有效数字和误差

合集下载

误差与有效数字

误差与有效数字

误差与有效数字一、误差:1.系统误差产生的原因及特点(1)来源:一是实验原理不够完善;二是实验仪器不够精确;三是实验方法粗略.例如,在验证力的平行四边形定则实验中,弹簧测力计的零点未校准;在验证牛顿第二定律的实验中,用砂和砂桶的重力代替对小车的拉力等.(2)基本特点:实验结果与真实值的偏差总是偏大或偏小.(3)减小方法:改善实验原理;提高实验仪器的测量精确度;设计更精巧的实验方法.2.偶然误差产生的原因及特点(1)来源:偶然误差是由于各种偶然因素对实验者和实验仪器的影响而产生的.例如,用刻度尺多次测量长度时估读值的差异;电源电压的波动引起的测量值微小变化.(2)基本特点:多次重复同一测量时,偶然误差有时偏大,有时偏小,且偏大和偏小的机会比较接近.(3)减小方法:多次测量取平均值可以减小偶然误差.除上述两类误差外,还有因工作疏忽而引起的过失误差。

如试剂用错,度读错,砝码认错,或者计算错误,均可引起很大的误差,这些都应力求避免。

3.绝对误差和相对误差从分析数据看,误差分为绝对误差和相对误差.绝对误差:绝对误差是测量值与真实值之差,即绝对误差=|测量值-真实值|.它反映了测量值偏离真实值的大小.相对误差:相对误差等于绝对误差与真实值之比,常用百分数表示.它反映了实验结果的精确程度.对于两个实验值的评价,必须考虑相对误差,绝对误差大者,其相对误差不一定大.【例1】指出以下误差是系统误差还是偶然误差A.测量小车质量时天平不等臂、或砝码不标准,天平底盘未调平所致的误差。

B.用有毫米刻度的尺测量物体长度,毫米以下的数值只能用眼睛估计而产生的误差C.用安培表内接法测电阻时,测量值比真实值大D.在验证共点力合成的平行四边形法则实验中,在画出两分力方向及合力方向时,画线不准所致误差【解析】A是选项是实验仪器不精确所致,是系统误差;B选项是由于测量者在估计时由于视线方向不准造成的,是偶然误差;C选项是实验原理不完善、忽略电流表内阻影响所致,是系统误差;D选项是画力方向时描点不准、直尺略有移动,或画线时铅笔倾斜程度不一致所致,是偶然误差。

误差和有效数字介绍课件

误差和有效数字介绍课件
能导致测量结果的不准确。
误差的表示
误差通常用标准差或相对误差来 表示,这些值可以帮助我们了解
测量结果的可靠性和准确性。
有效数字的保留
在处理测量数据时,应根据误差 的大小来确定有效数字的保留, 以确保结果的准确性和可靠性。
有效数字对误差的影响
01
有效数字的精度
有效数字的精度决定了测量结果的精度,保留更多的有效数字可以提供
误差和有效数字介绍课件
目录
• 误差的基本概念 • 有效数字的基本概念 • 误差与有效数字的关系 • 误差的减小和避免 • 有效数字的取舍原则 • 误差和有效数字的应用实例
01
误差的基本概念
误差的定义
01
02
03
误差
测量值与真实值之间的差 异。
误差的来源
测量工具、测量方法、环 境条件、操作人员等。
质量测量的误差和有效数字分析
总结词
有效数字的位数是衡量质量测量结果 可靠性的重要指标。
详细描述
在质量测量中,有效数字的位数需要 根据称重工具的精度和称重方法的要 求来确定。例如,如果使用分辨率
THANKS
感谢观看
例子
将2345转换为科学记数法为2.345×10^3。
06
误差和有效数字的应用实例
长度测量的误差和有效数字分析
总结词
长度测量中的误差和有效数字分析是确保测量准确性的关键。
详细描述
在长度测量中,由于测量工具、测量方法和测量环境等因素的影响,测量结果往往存在误差。为了准确评估测量结果 的可靠性,需要对长度测量中的误差进行分析,并确定有效数字的位数。
误差的表示方法
绝对差
测量值与真实值之间的差值。
相对误差

实验中的误差和有效数字

实验中的误差和有效数字

【补偿训练】
(多选)用最小刻度为1mm的刻度尺测量的长度如下,
其中记录正确的是( )
A.3.10cm
B.3.1cm
C.3.100cm
D.0.31cm
【解析】选A、D。最小刻度为1mm的刻度尺测量的数据
若用cm作单位,小数点后面有两位,则A、D正确,B、
C错误。
【拓展例题】 不同物理量的有效数字 【典例】写出下列各测量量的有效数字位数。 (1)长度:3.142×103mm,有效数字位数______ (2)质量:0.0030kg,有效数字位数______ (3)时间:11.3s,有效数字位数______ (4)温度:104℃,有效数字位数______ (5)电压:14V,有效数字位数______
【典例示范】
用毫米刻度尺测量一物体的直径,下列数据中正确的是
()
A.21.4cm
B.21.420cm
C.21cm
D.21.42cm
【解析】选D。毫米刻度尺最小刻度是1mm,若用cm作
单位小数点后面应有两位,四位有效数字,则D正确,
A、B、C错误。
【素养训练】 1.甲、乙两位同学用两只刻度尺测同一物体长度,甲测量后记录数 据是16mm,乙测量后记录数据是16.0mm,下面说法正确的是( ) A.甲用的刻度尺最小刻度为厘米 B.甲用的刻度尺最小刻度为毫米 C.乙用的刻度尺最小刻度为分米 D.乙用的刻度尺最小刻度为厘米
【补偿训练】 关于误差和错误下列说法中正确的是( ) A.选择更精密的仪器,可以消除误差 B.改进实验方法,认真操作,可以消除误差 C.多次测量,反复求平均值,总能够消除误差 D.误差不能消除,只能努力减小,而错误可以消除或改正
【解析】选D。误差只能减小,不能消除,则A、B、C错误;错 误可以避免和消除,则D正确。

误差和有效数字

误差和有效数字

偶然误差
1、产生原因:由于实验者本身及各种偶然因 、产生原因: 素造成的。 素造成的。 2、特点:当多次重复同一测量时,有时偏大, 、特点:当多次重复同一测量时,有时偏大, 有时偏小, 有时偏小,并且偏大和偏小的机会相同 。 3、减少方法:多次测量求平均值。 、减少方法:多次测量求平均值。
绝对误差和相对误差
误差和有效数字
一、差
1、测量值与真实值的差异叫做误差。 、测量值与真实值的差异叫做误差。 2、误差按产生的原因可分为系统误差和偶 、 然误差两种。 然误差两种。
系统误差
1、产生原因:由于测量仪器结构缺陷、实验 、产生原因:由于测量仪器结构缺陷、 方法不完善造成的。 方法不完善造成的。 2、特点:当多次重复同一实验时,误差总是 、特点:当多次重复同一实验时, 同样地偏大或偏小。 同样地偏大或偏小。 3、减少方法:改进实验仪器,完善实验原理 、减少方法:改进实验仪器,
1、绝对误差:测量值和真实值间的差值。 、绝对误差:测量值和真实值间的差值。 2、相对误差:绝对误差与测量值的比值。 、相对误差:绝对误差与测量值的比值。 3、在相同的条件下,为了提高测量的准确程 、在相同的条件下, 应该考虑尽可能减少相对误差。 度,应该考虑尽可能减少相对误差
有效数字
1、带有一位不可靠数字的近似数字,叫做有 、带有一位不可靠数字的近似数字, 效数字。 效数字。 2、凡是用测量仪器直接测量的结果,读数一 、凡是用测量仪器直接测量的结果, 般要求在读出仪器最小刻度所在位的数值 可靠数字) 再向下估读一位( (可靠数字)后,再向下估读一位(不可 靠数字) 靠数字) 。 3、间接测量的有效数字运算不作要求,运算 、间接测量的有效数字运算不作要求, 结果一般可用2~3位有效数字表示。 位有效数字表示。 结果一般可用 位有效数字表示

误差与有效数字

误差与有效数字
4.与表格有关的说明和参数。包括表格名称、编 号,实验条件。
如:
表1-5 铜丝电阻与温度关系测量记录表
t(oC

20.0
30.0
40.0
50.0
60.0
70.0
(Ω)
升 1.28 1.32 1.37 1.42 1.47 1.51 R温2 3 0 5 0 3
降 1.27 1.31 1.37 1.41 1.46 1.51 温5 8 0 5 8 0
,它的数学计算式是:
(2)标准误差σ 的意义 ① σ 反映了测量的离散性 σ 越小,离散度就越小,测量精密度越高。 ② σ 具有明确的概率意义
Xx
在置信区间[-2σ ,+2σ ] 和[-3σ ,+3σ ]内 的置信概率分别为95.4%和99.7%。
所以把Δ =3σ称为极限误差。
(3)随机误差的估算 ① 有限次测量的标准偏差 算术平均值为:
例: Sin43.43o=0.6875 Sin30o07′= Sin30.12o=0.5018
6.对其他函数运算我们给出一种简单直观的方法 ,即将自变量可疑位上下变动一个单位,观察 函数结果在哪一位上变动,结果的可疑位就取
在该位上。
如求
,因为
所以取
上面给出的各函数运算例子也可用这种方法来确 定结果的有效数字位数。
一.有效数字的概念 1.有效数字定义及其意义
先看一个例子:用米尺(最小刻度是1mm)测量
钢棒的长度:4.26cm,4.27cm,或4.28cm?
“4.2” -确切数字 6、7、8(第三位数) ——可疑数字
L=4.2 ?cm
有效数字:测量结果的第一位非零数字起到最末1 位可疑数字(误差所在位)止的全部数字。

有效数字和误差1

有效数字和误差1

常见的误差有系统误差和偶然误差
1.系统误差 . 系统误差是由某些必然的或经常的原因造 成的。 成的。 根据误差的来源可分为:方法误差、 根据误差的来源可分为:方法误差、仪器 误差、试剂误差、操作误差等。 误差、试剂误差、操作误差等。 系统误差常用做空白试验或对照实验的方 法消除。 法消除。
ቤተ መጻሕፍቲ ባይዱ
在不加试样的情况下, 在不加试样的情况下,按照样品分析步骤 空白试验, 和条件进行分析试验称为空白试验 和条件进行分析试验称为空白试验,所得结果 称为空白值。 称为空白值。 空白值 从试样测定结果中扣除空白值,便可以消 从试样测定结果中扣除空白值, 除因试剂、 除因试剂、蒸馏水及实验仪器等因素引起的系 统误差。 统误差。
(三)偏差与精密度 精密度指多次重复测定的结果相互接近的程度, 精密度指多次重复测定的结果相互接近的程度, 指多次重复测定的结果相互接近的程度 是保证准确度的前提。 是保证准确度的前提。 偏差是指各次测定的结果和平均值之间的差值。 偏差是指各次测定的结果和平均值之间的差值。 是指各次测定的结果和平均值之间的差值 偏差越小,精密度越高。 偏差越小,精密度越高。
在计算中常会遇到下列两种情况: 在计算中常会遇到下列两种情况: 1、化学计量关系中的分数和倍数,这些数不是 、化学计量关系中的分数和倍数, 测量所得, 测量所得,它们的有效数字位数可视为无限多位 2、关于pH、pK和lgK等对数值,其有效数字的 、关于 、 和 等对数值, 等对数值 位数仅取决于小数部分的位数, 位数仅取决于小数部分的位数,因为整数部分只 与该真数中的10的方次有关 与该真数中的 的方次有关
11.23
cm 11 12
在确定有效数字位数时, 在确定有效数字位数时,特别需要指出的是 数字“ 来表示实际测量结果时 来表示实际测量结果时, 数字“0”来表示实际测量结果时,它便是有效 数字 例如:分析天平称得的物体质量为 例如:分析天平称得的物体质量为7.1560g 滴定时滴定管读数为20.05mL 滴定时滴定管读数为 这两个数值中的“ 都是有效数字 这两个数值中的“0”都是有效数字 中的“ 只起到定位作用 只起到定位作用, 在0.006g中的“0”只起到定位作用,不是 中的 有效数字

误差和有效数字

误差和有效数字

一、误差和有效数字1.误差测量值与真实值的差异叫做误差。

误差可分为系统误差和偶然误差两种。

⑴系统误差的特点是在多次重复同一实验时,误差总是同样地偏大或偏小。

⑵偶然误差总是有时偏大,有时偏小,并且偏大和偏小的机会相同。

减小偶然误差的方法,可以多进行几次测量,求出几次测量的数值的平均值。

这个平均值比某一次测得的数值更接近于真实值。

2.有效数字带有一位不可靠数字的近似数字,叫做有效数字。

⑴有效数字是指近似数字而言。

⑵只能带有一位不可靠数字,不是位数越多越好。

凡是用测量仪器直接测量的结果,读数一般要求在读出仪器最小刻度所在位的数值(可靠数字)后,再向下估读一位(不可靠数字),这里不受有效数字位数的限制。

间接测量的有效数字运算不作要求,运算结果一般可用2~3位有效数字表示。

二、基本测量仪器及读数高考要求会正确使用的仪器主要有:刻度尺、游标卡尺、螺旋测微器、天平、秒表、打点计时器、弹簧秤、温度表、电流表、电压表、多用电表、滑动变阻器、电阻箱等等。

1.刻度尺、秒表、弹簧秤、温度表、电流表、电压表的读数使用以上仪器时,凡是最小刻度是10分度的,要求读到最小刻度后再往下估读一位(估读的这位是不可靠数字,但是是有效数字的不可缺少的组成部分)。

凡是最小刻度不是10分度的,只要求读到最小刻度所在的这一位,不再往下估读。

例如⑴读出下图中被测物体的长度。

(6.50cm)⑵下图用3V量程时电压表读数为多少?用15V量程时电压表度数又为多少?1.14V; 5.7V1 23V5 10150 1 2 3 4 5 6 7 8 9 1⑶右图中秒表的示数是多少分多少秒?3分48.75秒凡仪器的最小刻度是10分度的,在读到最小刻度后还要再往下估读一位。

⑴6.50cm 。

⑵1.14V 。

15V 量程时最小刻度为0.5V ,只读到0.1V 这一位,应为5.7V 。

⑶秒表的读数分两部分:小圈内表示分,每小格表示0.5分钟;大圈内表示秒,最小刻度为0.1秒。

误差和有效数字(精)

误差和有效数字(精)

误差和有效数字
1.误差:测量值与真实值的差异叫做误差。

误差可分为系统误差和偶然误差两种。

*系统误差:是由于仪器本身不精密、试验方法粗略或试验原理不完善而产生的。

如仪器调零不准。

系统误差的特点是在多次重复同一实验时,误差总是同样地偏大或偏小,不会出现几次偏大另外几次偏小的情况。

系统误差不能通过多次测量取平均值的方法来减小。

只能通过校准测量器材、改进试验方法、完善试验原理等方法来达到减小系统误差的目的。

*偶然误差:是由各种偶然因素对试验者及仪器、被测物理量的影响而产生的,偶然误差总是有时偏大,有时偏小,并且偏大和偏小的机会相同它遵从一定的统计规律。

减小偶然误差的方法,可以多进行几次测量,求出几次测量的数值的平均值。

这个平均值比某一次测得的数值更接近于真实值。

2.有效数字:带有一位不可靠数字的近似数字,叫做有效数字。

高中物理:误差和有效数字

高中物理:误差和有效数字

高中物理:误差和有效数字
1.误差
(1)定义:在测量中,测出的数值(测量值)与真实值之间的差异叫作误差.
(2)分类:系统误差和偶然误差.
(3)系统误差
①产生:仪器本身不精确、实验方法粗略或实验原理不完善产生的.
②系统误差的特点:多次重复测量时,测量值总是大于(或小于)真实值.
③减小系统误差的方法:校准测量仪器(或使用更精密测量仪器),改进实验方法,完善实验原理等.
(4)偶然误差
①产生:由于各种偶然因素对实验者、测量仪器、被测物理量的影响而产生的.
②特点:测量值与真实值相比有时偏大,有时偏小,并且偏大和偏小的概率相同.
③减小方法:多次重复测量求平均值.
(5)误差与错误的区别
误差不是错误.一般情况下误差不可以避免,只能想办法减小.而错误是由于操作不当引起的,在实验过程中可以避免.
2.有效数字
(1)可靠数字:通过直接读数获得的准确数字.
(2)存疑数字:通过估读得到的那部分数字.
(3)有效数字:测量结果中能够反映被测量大小的带有一位存疑数字的全部数字.
第1 页共1 页。

误差和有效数字

误差和有效数字

例:10.00[mL]→0.001000[L] 均为四位
2.-1数据中零的作用
数字零在数据中具有双重作用:
(1)作普通数字用,如 0.5180 4位有效数字 5.18010-1
(2)作定位用:如 0.0518 3位有效数字 5.1810-2
续前
4.pH,pM,pK,lgC,lgK等对数值,其有效数字的 位数取决于小数部分(尾数)数字的位数,整数部 分只代表该数的方次 例:pH = 11.20 → [H+]= 6.3×10-12[mol/L] 两位
5.结果首位为8和9时,有效数字可以多计一位 例:90.0% ,可示为四位有效数字 例:99.87% →99.9% 进位
3.记录及使用有效数字的注意事项 特别强调:
(1)“0”在数字中的意义 ①数字前的“0”只起定位作用,本身不是有效数字。 ②数字之间的“0”和小数末尾的“0”都是有效数字。 (2)pH、pM、lgK等对数数值:小数部分才是有效数字。
• 2.误差:测定值与真实值之间的差值。
• 理解:a.误差越小,准确度越高;

误差越小,准确度越高;

b.客观存在,不能消灭。
(一)准确度与误差
2.误差 (1)绝对误差:测量值与真实值之差
x
(2)相对误差:绝对误差占真实值的百分比
x
RE% 100% 100%
RE% 100%
注:μ未知,δ已知,可用χ代替μ
3. 过失误差
三、误差的减免
1. 系统误差的减免
(1) 方法误差—— 采用标准方法,对比实验 (2) 仪器误差—— 校正仪器 (3) 试剂误差—— 作空白实验
2. 偶然误差的减免
——增加平行测定的次数
有效数字及其运算规则

有效数字及其与误差的关系

 有效数字及其与误差的关系

另一种情况,例如x 0.1524, x* 0.154,这时x*的误差
是 (x) 0.0016,其绝对值超过了0.000(5 1 103,即第三位
2 小数的半个单位),但却没有超过0.00(5 1 102,即第二位
2 小数的半个单位),即0.0005 x x* 0.005。
显然x*虽有三位小数,其中1 1,2 5都是准确数 字,而第三位小数3 4就不再是准确数字了,我们就称
1 10mn,又因为 x* 2
1 10m1,其相对误
差有:
* r
(
x)
(x)
x*
1 10mn1
21
故相对误差限为: 1 10n1。 21
上式表达了有效数字与相对误差之间的关系,由此
可见,有效数字的位数反映了近似值的相对精确度。
上述关系的逆也是成立的,即当用x* 0.12 n 10m 表
§3 有效数字及其与误差的关系
一、有效数字
例如:对无穷小数或着循环小数,可用四舍五入的办法来取其
近似值
3.1415926
若按四舍五入取四位小数,则可得其近似值3.1416 若取五位小数则得到其近似值为3.14159 这种近似值取法的特点是误差限为其末位的半个单位。
3.1416 0.002 1 104 3.14159 0.000008 1 105
正整数,m 是整数。 若x*的绝对误差限为:e x* x 1 10mn,则称 2
x*为具有n位有效数字,或称它精确到10mn,其中每一个
数字1,2 ,
都是
n
x*的有效数字。
3.1416 五位有效数字,精确到0.0001
203和0.0203都是具有三位有效数字的有效数. 0.0203和0.020300: 其中0.0203具有三位有效数字,精确到0.0001, 0.020300具有五位有效数字,精确到0.000001. 可见,两者的精确程度大不相同,后者比前者精确.注: 有效数字尾部的零不可随意省去,以免损失精度.

20070906高一物理(误差和有效数字)

20070906高一物理(误差和有效数字)
误差和有效数字
一、实验误差
测量数据与真实值的 差异 误差是不可避免的!
从误差来源看,误差分两类: 1.系统误差: 形成原因:仪器不精确;原理 不完善;方法粗略。 特 点:多次实验总是偏大或 总是偏小 减小途径:校准仪器;完善原 理;改进方法
例.若一天平的右翼 比左翼略长,在操作 无误的情况下,将引 起怎样的系统误差?
例:判断有效数字位数
2.偶然误差
形成原因:偶然因素 特 点:多次实验中有时 偏大有时偏小 减小途径:取平均值
从误差分析来看,误差分两类
1. 绝对误差:
测量值—真实值
. 相对误差:
(测量值—真实值)×100% 测量值
实验中应尽量减小相对误差 例:用打点计时器测量 , 平均速度时,测量的位移尽 量的长一些;用秒表测量单 ; 摆周期时,先测量几十次的 振动时间等
二、有效数字
带有一位不可靠 数字的近似数字 叫有效数字
1.小数最后的零是 有效数字 2. 2.小数第一个非零数字前 的零不是有效数字,只表 示小数点位数 3.科学计数法
天花板到地板的距离2.82m 一个苹果的质量0.0510kg 电路中的电流0.38A 某人的体温37.21oC 一根导线的直径1.020mm 月球到地球的平均距离 3.84×105km 钨原子的半径1.37×10-10m

误差和有效数字

误差和有效数字

误差和有效数字一、误差的概念测量值与真实值的差异,叫做误差。

造成误差的原因都有哪些?(学生讨论后回答,并引导学生进行归纳)归纳起来有两个方面:1.仪器本身的缺陷、实验原理或方法不完善。

如:米尺的刻度不准,天平两臂不严格等长,电表刻度、零点不准等。

这种误差有什么特点?(总是偏大或偏小)怎样才能减小这类误差?(校准仪器、完善原理)2.实验者操作和读数不准确。

如:按停表的时机把握不准,读数时视线对不准而导致读数有偏差,伏安法测电阻时电表内阻的影响等。

这种误差有什么特点?(有时偏大有时偏小)怎样才能减小这类误差?(多次测量取平均值)二、偶然误差和系统误差偶然误差:由于一些偶然因素所造成的误差。

系统误差:由于仪器本身的缺陷、实验原理或方法不完善所造成的误差。

三、误差大小的表示1.绝对误差:测量值与真实值的差值,叫绝对误差。

例1 用同一把刻度尺分别测一本书的厚度和长度,从PPT(见课件)所给出的图中可读出其读数分别为多少?其读数引起的绝对误差各多大?它们的测量结果的准确度谁大?是否绝对误差小的准确度一定高?(引导学生从单位长度的偏差支考虑)——引入相对误差2.相对误差:绝对误差与测量值的比值,叫做相对误差。

相对误差常常用百分数表示。

例2 上例中,测量长度和厚度的相对误差分别为多大?由此可知,当用同一工具测量时,被测数值越大,则其读数的相对误差就越小,结果的准确程度就越高,所以实验中我们应考虑的是怎么样去减小相对误差。

思考:用刻度尺测量一根金属丝的直径,为尽可能减小误差,可怎样进行测量?四、有效数字从上面的读数中,可以发现实验时读取的数据的最后一位是估计出来的,它是一位不可靠的近似数。

这种带有一位不可靠数字的近似数字,叫做有效数字。

出示一刻度尺,请学生读出其有效数字:2.02cm ,3.27cm ,3.90cm ,5.00cm问:它们各有几位有效数字?若将其化为以米为单位,则应如何表示?若将其化为以微米为单位,则又应如何表示?为什么?指出:由以上分析可知,最末一位非0数字后面的0是有意义的,不能随意舍去或添加。

有效数字及其与误差的关系

有效数字及其与误差的关系

表示方法
有效数字的表示方法通常采用科学记数法或常规表示法。在科学记数法中,有效 数字的位数表示为小数点后的位数;在常规表示法中,有效数字的位数表示为小 数点后的位数加一个指数。
在表示有效数字时,需要注意舍入规则和精度要求,以确保测量结果的准确性和 可靠性。
有效数字的位数
有效数字的位数取决于测量或计算的精度和可靠程度。在科 学和工程领域,通常采用不同的精度要求和舍入规则来确定 有效数字的位数。
科学计算精度
在进行科学计算时,需要 使用适当的有效数字,以 确保计算的精度和可靠性。
科学测量精度
在进行科学测量时,需要 使用有效数字来表示测量 结果,以确保结果的准确 性和可靠性。
在工程计算中的应用
工程设计精度
在工程设计中,需要使用有效数字来表示设计参数和数据,以确 保设计的准确性和可靠性。
工程计算精度
误差的合成
当多个测量值用于计算一个结果 时,需要将各个测量值的误差进 行合成,以评估结果的误差范围。
误差的分解
对于复杂测量系统,需要将总误 差分解到各个组成单元,以优化 系统设计和减小误差。
03 有效数字与误差的关系
有效数字对误差的影响
有效数字越多,测量 error越小
有效数字的多少直接反映了测量值的精确度,有效数字越多,表示测量值的精确度越高,从而误差越 小。
有效数字及其与误差的关系
目录
• 有效数字概述 • 误差来源与表示 • 有效数字与误差的关系 • 有效数字的运算规则 • 有效数字的实际应用 • 总结与展望
01 有效数字概述
定义与概念
01
有效数字是指在测量或计算中能 够表示测量结果可靠程度的数字 ,包括所有的非零数字和一位可 疑数字。

误差误差限有效数字

误差误差限有效数字
1 101 3 2.5 10 3 2 2
2010-3-11
chenli@
8
定理2:设近似值 x = ± 0. a1 a2 …an×10 p a1>0, 且相对误差限满足关系式: 1 r 10 ( n1) 2(a1 1) 则 x 至少具有 n 位有效数字。 1 * pn | x x | 10 (*)即可。 证: 只需证明 2 1 * * * ( n 1) 10 x x x x r 而 2( a1 1) 因为 | x*| < (a1+1) ×10 p1, 所以(*)式成立。
2010-3-11 9
§4 和差积商的误差

法则1(关于“±”的绝对误差) 1) 2) 证 1)
ex y ex e y x y x y
e x y ( x * y* ) ( x y ) ( x x ) ( y y) e x e y
x * 0.a1 10 p a1 10 p 1 x*
2010-3-11
1
1 101 p a1
e 1 * 101 n 2a1 x
chenli@

7
例:用2.72表 e 有 3 位有效数字. 解:
r ?
1 r 101 n 2a1
2010-3-11 chenli@ 4
例:x = 0.2725, x1*=0.272, x2*=0.273 | xx*| = 0.0005 故 x1*, x2*均为 3 位有效数字。
舍入原则:
<5舍,>5入,=5可舍可入,一般取偶结尾 例: 已知 x* = 3587.64 有 6 位有效数字,求误差限
2010-3-11 chenli@ 1

误差和有效数字

误差和有效数字

1.有效数字的位数:例:0.092 3、0.092 30、2.014 0有效数字的位数依次为3位、4位和5位.2.系统误差:一是实验原理不够完善;二是实验仪器不够精确;三是实验方法粗略.例如,在验证力的平行四边形定则实验中,弹簧测力计的零点未校准;在验证牛顿第二定律的实验中,用砂和砂桶的重力代替对小车的拉力等.3.偶然误差是由于各种偶然因素对实验者和实验仪器的影响而产生的.例如,用刻度尺多次测量长度时估读值的差异;电源电压的波动引起的测量值微小变化.4.绝对误差:绝对误差是测量值与真实值之差,即绝对误差=|测量值-真实值|.它反映了测量值偏离真实值的大小.5.相对误差:相对误差等于绝对误差与真实值之比,常用百分数表示.它反映了实验结果的精确程度.绝对误差大者,其相对误差不一定大.6.不需要估读的仪器(1)游标卡尺:由于游标卡尺是相差读数,游标尺上每一小格与主尺上每一小格的差值即为精确度,所以游标卡尺不需要估读.(2)机械秒表:因为机械秒表采用齿轮转动,指针不会停留在两小格之间,所以不能估读出比0.1s更短的时间,即机械秒表不需要估读.(3)欧姆表:由于欧姆表的刻度不均匀,只作为粗测电阻用,所以欧姆表不需要估读.(4)电阻箱:能直接读出接入电阻大小的变阻器,但它不能连续变化,不能读出比最小分度小的数值,所以电阻箱不需要估读.7.需要估读的仪器在常用的测量仪器中,刻度尺、螺旋测微器、电流表、电压表、天平、弹簧秤等读数时都需要估读.估读的一般原则:(1)最小刻度是1(包括0.1、0.01)的仪器要估读到最小刻度的下一位,即采用1/10估读,如刻度尺、螺旋测微器、安培表0~3A挡、电压表0~3V挡等.(2)最小刻度是2(包括0.2、0.02)的仪器,误差出现在本位上,采用半刻度(1/2刻度)估读,读数时靠近某一刻度读此刻度值,靠近刻度中间读一半,即所谓的指针“靠边读边,靠中间读一半”,如电流表量程0.6A,最小刻度为0.02A,误差出现在0.01A位,不能读到下一位.(3)最小刻度是5(包括0.5、0.05)的仪器,误差出现在本位上,采用1/5估读,如电压表0~15V挡,最小刻度是0.5V,误差出现在0.1V位,不能读到下一位.【例】读出图中电流表的示数【解析】甲图中电流表量程为0.6A,最小分度为0.02A,读数应保留到安培的百分位上即安培为单位时小数点后第2位。

有效数字及误差分析

有效数字及误差分析

有效数字及误差分析一、有效数字在进行实验时,仪表指针往往停留在两条刻度线之间,这时就需要凭目力和经验来估计读数,估计出来的最后一位数字称为“欠准数字”。

实验数据或实验结果处理用几位数字来表示,是一件很重要的事情,在超过有效位数的数字上花费大量时间是没有必要的。

另外,计算结果中也并非保留的位数愈多准确度就愈高,因为小数点的位置与所用单位的大小有关,准确度的高低取决于实际测量的准确度。

例如:用100mA的电流表测量电流,如果电流表的指针停留在50mA和51mA之间,读数为50.4mA,则最末一位数字“4”是估计读出的,它可能被读为50.3mA,也可能被读为50.5mA,因此该读数的最后一位“4”被称为“欠准数字”,那么它的有效数字应该是三位。

实验时一般可估计到最小刻度的十分位,也就是说实验数据应保留一位欠准数字。

另外,50.4mA与0.0504A的准确度是完全相同的。

二、有效数字的正确表示(1)记录测量结果时,除最后一位数字外,前面的各位数字都必须是准确的。

(2)关于数字“0”要特别注意,它只有在数字之间和数字末尾才算作有效数字。

例如,50.4和0.0504都是三位有效数字。

(3)对于较大或较小的数字,必须用10的幂次前面的数字代表有效数字。

例如15000Ω这种写法,后面三个“0”无法知道是否为有效数字,为了明确表示有效数字的位数起见,写成1.5×l04Ω表示有二位有效数字;1.50×l04Ω就表示有三位有效数字;1.500×l04Ω就表示有四位有效数字。

同理,50.4mA应记为0.0 504A或5.04×l04 A,它表示有三位有效数字。

(4)表示常数的数字可以认为它的有效数字的位数为无限制。

(5)表示误差时,一般情况下只取一位有效数字,最多取二位有效数字。

例如,±2%、±2.5%。

三、有效数字的舍入规则为了保证各数据有相同的有效数字位数,表示测量结果时对多余的位数需要舍入。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

误差与有效数字
武汉市第六中学物理教研组 朱克生
物理实验离不开误差分析和测量值与计算值的有效数问题。

本文主要目的是了解误差的有关概念,并对测量值与计算值的有数数字的保留个数做一个定量的描述。

一、误差
1、误差的定义
测量值与被测物体的真实值之间的差异叫误差。

误差是绝对不能避免的,但是可以减小。

2、误差的分类
(1)、从误差来源上分为偶然误差与系统误差。

①偶然误差是由于实验人和读数的不准确等偶然因素造成的。

它的特点是:当多次重复同一测量时,偏大和偏小的机会比较接近,可以用取平均值的方法来减小偶然误差。

比如长度的测量,多次测量同一个物体的长度,估计值就会或大或小,为了减小误差可以取平均值。

②系统误差是由仪器结构缺陷、实验方法不完善造成的。

系统误差的特点:多次重复同一测量的结果总是大于(或小于)被测量的真实值,呈现单一倾向。

比如采用打点计时器来验证机械能守恒定律,由于空气阻力和计时器与纸带的摩擦,造成物体增加的动能总比..物体减小的重力势能小。

(2)、从误差分析上分为绝对误差与相对误差。

①绝对误差,测量值与真实值之差。

注意:绝对误差有正负之分的。

比如长度的测量,要估计到最小分度的下一位,估读总是不准确的,测量值有时比真实值大,有时比真实值小,所以绝对误差有正有负,但绝对误差的大小一般不大于最小分度值(天平指感量)。

②绝对误差的绝对值与测量值的百分比称为相对误差。

如果绝对误差用Δx 表示,测量值用x 表示,则相对误差就是η=%100⨯∆x
x 。

严格讲,式中分母应为真实值。

实验估算时则用测量值代替。

(人教版高中物理必修一P99)
绝对误差由于仪器本身的原因造成,一般很难减小,所以在相同的条件下为了提高测量的准确程度,应该考虑尽量减小相对误差。

比如用逐差法求匀变速直线运动的加速度。

如果所给的长度有五段,此时应该舍去一段,我们就舍弃长度小的哪一段,因为在绝对误差相同的情况下,长度小的相对误差要大一些。

二、有效数字
1、定义:具体地说,是指在实验中实际能够测量到的数字。

比如某一物体的长度测量值
是13.3mm、0 .0030m,则要由左向右从第一个不为零的数字数起分别有三位和两位有效
数字。

能够测量到的数字是包括最后一位估计的,不确定的数字。

我们把通过直读获得的准确数字叫做可靠数字;把通过估读得到的那部分数字叫做近似数字。

把测量结果中能够反映
被测量大小的带有一位近似数字的全部数字
....叫有效数字。

前面的两个测量值中13mm和0.003m是可靠数字(即准确数),而0.3mm和0.0000m是估计的,为近似数字。

2、记录结果保留的有效数字
在高中阶段有两个测量工具是没有估计值的,它们分别是秒表与游标卡尺。

其它测量工具记录测量结果有准确值和估计值两部分组成。

比如最小分度是“1”的,要估读到最小分度的下一位。

最小分度是“2”、“5”,分别按二分之一或五分之一估读到最小分度的同一位。

图1图2
比如图1,0.6A量程电流表的最小分度是0.02A,记录结果就是0.51A,其中0.01A为估读的,因为指针达到或超过了一格的二分之一,没有超过的不多读。

比如图2读0.50A。

图3图4
比如图3,15V量程的电压表最小分度是0.5V,可将11.5V到12.0V之间分成五等分,然后就看到指针接近或达到一格的五分之三,记录结果是11.8V。

而图4读12.5V。

3、计算结果保留的有效数字。

实验的结果往往是由若干直接测量值经过运算得到的。

每一个直接测量值的误差都对最后结果产生影响,应当按照一定的数学方法来确定运算结果的有效数字。

但是这种处理方法
比较复杂,中学阶段不做要求。

运算结果如果题目中有要求就按要求保留有效数字
..
......................个数
..,如
果没有要求一般取两位或三位有效数字就可以了。

......................
《仪表维修工》(中国石油大学出版社)第69页。

相关文档
最新文档