={〈2,1〉},R3={〈1,1〉,〈2,1〉}.7.7. 列出集合A={2, 3, 4}上的恒等关系I A, 全域关系E A, 小于或等于关系L A, 整除关系D A.I A={〈2,2〉,〈3,3〉,〈4,4〉}E A=A×A={〈2,2〉,〈2,3〉,〈2,4〉,〈3,2〉,〈3,3〉,〈3,4〉,〈4,2〉,〈4,3〉,〈4,4〉}L A={〈2,2〉,〈2,3〉,〈2,4〉,〈3,3〉,〈3,4〉,〈4,4〉}D A={〈2,2〉,〈2,4〉,〈3,3〉,〈4,4〉}7.8. 列出集合A={∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}上的包含关系.R⊆={〈∅,∅〉,〈∅,{∅}〉,〈∅,{∅,{∅}}〉,〈∅,{∅,{∅},{∅,{∅}}}〉,〈{∅},{∅}〉,〈{∅},{∅,{∅}}〉,〈{∅},{∅,{∅},〈∅,{ ∅}〉}〉,〈{∅,{∅}}, {∅,{∅}}〉,〈{∅,{∅}},{∅,{∅},{∅,{∅}}}〉, 〈{∅,{∅},{∅,{∅}}},{∅,{∅},{∅,{∅}}}〉}7.9. 设A={1, 2, 4, 6}, 列出下列关系R:(1) R={〈x, y〉|x, y∈A∧x+y≠2}(2) R={〈x, y〉|x, y∈A∧|x-y|=1}(3) R={〈x, y〉|x, y∈A∧x/y∈A}(4) R={〈x, y〉|x, y∈A∧y 为素数}(1)R={〈1,2〉,〈1,4〉,〈1,6〉,〈2,1〉,〈2,2〉,〈2,4〉,〈2,6〉,〈4,1〉,〈4,2〉,〈4,4〉,〈4,6〉,〈6,1〉,〈6,2〉,〈6,4〉,〈6,6〉}=E A-{〈1,1〉}(2)R={〈1,2〉,〈2,1〉}(3)R={〈1,1〉,〈2,2〉,〈4,4〉,〈6,6〉,〈2,1〉,〈4,2〉,〈4,1〉}(4)R={〈1,2〉,〈2,2〉,〈4,2〉,〈6,2〉}7.10.略7.11.R i 是X 上的二元关系, 对于x∈X 定义集合R i(x)={y|xR i y}.显然Ri(x) ⊆X. 如果X={-4, -3, -2, -1, 0, 1, 2, 3, 4}, 且令R1={〈x, y〉|x, y∈X∧x<y}R2={〈x,y〉|x, y∈X∧y-1<x<y+2}R3={〈x,y〉|x, y∈X∧x2≤y}求R1(0), R1(1), R2(0), R2(-1), R3(3).R1(0)={1,2,3,4}R1(1)={2,3,4}R2(0)={ -1,0}R2(-1)={ -2, -1}R3(3)= ∅7.12.设A={0, 1, 2, 3}, R 是A 上的关系, 且R={〈0, 0〉, 〈0, 3〉, 〈2, 0〉, 〈2, 1〉, 〈2, 3〉, 〈3, 2〉}给出R 的关系矩阵和关系图.7.13.设A = {〈1, 2〉, 〈2, 4〉, 〈3, 3〉}B = {〈1, 3〉, 〈2, 4〉, 〈4, 2〉}求A∪B, A∩B, dom A, dom(A∪B), ran A, ran B, ran(A∩B), fld(A-B).A∪B={〈1,2〉, 〈1,3〉, 〈2,4〉, 〈3,3〉, 〈4,2〉}A∩B={〈2,4〉}dom A={1,2,3}dom(A∪B)={1,2,3,4}r an A={2,3,4}r an B={3,4,2}r an(A∩B)={4}fld(A-B)={1,2,3}7.14.设R={〈0,1〉,〈0,2〉,〈0,3〉,〈1,2〉,〈1,3〉,〈2,3〉}求R○R,R-1 ,R†{0,1},R[{1,2}].R○R={〈0,2〉, 〈0,3〉, 〈1,3〉}R-1={〈1,0〉,〈2,0〉,〈3,0〉,〈2,1〉,〈3,1〉,〈3,2〉}R†{0,1}={〈0,1〉, 〈0,2〉, 〈0,3〉, 〈1,2〉, 〈1,3〉}R[{1,2}]={2,3}7.15.设A={〈∅,{∅,{∅}}〉,〈{∅},∅〉}求A-1,A2,A3,A†{∅},A[∅],A†∅,A†{{∅}},A[{{∅}}].A-1={〈{∅,{∅}},∅〉,〈∅,{∅}〉},A2={〈{∅},{∅,{∅}}〉},A3=∅,A†{∅}={〈∅,{∅,{∅}}〉},A[∅]={∅,{∅}},1 2A †∅=∅,A †{{∅}}={〈{∅},∅〉}, A [{{∅}}]=∅7.16.设 A ={a ,b ,c ,d }, R 1,R 2 为 A 上的关系, 其中R 1={〈a ,a 〉,〈a ,b 〉,〈b ,d 〉} R 2={〈a ,d 〉,〈b ,c 〉,〈b ,d 〉,〈c ,b 〉} 2 3求 R 1○R 2, R 2○R 1,R 1 ,R 2 .R 1○R 2={〈a ,a 〉,〈a ,c 〉,〈a ,d 〉}, R 2○R 1={〈c ,d 〉}, R 2={〈a ,a 〉,〈a ,b 〉,〈a ,d 〉}, R 3={〈b ,c 〉,〈b ,d 〉,〈c ,b 〉}237.17.设 A ={a ,b ,c }, 试给出 A 上两个不同的关系 R 1 和 R 2,使得 R 1 =R 1, R 2 =R 2.R 1={〈a ,a 〉,〈b ,b 〉}, R 2={〈b ,c 〉,〈c ,b 〉}7.18.证明定理 7.4 的(1), (2), (4).(1) F ○ (G ∪H )=F ○G ∪F ○H任取〈x ,y 〉,〈x ,y 〉∈F ○ (G ∪H )⇔∃t (〈x ,t 〉∈F ∧〈t ,y 〉∈G ∪H )⇔∃t (〈x ,t 〉∈F ∧ (〈t ,y 〉∈G ∨〈t ,y 〉∈H ))⇔∃t ((〈x ,t 〉∈F ∧〈t ,y 〉∈G ) ∨ (〈x ,t 〉∈F ∧〈t ,y 〉∈H )) ⇔∃t (〈x ,t 〉∈F ∧〈t ,y 〉∈G ) ∨∃t (〈x ,t 〉∈F ∧〈t ,y 〉∈H )) ⇔〈x ,y 〉∈F ○G ∨〈x ,y 〉∈F ○H ⇔〈x ,y 〉∈F ○G ∩F ○H 所以有 F ○ (G ∩H )⊆ F ○G ∩F ○H .(2) (G ∪H ) ○F =G ○F ∪H ○F 任取〈x ,y 〉,〈x ,y 〉∈(G ∪H ) ○F⇔∃t (〈x ,t 〉∈(G ∪H ) ∧〈t ,y 〉∈F )⇔∃t ((〈x ,t 〉∈G ∨〈t ,y 〉∈H ) ∧〈t ,y 〉∈F ))⇔∃t ((〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∨ (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇔∃t (〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∨∃t (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇔〈x ,y 〉∈G ○F ∨〈x ,y 〉∈H ○F ⇔〈x ,y 〉∈G ○F ∪H ○F(4) (G ∩H ) ○F ⊆G ○F ∩H ○F 任取〈x ,y 〉,〈x ,y 〉∈(G ∩H ) ○F⇔∃t (〈x ,t 〉∈(G ∩H ) ∧〈t ,y 〉∈F )⇔∃t ((〈x ,t 〉∈G ∧〈t ,y 〉∈H ) ∧〈t ,y 〉∈F ))⇔∃t ((〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∧ (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇒∃t (〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∧∃t (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇔〈x ,y 〉∈G ○F ∨〈x ,y 〉∈H ○F ⇔〈x ,y 〉∈G ○F ∪H ○F7.19.证明定理 7.5 的(2), (3).(2) F [A ∪B ]=F [A ]∪F [B ]任取 y ,。

屈婉玲版离散数学课后习题答案【1】

屈婉玲版离散数学课后习题答案【1】

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

〔1〕p∨(q∧r)⇔0∨(0∧1)⇔0〔2〕〔p↔r〕∧(﹁q∨s)⇔〔0↔1〕∧(1∨1)⇔0∧1⇔0.〔3〕〔⌝p∧⌝q∧r〕↔(p∧q∧﹁r)⇔〔1∧1∧1〕↔ (0∧0∧0)⇔0(4)〔⌝r∧s〕→(p∧⌝q)⇔〔0∧1〕→(1∧0)⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

〞答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:〔4〕(p→q) →(⌝q→⌝p)〔5〕(p∧r)↔(⌝p∧⌝q)〔6〕((p→q) ∧(q→r)) →(p→r)答:〔4〕p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式//最后一列全为1〔5〕公式类型为可满足式〔方法如上例〕//最后一列至少有一个1〔6〕公式类型为永真式〔方法如上例〕//第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)〔p→(p∨q)〕∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r 〔p∨q〕→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明〔2〕(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)〔4〕(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q) ⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取X式与主合取X式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:〔1〕主析取X式(⌝p→q)→(⌝q∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q) ⇔(⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取X 式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q)⇔ M 1⇔∏(1)(2) 主合取X 式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取X 式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取X 式为 0(3)主合取X 式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取X 式为 1主析取X 式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:〔2〕①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明〔4〕:①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥〔q→t〕∧(t→q) ⑤置换⑦〔q→t〕⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r是矛盾式,所以推理正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章部分课后习题参考答案
16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0
(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.
(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0
(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔1
17.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。


答:p: π是无理数 1
q: 3是无理数0
r: 2是无理数 1
s:6能被2整除 1
t: 6能被4整除0
命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:
(4)(p→q) →(⌝q→⌝p)
(5)(p∧r) ↔(⌝p∧⌝q)
(6)((p→q) ∧(q→r)) →(p→r)
答:(4)
p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)
0 0 1 1 1 1 1
0 1 1 0 1 1 1
1 0 0 1 0 0 1
1 1 1 0 0 1 1
所以公式类型为永真式//最后一列全为1
(5)公式类型为可满足式(方法如上例)//最后一列至少有一个1
(6)公式类型为永真式(方法如上例)//
第二章部分课后习题参考答案
3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.
(1) ⌝(p∧q→q)
(2)(p→(p∨q))∨(p→r)
(3)(p∨q)→(p∧r)
答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式
(3)P q r p∨q p∧r (p∨q)→(p∧r)
0 0 0 0 0 1
0 0 1 0 0 1
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 1 0 0
1 1 1 1 1 1
所以公式类型为可满足式
4.用等值演算法证明下面等值式:
(2)(p→q)∧(p→r)⇔(p→(q∧r))
(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)
证明(2)(p→q)∧(p→r)
⇔ (⌝p∨q)∧(⌝p∨r)
⇔⌝p∨(q∧r))
⇔p→(q∧r)
(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q) ⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)
⇔1∧(p∨q)∧⌝(p∧q)∧1
⇔(p∨q)∧⌝(p∧q)
5.求下列公式的主析取范式与主合取范式,并求成真赋值
(1)(⌝p→q)→(⌝q∨p)
(2)⌝(p→q)∧q∧r
(3)(p∨(q∧r))→(p∨q∨r)
解:
(1)主析取范式
(⌝p→q)→(⌝q∨p)
⇔⌝(p ∨q)∨(⌝q ∨p)
⇔(⌝p ∧⌝q)∨(⌝q ∨p)
⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q) ⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)
⇔320m m m ∨∨
⇔∑(0,2,3)
主合取范式:
(⌝p →q)→(⌝q ∨p)
⇔⌝(p ∨q)∨(⌝q ∨p)
⇔(⌝p ∧⌝q)∨(⌝q ∨p)
⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p)) ⇔1∧(p ∨⌝q)
⇔(p ∨⌝q) ⇔ M 1
⇔∏(1)
(2) 主合取范式为:
⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r ⇔(p ∧⌝q)∧q ∧r ⇔0
所以该式为矛盾式.
主合取范式为∏(0,1,2,3,4,5,6,7)
矛盾式的主析取范式为 0
(3)主合取范式为:
(p ∨(q ∧r))→(p ∨q ∨r)
⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)
⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)
⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))
⇔1∧1
⇔1
所以该式为永真式.
永真式的主合取范式为 1
主析取范式为∑(0,1,2,3,4,5,6,7)
第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:
(2)前提:p→q,⌝(q∧r),r
结论:⌝p
(4)前提:q→p,q↔s,s↔t,t∧r
结论:p∧q
证明:(2)
①⌝(q∧r) 前提引入
②⌝q∨⌝r ①置换
③q→⌝r ②蕴含等值式
④r 前提引入
⑤⌝q ③④拒取式
⑥p→q 前提引入
⑦¬p ⑤⑥拒取式
证明(4):
①t∧r 前提引入
②t ①化简律
③q↔s 前提引入
④s↔t 前提引入
⑤q↔t ③④等价三段论
⑥(q→t)∧(t→q) ⑤置换
⑦(q→t)⑥化简
⑧q ②⑥假言推理
⑨q→p 前提引入
⑩p ⑧⑨假言推理
(11)p∧q ⑧⑩合取
15在自然推理系统P中用附加前提法证明下面各推理:
(1)前提:p→(q→r),s→p,q
结论:s→r
证明
①s 附加前提引入
②s→p 前提引入
③p ①②假言推理
④p→(q→r) 前提引入
⑤q→r ③④假言推理
⑥q 前提引入
⑦r ⑤⑥假言推理
16在自然推理系统P中用归谬法证明下面各推理:
(1)前提:p→⌝q,⌝r∨q,r∧⌝s
结论:⌝p
证明:
①p 结论的否定引入
②p→﹁q 前提引入
③﹁q ①②假言推理
④¬r∨q 前提引入
⑤¬r ④化简律
⑥r∧¬s 前提引入
⑦r ⑥化简律
⑧r∧﹁r ⑤⑦合取
由于最后一步r∧﹁r 是矛盾式,所以推理正确.。

相关文档
最新文档