金融行业大数据应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据在金融行业的发展应用
一、金融行业大数据发展概述
数据显示,中国大数据IT应用投资规模以五大行业最高,其中以互联网行
业占比最高,占大数据IT应用投资规模的28.9%,其次是电信领域(19.9%),第三为金融领域(17.5%),政府和医疗分别为第四和第五。金融行业位居第三,主要是由于大数据在金融行业的应用起步相对稍晚,其应用深度和广度还有很大的扩展空间。
根据国际知名咨询公司麦肯锡的报告显示:在大数据应用综合价值潜力方面,信息技术、金融保险、政府及批发贸易四大行业潜力最高高。具体到行业内每家公司的数据量来看,信息、金融保险、计算机及电子设备、公用事业四类的数据量最大。
不同行业应用大数据技术潜在价值评估
数据来源:麦肯锡《大数据的下一个前沿:创新、竞争和生产力》报告可以看出,无论是投资规模和应用潜力,信息行业(互联网和电信)和金融行业都是大数据应用的重点行业。
金融行业的大数据应用有很多的障碍需要克服,比如银行企业内各业务的数据孤岛效应严重、大数据人才相对缺乏以及缺乏银行之外的外部数据的整合等问题。可喜的是,金融行业尤其是以银行的中高层对大数据渴望和重视度非常高,相信在未来的两三年内,在互联网和移动互联网的驱动下,金融行业的大数据应用将迎来突破性的发展。
二、金融行业大数据应用
当前,数据是重要资产的观念已经在金融行业成为共识,随着金融业务的载体与社交媒体、电子商务的融合越来越紧密,仅对原有15%的结构化数据进行分析已经不能满足发展的需求,急需借助大数据战略打破数据边界,囊括85%的大数据分析,来构建更为全面的企业运营全景视图。大数据能够解决金融领域海量数据的存储、查询优化及声音、影像等非结构化数据的处理。金融系统可以通过大数据分析平台,导入客户社交网络、电子商务、终端媒体产生的数据,从而构建客户视图。依托大数据平台可以进行客户行为跟踪、分析,进而获取用户的消费习惯、风险收益偏好等。针对用户这些特性,银行等金融部门能够实施风险及营销管理。总结可以看出,金融机构大数据应用主要在四个领域:风险管理、渠道优化、客户管理及运营优化。
大数据服务于金融领域的五种应用类型包括:互联网获客、个性化推荐、精准化营销、大数据征信及信用评级体系:
参考赛迪网发布的中国金融行业大数据投资结构,银行以占比41.10%位居第一为,证券占比35.10%和保险占比23.80%分列第二和第三位。下面分别对银业、保险业、证券业进行大数据运用解析。
1、银行业大数据运用
国内不少银行已经开始尝试通过大数据来驱动业务运营,如中信银行信用卡中心使用大数据技术实现了实时营销,光大银行建立了社交网络信息数据库,招商银行则利用大数据发展小微贷款。总的来看银行大数据应用可以分为四大方面:
第一方面:客户画像应用。客户画像应用主要分为个人客户画像和企业客户画像。个人客户画像包括人口统计学特征、消费能力数据、兴趣数据、风险偏好等;企业客户画像包括企业的生产、流通、运营、财务、销售和客户数据、相关产业链上下游等数据。值得注意的是,银行拥有的客户信息并不全面,基于银行自身拥有的数据有时候难以得出理想的结果甚至可能得出错误的结论。比如,如果某位信用卡客户月均刷卡8次,平均每次刷卡金额800元,平均每年打4次客服电话,从未有过投诉,按照传统的数据分析,该客户是一位满意度较高流失风险较低的客户。但如果看到该客户的微博,得到的真实情况是:工资卡和信用卡不在同一家银行,还款不方便,好几次打客服电话没接通,客户多次在微博上抱怨,该客户流失风险较高。所以银行不仅仅要考虑银行自身业务所采集到的数据,更应考虑整合外部更多的数据,以扩展对客户的了解。包括:
(1)客户在社交媒体上的行为数据(如光大银行建立了社交网络信息数据库)。通过打通银行内部数据和外部社会化的数据可以获得更为完整的客户拼图,从而进行更为精准的营销和管理;
(2)客户在电商网站的交易数据,如建设银行则将自己的电子商务平台和信贷业务结合起来,阿里金融为阿里巴巴用户提供无抵押贷款,用户只需要凭借过去的信用即可;
(3)企业客户的产业链上下游数据。如果银行掌握了企业所在的产业链上下游的数据,可以更好掌握企业的外部环境发展情况,从而可以预测企业未来的状况;
(4)其他有利于扩展银行对客户兴趣爱好的数据,如网络广告界目前正在兴起的DMP数据平台的互联网用户行为数据。
第二方面:精准营销。在客户画像的基础上银行可以有效的开展精准营销,包括:(1)实时营销。实时营销是根据客户的实时状态来进行营销,比如客户当时的所在地、客户最近一次消费等信息来有针对地进行营销(某客户采用信用卡采购孕妇用品,可以通过建模推测怀孕的概率并推荐孕妇类喜欢的业务);或者将改变生活状态的事件(换工作、改变婚姻状况、置居等)视为营销机会;
(2)交叉营销。即不同业务或产品的交叉推荐,如招商银行可以根据客户交易记录分析,有效地识别小微企业客户,然后用远程银行来实施交叉销售;
(3)个性化推荐。银行可以根据客户的喜欢进行服务或者银行产品的个性化推荐,如根据客户的年龄、资产规模、理财偏好等,对客户群进行精准定位,分析出其潜在金融服务需求,进而有针对性的营销推广;
(4)客户生命周期管理。客户生命周期管理包括新客户获取、客户防流失和客户赢回等。如招商银行通过构建客户流失预警模型,对流失率等级前20%的客户发售高收益理财产品予以挽留,使得金卡和金葵花卡客户流失率分别降低了15个和7个百分点。
第三方面:风险管控。包括中小企业贷款风险评估和欺诈交易识别等手段。
(1)中小企业贷款风险评估。银行可通过企业的产、流通、销售、财务等相关信息结合大数据挖掘方法进行贷款风险分析,量化企业的信用额度,更有效的开展中小企业贷款。
(2)实时欺诈交易识别和反洗钱分析。银行可以利用持卡人基本信息、卡基本信息、交易历史、客户历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎(如从一个不经常出现的国家为一个特有用户转账或从一个不熟悉的位置进行在线交易)进行实时的交易反欺诈分析。如IBM金融犯罪管理解决方案帮助银行利用大数据有效地预防与管理金融犯罪,摩根大通银行则利用大数据技术追踪盗取客户账号或侵入自动柜员机(ATM)系统的罪犯