人教版高中数学(理科)选修函数极限的运算法则教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数极限的运算法则
教学目标:掌握函数极限的运算法则,并会求简单的函数的极限
教学重点:运用函数极限的运算法则求极限
教学难点:函数极限法则的运用
教学过程:
一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o
==→∞→lim ,01lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算.
二 、新课讲授
也就是说,如果两个函数都有极限,那么这两个函数的和、差、积、商组成的函数极限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0).
说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o
o x x x x →→= n x x n x x x f x f o
o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用.
三 典例剖析
例1 求)3(lim 2
2x x x +→
例2 求1
12lim 231++-→x x x x
例3 求4
16lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数4
162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即可求出函数的极限.
例4 求1
33lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2
x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。
总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim *N k x C C k
x x ∈==∞→∞→ 例5 求1
342lim 232+--+∞→x x x x x 分析:同例4一样,不能直接用法则求极限. 如果分子、分母都除以3x ,就可以运用法则计算了。
四 课堂练习(利用函数的极限法则求下列函数极限)
(1))32(lim 21
-→x x ; (2))132(lim 22
+-→x x x
(3))]3)(12[(lim 4
+-→x x x ; (4)14312lim 221-++→x x x x
(5)11lim 21+--→x x x (6)9
65lim 223-+-→x x x x
(7)13322lim 232+--+∞→x x x x x (8)5
2lim 32--∞→y y y y
五 小结
1 有限个函数的和(或积)的极限等于这些函数的和(或积);
2 函数的运算法则成立的前提条件是函数Λ)(),(x g x f 的极限存在,在进行极限运算时,要特别注意这一点.
3 两个(或几个)函数的极限至少有一个不存在时,他们的和、差、积、商的极限不一定不存在.
4 在求几个函数的和(或积)的极限时,一般要化简,再求极限.
六 作业(求下列极限)
(1))432(lim 3
1++-→x x x (2)35lim 222-+→x x x (3)12lim 21++→x x x x
(4))1413(lim 20+-+-→x x x x (5)13lim 2423++-→x x x x (6)2452
30233lim x
x x x x x -++→
(7)42lim 22--→x x x (8)11lim 21-+-→x x x (9)6
23lim 2232--++-→x x x x x x
(10)x m m x x 220)(lim -+→ (11))112(lim 2x
x x +-∞→ (12)1221lim 22-++∞→x x x x
(13)13lim 243+++∞→x x x x x (14)2332)2312(lim -+→x x x (15)3
526113lim 221--+-→x x x x x
(16)3526113lim 22--+-∞→x x x x x (17)3
23
203526lim x x x x x x x ----→ (18)32323526lim x x x x x x x ----∞→